
Feature-Family-Based Reliability Analysis
of Software Product Lines

André Lannaa, Thiago Castroa,b, Vander Alvesa,d, Genaina Rodriguesa,
Pierre-Yves Schobbensc, Sven Apeld

aComputer Science Department, University of Brasília. Campus Universitário Darcy
Ribeiro - Edifício CIC/EST, 70910-900, Asa Norte, Brasília -DF, Brazil

bSystems Development Center, Brazilian Army. QG do Exercito - Bloco G - 2o. andar,
Setor Militar Urbano, Brasília - DF, Brazil

cPReCISE, NaDI, Faculty of Computer Science, University of Namur. Rue
Grandgagnage 21, 5000 Namur, Belgium

dDepartment of Informatics and Mathematics, University of Passau Innstr. 33, 94032,
Passau, Germany

Abstract

Context: Verification techniques are being applied to ensure that software
systems achieve desired quality levels and fulfill functional and non-functional
requirements. However, applying these techniques to software product lines is
challenging, given the exponential blowup of the number of products. Cur-
rent product-line verification techniques leverage symbolic model checking
and variability information to optimize the analysis, but still face limitations
that make them costly or infeasible. In particular, state-of-the-art verification
techniques for product-line reliability analysis are enumerative which hinders
their applicability, given the latent exponential blowup of the configuration
space.

Objective: The objectives of this paper are the following: (a) we present
a method to efficiently compute the reliability of all configurations of a com-
positional or annotation-based software product line from its UML behavioral
models, (b) we provide a tool that implements the proposed method, and (c)
we report on an empirical study comparing the performance of different re-
liability analysis strategies for software product lines.

Method: We present a novel feature-family-based analysis strategy to
compute the reliability of all products of a (compositional or annotation-
based) software product line. The feature-based step of our strategy divides
the behavioral models into smaller units that can be analyzed more efficiently.

Preprint submitted to Information and Software Technology October 2, 2017

The family-based step performs the reliability computation for all configu-
rations at once by evaluating reliability expressions in terms of a suitable
variational data structure.

Results: Our empirical results show that our feature-family-based strat-
egy for reliability analysis outperforms, in terms of time and space, four state-
of-the-art strategies (product-based, family-based, feature-product-based, and
family-product-based) for the same property. It is the only one that could
be scaled to a 220-fold increase in the size of the configuration space.

Conclusion: Our feature-family-based strategy leverages both feature-
and family-based strategies by taming the size of the models to be analyzed
and by avoiding the products enumeration inherent to some state-of-the-art
analysis methods.

Keywords: Software Product Lines, Software Reliability Analysis,
Parametric Verification

1. Introduction1

Achieving a high quality, low costs, and a short time to market are2

the driving goals of software product line engineering. A software product3

line [11] is created to take advantage of the commonalities and variabilities4

of a specific application domain, by reusing artifacts when instantiating in-5

dividual software products (a.k.a. variants or simply products). A domain6

variability is expressed in terms of features, which are distinguishable charac-7

teristics relevant to some stakeholder of the domain [13]. Nowadays software8

product line engineering is widely accepted in both industry [46, 31] and9

academia [1, 11, 26, 38].10

Quality assurance of product lines has drawn growing attention [32, 42].11

Particularly, model checking techniques for product lines explore the space12

of all products in a product line by searching for execution states where func-13

tional [7, 8, 9] or non-functional [17, 21, 28, 34, 39] properties are violated [5].14

Nevertheless, employing model checking techniques to verify product lines is15

a complex task, posing a twofold challenge [8]: (1) the number of variants16

may grow exponentially with the number of features, which gives rise to an17

exponential blowup [10, 9, 4, 1]; and (2) model checking is inherently prone18

to the state-explosion problem [3, 5]. Therefore, model checking all products19

of a product line is often not feasible in practice [42].20

In previous work, model checking techniques have been applied to analyze21

2

probabilistic properties of product lines, in particular, reliability [21, 39, 34].22

These approaches attenuate the complexity of analyzing probabilistic prop-23

erties by exploiting, to some extent, reuse in modeling and analysis. On the24

one hand, non-compositional techniques exploit commonalities across prod-25

ucts resulting into a single model representing the variability and the behavior26

of the product line as a whole (covering the behaviors of all products), but27

it may not scale due to the large state space of models generated by this28

modeling approach [39, 34]. On the other hand, a compositional alternative29

is to create and analyze isolated models for each feature and then evaluate30

them jointly for each configuration [21]. This approach is space-efficient, but31

faces an exponential blowup by enumerating all valid configurations, which32

leads to time scalability issues. In essence, both approaches have limita-33

tions in reusing analysis effort in product lines. As a result, state-of-the-art34

verification techniques for product-line reliability analysis are enumerative35

(product-based), which hinders their applicability, given the latent exponen-36

tial blowup of the configuration space. Consequently, unwanted redundant37

computational effort is wasted on modeling and analyzing product line’s mod-38

els [21].39

As our key contribution, we present a strategy to efficiently compute40

the reliability of all products of both compositional and annotation-based41

product lines, without enumerating and analyzing each of these products.42

Our strategy employs a divide-and-conquer approach in which pre-computed43

reliabilities of individual features are combined to compute the reliability of44

the whole product line in a single pass. In a nutshell, in the first step, a45

feature-based analysis is applied to build a probabilistic model per feature46

and to analyze each such model using a parametric model checker, returning47

expressions that describe the reliability of features. Parameters in a feature’s48

reliability expression represent the reliabilities of other features on which it49

depends at runtime. In the second step, our strategy performs a family-based50

step to evaluate each expression in terms of Algebraic Decision Diagrams [2]51

that are used to encode the knowledge about valid feature combinations52

and the mapping to their corresponding reliabilities. Since our strategy is53

a combination of feature-based and family-based analyses, it is effectively a54

feature-family analysis strategy [42], being the first of its kind for reliability55

analysis.56

We implemented our approach in the tool ReAna (which stands for Re-57

liability Analysis), whose source code is publicly available as free and open-58

3

source software1. The tool takes as input a set of UML behavioral mod-59

els annotated with reliability information and a feature model of a product60

line, and it outputs the reliability values for the valid configurations (i.e.,61

products) of this product line. To evaluate the time-space complexity, we62

performed 120 experiments to empirically compare our feature-family-based63

analysis strategy with the following state-of-the-art strategies [42]: product-64

based, family-based, feature-product-based, and family-product-based. We65

implemented these alternative strategies as variations of ReAna and used66

them to analyze twenty variants of each of six publicly available product-line67

models: a system for monitoring an individual’s health [39], control systems68

for mine pumps [29] and lifts [37], an email system [43], inter-cloud configu-69

ration [19], and a game [43]. These product lines have been used widely as70

benchmarks; they have configuration spaces of different sizes, ranging from71

dozens to billions of billions of products.72

Our experiment consisted of progressively increasing the number of fea-73

tures and the size of the behavioral models for each of the product lines,74

analyzing each of the evolved product lines with all analysis strategies. Our75

results indicate that the feature-family-based strategy has the best perfor-76

mance in terms of time and space, being the only one that could be scaled77

to a 220-fold increase in the size of the configuration space for reliability78

analysis when compared to four state-of-the-art strategies for the same prop-79

erty: product-based, family-based, feature-product-based, and family-prod-80

uct-based.81

In summary, the contributions of this paper are the following:82

• We introduce a novel feature-family-based strategy for reliability anal-83

ysis that analyzes each feature in isolation and combines the resulting84

pieces of information to compute the reliability of a given product line85

(Section 3);86

• We provide a novel tool, called ReAna, implementing such feature-87

family-based strategy, to carry out the analysis of reliability of a prod-88

uct line from its UML behavioral diagrams and its feature model (Sec-89

tion 4.1);90

• We report on an empirical study comparing the performance of our91

1https://github.com/SPLMC/reana-spl/

4

https://github.com/SPLMC/reana-spl/

feature-family-based strategy to other state-of-the-art analysis strate-92

gies, implemented as an extension of our ReAna tool (Section 4.3).93

Supplementary material, including the ReAna tool and its extensions94

(which include all evaluation strategies considered in this work), as well as95

models used in our empirical evaluation and respective experimental results96

are publicly available for replication purposes at http://splmc.github.io/97

scalabilityAnalysis/.98

2. Background99

In this section, we provide an overview of fundamental concepts related to100

our work and a running example to guide the presentation of our approach101

in later sections. We assume the reader is familiar with software product102

lines [11, 38] and discrete-time Markov chains (DTMC) [3].103

2.1. Reliability Analysis and FDTMC104

Probabilistic verification techniques have been used in the past to substi-105

tute the concept of absolute correctness by bounds on the probability that106

certain behavior may occur. Based on probabilistic models, it is possible107

to specify probabilistic system behavior due to, e.g., intrinsically unreliable108

hardware components and environmental characteristics. Reliability can be109

defined as a probabilistic existence property [22], in the sense that it is given110

by the probability of eventually reaching some set of success states in a prob-111

abilistic behavioral model of a system. (In our setting, we define success to112

mean that all tasks of interest have been accomplished as intended.)113

Discrete-time Markov Chain (DTMC) is a well-known formalism to model114

such probabilistic behavior. In a DTMC, the reachability probability is de-115

fined as the sum of probabilities for each possible path that starts in an116

initial state and ends in a state belonging to the set of target states [3].117

Thus, to compute reliability, we label success states with the atom “suc-118

cess” and compute the reachability probability of success states, expressed119

as P=?[♦“success”] in the query language of the PARAM model checker [24].120

To analyze the behavior of a product line, it is useful to embed its in-121

herent variability in such a probabilistic model. A possible approach is to122

use parametric DTMCs (PDTMC) [15], which augment DTMCs with transi-123

tion probabilities that can be expressed as variables. A PDTMC is a DTMC124

whose probability matrix takes values from a setX of strictly positive param-125

eters. A PDTMC gives rise to a family of DTMCs by instantiating the formal126

5

http://splmc.github.io/scalabilityAnalysis/
http://splmc.github.io/scalabilityAnalysis/
http://splmc.github.io/scalabilityAnalysis/

parameters to values with an instantiation function κ : Q+ ∪X 7→ [0, 1]. For127

a parametric DTMC DX and an instantiation function κ, κ(DX) denotes the128

DTMC whose probability matrix is given by instantiating DX ’s formal pa-129

rameters. For PDTMCs, the reliability analysis problem can be solved by130

a parametric probabilistic reachability algorithm [23], which outputs a ratio-131

nal expression (a fraction of two polynomials) on the same variables as the132

ones in the input parametric model. The idea behind this technique is that133

evaluating the variables in the rational expression yields the reliability value134

of the DTMC that would be obtained by an equivalent evaluation of the135

variables in the PDTMC. However, this behavioral representation does not136

take a variability model (e.g., a feature model) into account, and thus is not137

sufficient for representing possible behavior in a product line (i.e, behavior of138

actual products).139

Featured Discrete-time Markov Chains (FDTMC) [39] are probabilistic140

models that properly handle product-line variability. They can be thought as141

DTMCs that, instead of transition probabilities, have transition probability142

profiles. These profiles are functions JFM K→ [0, 1] that map a configuration143

to a probability value, where JFM K denotes the set of valid configurations of144

the feature model FM . Rodrigues et al. [39] proposed a method to encode145

an FDTMC as a PDTMC, enabling its analysis by off-the-shelf parametric146

model checkers. In the present work, we leverage the view of Rodrigues et al.147

[39] of FDTMCs as PDTMCs for the purpose of compositional reliability148

analysis.149

2.2. Software Product Line Analysis150

Several analysis techniques have been proposed by researchers for soft-151

ware product lines, each one taking a particular property into account. To152

help researchers and practitioners understand the similarities and differences153

among such techniques, Thüm et al. [42] propose a classification of the exist-154

ing techniques, which we follow in this work. In our context, a product-based155

reliability analysis operates only on derived (non-variable) UML behavioral156

models, whereas the variability model may be used to generate the models.157

As it is a brute-force strategy, it is only feasible for product lines with few158

products. In contrast, the family-based strategy for reliability analysis oper-159

ates over variant-rich UML behavioral models and incorporates the knowl-160

edge about valid feature combinations. In a feature-based analysis strategy,161

the reliability of UML behavioral models related to each individual feature162

is analyzed in isolation from the others, i.e., interactions among features and163

6

the knowledge about valid feature combinations are not incorporated into164

the analysis.165

Other evaluation strategies may be formed by combining two or more166

strategies aforementioned [42]. For instance, a feature-product analysis con-167

sists of a feature-based analysis step followed by a product-based analysis,168

such that the result of the feature-based analysis is reused by the product-169

based analysis. In the context of reliability, the reliability of UML behavioral170

models related to each feature is first evaluated in isolation and then the anal-171

ysis result is reused when enumerating and evaluating the reliability of each172

non-variant UML behavioral model of the product line.173

Although other combined evaluation strategies are possible, the afore-174

mentioned strategies suffice as contrast to our proposed strategy. For more175

information regarding the remaining strategies, please refer to Thüm et al.176

[42].177

2.3. Running Example178

To illustrate the concepts presented throughout this paper, we introduce179

an example of a simple product line within the medical domain, for which180

reliability is considered the major requirement [25]: the Body Sensor Net-181

work (BSN) product line is a network of connected sensors that capture vital182

signs from an individual and send them to a central system to analyze the183

collected data and identify critical health situations [39]. This product line184

has software components that interpret data provided by the sensors and185

analyze an individual’s health situation, as well as components for data per-186

sistence in a database or memory. The set of possible configurations for this187

product line is defined by its feature model (Figure 1), in which wireless sen-188

sors are grouped by the feature Sensor, software components for interpreting189

health information are grouped by the feature SensorInformation, and the190

alternatives for data persistence are grouped by the feature Storage.191

To continuously monitor an individual’s health situation, the BSN prod-192

uct line has a control loop comprised of four activities: capture data coming193

from sensors, process information about the health condition, identify health194

goal changes, and reconfigure the system if necessary. This control loop rep-195

resents the coarse-grained behavior of the BSN product line and it is modeled196

by the activity diagram shown in Figure 2a, with each activity being repre-197

sented in detail by a sequence diagram involving the components and their198

behavior. Therefore, every product instantiated from the BSN product line199

executes this control loop and, whenever the individual’s health condition200

7

Figure 1: BSN-SPL Feature Model

changes and this triggers a quality-of-service goal change, another product201

is instantiated from this product line with the desired behavior to reach202

the desired quality-of-service goal. The sequence diagrams play the role of203

representing the behavioral variability where necessary, by means of guard204

conditions involving the presence of features (a.k.a presence conditions [14]).205

For instance, Figure 2b presents an excerpt of the sequence diagram asso-206

ciated with the activity system identifies situation (Figure 2a). This activity207

consists of processing and persisting data regarding the individual’s health208

condition, in particular sensor information, represented by feature SensorIn-209

formation and its child features in Figure 1. Figure 2b depicts the behavior210

associated with the computation and persistence of the individual’s oxygena-211

tion. Such behavior is defined by the messages exchanged between five soft-212

ware components, whose roles are data processing (Oxygenation) and per-213

sistence (Persistence, SQLite and Memory—Persistence dispatches calls214

to the concrete persistence engines), and components for communication and215

coordination (Bus). Each message is named according to its task and has an216

associated probability value prob to represent the reliability of the channel217

between the components comprising the interaction. The reliability is given218

by the product of (a) the probability that the required message arrives at219

the receiver component and (b) the receiver component’s reliability (i.e., the220

probability that it performs the required task without failure). For the BSN221

product line, we assume that all channels have reliability 0.999.222

The guard condition at the top level of the sequence diagram presented223

in Figure 2b is the atomic proposition Oxygenation. This means that the224

8

System
captures

vital signal
System iden-
tifies situation

Compute
new QoS goal

Was there any
QoS goal change?

System
reconfiguration
to achieve

new QoS goal

yes

no

(a) Activity Diagram representing the control loop of BSN-SPL

(b) Sequence diagram (excerpt) associated with the activity system identifies situa-
tion, for processing and persisting Oxygenation information.

Figure 2: Behavioral diagrams for BSN-SPL

enclosed behavior is associated with the presence of the Oxygenation feature225

in a given configuration. This behavior, in turn, has two variants, accord-226

ing to the chosen mechanism for data persistence. The optional fragment227

whose guard condition is SQLite models the behavior of persisting data in a228

database whenever feature SQLite is part of a configuration. Likewise, the229

optional fragment associated to the presence of the feature Memory (i.e., the230

fragment with the Memory guard) models persistence on secondary memory.231

Intuitively, the reliability of the BSN-SPL in terms of the UML behav-

9

ioral diagrams shown in Figure 2 is defined by the probability of reaching
the final elements of both activity (Figure 2a) and sequence (Figure 2b) di-
agrams without any error occurrence. This probability is given by the serial
execution of the behavioral elements along the possible paths from the first
until the final element in both diagrams. In Figure 2a, for instance, there
are two possible executions leading to the end state: the first one considers
that a reconfiguration is necessary to accomplish a new QoS goal, whereas
the other bypasses the reconfiguration activity. The reliability for such dia-
gram is the sum of the probabilities of both executions, considering that the
reliability of each individual activity is represented by a variable named after
its configuration parameter. Thus, assuming that the decision to reconfigure
the BSN is taken 50% of the times, the reliability computed for the model
represented in Figure 2a is given by

R(BSN) = rCapture · rSituation · rQoSGoal · 0.5
+ rCapture · rSituation · rQoSGoal · rReconfiguration · 0.5

Similarly, the reliability of the sequence diagram in Figure 2b is given
by the probability that all messages are transmitted and processed without
errors (the probability for any such message is noted in the corresponding
arrow). The reliability of the Oxygenation fragment is then given by

R(Oxygenation) = 0.999 · 0.999 · 0.999 · 0.999
· rSQLite · rMemory · 0.999 · 0.999

= 0.9996 · rSQLite · rMemory

Similar to activities in the computation of R(BSN), the reliability values of
the fragments associated to the features SQLite and Memory are represented
by variables. The reliability of each of these inner fragments is computed in
the same fashion, leading to

R(SQLite) = R(Memory) = 0.999 · 0.999 = 0.9992

Although the reliabilities of the inner fragments are constant, we are not232

able to inline these values into the expression for R(Oxygenation). Indeed,233

according to the feature model in Figure 1, features SQLite and Memory234

are alternative, meaning that exactly one of them is ever present in a given235

configuration. Thus, we leverage variables in the reliability expression to also236

10

encode product-line variability: whenever SQLite is present and Memory is237

absent, for instance, we evaluate rSQLite as R(SQLite) and rMemory as 1.238

Note that the dynamic behavior of the BSN does not affect our approach239

to reliability analysis, since we only consider the execution of tasks up to240

reconfiguration (Figure 2a). Moreover, our approach is entirely based on241

design-time artifacts. For a deeper discussion on how the BSN is engineered242

for reconfiguration and how the reliability computation affects this dynamic243

behavior, please refer to the work by Pessoa et al. [36]244

3. Feature-Family-based Reliability Analysis245

In this section, we present our approach to evaluate the reliability prop-246

erty of product lines following a feature-family-based strategy [42]. It consists247

of three key steps, as shown in Figure 3.248

First, the transformation step maps UML behavioral diagrams with vari-249

ability into a graph structure called Runtime Dependency Graph (RDG),250

whose nodes represent the behavioral fragments and store corresponding251

FDTMCs (i.e. the probabilistic behavioral model), meanwhile the edges252

represent the runtime dependencies between such models. Next, the feature-253

based evaluation step analyzes each FDTMC with respect to a reliability254

property, with the support of a parametric model checker. Each FDTMC255

is analyzed in isolation, by abstracting the existing runtime dependencies256

as parameters. This results in rational expressions [23] (hereafter referred257

to simply as expressions), each giving the reliability of an FDTMC as a258

function of the reliabilities of the FDTMCs on which it depends. Lastly,259

the family-based evaluation step follows a topological sorting of the runtime260

dependency graph, computing the reliability value of each configuration by261

evaluating the expression in each node and reusing the evaluation results pre-262

viously computed for the nodes on which it depends. This step also considers263

the variability model of the product line in question to prune invalid config-264

urations. The following subsections describe these steps in detail, guided by265

the example of Section 2.3.266

3.1. Transformation267

To perform reliability analysis of a given product line, our approach first268

composes its inherent variability and probabilistic behavior into a Runtime269

Dependency Graph (RDG), which is then used for analysis in further steps.270

The probabilistic behavior can be derived from UML behavioral models,271

11

Figure 3: Feature-family-based approach for efficient reliability analysis of product lines.

representing the runtime interactions between software components, enriched272

with reliability information for such interactions. Next, we provide details273

on the behavioral models, the RDG, and the transformation of the former274

into the latter.275

3.1.1. Behavioral Models276

In our approach, the coarse-grained behavior of a product line is repre-277

sented by a UML activity diagram, with each activity being refined into a se-278

quence diagram [39]. The activity diagram is useful for representing whether279

the activities are performed in a sequential or parallel manner, whereas se-280

quence diagrams represent how the probabilistic behavior of the interactions281

between software components varies according to the configuration space of282

the product line. To represent probabilistic behavior, each message in a se-283

quence diagram is annotated with a probability value that represents the reli-284

ability of the channel—i.e., the probability that the interaction succeeds—by285

12

using the UML MARTE profile [35] (e.g., prob tags in Figure 2b).286

As an example, Figure 2a shows a UML activity diagram describing, at287

a high level, the behavior of all products of the BSN product line. The288

behavior corresponding to the activity system identifies situation is modeled289

by an associated sequence diagram, partially depicted in Figure 2b.290

Without loss of generality, behavior variability is defined by behavioral291

fragments, each of which can be an activity diagram (that has an associated292

sequence diagram), a sequence diagram, or an optional combined fragment293

within a sequence diagram such that this fragment has a guard condition294

denoting presence condition [14]. These conditions are propositional logi-295

cal statements defined over features, that denote the set of configurations296

for which the guarded behavior is present. Optional combined behavioral297

fragments can be nested, which allows representing behavioral variability at298

several levels.299

Note that the behavioral variability expressed by optional fragments may300

be implemented in two distinct ways: 1) in case the fragment’s guard condi-301

tion is expressed by an atomic proposition (i.e., a single feature), the feature302

may be implemented in its own module, which characterizes a compositional303

product line; 2) if the guard condition is a propositional formula compris-304

ing two or more features, such tangled behavior can be implemented in an305

annotation-based style by using, for example, the #ifdef and #endif macros306

of the C preprocessor. Therefore, our approach can be applied to analyze307

both compositional and annotation-based software product lines.308

The sequence diagram shown in Figure 2b presents three behavioral frag-309

ments whose presence conditions are the atoms Oxygenation, Memory, and310

SQLite. The outermost behavioral fragment represents the optional behav-311

ior for processing the oxygenation information in the BSN product line, and312

it varies according to two nested behavioral fragments. These latter are op-313

tional combined fragments related to the features SQLite and Memory of314

the feature model in Figure 1 and, jointly with this model’s constraints,315

ultimately represent alternative behavior for data persistence.316

3.1.2. Runtime Dependency Graphs317

A Runtime Dependency Graph (RDG) is a behavioral representation for318

variable systems, which combines the configurability view of a product line319

(expressed by presence conditions) with its probabilistic behavior (expressed320

by FDTMCs). Formally, it can be defined as follows.321

13

Definition 1 (RDG). A Runtime Dependency Graph R is a directed acyclic322

graph R = (N , E , x0), where N is a set of nodes, E ⊆ N × N is a set of323

directed edges that denote a dependency relation, and x0 ∈ N is the root324

node with in-degree 0. An RDG node x ∈ N is a pair x = (m, p), where m325

is an FDTMC representing a probabilistic behavior and p is a propositional326

logic formula that represents the presence condition associated with m.327

To build an RDG for a software product line, we extract the configura-328

bility and probabilistic information only from the UML behavioral diagrams,329

such that each RDG node is associated with an FDTMC derived from a330

behavioral fragment and its presence condition. Since we consider that the331

UML activity diagram represents the product line’s coarse-grained behavior332

executed by all products and, each activity is further refined (detailed) into333

its respective sequence diagram. Thus, the behavioral variability is not con-334

sidered at the representation at system level, which implies its related RDG335

nodes have true as presence condition (i.e., it is satisfied for all products).336

Edges represent dependencies between nodes, which are due to refinement or337

nesting relations between the respective behavioral fragments. RDG nodes338

that do not depend on any other node are called basic. The ones with depen-339

dencies are called variant nodes, which are represented with outgoing edges340

directed to the RDG nodes on which they depend.341

The structure of UML sequence diagrams is tree-like, which suggests a342

tree could be a better model of their dependencies. Nonetheless, applications343

sometimes have behavioral fragments replicated throughout UML models.344

For instance, the data persistence behavior in Figure 2b is present in all345

fragments that denote sensor information processing. In our approach, re-346

dundant fragments are represented by a single RDG node, with as many347

incoming edges as its number of replications. When performing this reuse,348

the resulting graph will be acyclic, because the original UML model is a finite349

hierarchy.350

Figure 7a illustrates an excerpt of the BSN product line’s RDG that rep-351

resents the behavioral fragment of Figure 2b. As the fragments related to352

the features SQLite and Memory are nested inside the fragment related to353

feature Oxygenation, the RDG for this fragment represents the dependencies354

between their respective nodes. The behavioral fragment related to Oxygena-355

tion is part of the sequence diagram representing the behavior of the activity356

system identifies situation. Therefore, this relation is also represented by the357

edge from the node rSituation to the node rOxygenation. For brevity, we358

14

1 RDGNode transformAD(ActivityDiagram ad) {
2 RDGNode root = new RDGNode(ad.id);
3 root.model = adToFDTMC(ad);
4 root.presenceCondition = true;
5 for (Activity act : ad.activities) {
6 root.addDependency(transformSD(act.sequenceDiagram));
7 }
8 return root;
9 }

Listing 1: Activity diagram transformation

do not represent the internal structure of the nodes and the remaining RDG359

nodes (indicated by ellipses in Figure 7a).360

3.1.3. From Behavioral Models to RDG361

The transformation from behavioral models to an RDG can be described362

at two abstraction levels: the RDG topology and the generation of proba-363

bilistic models. Listings 1 and 2 both depict the transformation process from364

the topological point of view. Note that this step relies on uniquely gener-365

ated identifiers for the behavioral models, which are then used as identifiers366

for the respective RDG nodes.367

The process starts by calling the transformADmethod (Listing 1), passing368

as argument the single activity diagram that embodies the coarse-grained369

behavior of the product line. This method creates the root node (Line 2),370

setting its presence condition to true (i.e., the overall behavior must always371

be present; Line 4). The root’s probabilistic model is then generated by372

processing the input diagram with the adToFDTMC method (Line 3), to which373

we will come back later. We then create an RDG node for each sequence374

diagram that refines an activity (denoted by the property act.sequenceDi-375

agram), subsequently creating edges that mark them as dependencies of the376

root node (Line 6). Note that the root node is the only RDG node created377

by the transformAD method, so the root’s FDTMC models the behavior378

represented by the activity diagram.379

The creation of RDG nodes for sequence diagrams is similar: the method380

transformSD (Listing 2) takes a behavioral fragment as input and then cre-381

ates a new RDG node whose FDTMC is derived by the sdToFDTMC method382

(Line 4). In this case, since behavioral fragments encode variability, their383

15

1 RDGNode transformSD(BehavioralFragment sd) {
2 RDGNode thisNode = new RDGNode(sd.id);
3 thisNode.presenceCondition = sd.guard;
4 thisNode.model = sdToFDTMC(sd);
5 for (BehavioralFragment frag : sd.optFragments) {
6 thisNode.addDependency(transformSD(frag));
7 }
8 return RDGNode.reuse(thisNode);
9 }

Listing 2: Sequence Diagram transformation

guard is assigned as the presence condition of the newly created node (Line 3).384

As with refined activities, we create RDG nodes for nested behavioral frag-385

ments and set them as dependencies of the node at hand (Line 6).386

The reuse of behavior briefly mentioned in Section 3.1.2 is performed by387

calling the static method RDGNode.reuse (Listing 2, Line 8). This function388

maintains a registry of all RDG nodes created, and then searches among389

them for one that we consider equivalent to the one just created. This notion390

of equivalence is comprised of three conditions: (a) equality of presence con-391

ditions; (b) equality of FDTMCs; and (c) recursively computed equivalence392

of dependencies.393

At the abstraction level of generating probabilistic models, the transfor-394

mation of activity and sequence diagram elements into FDTMCs consists395

of applying transformation templates for each considered behavioral element396

represented on such diagrams. These templates are depicted by the UML397

behavioral element being transformed (left-hand side of the dashed line in398

Figures 4 and 5) and by its resulting probabilistic structure (right-hand side).399

Figure 4 shows the templates for transforming an activity diagram into400

an FDTMC. The initial node of the activity diagram becomes the first state401

in the FDTMC and thus it is labeled as init (Figure 4a). Each activity ab-402

stracts behavior that is modeled with more detail in an associated sequence403

diagram. Accordingly, we abstract the reliability of an activity as a parame-404

ter that acts as a placeholder for the reliability of the corresponding sequence405

diagram. Therefore, each activity is represented in an FDTMC by the struc-406

ture depicted in Figure 4b, where the upper edge denotes the reliability value407

of the associated sequence diagram (the parameter rActivity) and the lower408

16

(init)

(a) Initial node.

. . . Activity . . .

(error)

rActivity

1-rActivity

(b) Activity.

.

∑
pi = 1.0

p1

pn

p1

pn

(c) Decision node.

1.0

(d) Merge node.

(success) 1.0

(e) End node.
Figure 4: Templates for transforming activity diagram elements into FDTMCs.

edge denotes the probability of failure (1− rActivity, the complement of the409

success probability).410

A decision node in an activity diagram denotes a choice between alter-411

native behaviors, each one represented by an outgoing transition directed412

to another activity diagram element (Figure 4c). Each transition has an413

associated guard condition that must be satisfied to allow the execution of414

its subsequent behavior. This decision is taken at runtime, but a domain415

expert is able to define the probability for each alternative. Therefore, the416

transformation of a decision node results into an FDTMC structure com-417

prised of a state with as many outgoing transitions as the number of the418

direct subsequent elements of the decision node. Each outgoing transition419

has a probability value assigned by the domain expert, and these probabilities420

must sum up to 1 2.421

2States without variability are regular DTMC states, so the stochastic property holds:

17

A merge node denotes a place where different branches of an activity di-422

agram join just before the execution of the next element proceeds. For each423

merging branch, there is an incoming edge directed to the merge node, and424

only one outgoing edge indicating the execution may proceed. The transfor-425

mation of a merge node results into an FDTMC structure consisting of two426

states and one edge, as shown in Figure 4d. The first created state repre-427

sents a synchronization point for a number of previous branches, and the edge428

to the second state (with probability 1.0) indicates that the execution can429

proceed. Lastly, the final node represents the coarse-grained execution have430

sucessfully reached its end. Since the reliability is given by the probability431

of a behavioral execution without errors occurrences, the transformation of a432

final node becomes a single FDTMC state labeled as success, with a reflexive433

edge whose probability is 1.0 (indicating it is an absorbing state), as shown434

in Figure 4e.435

The sequence diagram elements considered by our approach are messages436

(synchronous or asynchronous) and combined fragments for representing the437

optional, alternative, and loop fragments. The optional combined fragment438

is used uniformly for representing the variation points of a product line, as439

its semantics allows representing behavioral fragments that may comprise440

a product (or not), according to its guard condition. Hence, whenever an441

optional fragment occurs within a behavioral fragment (sequence diagram442

or any other combined fragment), it represents a software product line vari-443

ability (i.e. its condition denotes a presence condition statement) and it is444

transformed into an FDTMC structure comprised of three states and two445

edges, as illustrated in Figure 5. Accordingly, we abstract the reliability446

of the optional combined fragment’s content by the parameter rFragment447

which acts as a placeholder for the reliability of the whole combined fragment.448

The first edge is annotated with rFragment for representing the reliability449

values the fragment may assume, while the second edge is annotated with450

1− rFragment for representing the probability of failure occurrences.451

Transformations of the remaining sequence diagram elements (synchronous,452

asynchronous and reply messages, and alternative and loop combined frag-453

ments) are performed according to Ghezzi and Sharifloo [21], except that our454

approach does not use alternative fragments to represent variation points re-455

the probability of transitioning to a successor state must be 1, meaning that these transi-
tions are the only possible events [3].

18

lated to alternative features. In our method, the behavioral variability is456

addressed uniformly by the optional fragment whose guard condition is ex-457

pressed by a propositional logical formula denoting its presence condition458

statement. Such formula indeed expresses any kind of features relations, in-459

cluding OR and alternative features. In Section 3.3, we explain how the evalu-460

ation of a optional combined fragment with an arbitrarily associated presence461

condition statement is guided and constrained by the feature model’s rules.462

When the loop fragment is transformed into an FDTMC, it results into463

a structure that express the probabilistic conditions of an iteration. Both464

first and last states have two outgoing edges that denote the probability of465

executing (by the loop variable) and skipping (by the complement 1-loop)466

the iteration behavior. The FDTMC representing the iteration behavior is467

represented between the first and last states.468

The transformation of synchronous, asynchronous, and reply messages re-469

sults into a structure comprised of three states and two edges. The first edge470

denotes the success probability of sending the message, while the complement471

edge denotes its failure probability [21]. The difference between the message472

types expresses the operational semantics of each message. The synchronous473

message denotes that the sender component holds its execution while it waits474

the call’s answer that comes back by its associated reply message. In another475

way, in an asynchronous message the sender component continues its execu-476

tion just after sending the message to the called component and it does not477

wait for a reply message.478

Since the UML sequence diagram does not have a final element (as the479

end node represents in a UML activity diagram), the execution of a sequence480

diagram or an optional combined fragment is considered successful whenever481

the last element is reached and executed accordingly. As our approach con-482

siders that an FDTMC has a single and absorbing error state, when the483

last FDTMC’s state is reached, it is ensured that no errors occurred during484

the behavioral execution, including the execution of the last sequence dia-485

gram element. Thus, when our approach transforms an sequence diagram or486

behavioral fragment and there is no remaining element, the last state in the487

FDTMC is labeled as “success”.488

As an example, Figure 7a shows an excerpt of the RDG corresponding489

to the UML activity and sequence diagrams depicted in Figures 2a and 2b490

such there is an RDG node for each kind of behavioral fragment found on491

both figures. Note that whenever a behavioral fragment (activity or sequence492

diagrams and optional combined fragment) has to be transformed, its RDG493

19

Figure 5: Transformation of optional combined fragment into FDTMC.

node and an edge are created to accommodate its FDTMC and represent494

the behavioral dependency, respectively. The node labeled rRoot is the root495

node of this RDG. The FDTMC assigned to this node (Figure 6a) is built496

by applying the transformation rules in Figure 4 to the activity diagram in497

Figure 2a. The decision node in this activity diagram gives rise to the bold498

and dashed transitions in Figure 6a, representing the yes and no branches.499

The RDG node rSituation represents the sequence diagram depicted in500

Figure 2b, corresponding to the activity System identifies situation of BSN’s501

control loop (Figure 2a). Since this activity is performed by all products, its502

presence condition is true. The node’s FDTMC, depicted in Figure 6b, is503

obtained from the sequence diagram according to the transformation tem-504

plate in Figure 5 and the templates defined by Ghezzi and Sharifloo [21].505

The outgoing edges of the node rSituation in Figure 7a correspond to its506

dependency on the availability of sensor information—one RDG node per507

optional behavioral fragment. (Most of the RDG nodes corresponding to508

such behavioral fragments are omitted for brevity).509

The node labeled rOxygenation in Figure 7a represents the behavior in510

the behavioral fragment whose presence condition is Oxygenation (Figure511

2b). The corresponding FDTMC, presented in Figure 6c, is built by apply-512

ing the transformation rules described in Section 3.1 in a stepwise fashion.513

Since the behavioral fragment consists of four messages, followed by two op-514

20

(init) (success)
rC
ap
tu
re

rS
it
ua
ti
on

rQ
os
G
oa
l

0.
5

rR
ec
on
fi
gu
ra
ti
on

1.
0

1.
0

0.
5

1.0

(a) FDTMC of the control loop of BSN-SPL.

(init) (success)
rO

xy
ge
na

tio
n

Pu
lse

Ra
te

Te
mpe

ra
tu
re

Po
sit

ion

Fa
ll

1.0

(b) FDTMC of Situation sequence diagram.

(init) (success)
0.
99
9

0.
99
9

0.
99
9

0.
99
9

rS
Q
Li
te

rM
em
or
y

0.
99
9

0.
99
9

1.0

(c) FDTMC of Oxygenation sequence diagram.

(init) (success)
0.
99
9

0.
99
9

1.0

(d) FDTMC of SQLite/Memory sequence diagram.
Figure 6: Resulting FDTMCs. Error transitions are omitted for brevity.

tional combined fragments (with presence conditions SQLite and Memory)515

and other two messages (all messages having reliability 0.999), its result-516

ing FDTMC comprises a sequence of four transitions with probability 0.999,517

two transitions with their probabilities represented by parameters (rSQLite518

and rMemory), and other two transitions with probability 0.999. The node519

rOxygenation depends on two basic RDG nodes, rSQLite and rMemory, cor-520

responding to the nested behavioral fragments whose presence conditions are521

SQLite and Memory, respectively. Since both fragments have similar behav-522

21

ior (two sequential messages, each with reliability 0.999) their corresponding523

FDTMCs are equal (Figure 6d).524

Finally, the approach relies on the divide-and-conquer strategy to decom-525

pose behavioral models. During the transformation of a behavioral fragment526

into a FDTMC, whenever another behavioral fragment is found, an RDG527

node is created with a parent-child dependency relation with the parent’s528

RDG node. The way a software product line is decomposed results into a529

tree-like RDG if there is no behavioral fragment being reused. Otherwise,530

an RDG node representing a reused behavior fragment will have as many531

incoming edges as the times the fragment is reused. In this specific case, the532

structure of the resulting RDG will not be tree-like (that is why the RDG is533

a directed acyclic graph, in general).534

rRoot

rSituation

rOxygenation

rSQLite rMemory

.

.

(a) RDG nodes.

ε(rRoot) =0.5 · rCapture · rSituation · rQosGoal

+0.5 · rCapture · rSituation · rQosGoal · rReconfiguration

ε(rSituation) = . . .

ε(rOxygenation) = 0.9996 · rSQLite · rMemory

ε(rSQLite) = 0.9992 ε(rMemory) = 0.9992

.

.

(b) Dependencies between expressions.

Figure 7: RDG excerpt for the BSN product line.

22

3.2. Feature-based Analysis535

The role of the feature-based analysis step is to analyze the FDTMC536

for each RDG node in isolation, abstracting from the dependencies to other537

RDG nodes. That is, instead of evaluating a potentially intractable FDTMC538

for the product line as a whole, we perform multiple evaluations of smaller539

models, one per feature.540

For each RDG node x ∈ N , its FDTMC is subject to parametric proba-541

bilistic reachability analysis [24, 20]. This feature-based analysis yields x’s re-542

liability as an expression over the reliabilities of the n RDG nodes x1, . . . , xn,543

on which it depends. This expression is denoted by a function [0, 1]n → [0, 1],544

that is, the computation of a reliability value takes n reliability values as in-545

put. Therefore, there is a function ε : N → ([0, 1]n → [0, 1]) that yields546

the semantics of the reliability expression for a given RDG node. To remove547

possible ambiguities, the order of the formal parameters is determined by548

a total order relation over the corresponding RDG nodes xi (e.g., a lexi-549

cographic order over node labels). When analyzing RDG nodes, the same550

reliability property of eventually reaching the success final state (expressed551

by the model checker query expression P=?[♦“success”]—see Section 2.1) is552

used for all FDTMCs.553

Performing feature-based analysis over the RDG, as depicted in Figure 7a,554

yields the expressions shown in Figure 7b. These expressions illustrate that555

basic nodes have their reliabilities defined in terms of constants, whereas the556

reliabilities of variant nodes ultimately depend on the ones of basic RDG557

nodes. For the sake of simplicity, we overload the names of RDG nodes in558

Figure 7a as variables in the expressions in Figure 7b. This way, we map559

each variable to the RDG node whose reliability it represents.560

For instance, in Figure 7b, the reliability expression of the node labeled
rOxygenation is 0.9996 · rSQLite · rMemory , since the only path that reaches
the success state in the corresponding FDTMC (Figure 6c) is a succession of
four transitions with probability 0.999, two parametric transitions (rSQLite
and rMemory), and two other 0.999-valued transitions. The reliability ex-
pressions of the nodes rSQLite and rMemory are constant, since these nodes
are basic and, thus, their FDTMCs (Figure 6d) have only constant transi-
tions. In this case, the single path to the success state in both FDTMCs
has a reachability probability of 0.9992. Hence, the reliability expressions for
the feature-based analysis of the BSN product line are given by a function ε

23

such that

ε(rOxygenation) = 0.9996 · rSQLite · rMemory

ε(rSQLite) = 0.9992

ε(rMemory) = 0.9992

3.3. Family-based Analysis561

A possible next step would be to evaluate the obtained expressions once562

for each valid configuration, so that the reliability of every product would563

be computed. This enumerative approach would be, in fact, a product-based564

analysis, yielding an overall feature-product-based analysis, similar to the one565

described by Ghezzi and Sharifloo [21]. However, evaluating all products566

using this approach would be still prone to an exponential blowup, which567

would harm scalability.568

To avoid this problem, we leverage a family-based analysis strategy to569

lift each expression to perform arithmetic operations over variational data,570

with the help of an appropriate variational data structure [45]. This way,571

we are able to represent all possible values under variation and efficiently572

evaluate results, sharing computations whenever possible. The data structure573

of choice is the Algebraic Decision Diagram (ADD)3 [27], because it efficiently574

encodes a Boolean function Bn → R. This is the same type as a mapping575

from configurations to reliability values would have, provided the Boolean576

values b1, . . . , bn ∈ B = {0, 1} are taken to denote the presence (or absence)577

of the corresponding features f1, . . . , fn ∈ F (where F is the set of features578

in the feature model).579

Given an expression ε(x), obtained for an RDG node x in the feature-580

based step of the analysis (Section 3.2), the reliability ADD α(x) is obtained581

by first valuating the parameters x1, . . . , xk of the lifted expression with the582

ADDs for the reliabilities α(x1), . . . , α(xk) of the corresponding nodes upon583

which x depends. Then, arithmetic operations are performed using ADD584

semantics: for ADDs A1 and A2 over k Boolean variables and a binary oper-585

ation � ∈ {+,−, ·,÷}, (A1�A2)(b1, . . . , bk) = A1(b1, . . . , bk)�A2(b1, . . . , bk).586

However, the computation of α(x) must take presence conditions into587

account. To accomplish this, we constrain the valuation of a variable xi with588

3ADDs, also called Multi-Terminal Binary Decision Diagrams (MTBDD), generalize
Binary Decision Diagrams (BDD) to Real-valued Boolean functions.

24

an ADD px : JFM K→ B encoding its presence condition, with x ranging over589

x1 to xn, such n is the number of features. This ADD has the property that590

all configurations c ∈ JFM K that satisfy xi’s presence condition evaluate to591

1, while all others evaluate to 0. The resulting constrained decision diagram592

ϕxi
is given by:593

ϕxi
(c) =

{
α(xi)(c) if pxi

(c) = 1

1 otherwise

Notice the attribution of 1 to the reliability of a behavior that is absent594

in a given configuration. The intuition is that, for those configurations that595

do not satisfy the fragment’s guard conditions (i.e., pxi
(c) = 0), the behav-596

ior represented by the optional fragment will not be part of the resulting597

product’s behavior. Since an absent behavioral fragment has no influence598

on the reliability of the overall system, in practice we can assume 1.0 as its599

reliability value (i.e., it cannot fail). The ADD ϕxi
is obtained by means of600

the if-then-else operator for decision diagrams, and the operational details601

of this construction are presented in Section 4.1.602

This method of evaluating the expressions is inherently recursive, since603

the resulting value of computing the expression for a given RDG node de-604

pends on the results of computing the expressions for the nodes on which it605

depends. For example, Figure 7b shows that the expression ε(rOxygenation)606

is defined in terms of the variables rSQLite and rMemory. Thus, before com-607

puting the lifted counterpart of expression ε(rOxygenation), it is necessary to608

compute the lifted counterparts of expressions ε(rSQLite) and ε(rMemory).609

In a brief, the family-based step computes the reliabilities values each RDG610

node may assume by solving its ε expression using reliabilities values encoded611

by α for the nodes it depends on. Thus, it follows that the reliability of the612

product line as a whole is given by the ADD resulting from the computation613

of α(rRoot), where rRoot is the root RDG node.614

Naturally, basic nodes are the base case of this recursion, since, by def-615

inition, they depend on no other node. Figure 8a depicts the ADDs repre-616

senting the reliability encoding of the RDG nodes rSQLite and rMemory,617

respectively. Each ADD node represents a feature whose continuous out-618

going edge denotes the feature’s presence at the configuration, meanwhile619

the dashed outgoing edge means the feature is absent. Thus, α(rSQLite)620

encodes that the RDG node rSQLite assumes the reliability value of 0.9992621

25

α(rSQLite) = SQLite

0.9992 1.0

Memoryα(rMemory) =

0.9992 1.0

(a) ADDs for rSQLite and rMemory nodes, respectively.

α(rOxygenation) = Oxygenation

SQLite

Memory Memory

0.9996 × 0.9992

= 0.9998
0.0 1.0

(b) ADD for rOxygenation node.
Figure 8: ADDs for the running example.

when the feature SQLite is part of the configuration, and assumes the value622

1.0 otherwise.623

Figure 8b shows the reliability encoding computed for the rOxygenation624

RDG node. Since ε(rOxygenation) is defined in terms of the variables rep-625

resenting the reliabilities of the nodes on which it depends, α(rOxygenation)626

is computed by assigning the ADDs previously computed to rSQLite and627

rMemory to the corresponding variables in ε(rOxygenation), which is solved628

by employing ADD arithmetics. The resulting ADD is constrained to rep-629

resent only the reliabilities of valid configurations when it is multiplied by630

the ADD representing the feature model’s rules. In fact, all paths leading to631

26

non-zero terminal represent valid configurations. In the case that the feature632

Oxygenation is absent, its influence on the configuration’s reliability is none,633

thus α(rOxygenation) assumes the value 1.0. Otherwise, for configurations634

containing Oxygenation and only one persistence feature (SQLite or Mem-635

ory), the corresponding path in the ADD leads to the reliability value 0.9998.636

Finally, the paths leading to the reliability value 0 represent ill-formed con-637

figurations. For example, since SQLite and Memory are alternative features,638

the paths representing that both features are present or absent will lead to639

0. All these cases are also represented by the Table 1.640

Table 1: Reliability of Oxygenation feature.

Configuration (c) α(rOxygenation)(c)

{Oxygenation, SQLite, ¬Memory} 995*(998/1000)*1/1000 = 0,99301
{Oxygenation, ¬SQLite, Memory} 995*1*(998/1000)/1000 = 0,99301
{Oxygenation, SQLite, Memory} –

4. Evaluation641

To assess the merits of a feature-family-based strategy, we first highlight642

key aspects of its implementation (Section 4.1) and analyze its complexity643

(Section 4.2). Then we report on an empirical evaluation (Section 4.3).644

4.1. Implementation645

We implemented our approach as a new tool named ReAna (Reliability646

Analysis), whose source code is open and publicly available4. ReAna takes647

as input a UML behavioral model, for example, built using the MagicDraw648

tool5, and a feature model described in conjunctive normal form (CNF),649

for example, as exported by FeatureIDE [41]. It then outputs the ADD650

representing the reliability of all products of the product line to a file in651

DOT format, and it prints a list of configurations and respective reliabilities.652

The latter can be suppressed or filtered to a subset of possible configurations653

of interest.654

4https://github.com/SPLMC/reana-spl
5http://www.nomagic.com/products/magicdraw.html

27

1 ADD evalReliability(RDGNode root) {
2 List<RDGNode> deps = root.topoSortTransitiveDeps();
3 LinkedHashMap<RDGNode, String> expressionsByNode =

getReliabilityExpressions(deps);
4 Map<RDGNode, ADD> reliabilities =

evalReliabilities(expressionsByNode);
5 return reliabilities.get(root);
6 }

Listing 3: ReAna’s main evaluation routine

ReAna uses PARAM 2.3 [24] to compute parametric reachability prob-655

abilities and the CUDD 2.5.1 library6 for ADD manipulation. However, any656

other tool or library providing the same functionality (e.g., the parametric657

model checker from Filieri and Ghezzi [20]) could be used too.658

ReAna’s main evaluation routine is depicted in Listing 3. After parsing659

and transforming the input models into an RDG structure (see Section 3.1),660

the method evalReliability is invoked on the RDG’s root node. Its first661

task is to perform a topological sort of the RDG nodes, so that it obtains a662

list in which every node comes after all the nodes on which it (transitively)663

depends (Line 2). This implements the recursion described in Section 3.3 in664

an iterative fashion.665

Then, it proceeds to the analysis of the reliability property in the FDTMC666

corresponding to each of the nodes (Line 3), with the support of a paramet-667

ric model checker. Although this step does not depend on the ordering of668

nodes (because it handles dependencies as variables), it is useful that its out-669

put respects this order. This way, the resulting reliability expressions (ε in670

Section 3.2) can be evaluated in an order that allows every variable to be671

immediately resolved to a previously computed value, thus eliminating the672

need for recursion and null checking.673

The third step is to evaluate each reliability expression, which yields an674

ADD representing the reliability function (α in Section 3.3) for each of the675

nodes. The evaluation of such reliability ADDs (method evalReliabilities676

in Line 4, Listing 3) invokes, for each node, method evalNodeReliability,677

which we present in Listing 4. It computes the ϕ functions of a node’s depen-678

6ftp://vlsi.colorado.edu/pub/cudd-2.5.1.tar.gz

28

1 ADD evalNodeReliability(RDGNode node,
2 String reliabilityExpression,
3 Map<RDGNode, ADD> relCache) {
4 Map<String, ADD> depsReliabilities = new HashMap();
5 for (RDGNode dep: node.getDependencies()) {
6 ADD depReliability = relCache.get(dep);
7 ADD presCond = dep.getPresenceCondition();
8 ADD phi = presCond.ifThenElse(depReliability,
9 constantAdd(1));
10 depsReliabilities.put(dep.getId(), phi);
11 }
12 ADD reliability = solve(reliabilityExpression,
13 depsReliabilities);
14 return FM.times(reliability);
15 }

Listing 4: Evaluation of the reliability function for a single node

dencies (as in Section 3.3), encoding satisfaction of their presence conditions679

by means of conditionals in ADD ITE (if-then-else) operations (Line 8, List-680

ing 4). The reliability function of each dependency is looked up in a reliability681

cache (relCache, in Line 6, Listing 4) and is then used as the consequent682

argument of the ITE operator, with the alternative argument being the con-683

stant ADD corresponding to 1.684

After all these functions are computed, they are used to evaluate the lifted685

reliability expression (Line 12, Listing 4). Whenever a variable appears in686

this expression, function ϕ of the corresponding RDG node (on which the687

current one depends) is looked up in a variable–value mapping, indexed by688

the node id (depsReliabilities).689

When this evaluation of α is done, it is necessary to consider only the valid690

configurations for the node at hand by discarding the reliability values of ill-691

formed products. We represent the feature model’s rules by an ADD where all692

paths leading to terminal 1 represent a valid configuration, otherwise the path693

leads to terminal 0. Thus, for the node under evaluation we prune invalid694

configurations by multiplying its reliability ADD by the one representing the695

feature-model’s rules (Line 14, Listing 4), so the resulting ADD yields the696

value 0, for ill-formed products and the actual reliability for the valid ones.697

All reliabilities computed in this way are progressively added to the reli-698

29

ability cache relCache. At the end of this loop inside evalReliabilities,699

the cache contains the reliability function for every node and is then returned700

(Line 4, Listing 3). The reliability of interest is then the one of the root RDG701

node (the one argument to evalReliability, Listing 3), so it is queried in702

constant time because of the underlying data structure.703

4.2. Analytical Complexity704

The overall analysis time is the sum of the time taken by each of the705

sequential steps in Listing 3. First, the computation of an ordering that706

respects the transitive closure of the dependency relation in an RDG (Line 2)707

is an instance of the classical topological sorting problem for directed acyclic708

graphs, which is linear in the sum of nodes and edges [12].709

Second, the computation of the reliability expression for an RDG node710

consists of a call to the PARAM parametric model checker, which requires711

n calls to cover all nodes (Line 3). The problem of parametric probabilistic712

reachability in a model of s states consists of O(s3) operations over polynomi-713

als, each of which depends on the number of monomials in each operand [23].714

This number of monomials is, in the worst case, exponential in the number715

of existing variables. The number of variables for a given node is, in turn,716

dependent on its number of child nodes and on the modeled behavior (e.g.,717

if there are loops or alternative paths). Thus, the time complexity of com-718

puting all the reliability expressions is linear in the number of RDG nodes,719

but depends on the topologies of the RDG and of the models represented by720

each of its nodes (we address such dependencies with more details later on).721

Last, method evalReliabilities calls method evalNodeReliability,722

which corresponds to the reliability function α in Section 3.3, once for each723

node. evalNodeReliability’s complexity is dominated by that of ADD724

operations, which are polynomial in the size of the operands [27]. Indeed,725

for ADDs f , g, and h, the if-then-else operation ITE(f, g, h) is O(|f | · |g| ·726

|h|). Likewise, APPLY(f, g,�), where � is a binary ADD operator (e.g.,727

multiplication), is O(|f | · |g|). Here, |f | denotes the size of the ADD f , that728

is, its number of nodes. Because of configuration pruning (Section 3.3), all729

ADD sizes in our approach are bound by |FMADD | (i.e., the size of the ADD730

that encodes the rules in the feature model).731

Since the evaluation of α for a given node comprises a number of oper-732

ations on the reliability ADDs of the nodes on which it depends (Listing 4,733

Line 12), we must estimate an upper bound for polynomial arithmetics. If a734

node identified by x has c children (nodes on which it depends), f ′(x) is a735

30

polynomial in c variables and it has, at most, ecmax monomials of c variables736

each, where emax is the maximum exponent for any variable. Each monomial737

has in turn, at most, 2c operations: c exponentiations and c multiplications738

among variables and the coefficient. Also, no variable can have an exponent739

greater than the maximum number of transitions between the initial and the740

success states of the original FDTMC, and this number is itself bound by741

the number m of messages in the corresponding behavioral model fragment.742

Thus, the number of ADD operations needed to compute this reliability ADD743

is O(c ·mc). This leads to an evaluation time of O(c ·mc · |FMADD |2).744

Since the reliability of each RDG node needs to be evaluated exactly745

once (due to caching), we have n computations of f(xi), one for each of the746

n RDG nodes xi. Hence, the cumulative time spent on reliability functions747

computation is O(n · cmax ·mcmax
max · |FMADD |2), where cmax is the maximum748

number of children per node, and mmax is the maximum number of messages749

per model fragment.750

Although this complexity bound is quadratic in the number of features,751

the number of nodes in an ADD is, in the worst case, exponential in the num-752

ber of variables. As the variables in FMADD represent features, this means753

|FMADD | can be exponential in the number F of features. Hence, the worst-754

case complexity is O(n·cmax ·mcmax
max ·22·F). This worst-case exponential blowup755

cannot be avoided theoretically, but, in practice, efficient heuristics can be756

applied for defining an ordering of variables that can cause the ADD’s size to757

grow linearly or polynomially, depending on the functions being represented758

[3]. Thus, as the growth in the sizes of ADDs varies with the product line759

being analyzed [30] and is, at least, linear in the number of features, we can760

also say the best-case time complexity is O(n · cmax ·mcmax
max · F 2).761

In summary, the time complexity of our feature-family-based analysis
strategy lies between O(n · cmax ·mcmax

max ·F 2) and O(n · cmax ·mcmax
max · 22·F),

where n is the number of RDG nodes, cmax is the maximum number of
child nodes in an RDG node, mmax is the maximum number of messages
in a behavioral fragment, and F is the number of features of the product
line.

4.3. Empirical Evaluation762

Our empirical evaluation aims at comparing our feature-family-based763

analysis strategy (cf. Section 3) with other state-of-the-art strategies for764

31

product-line reliability analysis, as identified by Thüm et al. [42]: product-765

based, family-based, feature-product-based, and family-product-based. It is766

expected that our feature-family-based approach performs better than the767

others, since it (a) decomposes behavioral models into smaller ones and (b)768

prevents an exponential blowup by computing the reliabilities of all products769

at once using ADDs. The comparison focuses on the practical complexity of770

the selected strategies and is guided by the following research question:771

• RQ1: How do product-line reliability analysis strategies compare to772

one another in terms of time and space?773

To address RQ1, we measured the time and space demanded by each774

strategy for the analysis of six available software product lines and augmented775

versions thereof. For the time measure, we considered the wall-clock time776

spent during analysis after model transformation, including the recording of777

reliability values for all configurations of a given product line. Transformation778

time was excluded from this measurement, because all of our implementations779

of the analysis strategies employ the same transformation routines (using780

the rules presented in Section 3.1.3). From the transformation step on, the781

analysis strategies start to differ as each one traverses the resulting FDTMC782

in its specific fashion. For the space measure, we considered the peak memory783

usage for each strategy during the evaluation of each product line. This784

empirical assessment is described in detail in the following subsections.785

4.3.1. Subject Systems and Experiment Design786

To empirically compare the complexity of the different analysis strategies,787

we started with the models of six available product lines. Table 2 shows the788

number of features, the size, and the characteristics of the solution space of789

each one of these product lines. The solution space is described in terms of790

the number of activities in the activity diagram and of the total number of791

behavioral fragments present in the sequence diagrams. The general criterion792

for choosing these systems was the availability of their variability model.793

We chose EMail, MinePump, BSN, and Lift due to the fact that they had794

been commonly used in previous work studying model checking of product795

lines [7, 8, 39]. We selected InterCloud and TankWar product lines due to796

the significant size of their configuration spaces.797

Each of the six original systems was evolved 20 times, with each evolu-798

tion step adding one optional feature and a corresponding behavioral frag-799

ment with random messages defining its probabilistic behavior. According800

32

Table 2: Initial version of product lines used for empirical evaluation.

Solution Space’s Characteristics
Features # Products # Activities # Behavioral fragments

EMail [43] 10 40 4 11
MinePump [29] 11 128 7 23
BSN [39] 16 298 4 15
Lift [37] 10 512 1 10
InterCloud [19] 54 110592 5 51
TankWar [43] 144 4.21×1018 7 81

to Section 3.1.1, the name of the newly introduced feature was assigned as801

the guard condition of each new behavioral fragment, and each message in a802

fragment received a probability value. Thus, each evolution step doubles the803

size of the configuration space of the subject product line, with an optional804

behavior for the added feature.805

The independent variable of the experiment is the evaluation strategy806

employed to perform the reliability analysis. The dependent variables are the807

metrics for time and space complexity. Each subject system was evaluated808

by all treatments.809

We analyzed the outcomes using statistical tests, to properly address out-810

lying behavior and spurious results. This way, we are more likely to overrule811

factors that affect performance but are difficult to control (e.g., JVM warm-812

up time and OS process scheduling). Ideally (i.e., disregarding uncontrollable813

factors), we would expect all runs of a given analysis strategy over the same814

subject product line to yield the same result. Thus, instead of comparing815

isolated runs of different strategies, we compare the inferred distribution of816

results of all runs of a strategy to the corresponding distribution for another817

strategy. Since there were multiple analysis strategies to compare with, we818

did so pairwise with the feature-family strategy, for example, feature-based819

with feature-family-based or family-based with feature-family-based.820

We applied standard statistical tests for equality of the pairs of samples.821

The null hypothesis was that both samples come from the same distribution,822

while the alternative hypothesis was that one comes from a distribution with823

larger mean value than the other. The specific statistical test was the Mann-824

Whitney U test whenever one of the samples, at least, was not normally825

distributed. Otherwise, we applied the t test for independent samples if the826

variances were equal, or Welch’s t test in case of different variances. The827

33

significance level for all tests was 0.01.828

4.3.2. Experiment Setup829

Modeling We implemented each strategy as a variant of ReAna, thus830

relying on the same tools and libraries for parametric reachability checking,831

ADD manipulation, and expression parsing (see Section 4.1). These ReAna832

extensions are also publicly available at the supplementary Web site7. Grad-833

uate students created the input UML behavioral models using MagicDraw834

18.3 with Marte UML profile. All models were validated by the authors.835

Instrumentation For this experiment we implemented a tool called836

SPL-Generator to create valid feature and behavioral models of a product837

line, according to a set of parameters (more details in Appendix B). This838

tool was used to create evolution scenarios, in order to assess how each eval-839

uation strategy behaves with the growth of the configuration space. To ob-840

tain data regarding analysis time, we used Java’s standard library method841

System.nanoTime() to get the time (with nanoseconds precision) reported842

by the Java Virtual Machine immediately before and right after ReAna’s843

main analysis routine (Listing 3). The difference between these two time mea-844

sures is taken to be the elapsed analysis time. Space usage was measured845

using the maximum resident set size reported by the Linux /usr/bin/time846

tool. This value represents the peak RAM usage throughout ReAna’s exe-847

cution.848

Evolution Scenarios We used our SPL-Generator tool to evolve each849

software product line we chose as a subject system of our empirical evalu-850

ation, according to the representation provided in Figure 9. This evolution851

was accomplished stepwise, and it started with the original feature model852

(created by FeatureIDE) and behavioral models (created by MagicDraw)—853

this set of models is hereafter refered to as original seed or seed0. At each854

evolution step evi, the generator tool doubled the configuration space of the855

subject system by adding an optional feature in order to generate a new fea-856

ture model FM i(no cross-tree constraint was added, to avoid constraining857

configuration space growth). For the newly created feature, the generator858

tool also creates an optional behavioral fragment comprising 10 messages859

7http://splmc.github.io/scalabilityAnalysis/

34

http://splmc.github.io/scalabilityAnalysis/

seed0
FM0

BM0

seed1
FM1

BM1

seed2
FM2

BM2

. . .
seed20
FM20

BM20

ev1 ev2 ev3 ev20

Figure 9: Evolution of subject systems accomplished by the SPL-Generator tool

randomly generated between 2 lifelines randomly chosen from a set of 10 life-860

lines. To establish a relation between the new feature and the corresponding861

new behavioral fragment, the fragment’s guard condition is defined as being862

the atomic proposition containing the new feature’s name, which character-863

izes the evolutions as being compositional. However, it is worth mentioning864

that our evaluation method also applies to the analysis of annotation-based865

software product lines since it was able to evaluate the original version of866

the EMail subject system (seed0 that contains optional fragments expressed867

by a conjunction of two features thus, following an annotation-based imple-868

mentation) and its evolutions. Each lifeline received a random reliability869

value from the range [0.999, 0.99999]. The guard condition of the behavioral870

fragment received an atomic proposition named after the feature, to relate871

the newly created items. The topological allocation method was used by the872

generator tool to create the new behavioral model BMi, so the nesting of se-873

quence diagrams follows the feature relations in the feature model. The end874

of an evolution step results into a new version of the product line (seedi),875

which will be considered as a new seed for the next evolution step. Each876

subject system was evolved 20 times, as shown in Figure 9, and all artifacts877

are available at the paper’s supplementary site.878

Measurement Setup We executed the experiment using twelve Intel879

i5-4570TE, 2.70GHz, 4 hyper-threaded cores, 8 GB RAM and 1 GB swap880

space, running 64-bit CentOs Linux 7. The experiment environment (i.e.,881

the set of tools, product line models, and automation running scripts) was882

defined as a Docker8 container running 64-bit Ubuntu Linux 16.10, with883

access to 4 cores and 6 GB of main memory of the host machine. Each subject884

system was evaluated 8 times by each analysis strategy in each machine,885

thus summing up 96 evaluations for each pair of subject system and strategy.886

Because of the number of evaluations, we set a limit of 60minutes for analysis887

8https://www.docker.com/

35

execution time, after which the analysis at hand would be canceled. The888

results were then grouped to perform the time and memory consumption889

analysis. The evaluations that exceeded the time limit were discarded from890

the statistical analysis.891

4.3.3. Results and Analysis892

Figures 10, 11, 12, 13, 14 and 15 show plots with the mean time and893

memory demanded to analyze the Email, MinePump, BSN, Lift, InterCloud,894

and TankWar product lines (and corresponding evolutions), respectively. The895

horizontal axes represent the number of added features (with respect to the896

original product line) in the analyzed models. Thus, they range from 0 (the897

original model) to 20 (last evolution step). The vertical axes represent either898

the time in milliseconds (in logarithmic scale) or the space in megabytes.899

The values of the plots are available in Tables A.4 and A.5 of Appendix900

A. Statistical tests over both time and space data rejected the null hypothesis901

for all pairs of strategies. Thus, within a significance level of 0.01, we can902

assume no two samples come from distributions with equal means.903

Overall, our experiments show with statistical significance that the feature-904

family-based strategy is faster than all other analysis strategies (as shown905

in Figures 10a, 11a, 12a, 13a, 14a, and 15a). Regarding execution time,906

in the worst case, our feature-family-based strategy performed 60% faster907

than the family-product-based strategy, when analyzing the original models908

of the Email product line (Figure 10a); in the best case, it outperformed909

the family-product-based analysis of the BSN product line with 4 optional910

features added (i.e., its 5th evolution step—Figure 12a) by 4 orders of magni-911

tude. Such cases are highlighted in yellow in Table A.4. Regarding memory912

consumption (Figures 10b, 11b, 12b, 13b, 14b, and 15b), the experiment also913

shows with statistical significance that, in the worst case, the feature-family-914

based strategy demanded 2% less memory than the family-based strategy915

when analyzing the original model of the Lift product line; in the best case,916

it saved around 4,757 megabytes when analyzing the 3rd evolution step of the917

InterCloud product line. Such cases are highlighted in yellow in Table A.5.918

Our feature-family-based strategy also scaled better in response to con-919

figuration space growth in comparison with other strategies. In the worst920

case, this strategy scaled up to a configuration space one order of magnitude921

larger than the limit of the nearest scalable strategy (the feature-product-922

based analysis of the Email, MinePump, BSN, and Lift systems). In the923

best case, the feature-family-based strategy supported a configuration space924

36

(a) Analysis time. (b) Demanded memory.
Figure 10: Time and memory required by different analysis strategies when evaluating
evolutions of Email System.

(a) Analysis time. (b) Demanded memory.
Figure 11: Time and memory required by different analysis strategies when evaluating
evolutions of MinePump System.

37

(a) Analysis time. (b) Demanded memory.
Figure 12: Time and memory required by different analysis strategies when evaluating
evolutions of BSN-SPL.

(a) Analysis time. (b) Demanded memory.
Figure 13: Time and memory required by different analysis strategies when evaluating
evolutions of Lift System.

38

(a) Analysis time. (b) Demanded memory.
Figure 14: Time and memory required by different analysis strategies when evaluating
evolutions of InterCloud System.

(a) Analysis time. (b) Demanded memory.
Figure 15: Time and memory required by different analysis strategies when evaluating
evolutions of TankWar battle game.

39

5 orders of magnitude larger than supported by the feature-product-based925

strategy (when analyzing the InterCloud product line). Finally, we highlight926

that only our feature-family-based strategy was able to analyze the TankWar927

product line, from its original model up to its 9th evolution step. That is,928

the feature-family-based strategy was able to analyze the reliability of up to929

1021 products within 60 minutes.930

Table 3: Probabilistic models statistics.

SPL Feature-* Family-* Product
states # variables # models # states # variables # states # models

EMail 12 0.93 14 182 9 115.8 40
MinePump 7.26 0.95 23 289 10 155.5 128
BSN 11.37 1.44 16 238 12 136.56 298
Lift 12.91 0.91 11 153 10 114 512
InterCloud 7.4 0.98 52 437 47 352.25 110592
TankWar 8.30 0.99 79 735 69 ≈500 4.21×1018

4.3.4. Discussion931

One reason for the feature-family-based strategy being faster than the932

alternatives is that it computes the reliability values of a product line by an-933

alyzing a small number of comparatively simple models. In contrast, family-934

based and family-product-based strategies yield more complex probabilistic935

models than the others, trading space for time. The complementary ex-936

planation for the performance boost is that the family-based analysis step937

leverages ADDs to compute reliability values, which leads to fewer opera-938

tions than necessary if these values were to be calculated by enumeration of939

all valid product line configurations (cf. Section 4.2).940

Table 3 shows the average number of states and variables present in the941

models created by each analysis strategy9, with feature-family-based and942

feature-product-based strategies grouped under Feature-*, and family-based943

and family-product-based ones grouped under Family-*. Some values are944

omitted, because the number of models is always 1 for family-based ap-945

proaches, and the number of variables is always 0 for product-based ones.946

In this table, all probabilistic models created by Feature-* analyses have,947

indeed, fewer states than the ones generated during Family-* and product-948

9For TankWar, the average number of states in the product-based case is an estimate,
because it is impractical to generate all models.

40

based approaches. Feature-based models also have fewer variables than the949

corresponding family-based ones.950

The plots of the experiment results reveal some characteristics that de-951

part from the expected behavior, which we discuss next. First, there is a952

single data point for the family-based analysis of the BSN product line (Fig-953

ure 12), despite its analysis time being in the order of seconds (far from reach-954

ing the time limit). In fact, the family-based strategy was able to analyze955

BSN’s models up to the 6th evolution step. However, the resulting expression956

representing the family’s reliability contained numbers that exceeded Java’s957

floating-point representation capabilities. Thus, converting these numbers to958

the double data type yielded not a number (NaN). To the best of our knowl-959

edge, the overflow of floating-point representation was not reported yet by960

previous studies addressing reliability analysis of software product lines.961

The second remarkable characteristic are the plateaus for feature-product-962

based analysis at the memory plots in Figures 10b, 11b, 12b, and 13b. Our963

hypothesis is that this behavior is related to the memory management of the964

Java Virtual Machine (JVM), but a detailed investigation was out of scope.965

We also note that the plots for feature-family-based analysis are monoton-966

ically increasing, with two exceptions: a single decrease at the 14th evolution967

step of the Intercloud product line (Figure 14) and a “valley” from TankWar’s968

original model to its 4th evolution step (Figure 15). These outliers result from969

different ordering of variables in ADDs. The inclusion of new variables for970

the mentioned cases led to a variable ordering that caused a decrease in the971

number of internal nodes of the resulting ADDs. Thus, the space needed by972

such data structures was reduced, and so was the time needed to perform973

ADD operations (which are linear in the number of internal nodes).974

Moreover, our approach does not constrain the relation between the fea-975

ture model’s structure and the UML behavioral models implementing the976

SPL. For instance, the sequence diagram depicted in Figure 2b represents977

optional behavioral fragments that do not follow the structure of the feature978

model presented by Figure 1. The Oxygenation feature and the Persistence979

features (SQLite andMemory) are defined in different branches of the feature980

model, but the behavioral fragments related to them are nested. In general,981

the guard condition of an optional behavioral fragment is a propositional982

formula defined over features and can be defined arbitrarily, with no regard983

to the structure of the feature model.984

Finally, the effect of having (many) cross-tree constraints in a feature985

model may affect our evaluation method in a twofold manner. First, by986

41

adding cross-tree constraints, the structure of the ADD representing the fea-987

ture model’s rules and the reliabilities values of each node is changed. How-988

ever, it is not possible to foresee if the number of internal nodes will increase,989

decrease or stay the same, since this number also depends on the variable990

ordering. In our implementation, such ordering is defined by an internal991

heuristic defined by the CUDD library, on which our tool relies (namely,992

symmetric sifting). The second effect regards to the growth of the configu-993

ration space. In our experiments, the growth in the configuration space at994

each evolution step will be less than it is now, which will probably have a995

positive effect in the scalability of the strategies relying on a product-based996

step. However, since cross-tree constraints would have a random effect on997

the assessment, we decided not to add them, so as to have more control over998

the dependent variables.999

4.3.5. Threats to Validity1000

A threat to internal validity is the creation of UML behavioral models of1001

the product lines by graduate students. To mitigate this threat, the students1002

received an initial training on modeling variable behavior of product lines.1003

To validate the accuracy of the produced models, these were inspected by1004

the authors.1005

A possible threat to construct validity would be an inadequate definition1006

of metrics for the experiment. To address this, we tried to rule out imple-1007

mentation issues such as the influence of parallelism and reporting of results.1008

Thus, we measured the total elapsed time between the parsing of behavioral1009

models and the instant the reliabilities were ready to be reported, with all1010

analysis steps taking place sequentially. In terms of memory usage, we tried1011

to reduce the influence of garbage collection by measuring the peak memory1012

usage during execution.1013

Finally, a threat to external validity arises from the selection of subject1014

systems. To mitigate this threat, we selected systems commonly used by the1015

community as benchmarks to evaluate work on model checking of product1016

lines. To mitigate the risk of our approach not being generalizable, we applied1017

it to further product lines (InterCloud and TankWar) whose configuration1018

spaces resemble ones of real-world applications.1019

42

5. Related Work1020

In this section, we discuss related work to our approach, and we highlight1021

the significant differences. For this purpose we use the classification of Thüm1022

et al. [42]. Our approach differs from prior work [8, 21, 39] in that (a) it1023

captures the runtime feature dependencies from the UML behavioral models,1024

(b) which are enriched with variability information extracted from the feature1025

model, and (c) we leverage ADDs to compute the reliability of all products1026

of a product line with fewer operations than an enumeration would require.1027

5.1. Comparison to a Feature-Product-based Strategy1028

The evaluation method proposed by Ghezzi and Sharifloo [21] is the clos-1029

est to our work and, to the best of our knowledge, it represents the state-of-1030

the-art for reliability evaluation of software product lines. The whole behav-1031

ior of a product line is modeled by a set of small sequence diagrams arranged1032

in a tree, where each node has an associated expression resulting from the1033

analysis performed by a parametric model checker. To compute the reliability1034

of a product, the tree is traversed in a bottom-up fashion, when each node’s1035

expression is solved considering the configuration under analysis. The result-1036

ing value for the root node denotes the product’s reliability. This method1037

reduces time and effort required for evaluation by employing parametric in-1038

stead of non-parametric reachability checking of probabilistic models, but it1039

faces scalability issues as it is inherently enumerative (i.e., the decomposi-1040

tion tree is traversed for each product). The analysis strategy followed by the1041

method is Feature-Product-based, as it decomposes the behavioral models into1042

smaller units (feature-based step) and later composes the evaluation results1043

of each unit to obtain the reliability of a product (product-based step).1044

Despite the resemblances with this method, our approach presents some1045

distinguishing characteristics. While Ghezzi and Sharifloo [21] must explore1046

their decomposition tree each time a configuration is evaluated (thus employ-1047

ing a product-based analysis as an evaluation step), our approach employs a1048

family-based evaluation for each RDG node, such that all reliability values it1049

may assume are computed in a single step. Another difference refers to the1050

usage of UML sequence diagram elements for representing behavioral vari-1051

ability. Ghezzi and Sharifloo [21] establish a direct relation from the feature1052

model’s semantics of optional and alternative features and the semantics of1053

optional (OPT) and alternative (ALT) combined fragments, respectively. Al-1054

though such relation is straightforward, it constrains the approach’s expres-1055

43

siveness, as only single features can be associated to a combined fragment1056

(i.e., the combined fragment’s guard condition assumes only atomic proposi-1057

tions). In contrast, our approach represents behavioral variability uniformly1058

by the optional combined fragment, with an arbitrary presence condition1059

as a guard statement. This construct is simpler, because it does not lever-1060

age alternative fragments, but more expressive, as guards can be defined by1061

propositional statements.1062

Another major difference concerns the underlying data structure for rep-1063

resenting the dependencies between behavioral fragments. Ghezzi and Shar-1064

ifloo [21] use a decomposition tree while our approach uses a directed acyclic1065

graph that allows to represent a group of replicated behavioral fragments by1066

a single node. This avoids the effort of performing redundant modeling and1067

evaluation of the replicated model, which is not possible to accomplish in a1068

tree structure.1069

A precise comparison of the tool implementing the method proposed by1070

Ghezzi and Sharifloo and ReAna was not possible, since the former is not1071

publicly available. Nonetheless, the feature-product-based variant of Re-1072

Ana we created for our experiment closely resembles Ghezzi and Shari-1073

floo’s approach, the only exception being the parametric model checker of1074

choice. Empirical results (Section 4.3) show with statistical significance that1075

the feature-family-based approach performs faster and demands less mem-1076

ory than ReAna’s feature-product-based variant. For the evaluation time,1077

the feature-family strategy outperformed our feature-product-based strategy1078

from 2 times (for the original seed of EMail system) up to 4 orders of mag-1079

nitude (for the 3rd evolution of Intercloud product line). Regarding space,1080

the feature-family-based strategy required from 2.6% (original seed of Email1081

system) up to 97% (3rd evolution of InterCloud) less memory. Moreover, the1082

feature-product-based strategy was not able to analyze the subject system1083

with the largest configuration space (Tankwar), whereas our feature-family-1084

based strategy succeeded up to Tankwar’s 9th evolution.1085

Ghezzi and Sharifloo’s work [21] presents a theoretical analysis of time1086

complexity, in which the authors devise a formula for computing the time1087

needed to verify a number of properties for a product line with their approach.1088

Their model transformation time is not comparable to ours, mainly because1089

Ghezzi and Sharifloo do not handle activity diagrams in their work, and we1090

do not handle reward models in ours. Also, both approaches use external1091

tools with similar capabilities to perform parametric reachability analysis.1092

In fact, Ghezzi and Sharifloo argue their tool [20] is actually faster than1093

44

PARAM, which is used by ReAna. Nonetheless, both model checkers could1094

be used interchangeably, so we omit parametric reachability analysis time.1095

Because of that, we assume the output expressions from the parametric1096

reachability phase to be correspondingly equal in both approaches. This way,1097

the difference between the strategies is isolated in the way they solve each1098

expression. While Ghezzi and Sharifloo perform a number k of floating-point1099

operations for each configuration, our approach performs the same number1100

k of ADD operations, but only once. Since the number of configurations1101

is O(2F), the feature-product-based approach performs O(k · 2F) computing1102

steps. As no lowest number of steps is possible if one is to compute the1103

reliability of all possible configurations, the number of computations in the1104

best case is also O(k · 2F). In contrast, an operation over ADDs in our1105

approach comprises O(22·F) steps in the worst case, but is O(F 2) in the best1106

case (see Section 4.2). Thus, the feature-family-based approach performs1107

between O(k · F 2) and O(k · 22·F) computing steps.1108

Hence, we conclude that, in the worst case, the upper bound for our1109

method’s asymptotic complexity is worse than that of Ghezzi and Sharifloo’s,1110

but its best-case complexity is better, which is consistent with the empirical1111

findings from the previous section.1112

5.2. Other Related Work1113

Rodrigues et al. [39] present and compare three family-based strategies1114

to analyze probabilistic properties of product lines. Two of them leverage1115

PARAM as model checker; the third one relies on FDTMCs representing1116

the behavior of a whole product line by encoding its variability, resulting in1117

an ADD expressing the reliability values of all configurations. Our feature-1118

family-based strategy benefits even more from further breaking down prob-1119

abilistic models. Indeed, the methods by Rodrigues et al. show a time-space1120

tradeoff, but all of them presented scalability issues even for small product1121

lines (around 12 features), whereas our approach is able to analyze a product1122

line with 144 features and about 1018 products within reasonable time.1123

Further research has addressed efficient verification of other non-func-1124

tional properties of product lines by exploiting family-based analysis strate-1125

gies [40, 28, 17, 18, 44, 6, 8, 16]. Siegmund et al. [40] propose an approach1126

for performance evaluation by simulating the behavior of all variants at run-1127

time from the variability encoded in compile-time. Such simulator is created1128

from the log of method calls traced by features. Kowal et al. [28] create1129

a model representing the whole performance variability of a product line1130

45

from UML activity diagrams annotated with performance-related annota-1131

tions. Dubslaff et al. [17, 18] present an approach for modeling dynamic1132

product lines and performing quantitative analysis of systems endowed of1133

non-deterministic choices. Given the non-deterministic characteristic of the1134

systems evaluated by this approach, the authors consider Markov Decision1135

Processes as the suitable model for representing the model behavior. Simi-1136

larly, Varshosaz and Khosravi [44] introduce a mathematical model named1137

Markov Decision Process Family for representing the behavior of a product1138

line as a whole, as well as a model checking algorithm to verify properties1139

expressed in probabilistic computation tree logic. Classen et al. [8] estab-1140

lish the foundations of Featured Transition Systems (FTS) to create a model1141

endowed with features expressions to represent the states variation of the1142

whole software product line. The authors also present a family-based model1143

checker [6] that is able to analyze Linear Temporal Logic (LTL) properties1144

of the whole software product line by employing semi-symbolic algorithms1145

to verify FTSs. All these pieces of work exploit symbolic computation on1146

a model representing the whole variability of a product line as a better al-1147

ternative to product-based strategies. Our study supports this conclusion,1148

especially if a suitable variational data structure (e.g., ADD) is used for such1149

analysis. However, our results indicate that feature-family-based analysis1150

further improves performance.1151

Dimovski et al. [16] also present an efficient family-based technique to1152

verify LTL properties of a software family. The authors leverage abstract1153

interpretation to reduce the configuration space of an FTS, so that it can1154

be verified by off-the-shelf model checkers (i.e., aimed and optimized to an-1155

alyze single systems). Our method employs a divide-and-conquer strategy1156

to reduce model size, without changing the configuration space. Moreover,1157

our analysis method also employs off-the-shelf model checkers, but to ana-1158

lyze probabilistic properties of software product lines. Therefore, it is worth1159

investigating the extent to which the technique proposed by Dimovski et al.1160

[16] can be applied to the verification of PCTL properties. If that is the1161

case, we conjecture that both strategies could be combined to further reduce1162

verification effort.1163

6. Conclusion1164

We presented a feature-family-based strategy and corresponding tool for1165

efficient reliability analysis of product lines. Our approach limits the effort1166

46

needed to compute the reliability of a product line by initially employing1167

a feature-based analysis to divide its behavioral models into smaller units,1168

which can be verified more efficiently. For this purpose, we arrange proba-1169

bilistic models in an RDG, which is a directed acyclic graph with variability1170

information. This strategy facilitates reuse of reliability computations for re-1171

dundant behaviors. The family-based step comes next when we perform the1172

reliability computation for all configurations at once by evaluating reliabil-1173

ity expressions in terms of ADDs. These decision diagrams encode presence1174

conditions and the rules from the feature model, so that computation is in-1175

herently restricted to valid configurations.1176

The empirical evaluation was accomplished by conducting an experiment1177

to compare our feature-family-based approach with the following evalua-1178

tion strategies: feature-product-based, family-based, family-product-based,1179

and product-based. Overall, the results show the product-based had the1180

worst time and space performance among all strategies, as we expected. The1181

family- and family-product-based strategies yield more complex probabilistic1182

models than the other strategies, due to variability encoding in their mod-1183

els. The product, family-product and feature-product-based approaches were1184

sensitive to the size of the configuration space of the software product line,1185

given their inherent enumerative characteristic. Overall, our experiments1186

show that the feature-family-based strategy is faster than all other analysis1187

strategies and demanded less memory in most cases, being the only one that1188

could be scaled to a 220-fold increase in the configuration space. Such results1189

suggest that our feature-family-based strategy outperformed the alternative1190

strategies due to the following: (a) the feature-based step explores a lower1191

number of simpler models having fewer variables in comparison to family-1192

based models; and (b) as the family-based step leverages ADD to compute1193

reliability values, fewer operations are necessary to compute reliability values1194

in comparison to the enumerative strategies.1195

As future work, we plan to extend the empirical evaluation to a larger1196

number of subject systems. Furthermore, the present study investigated the1197

sensitivity of analysis performance with respect to changes in the size of1198

the configuration space of the subject product lines. Thus, we also plan to1199

extend the study so as to evaluate the performance impact of changes in1200

other characteristics, such as the number of decision nodes and the number1201

of messages per behavioral fragment.1202

47

Acknowledgements1203

We would like to thank the following people for fruitful discussions and1204

suggestions on how to improve this work: Alexandre Mota, Cecília Rubira,1205

Azzedine Boukerche, Rodrigo Bonifácio, Marcelo Ladeira, Abílio Oliveira,1206

Paula Gueiros, and Eneias Silva. Vander Alves would like to thank for the1207

research grant CAPES ref. BEX 0557-16-1 / Alexander von Humboldt ref.1208

3.2-1190844-BRA-HFSTCAPES-E. Sven Apel’s work has been supported by1209

the German Research Foundation (AP 206/4 and AP 206/6).1210

Appendix A. Experiment Data1211

The following tables present the mean values for analysis time and mem-1212

ory consumption obtained in our experiment. Values typeset in boldface are1213

the best values (i.e., the lowest) gathered from the experiments. Cells con-1214

taining dashes represent unavailable data, meaning that the corresponding1215

analysis violated the time limit of 60 minutes.1216

48

Table A.4: Time in milliseconds (fastest strategy in boldface).

SPL’s evolutions steps
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20

Email

Configuration space’s order 101 101 102 102 102 103 103 103 104 104

Feature-family 183.04 223.78 233.69 259.65 267.32 285.79 341.65 348.46 366.73 433.30
Feature-product 370.63 517.67 742.91 1108.95 1659.31 2358.51 3829.95 6919.98 12803.15 25110.63
Family 319.72 1167.27 13944.18 154067.34 – – – – – –
Family-product 293.26 558.77 1095.75 2850.86 9451.57 34704.42 137866.42 562117.02 1607837.42 –
Product 2424.77 7387.35 14349.32 29137.45 57575.0 114084.61 275598.17 – – –
Configuration space’s order 104 104 105 105 105 106 106 106 107 107 107

Feature-family 970.69 1613.76 2833.40 5425.14 10838.39 21719.17 44171.89 90015.26 187645.77 667138.0 –
Feature-product 50748.90 103510.61 215932.90 456329.22 945445.46 1966865.48 – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

Minepump

Configuration space’s order 102 102 102 103 103 103 103 104 104 104

Feature-family 261.18 287.24 298.10 330.88 358.81 408.45 485.06 621.01 877.52 1375.22
Feature-product 895.80 1226.97 1844.15 2624.96 4204.27 8952.61 14037.50 25989.10 51495.22 104090.89
Family – – – – – – – – – –
Family-product – – – – – – – – – –
Product – – – – – – – – – –
Configuration space’s order 105 105 105 106 106 106 106 107 107 107 108

Feature-family 2390.78 4445.44 8790.54 17995.17 36593.45 76513.51 168694.38 354887.72 – – –
Feature-product 211806.42 439411.29 905878.46 1876640.52 – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

BSN

Configuration space’s order 102 102 103 103 103 103 104 104 104 105

Feature-family 237.14 253.65 273.01 305.48 321.69 377.40 389.41 462.66 651.84 1032.05
Feature-product 991.30 1487.19 2404.18 4312.01 7875.91 14788.91 28881.71 57887.92 117630.81 241553.61
Family 1604.07 – – – – – – – – –
Family-product 3288.70 11543.38 46273.48 187134.89 672512.22 2109118.92 – – – –
Product 6696.06 20259.05 43489.98 97280.21 241249.72 519495.92 1217404.53 – – –
Configuration space’s order 105 105 106 106 106 106 107 107 107 108 108

Feature-family 1713.19 3443.81 7332.75 15090.83 31208.01 83984.25 197660.21 528948.31 – – –
Feature-product 495594.45 1022294.56 2145986.30 – – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

continued in the next page

49

continued from last page

SPL’s evolutions steps
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20

Lift

Configuration space’s order 102 103 103 103 103 104 104 104 105 105

Feature-family 140.32 169.51 188.56 199.95 223.20 266.20 339.85 472.01 601.46 1021.76
Feature-product 1160.78 1786.75 1289.76 4281.11 7739.10 14769.15 29418.50 60785.39 127344.46 266609.58
Family 358.06 625.16 2606.86 18223.06 – – – – – –
Family-product 1413.96 3462.52 10777.60 42156.47 167837.42 453830.76 1870142.24 – – –
Product – – – – – – – – – –
Configuration space’s order 105 106 106 106 106 107 107 107 108 108 109

Feature-family 3114.06 5728.56 10895.96 21081.40 48194.05 100755.69 215756.37 – – – –
Feature-product 555525.51 1136506.33 2457317.34 – – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

InterCloud

Configuration space’s order 105 105 105 105 106 106 106 107 107 107

Feature-family 671.54 717.7 794.95 880.11 922.98 994.65 1126.91 1315.89 1742 2544.49
Feature-product 407702.34 861181.31 1752682.98 3394277.78 – – – – – –
Family – – – – – – – – – –
Family-product – – – – – – – – – –
Product – – – – – – – – – –
Configuration space’s order 108 108 108 108 109 109 109 1010 1010 1010 1011

Feature-family 4074.43 4280.4 4568.7 5344.4 3936.76 6719.68 12829.35 25588.69 67156.86 – –
Feature-product – – – – – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

TankWar

Configuration space’s order 1018 1018 1019 1019 1019 1020 1020 1020 1021 1021

Feature-family 6643.88 3588.49 2734.86 2966.2 2902.18 3079.4 4221.14 8012. 17096.88 160259.19
Feature-product – – – – – – – – – –
Family – – – – – – – – – –
Family-product – – – – – – – – – –
Product – – – – – – – – – –
Configuration space’s order 1021 1021 1022 1022 1022 1023 1023 1023 1024 1024 1024

Feature-family – – – – – – – – – – –
Feature-product – – – – – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

50

Table A.5: Space in megabytes (smallest footprint in boldface).

SPL’s evolutions steps
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20

Email

Configuration space’s order 101 101 102 102 102 103 103 103 104 104

Feature-family 113.70 113.84 113.93 114.30 114.45 114.33 114.52 114.91 115.86 117.64
Feature-product 117.22 144.30 186.59 269.67 475.61 738.99 1136.73 2359.24 2839.02 2842.46
Family 116.97 125.48 136.57 196.99 – – – – – –
Family-product 120.25 157.90 235.41 510.41 827.79 722.88 1037.62 1501.80 3231.31 –
Product 122.65 231.84 272.04 277.98 310.59 309.06 327.65 – – –
Configuration space’s order 104 104 105 105 105 106 106 106 107 107 107

Feature-family 130.65 146.25 174.93 287.00 489.00 839.80 1523.88 3041.86 5807.80 7223.00 –
Feature-product 2849.01 2878.10 2927.46 3158.43 3367.68 4181.64 – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

MinePump

Configuration space’s order 102 102 102 103 103 103 103 104 104 104

Feature-family 113.51 114.05 114.41 114.34 114.8 115.61 116.47 118.48 129.12 133.96
Feature-product 210.97 333.42 504.98 743.93 1319.2 2400.89 2841.77 2844.10 2851.49 2879.39
Family – – – – – – – – – –
Family-product – – – – – – – – – –
Product – – – – – – – – – –
Configuration space’s order 105 105 105 106 106 106 106 107 107 107 108

Feature-family 162.48 265.31 390.03 705.39 1165.72 2224.17 4011.27 6921.67 – – –
Feature-product 2914.44 2971.55 3378.84 3789.31 – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

BSN

Configuration space’s order 102 102 103 103 103 103 104 104 104 105

Feature-family 114.05 114.30 114.52 114.56 114.83 115.37 115.32 116.97 120.09 134.23
Feature-product 339.91 490.76 737.50 1716.41 2379.06 2837.60 2843.36 2850.78 2874.49 2923.93
Family 156.54 – – – – – – – – –
Family-product 493.99 841.31 1171.71 1153.13 2189.89 3263.80 – – – –
Product 320.43 335.18 339.40 352.72 327.95 440.60 446.75 – – –
Configuration space’s order 105 105 106 106 106 106 107 107 107 108 108

Feature-family 148.34 186.03 348.58 588.99 1043.94 2225.13 4640.35 7130.79 – – –
Feature-product 3005.12 3234.19 3821.39 – – – – – – – –
Family 156.54 – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

continued in the next page

51

continued from last page

SPL’s evolutions steps
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20

Lift

Configuration space’s order 102 103 103 103 103 104 104 104 105 105

Feature-family 113.77 113.85 114.37 114.27 114.56 115.23 116.87 119.88 120.72 134.41
Feature-product 292.23 507.43 757.52 1539.24 2399.04 2838.97 2840.51 2859.23 2907.41 2993.05
Family 116.54 122.63 136.83 177.02 – – – – – –
Family-product 272.85 506.39 1277.44 1296.95 1551.49 2440.83 2669.75 – – –
Product – – – – – – – – – –
Configuration space’s order 105 106 106 106 106 107 107 107 108 108 107

Feature-family 203.42 319.45 539.66 826.57 1791.86 3230.47 6324.48 – – – –
Feature-product 3199.10 3489.45 4644.73 – – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

Configuration space’s order 105 105 105 105 106 106 106 107 107 107

InterCloud

Feature-family 119.44 119.87 127.68 127.79 136.03 132.63 136.3 143.96 152.61 175.78
Feature-product 3071.58 3158.59 3602.16 4884.81 – – – – – –
Family – – – – – – – – – –
Family-product – – – – – – – – – –
Product – – – – – – – – – –
Configuration space’s order 108 108 108 108 109 109 109 1010 1010 1010 1011

Feature-family 224.06 223.7 251.48 275.81 237.67 378.87 635.76 1102.48 2628.21 – –
Feature-product – – – – – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

TankWar

Configuration space’s order 1018 1018 1019 1019 1019 1020 1020 1020 1021 1021

Feature-family 286.99 258.64 246.91 256.09 253.42 271.44 295.76 407.85 622.82 4104.61
Feature-product – – – – – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –
Configuration space’s order 1021 1021 1022 1022 1022 1023 1023 1023 1024 1024 1024

Feature-family – – – – – – – – – – –
Feature-product – – – – – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

52

Appendix B. SPLGenerator tool1217

To increase the number of subject systems and inspect how each evalua-1218

tion strategy behaves with the growth of the configuration space, we imple-1219

mented a product-line generator tool called SPL–Generator10, which is able1220

to create a software product line from scratch or modify an existing one by1221

incrementally adding features and behavior to its models. For the feature1222

model generation (i.e., to create a new feature model or change an existing1223

one), the tool relies on the SPLAR tool [33]. The desired characteristics1224

of the resulting feature model are obtained by defining accordingly the set1225

of parameters provided by SPLAR. Examples of such parameters are the1226

number of features to be created, the amount in percentage for each kind of1227

feature (mandatory, optional, OR-inclusive and OR-exclusive), and the num-1228

ber of cross-tree constraints. As our SPL-Generator tool intends to create1229

product lines that resemble real-world product lines, it produces only con-1230

sistent feature-models (i.e., the SPLAR’s parameter for creating consistent1231

feature-models is always set to true).1232

To create behavioral models, the SPL-Generator tool considers the UML1233

behavioral diagrams and follows the refinement of activity diagrams into se-1234

quence diagrams presented in Section 2.3. For creating activity and sequence1235

diagrams, the generator tool is also guided by a set of parameters for each1236

kind of behavioral diagram. For an activity diagram, it is possible to define1237

how many activities it will comprise, the number of decision nodes, and how1238

many sequence diagrams will refine each created activity. For a sequence1239

diagram, it is possible to define its size in terms of numbers of behavioral1240

fragments, the size of each behavioral fragment in terms of the number of1241

messages, the number of lifelines, the number of different reliability values1242

(such that each lifeline will randomly assume only one value) and the range1243

for them. Thus, one possibly generated sequence diagram would have 5 be-1244

havioral fragments, each one containing 8 messages between 3 lifelines, whose1245

reliability values are within the range [0.99, 0.999].1246

Finally, the SPL-Generator tool also provides a parameter to define how1247

the feature model and the behavioral models will be related. The allocation1248

of a behavioral fragment (implementing a feature’s behavior) can be fully1249

randomized within the set of created sequence diagrams, or it can be topo-1250

logical, which means the relations between the behavioral fragments mimic1251

10https://github.com/SPLMC/spl-generator/

53

https://github.com/SPLMC/spl-generator/

the relations between the corresponding features. In the latter, we assume a1252

child feature refines its parent, so its behavioral fragment is nested into its1253

parent’s behavioral fragment.1254

References1255

[1] Apel, S., Batory, D., Kästner, C., Saake, G. (Eds.), 2013. Feature-1256

oriented software product lines: concepts and implementation. Springer,1257

Berlin.1258

[2] Bahar, R., Frohm, E., Gaona, C., Hachtel, G., Macii, E., Pardo, A.,1259

Somenzi, F., 1997. Algebric decision diagrams and their applications.1260

Formal Methods in System Design 10 (2), 171–206.1261

[3] Baier, C., Katoen, J.-P., 2008. Principles of Model Checking (Represen-1262

tation and Mind Series). The MIT Press.1263

[4] Bodden, E., Tolêdo, T., Ribeiro, M., Brabrand, C., Borba, P., Mezini,1264

M., 2013. SPLLIFT: Statically Analyzing Software Product Lines in1265

Minutes Instead of Years. In: Proceedings of the 34th ACM SIG-1266

PLAN Conference on Programming Language Design and Implemen-1267

tation. PLDI ’13. ACM, New York, NY, USA, pp. 355–364.1268

[5] Clarke, E. M., Grumberg, O., Peled, D. A., 1999. Model checking. MIT1269

Press, Cambridge, Mass.1270

[6] Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.-Y., Oct1271

2012. Model checking software product lines with SNIP. International1272

Journal on Software Tools for Technology Transfer 14 (5), 589–612.1273

[7] Classen, A., Cordy, M., Heymans, P., Legay, A., Schobbens, P.-Y., Feb.1274

2014. Formal semantics, modular specification, and symbolic verification1275

of product-line behaviour. Science of Computer Programming 80, Part1276

B, 416–439.1277

[8] Classen, A., Cordy, M., Schobbens, P.-Y., Heymans, P., Legay, A.,1278

Raskin, J.-F., 2013. Featured Transition Systems: Foundations for Veri-1279

fying Variability-Intensive Systems and Their Application to LTL Model1280

Checking. IEEE Transactions on Software Engineering 39 (8), 1069–1281

1089.1282

54

[9] Classen, A., Heymans, P., Schobbens, P., Legay, A., 2011. Symbolic1283

model checking of software product lines. In: 2011 33rd International1284

Conference on Software Engineering (ICSE). pp. 321–330.1285

[10] Classen, A., Heymans, P., Schobbens, P.-Y., Legay, A., Raskin, J.-F.,1286

2010. Model Checking Lots of Systems: Efficient Verification of Tempo-1287

ral Properties in Software Product Lines. In: Proceedings of the 32Nd1288

ACM/IEEE International Conference on Software Engineering - Volume1289

1. ICSE ’10. ACM, New York, NY, USA, pp. 335–344.1290

[11] Clements, P., Northrop, L., 2002. Software product lines: practices1291

and patterns. The SEI series in software engineering. Addison-Wesley,1292

Boston.1293

[12] Cormen, T. H., Stein, C., Rivest, R. L., Leiserson, C. E., 2001. Intro-1294

duction to Algorithms, 2nd Edition. McGraw-Hill Higher Education.1295

[13] Czarnecki, K., Eisenecker, U., 2000. Generative programming: methods,1296

tools, and applications. Addison Wesley, Boston.1297

[14] Czarnecki, K., Pietroszek, K., 2006. Verifying feature-based model tem-1298

plates against well-formedness OCL constraints. ACM Press, p. 211.1299

[15] Daws, C., sep 2005. Symbolic and Parametric Model Checking of1300

Discrete-time Markov Chains. In: Liu, Z., Araki, K. (Eds.), Proceed-1301

ings of the First International Conference on Theoretical Aspects of1302

Computing. Vol. 3407 of Lecture Notes in Computer Science. Springer1303

Berlin Heidelberg, Berlin, Heidelberg, pp. 280–294.1304

[16] Dimovski, A. S., Al-Sibahi, A. S., Brabrand, C., Wąsowski, A., 2015.1305

Family-Based Model Checking Without a Family-Based Model Checker.1306

Springer International Publishing, Cham, pp. 282–299.1307

[17] Dubslaff, C., Baier, C., Kluppelholz, S., 2015. Probabilistic Model1308

Checking for Feature-Oriented Systems. In: Chiba, S., Tanter, E., Ernst,1309

E., Hirschfeld, R. (Eds.), Transactions on Aspect-Oriented Software De-1310

velopment XII. No. 8989 in Lecture Notes in Computer Science. Springer1311

Berlin Heidelberg, pp. 180–220, dOI: 10.1007/978-3-662-46734-3_5.1312

55

[18] Dubslaff, C., Klüppelholz, S., Baier, C., 2014. Probabilistic Model1313

Checking for Energy Analysis in Software Product Lines. In: Proceed-1314

ings of the 13th International Conference on Modularity. MODULAR-1315

ITY ’14. ACM, New York, NY, USA, pp. 169–180.1316

[19] Ferreira Leite, A., Alves, V., Nunes Rodrigues, G., Tadonki, C., Eisen-1317

beis, C., Magalhaes Alves de Melo, A., Jun. 2015. Automating Resource1318

Selection and Configuration in Inter-clouds through a Software Product1319

Line Method. In: 2015 IEEE 8th International Conference on Cloud1320

Computing (CLOUD). pp. 726–733.1321

[20] Filieri, A., Ghezzi, C., 2012. Further steps towards efficient runtime1322

verification: Handling probabilistic cost models. In: Proceedings of the1323

First International Workshop on Formal Methods in Software Engineer-1324

ing: Rigorous and Agile Approaches. FormSERA ’12. IEEE Press, Pis-1325

cataway, NJ, USA, pp. 2–8.1326

[21] Ghezzi, C., Sharifloo, A. M., Mar. 2013. Model-based verification of1327

quantitative non-functional properties for software product lines. Infor-1328

mation and Software Technology 55 (3), 508–524.1329

[22] Grunske, L., 2008. Specification patterns for probabilistic quality prop-1330

erties. In: ICSE ’08. ACM, New York, NY, USA, pp. 31–40.1331

[23] Hahn, E., Hermanns, H., Zhang, L., 2010. Probabilistic reachability for1332

parametric markov models. STTT, 1–17.1333

[24] Hahn, E. M., Hermanns, H., Wachter, B., Zhang, L., 2010. Param: A1334

model checker for parametric markov models. In: CAV. pp. 660–664.1335

[25] Hao, Y., Foster, R., 2008. Wireless body sensor networks for health-1336

monitoring applications. Physiological Measurement 29 (11), 27–56.1337

[26] Heradio, R., Perez-Morago, H., Fernandez-Amoros, D.,1338

Javier Cabrerizo, F., Herrera-Viedma, E., Apr. 2016. A biblio-1339

metric analysis of 20 years of research on software product lines.1340

Information and Software Technology 72, 1–15.1341

[27] Iris, R., Erica, B., Frohm, A., Gaona, C. M., Hachtel, G. D., Macii, E.,1342

Pardo, A., Somenzi, F., 1993. Algebraic Decision Diagrams and Their1343

Applications. In: Proceedings of the 1993 IEEE/ACM International1344

56

Conference on Computer-aided Design (ICCAD ’93). IEEE Computer1345

Society Press, Santa Clara, California, USA, pp. 188–191.1346

[28] Kowal, M., Tschaikowski, M., Tribastone, M., Schaefer, I., Nov. 2015.1347

Scaling Size and Parameter Spaces in Variability-Aware Software Perfor-1348

mance Models (T). In: 2015 30th IEEE/ACM International Conference1349

on Automated Software Engineering (ASE). pp. 407–417.1350

[29] Kramer, J., Magee, J., Sloman, M., Lister, A., Jan. 1983. CONIC: an in-1351

tegrated approach to distributed computer control systems. Computers1352

and Digital Techniques, IEE Proceedings E 130 (1), 1–.1353

[30] Liang, J. H., Ganesh, V., Czarnecki, K., Raman, V., 2015. SAT-based1354

Analysis of Large Real-world Feature Models is Easy. In: Proceedings1355

of the 19th International Conference on Software Product Line. SPLC1356

’15. ACM, New York, NY, USA, pp. 91–100.1357

[31] Linden, F. v. d., Schmid, K., Rommes, E., 2007. Software product1358

lines in action: the best industrial practice in product line engineering.1359

Springer, Berlin ; New York.1360

[32] Machado, I. d. C., McGregor, J. D., Cavalcanti, Y. C., de Almeida, E. S.,1361

Oct. 2014. On strategies for testing software product lines: A systematic1362

literature review. Information and Software Technology 56 (10), 1183–1363

1199.1364

[33] Mendonca, M., Branco, M., Cowan, D., 2009. S.p.l.o.t.: Software prod-1365

uct lines online tools. In: Proceedings of the 24th ACM SIGPLAN1366

Conference Companion on Object Oriented Programming Systems Lan-1367

guages and Applications. OOPSLA ’09. ACM, New York, NY, USA, pp.1368

761–762.1369

[34] Nunes, V., Fernandes, P., Alves, V., Rodrigues, G., Sep. 2012. Variabil-1370

ity Management of Reliability Models in Software Product Lines: An1371

Expressiveness and Scalability Analysis. In: 2012 Sixth Brazilian Sym-1372

posium on Software Components Architectures and Reuse (SBCARS).1373

pp. 51–60.1374

[35] Object Management Group, 2011. The UML profile for MARTE: Mod-1375

eling and analysis of real-time and embedded systems. Version 1.1.1376

57

[36] Pessoa, L., Fernandes, P., Castro, T., Alves, V., Rodrigues, G. N., Car-1377

valho, H., 2017. Building reliable and maintainable dynamic software1378

product lines: An investigation in the body sensor network domain.1379

Information and Software Technology 86, 54 – 70.1380

[37] Plath, M., Ryan, M., Sep. 2001. Feature integration using a feature1381

construct. Science of Computer Programming 41 (1), 53–84.1382

[38] Pohl, K., Böckle, G., Linden, F. v. d., 2010. Software product line en-1383

gineering: foundations, principles, and techniques. Springer, New York,1384

NY.1385

[39] Rodrigues, G. N., Alves, V., Nunes, V., Lanna, A., Cordy, M.,1386

Schobbens, P.-Y., Sharifloo, A. M., Legay, A., Jan. 2015. Modeling and1387

Verification for Probabilistic Properties in Software Product Lines. In:1388

2015 IEEE 16th International Symposium on High Assurance Systems1389

Engineering (HASE). pp. 173–180.1390

[40] Siegmund, N., von Rhein, A., Apel, S., 2013. Family-based Performance1391

Measurement. In: Proceedings of the 12th International Conference on1392

Generative Programming: Concepts & Experiences. GPCE ’13. ACM,1393

New York, NY, USA, pp. 95–104.1394

[41] Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich,1395

T., Jan. 2014. Featureide: An extensible framework for feature-oriented1396

software development. Sci. Comput. Program. 79, 70–85.1397

[42] Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G., Jun. 2014. A1398

Classification and Survey of Analysis Strategies for Software Product1399

Lines. ACM Comput. Surv. 47 (1), 6:1–6:45.1400

[43] University of Magdeburg, O. v. G., 2011. SPL2go. Available at http:1401

//spl2go.cs.ovgu.de/, accessed: 2016-01-27.1402

[44] Varshosaz, M., Khosravi, R., Dec. 2014. Model Checking of Soft-1403

ware Product Lines in Presence of Nondeterminism and Probabilities.1404

In: Software Engineering Conference (APSEC), 2014 21st Asia-Pacific.1405

Vol. 1. pp. 63–70.1406

[45] Walkingshaw, E., Kästner, C., Erwig, M., Apel, S., Bodden, E., 2014.1407

Variational Data Structures: Exploring Tradeoffs in Computing with1408

58

http://spl2go.cs.ovgu.de/
http://spl2go.cs.ovgu.de/
http://spl2go.cs.ovgu.de/

Variability. In: Proceedings of the 2014 ACM International Symposium1409

on New Ideas, New Paradigms, and Reflections on Programming & Soft-1410

ware. Onward! 2014. ACM, New York, NY, USA, pp. 213–226.1411

[46] Weiss, D. M., 2008. The product line hall of fame. In: Proceedings of1412

the 12th International Software Product Line Conference (SPLC). IEEE1413

Computer Society, Washington, DC, USA, p. 395.1414

59

	Introduction
	Background
	Reliability Analysis and FDTMC
	Software Product Line Analysis
	Running Example

	Feature-Family-based Reliability Analysis
	Transformation
	Behavioral Models
	Runtime Dependency Graphs
	From Behavioral Models to RDG

	Feature-based Analysis
	Family-based Analysis

	Evaluation
	Implementation
	Analytical Complexity
	Empirical Evaluation
	Subject Systems and Experiment Design
	Experiment Setup
	Results and Analysis
	Discussion
	Threats to Validity

	Related Work
	Comparison to a Feature-Product-based Strategy
	Other Related Work

	Conclusion
	Experiment Data
	SPLGenerator tool

