
Automated Software Engineering manuscript No.
(will be inserted by the editor)

Indicators for Merge Conflicts in the Wild:
Survey and Empirical Study

Olaf Leßenich · Janet Siegmund · Sven
Apel · Christian Kästner · Claus
Hunsen

Received: date / Accepted: date

Abstract While the creation of new branches and forks is easy and fast with
modern version-control systems, merging is often time-consuming. Especially
when dealing with many branches or forks, a prediction of merge costs based
on lightweight indicators would be desirable to help developers recognize prob-
lematic merging scenarios before potential conflicts become too severe in the
evolution of a complex software project. We analyze the predictive power of
several indicators, such as the number, size or scattering degree of commits in
each branch, derived either from the version-control system or directly from
the source code. Based on a survey of 41 developers, we inferred 7 potential
indicators to predict the number of merge conflicts. We tested corresponding
hypotheses by studying 163 open-source projects, including 21,488 merge sce-
narios and comprising 49,449,773 lines of code. A notable (negative) result is
that none of the 7 indicators suggested by the participants of the developer
survey has a predictive power concerning the frequency of merge conflicts. We
discuss this and other findings as well as perspectives thereof.

Olaf Leßenich
University of Passau, Germany E-mail: lessenic@fim.uni-passau.de

Janet Siegmund
University of Passau, Germany E-mail: siegmunj@fim.uni-passau.de

Sven Apel
University of Passau, Germany E-mail: apel@fim.uni-passau.de

Christian Kästner
Carnegie Mellon University, USA E-mail: kaestner@cs.cmu.edu

Claus Hunsen
University of Passau, Germany E-mail: hunsen@fim.uni-passau.de



2 Olaf Leßenich et al.

1 Introduction

Today, the evolution of a software project is typically managed by means of
a version-control system. Distributed version-control systems, such as Git,
owe their increasing popularity to the fact that they allow developers to work
independently by making branching easy [Muşlu et al, 2014]. Although par-
allel development increases a team’s productivity, merging branches can be a
difficult and time-consuming task [Mens, 2002; Bird and Zimmermann, 2012].
Figure 1 shows a typical merge conflict, in which a simple Java class is changed
independently in the two versions Get and Size. As the changes have been in-
troduced in the same location, common text-based merge tools cannot merge
the versions automatically—a conflict is reported instead.

Previous studies of popular open-source systems have shown that merge
conflicts are frequent and persistent, even when working with modern version-
control systems and advanced merge tools [Brun et al, 2011; Apel et al, 2011;
Bird and Zimmermann, 2012; Leßenich et al, 2014]. Merge conflicts are es-
pecially challenging in large-scale, long-living software projects, with many
branches, forks, and clones [Mens, 2002; Bird and Zimmermann, 2012] and
where branches are used for customer-specific features [Staples and Hill, 2004;
Rubin et al, 2013; Dubinsky et al, 2013; Antkiewicz et al, 2014].

To mitigate problems of (late) merging, several approaches aim at increas-
ing awareness of changes and thereby encourage early merging, for exam-
ple, continuous merging [Guimarães and Silva, 2012] and speculative analy-
sis [Brun et al, 2011]. Speculatively executing merges becomes quickly very
expensive, especially when many branches are involved (the numbers of com-
parisons grow quadratically) or when advanced but computationally expensive
structure-based or n-way merging techniques are used [Mens, 2002; Leßenich
et al, 2014; Rubin and Chechik, 2013]. Especially, in scenarios with many
forks and branches and frequent n-way merges—which is not uncommon in
practice [Mens, 2002; Bird and Zimmermann, 2012; Antkiewicz et al, 2014;
Dubinsky et al, 2013; Rubin et al, 2013; Stanciulescu et al, 2015]—the cost
of continuous and speculative merging would be high. Hence, we strive for an
alternative approach. A further motivation is that some approaches of contin-
uous and speculative merging rely on dedicated IDE support, which limits the
approach to a specific setting, which we would like to avoid.

We aim at predicting the effort of merging branches without actually exe-
cuting the merges and at visualizing the project status in an aggregated and
intuitive manner on a project-wide dashboard.1 To this end, we exploit the
fact that a lot of information can be retrieved at very low cost from either the
version-control system or from patches. Such information can be computed
for each branch separately, so costs grow linearly (not quadratically) with the
number of branches. Predictions could even work as an initial filter to reduce
the effort of a speculative-merging infrastructure, such that only candidates
with likely conflicts are analyzed further.

1 http://www.infosun.fim.uni-passau.de/spl/pythia/

http://www.infosun.fim.uni-passau.de/spl/pythia/


Indicators for Merge Conflicts in the Wild: Survey and Empirical Study 3

Version Base

class Bag {
int[] values;
Bag(int[] v) { values = v; }

}

Version Size

class Bag {
int[] values;
Bag(int[] v) { values = v; }
int size() {
return values.length;

}
}

Version Get

class Bag {
int[] values;
Bag(int[] v) { values = v; }
int[] get() {
return values;

}
}

Merge

class Bag {
int[] values;
Bag(int[] v) { values = v; }
<<<<<<< if(Get)
int[] get() {
return values;

}
=======
int size() {
return values.length;

}
>>>>>>> if(Size)

}

branch

merge

Fig. 1 A merge conflict between two variants of class Bag, which introduce different func-
tionalities at the same position.

To learn more about the factors that lead to conflicts in a scenario as
outlined above, we conducted a survey, in which 41 developers shared their
typical problems during merging and the reasons for conflicts in their projects.
Several developers (38%) stated that they sometimes avoid synchronization,
this way, fostering late merging, because they fear to run into conflicts, which
would interrupt their work flow. At the same time, the developers largely
agreed that late merging is one of the primary causes that lead to merge
conflicts and the negative implications thereof.

Several of our questions aimed at learning about the workflow of the de-
velopers with regards to the use of the version-control system, and to estimate
whether merge conflicts are a persistent obstacle or not. Among others, we
asked: “What is the policy on how to deal with conflicts?” One common prac-
tice is, as one participant put it: “Whoever commits second has to fix it.”
This also means that, following this approach, the maintainer of an upstream
branch may end up having to solve merge conflicts in the code of a feature
that someone else wrote, just because there were later changes in the upstream
branch. Some participants mentioned additional constraints when using this



4 Olaf Leßenich et al.

method, for example, a “no branch lives longer than a day” policy, which is
employed by the development team to restrict possible damage. Such rigorous
measures indicate that there have been excessive problems related to merge
conflicts in past projects. These responses suggest that merge conflicts are still
a common nuisance in software development, which confirms the observations
of previous studies [Mens, 2002].

Beside understanding the role of merge conflicts, the majority of our survey
questions aimed at what precisely causes many of the conflicts. In essence,
the participants of our survey suggested several indicators (consolidated into
7 indicators, in total) that should have an influence on merge conflicts. For
example, they suggest that branches with more commits, larger commits, and
more scattered changes are more likely to cause merge conflicts, just as cases
where more developers work in parallel. These indicators form the basis for
analysis.

The overall goal of our study is to explore whether a prediction based
on these (and other) potential indicators can be used to predict problematic
merge situations, possibly as input for open-source dashboard solutions, such
as Codeface.2 To test the feasibility and predictive power of the indicators,
we analyze 21,488 real merge scenarios in the version history of 163 substantial
open-source Java projects. Our goal is to predict difficult merges by obtaining
and analyzing statistical data of the changes that were introduced in concur-
rent branches. For evaluation, we executed the actual merges and determined
the number of conflicts, as an operationalization of merge difficulty. In addition
to the information available in standard version-control systems, we analyzed
the structure and granularity of changes at the level of the abstract syntax
tree to test our hypotheses.

As a key result, we found that none of the 7 indicators that have been
suggested by the developer survey have a predictive power concerning (i.e.,
correlating strongly with) the number of conflicts. This is clearly a negative
result that surprised us, as it contradicts our intuition as well as the prevailing
opinion of the developers who took part in our survey. Nevertheless, despite
this overall negative result, our study provides important insights into the
feasibility of a lightweight approach of predicting merge conflicts. The results
of our study can be understood as a warning to practitioners and researchers
when making assumptions about merging and merge conflicts. Furthermore,
our study, data, analysis, and experiment infrastructure form a solid basis for
replication and follow-up studies as well as for research on alternative conflict-
prediction approaches (e.g., domain-specific) and conflict-avoidance strategies
(e.g., speculative merging).

Overall, we make the following contributions:

– We present the results of a survey among 41 developers, who we asked
about the causes of merge conflicts in their projects.

2 http://siemens.github.io/codeface/

http://siemens.github.io/codeface/


Indicators for Merge Conflicts in the Wild: Survey and Empirical Study 5

– We make our infrastructure and data publicly available for replication and
follow-up studies. We collected and published 21,488 merge scenarios from
163 open-source projects.

– We evaluated the predictive power of the indicators suggested by the de-
velopers in a study on the selected subject projects.

– We found that none of the 7 indicators correlates strongly with the number
of merge conflicts. We did not expect this negative result, and we analyze
possible reasons and discuss implications thereof.

2 Survey and Hypotheses

In this section, we present the results of our survey and our research hypothe-
ses. All material (including all survey questions and answers and the collected
data) is available at the project’s website.3

2.1 Survey on Merge Conflicts

Objective We started the investigation with an intuition that several factors
should plausibly influence the chance of merge conflicts (making the factors
indicators), including the age of a branch, the number of commits and com-
mitters, and so forth. To get a broader picture of whether practitioners share
our intuition and what other indicators are plausible, we conducted a devel-
oper survey. In this survey, we asked developers for factors related with merge
conflicts in their projects. We use this survey to ground our hypotheses about
merge-conflict indicators, which we evaluate in Section 3.

Material For the purpose of our investigation, we designed an online survey, in-
cluding open and closed questions. To get an unbiased opinion of participants,
we started with a general open question to ask developers what, in their opin-
ion, leads to merge conflicts (“In your opinion, what are typical factors and
situations that most likely lead to merge conflicts?”). Then, we proceeded with
specific questions in the line of our intuition (e.g., “Do you sometimes avoid
a pull/update because of potential conflicts?”, “Where do conflicts typically
occur?”).

Participants To acquire participants, we published the survey on several plat-
forms, including Twitter and Reddit. We received 41 responses from developers
aged 21 to 48 years (31.5 years, on average), having 3 to 20 years of pro-
gramming experience (9.6 years, on average). The participants are involved in
projects with mostly 3 to 5 or 6 to 10 developers per team. 98% stated that
they use Git as version-control system.

3 http://www.infosun.fim.uni-passau.de/spl/papers/conflict-prediction/

http://www.infosun.fim.uni-passau.de/spl/papers/conflict-prediction/


6 Olaf Leßenich et al.

Evaluation The majority of our questions aimed at what precisely causes
merge conflicts. Typical answers to the open questions refer to formatting
changes, large-scale refactoring, and structural changes in long-living forks.
Some of the more specific responses mention import statements—which are
maintained automatically by an IDE—and changes related to release version-
ing (e.g., hard-coded strings in the code base).

We derived the hypotheses by conducting a form of card sorting [Hudson,
2013] (i.e., we put answers into buckets and created a hypothesis for each
bucket).

Next, we present our hypotheses and describe how they relate to the par-
ticipants’ responses to the corresponding survey questions.

2.2 Hypotheses

The reason for merge conflicts is parallel development with overlapping
changes. Therefore, in the context of a distributed version-control system,
we suspect that branches with a large number of commits are more likely to
induce conflicts during a merge than branches with few commits. Our survey
shows that almost all developers we polled (83%) share this view, which leads
us to our first hypothesis:

H1 Active, diverted branches (in terms of number of commits) are more
likely to result in conflicts than inactive branches that remain close to
each other.

When a deadline is near, there might be a situation where many people
commit quite often in short intervals to “get their changes out”. At the same
time, the awareness of changes made by other team members decreases be-
cause of time pressure. Among the participants of our survey, 29% named
release pressure as a cause of conflicts. One participant mentioned “end-of-day
commits” as an example. We summarize this view in the following hypothesis:

H2 Many commits within a small time span are more likely to produce
conflicts than the same number of commits over longer time spans.

The majority of developers in our survey (73%) share our following expec-
tation: They mentioned particularly “developers working on the same files” as
source for potential merge conflicts. We expect that the more files are changed
by both concurrent branches, the higher the probability that developers were
working on the same locations—and thereby cause conflicts. We summarize
the rationale in the following hypothesis:

H3 The more files are changed by both branches, the more likely a con-
flict occurs.

The following assumption is a rather intuitive one as well: The more code
is changed, the higher is the likelihood of overlap and thereby conflicts. 51%



Indicators for Merge Conflicts in the Wild: Survey and Empirical Study 7

of our survey participants stated that “large”/“huge”/“big” commits likely have
an influence on the occurrence of merge conflicts. We capture this view in our
next hypothesis:

H4 Larger changes that modify more lines of code are more likely to
cause conflicts than smaller changes.

Crucial for successful automated merging of changes is the unambiguity of
insertion locations. When there are multiple changed, non-cohesive locations
(chunks) within a project, that is, tangled changes, it seems natural that the
chances for conflicts are higher, because there is an increased chance of an
overlapping change at one of these locations within another branch. As an
example, consider a file containing 100 lines. For a diff/merge algorithm, it
makes a difference whether the first 50 lines are changed, or every second line.
So, while the same number of lines have been changed in both scenarios, the
merge result is a different: one large conflict versus 50 small conflicts. Two
survey participants shared this concern and proposed to “modularise code to
keep it in reasonably small files” and “keep files [. . . ] well structured as soon
as possible” to prevent/avoid potential conflicts. We capture this situation in
the following hypothesis:

H5 More code fragmentation (tangled changes) of the committed
changes results in more conflicts than lesser code fragmentation.

We expect that scattered changes have a higher chance of interfering with
the changes of another developer than cohesive ones. In our survey, such issues
were often mentioned in conjunction with a lack of organization and communi-
cation. A survey participant stated that “usually tasks that crosscut different
components of code lead to conflicts”, another one observed that “[they] used
to have more conflicts before [they] started using a more modular approach”.
Overall, 56% of the participants also stated that conflicts typically occur in
more than one file. Such scattered changes can be introduced at different gran-
ularities, which we incorporate in our next hypothesis:

H6 Scattered changes (across classes or methods) are more likely to
lead to conflicts than cohesive changes.

During an earlier study on syntax-based versus line-based merging in Java
projects [Apel et al, 2011; Leßenich et al, 2014], we observed that a common
cause of conflicts with line-based merges seemed to be caused by changed,
or just reordered, lists of import statements. Such operations are often per-
formed automatically by IDEs, without the explicit awareness of the developer.
However, the merge itself is typically executed by a text-based, language-
unaware merge tool, leaving the resolution of the conflict to the developer.
While this can be annoying when using conventional merge tools, especially
when a lot of files are affected, advanced, language-aware techniques, such as
a structured, syntax-based merge algorithm, can resolve those changes auto-
matically [Leßenich et al, 2014]. This leads us to our last hypothesis:



8 Olaf Leßenich et al.

H7 Changes above the level of class declarations (which are often in-
serted and maintained automatically) are more likely to lead to merge
conflicts than changes inside class declarations (introduced by human
developers).

3 Empirical Study

To test our hypotheses, we conducted an empirical study, in which we observe
real merge conflicts in open-source software projects. We describe the study
setup in this section and the results in Section 5, following standard guidelines
of empirical research [Jedlitschka and Pfahl, 2005]. On the project’s website,
we provide a replication package, including survey responses, the corpus of
merge scenarios, and additional information.

3.1 Objective and Variables

The objective of this study is to evaluate the hypotheses that we formulated in
Section 2. We operationalize the hypotheses through several metrics (indica-
tors) summarized in Table 1. For each indicator, we determine the respective
value for each branch (by comparing the head of the branch with the common
ancestor) and then compute the geometric mean (

√
a · b) of those values. We

chose geometric mean as our aggregation function, because we want to com-
bine individual values to a meaningful and interpretable indicator. Geometric
mean is the most natural choice, because the product of the separate values
is interpretable in our case. This is particularly evident by looking at corner
cases: If one branch has, for instance zero changes, we would not expect a
conflict and therefore want the aggregated value to be zero, as well—as is the
geometric mean in this case.

In a nutshell, we correlate the individual metrics (at least, one for each
hypothesis), aggregated based on both branches of a merge scenario, with the
number of conflicts occurring in that merge scenario. If we observe a strong
correlation, the corresponding metric qualifies as a potential indicator. We
create a stepwise-regression model to see whether a weighted combination of
those metrics is useful for prediction.

Independent Variables As a first step, we collect several metrics on commits
in both branches. For hypothesis H1, we simply count the number of com-
mits in both branches between the base revision and the merge point in each
merge scenario; then, we compute the geometric mean of the commits in both
branches. For hypothesis H2, we take the number of commits in the last week
before the merge into account, derived from the timestamps in the respective
commits—again reported as geometric mean. The same is done analogously
for the last two weeks, so we compute two metrics for H2. For hypothesis



Indicators for Merge Conflicts in the Wild: Survey and Empirical Study 9

Table 1 Indicators for the number of merge conflicts; for each indicator, we compare the
head of each branch with the common ancestor.

Metric Description Hypoth.

Dependent variable
Number of conflicts Number of conflicts reported by a line-based

merge tool actually performing the merge;
conflicts in consecutive lines are reported as
a single conflict.

Independent variables: Commit metrics
Number of commits Number of commits between the common an-

cestor and the merge point of each branch;
reported as geometric mean of both branches.

H1

Commit density Number of commits in last week/last two
weeks; reported as geometric mean of both
branches.

H2

Number of files changed by
both branches

Number of files modified by, at least, one de-
veloper in both branches.

H3

Independent variables: Change-size metrics
Number of changed lines
of code

Size of the difference between the common an-
cestor and the end version of each branch, in
terms of added and removed lines; reported as
geometric mean of both branches.

H4

Number of AST nodes
changed

Size of the difference between the common an-
cestor and the end version of each branch, in
terms of added and removed AST nodes; re-
ported as geometric mean of both branches.

H4

Number of code chunks
changed

Number of locations in the code that have
been changed in any commit between the an-
cestor and the merge point in each branch;
measured in terms of consecutive code blocks
(AST subtrees or siblings); reported as geo-
metric mean of both branches.

H5

Number of changes
inside class declarations

Number of changed AST nodes that belong to
class declarations; reported as geometric mean
of both branches.

H7

Number of changes
above class declarations

Number of changed AST nodes above class
declarations, including package and import
declarations; reported as geometric mean of
both branches.

H7

Independent variables: Scattering metrics
Scattering degree (classes) =

number of changed classes
number of all classes

Percentage of classes affected by any changes
between the ancestor and the merge point in
either branch; reported as geometric mean of
both branches.

H6

Scattering degree (meth.) =
number of changed methods

number of all methods

Percentage of methods affected by any
changes between the ancestor and the merge
point in either branch; reported as geometric
mean of both branches.

H6

H3, we count the number of files changed by both branches. Hypothesis H4
addresses the size of changes. In line with previous work [Hattori and Lanza,
2010; Leßenich et al, 2014], we analyze changes in the abstract syntax trees



10 Olaf Leßenich et al.

ConstructorDecl

Modifiers

List

List

ParameterDecl [v]

Modifiers

List

ArrayTypeAccess

PrimitiveTypeAccess [int]List [Exceptions]

Opt [Super constructor invocation]

Block

List

ExprStmt

AssignSimpleExpr

VarAccess [values]

VarAccess [v]

Fig. 2 Abstract syntax tree of constructor of class Bag (base revision) of Figure 1

(ASTs) of the files, not on their textual, line-based representation. This en-
ables a more accurate characterization of the changes independent of layouting
issues. Change sizes are counted in terms of added or deleted lines as well as
added or deleted nodes in the corresponding ASTs (e.g., adding an entire sub-
tree involves adding multiple nodes). We call a sequence of adjacent nodes
with their subtrees a code chunk. For illustration, Figure 2 shows an AST for
the constructor of the base revision of class Bag of Figure 1. This class has
4 lines of code as formatted in Figure 1, whereas its AST contains 35 nodes.
Version Size adds 14 nodes (method declaration, modifiers, type access, . . . ),
and version Get adds 13 nodes. On average, there are 7 nodes per line of code.

Hypotheses H5 and H6 are concerned with the fragmentation and distri-
bution of changes. The scattering degree describes which percentage of classes
and methods have been affected by changes in either branch. Changes that
are more scattered affect more classes or methods.

For hypothesis H7, we analyze the location of changes structurally
(whether above class declaration, or not), which influences the difficulty
of an automatic merge.

Dependent Variable We operationalize the merge effort in terms of number of
conflicts per merge scenario. The intuition is that, the more conflicts are re-
ported, the more situations a developer has to manually inspect while resolving
the conflicts.

Note that, we also experimented with a number of alternative operational-
izations, for example, measuring merge effort in terms of conflicting lines of
code, measuring change sizes in lines of code, or measuring the distribution in



Indicators for Merge Conflicts in the Wild: Survey and Empirical Study 11

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0

Number of Commits

●

0
5

0
1

0
0

1
5

0
2

0
0

Number of Developers

●

0
1

0
2

0
3

0
4

0
5

0
6

0

Number of Branches

●

Fig. 3 Descriptive violin plots for sample projects (about 10% of the data points are outliers
beyond the scale of the plots, not shown for a better visualization)

terms of files, classes, or methods changed in both branches. As we discuss in
Section 6, these alternative metrics yield different numbers, but do not change
the overall picture.

Confounding Variables Finally, confounding variables include programming
languages, version-control system, and domains of the projects under study [Sieg-
mund and Schumann, 2014]. We controlled their influence by keeping the pro-
gramming language and version-control system constant (Java and Git) and
by selecting a broad range of subject projects from many domains, including
IDEs, databases, application and testing frameworks, interpreters, games, and
many more.

3.2 Subject Projects

Overall, we selected 163 subject projects from a variety of domains from the
hosting platform GitHub. We decided to limit our analysis to git repositories
because it makes it easy to identify merge situations in retrospect. We provide
a full list (and our raw data) on our supplementary website.

We selected the corpus as follows: We retrieved the 500 most popular Java
projects on GitHub, as determined by the number of watchers, queried from
GitHubArchive.4 Among these 500 projects, we filtered out projects with
less than 50 merge commits in their version history (see Section 3.3) that have
actual changes in Java files, which reduced the number of projects to 163. We
analyzed a total of 501,311 commits, including 21,488 merge scenarios.

The selected subject projects range from 700 lines of code to 3.6 million
lines of code. The average time span that we analyzed was 3.9 years of de-
velopment. The median number of forks per project on GitHub is 315, each

4 http://www.githubarchive.org/

http://www.githubarchive.org/


12 Olaf Leßenich et al.

project has a median of 6 branches (257 max) and 39 contributors (497 max).
Per month, changes introduced by developers are causing a solid median code
churn of 0.1. In essence, we were analyzing substantial and active projects that
are developed in parallel by several active developers. The distribution of num-
ber of commits, developers, and branches is shown in Figure 3. An overview
with all of the individual descriptive metrics for each project can be found on
our supplementary website.

3.3 Procedure

In Git, merge commits can be easily identified: Their number of parent com-
mits is greater than one.

After cloning the subject project’s repository, we first identified merge sce-
narios by filtering commits with multiple parent commits. Each merge sce-
nario consists of three commits (two competing revisions and their common
ancestor) and can be identified by such merge commits. We excluded octopus
merges,5 because they are a very special case and we found only very few of
them anyway. For the subject projects, we identified 21,488 merge scenarios, in
total, each representing a real merge that has been completed by the project’s
developers. We excluded fast-forward merges, as they cannot lead to conflicts.

To identify merge conflicts and to gain information about the induced
changes, we automatically re-ran and analyzed each merge scenario. Many of
these merge scenarios can be merged automatically, whereas others result in
conflicts. In our case, we found that in 2361 of the 21,488 merge scenarios
Git reports a merge conflict. Considering only actual Java code (to increase
internal validity) of the repositories, Git reports a merge conflict in 1379 of
the 21,488 merge scenarios.

For the hypotheses H4–H7, we need more information about the nature
of differences and conflicts. For this purpose, we merged all 21,488 merge sce-
narios again using our syntax-based structured-merge tool JDime.6 JDime
parses the code of all three revisions relevant for a merge scenario and char-
acterizes changes and differences structurally in terms of the context-free syn-
tax [Leßenich et al, 2014]. This is important for our work, because it allows us
to easily and precisely determine which kind of structures have been changed.

Finally, we compute Spearman’s correlation coefficient between the num-
ber of merge conflicts and the potential indicators that we derived from our
hypotheses (cf. Table 1). We use the Spearman correlation as it is based on
rank data and does not assume linear relationships.

5 n-way merges in Git
6 http://fosd.de/JDime/

http://fosd.de/JDime/


Indicators for Merge Conflicts in the Wild: Survey and Empirical Study 13

3.4 Execution and Deviation

Our analysis framework is open-source and written in Java. All of the ex-
tracted and computed data are stored in a MySQL database. The statistical
tests are performed using GNU R.7 All the tools, links to the subject projects,
and a dump of our database (50 GB) are available on the supplementary web-
site.

4 Threats to Validity

Construct Validity A threat to construct validity is our operationalization of
merge effort (dependent variable). Using the number of conflicts is a natural
metric, as it represents the number of situations a developer has to inspect
manually while merging. However, other factors have also an influence on the
difficulty of resolving a conflict, for example, the size of the conflict. We also
experimented with other definitions of merge effort, including the size of the
conflicts, but did not get a different picture, as we discuss in Section 6.

Another threat to construct validity is the selection and definition of our
metrics (independent variables). While we selected the metrics to plausi-
bly capture causes of merge conflicts, different operationalizations may have
resulted in different correlations, leading to accepting or rejecting different
hypotheses. However, when exploring different operationalizations (see Sec-
tion 6), the overall picture did not change, so we have sufficiently controlled
this threat. Also, the aggregation function (geometric mean) we use to com-
pare the branches threatens construct validity. Still, we deliberately chose
geometric mean, because the product of the separate values is interpretable
in our case (e.g., zero changes in one of the branches and there cannot be a
conflict) and it better captures our data.

Internal Validity To test our hypotheses, we used real-world merge scenarios
that we extracted from open-source projects on GitHub. This selection pro-
cedure threatens internal validity, as only those merge commits made it into
the repository that were actually successful in the end. It may be that the real
nightmare scenarios, where developers resigned and rather rewrote the code
or refrained from merging at all, are not included in the version history of our
subject projects. This is a technical limitation by the version-control system,
which is only tracking actual changes rather than failed attempts to incorpo-
rate changes. Still, we encountered several merge scenarios with many conflicts
in our sample, which mitigates this threat. An alternative would have been to
merge arbitrary branches at the risk that developers might not have intended
to ever merge them in practice, which would threaten internal validity even
more. We deliberately selected only real merge scenarios, accepting this threat,
in exchange for being able to draw conclusions from real-world data of many
projects from different domains.

7 http://www.r-project.org/

http://www.r-project.org/


14 Olaf Leßenich et al.

Another threat is that we have no knowledge about the development work-
flows used in the subject projects and whether they had any influence on merg-
ing. For example, it might be that a developer had to resolve conflicts while
rebasing branches, which we cannot replicate anymore because the version his-
tory has been rewritten. In a way, rebasing hides conflicts from later repository
analysis, as the new version history is linear. Workflows including rebasing were
also mentioned by participants of our survey. However, development models
such as git-flow (which encourages a lot of merges) are very popular, which
alleviates this threat. In scenarios where consumer-specific features are devel-
oped in branches [Staples and Hill, 2004; Rubin et al, 2013; Dubinsky et al,
2013; Antkiewicz et al, 2014], we expect more merging than rebasing, as the
developers who want the features, would have to integrate them into their
branches.

In our experiments, we observed a considerable number of conflicts in non-
Java files, which we excluded from our analysis. While, this way, we reduced
threats to validity that arise from differences between programming languages,
this choice threatens external validity in the sense that we cannot generalize
our findings to arbitrary artifacts. There is clearly a trade-off between internal
and external validity [Siegmund et al, 2015], and we decided in favor of internal
validity.

Finally, regarding our survey participants, there is the possibility of se-
lection bias in that only motivated participants who are interested in merge
conflicts took part. However, this does not affect the indicators that the par-
ticipants identified, only the number of participants per indicator.

External Validity External validity is threatened by our restriction to Git and
GitHub as platform and by focusing on Java projects. Thus, generalizability
to other platforms and programming languages is limited. Both were necessary
to reduce the influence of confounds, increasing internal validity [Siegmund
et al, 2015]. Subsequent studies are needed to generalize to other version-
control systems and programming languages. However, we are confident that
we selected and analyzed substantial software systems from various domains,
developed in parallel by multiple active developers.

Statistical Conclusion Validity Statistical conclusion validity is threatened by
the distribution of conflicts in our data set, such that the values for parametric
correlations would be biased. To minimize that threat, we used the Spearman
correlation, which is non-parametric, because it is based on rank data. To check
whether our indicators are capable of predicting the presence rather than the
number of conflicts, we also computed the point biserial correlation coefficient.
However, it turned out to be almost exactly the same result as computed
with Spearman’s correlation coefficient. However, our data are from a large
number of real project repositories and, therefore, the distribution of conflicts
is representative. Also, we found strongly correlating indicators for projects
with few (<10) conflicts, and no correlating indicators for projects with a



Indicators for Merge Conflicts in the Wild: Survey and Empirical Study 15

large number of conflicts. Therefore, we are confident that the distribution of
conflicts has no significant influence on our findings.

As explained in Section 3, we chose geometric mean as summary statistic
for our metrics. We experimented with various alternative statistics (e.g., mean
and median), especially in the early phase of the project, but also later on as a
sanity check. However, regarding correlations, the big picture did not change.

5 Results

In this section, we present the results of our empirical study, structured accord-
ing to our hypotheses. An interpretation of our findings as well as explanations
for the most extreme outliers is provided in Section 6. For each hypothesis, we
present some descriptive statistics, Spearman’s correlation coefficient (cor),
and its statistical significance (p value). To accept a hypothesis, we look—
beyond statistical significance8—at the effect size in terms of the correlation’s
strength (i.e., the value of cor). Since correlations with an absolute value of
more than 0.6 are considered as strong, we set this as the threshold for ac-
cepting a hypothesis [Anderson and Finn, 1996]. As weak (0.2 to 0.39) and
medium (0.4 to 0.59) correlations can potentially be used as predictors in a
weighted combination with each other, we build a stepwise-regression model
with according indicators in Section 6.

H1 Active, diverted branches (in terms of number of commits) are more likely
to result in conflicts than inactive branches that remain close to each other.

The merge scenarios extracted from our subject projects have, on average,
19.48 commits per merge scenario. In Figure 4, we show a scatter plot of the
number of commits and the merge effort in terms of number of conflicts. There
is almost no correlation (cor=0.16, p<0.05), so we reject this hypothesis.

H1: Rejected. Number of commits does not correlate strongly with the
number of merge conflicts.

H2 Many commits within a small time span are more likely to produce conflicts
than the same number of commits over longer time spans.

On average, the merge scenarios had 9.35 commits in the last week and 11.26
commits within the last two weeks. We did not observe any strong correlation
(cor=0.13, p<0.05 and cor=0.14, p<0.05) with the number of conflicts, as
illustrated in Figure 5. Therefore, we reject this hypothesis.

8 large data set, easily significant, no value for any claims



16 Olaf Leßenich et al.

Fig. 4 Number of commits vs. number of conflicts

Fig. 5 Commits last week vs. number of conflicts

H2: Rejected. Commit density does not correlate strongly with the number
of conflicts.



Indicators for Merge Conflicts in the Wild: Survey and Empirical Study 17

Fig. 6 Files changed by both branches vs. number of conflicts

H3 The more files are changed by both branches, the more likely a conflict
occurs.

On average, 0.63 files have been changed in both branches for a merge sce-
nario, as shown in Figure 6. Here, we observe a medium correlation (cor=0.40,
p<0.05), but still we have to reject this hypothesis.

H3: Rejected. The number of files changed in both branches does not
correlate strongly with the number of conflicts.

H4 Larger changes that modify more lines of code are more likely to cause
conflicts than smaller changes.

In an average change scenario, 180.09 lines of code are changed. Our assump-
tion that large changes correlate with the number of conflicts is again only
reflected with a medium correlation (cor=0.43, p<0.05, see Figure 7). There-
fore, we reject the hypothesis.

H4: Rejected. Large changes do not correlate strongly with the number of
conflicts.



18 Olaf Leßenich et al.

Fig. 7 Change size vs. number of conflicts

H5 More code fragmentation (tangled changes) of the committed changes re-
sults in more conflicts than lesser code fragmentation.

On average, 100.12 chunks with an average size of 13.05 AST nodes per sce-
nario are changed. This shows that, on average, many small changes (one to
two lines) had to be merged. We observed only a low correlation regarding this
indicator (cor=0.24, p<0.05), which is illustrated in Figure 8. Thus, we reject
this hypothesis.

H5: Rejected. Fragmentation of changes does not correlate strongly with
the number of conflicts.

H6 Scattered changes (across classes or methods) are more likely to lead to
conflicts than cohesive changes.

The average scattering degree per merge scenario is 0.19 for classes and 0.06
for methods. We only found a low correlation to merge conflicts for classes
(cor=0.21, p<0.05) and for methods (cor=0.24, p<0.05), which is illustrated
in Figures 9 and 10. Therefore, we reject this hypothesis.

H6: Rejected. Scattered changes across classes or methods do not correlate
strongly with the number of conflicts.



Indicators for Merge Conflicts in the Wild: Survey and Empirical Study 19

Fig. 8 Number of chunks vs. number of conflicts

Fig. 9 Scattering over classes vs. number of conflicts

H7 Changes above the level of class declarations (which are often inserted
and maintained automatically) are more likely to lead to merge conflicts than
changes inside class declarations (introduced by human developers).

On average, 10.00% of all changed AST nodes per scenario are above the class
level (e.g., package declarations or import statements). Concerning the number



20 Olaf Leßenich et al.

Fig. 10 Scattering over methods vs. number of conflicts

Fig. 11 Rate of changes above class level vs. number of conflicts

of merge conflicts, we again found only low correlations (cor=0.22, p<0.05)
for the percentage of changes above the class level, and (cor=0.26, p<0.05)
for the percentage of changes within class declarations, as shown in Figure 11
and Figure 12, respectively. Therefore, we reject this hypothesis.



Indicators for Merge Conflicts in the Wild: Survey and Empirical Study 21

Fig. 12 Rate of changes in classes vs. number of conflicts

H7: Rejected. Granularity of changes (above or within class declarations)
has no strong correlation with the number of merge conflicts.

6 Discussion and Perspectives

6.1 Diving into the Data

We—and the participants of our survey—expected that several indicators, as
introduced in Section 2, show a clear correlation with the number of merge
conflicts in practice. However, in our study, we observed a different picture:
None of the indicators exhibit a strong correlation that we can use for predic-
tion. Actually, we were surprised by the low correlations, for example, with the
number of commits or the number of files changed by both branches, making
these indicators useless as predictors. We expected, at least, some indicators
exhibiting strong correlations, allowing us to combine them to predict the
likeliness of conflicts.

To better understand the absence of correlation, we took a closer look at
our data set. In particular, we looked for correlations on a per-project basis.
We found that some indicators—that correlate only weakly or at most medium
with the number of conflicts in general—exhibit a strong correlation for some
projects. For example, the number of changed lines shows only a medium
correlation overall, but is a significant and strong indicator for 14 projects;
for 80 projects, we found, at least, a medium correlation. A similar case is
the number of files that were touched by both revisions: Overall, we observe a



22 Olaf Leßenich et al.

medium correlation (cor=0.40, p<0.05); however, for 5 of the subject projects,
we found a strong correlation with the number of conflicts, and a medium
correlation for 86 projects.

These results suggest that indicators are not (or cannot be) project-
independent, leading naturally to the question of how to come up with
project-specific or, possibly, domain-specific indicators. This is an interesting
avenue of further research. Our data set can provide a good start for this,
but is beyond the scope of this study, in which we specifically looked for
project-independent indicators with predictive power for the occurrence of
merge conflicts. A preliminary attempt to cluster our sample systems (by size
and application domain) did not result in additional insights.

Furthermore, we looked into the scenarios that caused extreme outliers.
In one merge scenario of the project BroadleafCommerce, 927 files were
changed by both of the competing branches. Also, all classes and methods of
the project were changed, resulting in an unusually high number of changed
lines. Therefore, according to several of our hypotheses, we expected a rather
high number of merge conflicts. But when merging this scenario, our tool did
not report a single conflict. So, what might be the reason? During our man-
ual investigation, it turned out that this project converted its code base from
tabulators to spaces, and apparently did so for each of its branches via inde-
pendent commits (and, therefore, before the merge commit we encountered).
As a result of this conversion, the competing branches actually had a larger
common code base as the diffs to their common ancestor in the version history
suggest. This is a good example of why prediction of merge conflicts based on
cheap-to-compute metrics is not straight forward. Another scenario that we
inspected, taken from project groovy-core, had a large number of commits
(372 in sum, 295 in one branch and 77 in the other), but again, no conflicts.
In this case, we found that one branch committed a number of small and
concise bug fixes and documentation changes in the code base, whereas the
other branch mainly cleaned up the benchmark suite. So, despite the large
number of commits, only 13 files were changed by both branches and did not
contain overlapping changes, so they could be merged without conflict. The
other extreme was a scenario taken from AndEngine with only 6 commits
in total (5 in one branch and a single one in the other) and 5 simultaneously
changed files resulting in 54 conflicts. Here, both branches renamed several pa-
rameters differently. For example, variable halfDeltaX from the base revision
was renamed to rotateX by one revision, and rotationCenterX by the other.
Therefore, a conflict is produced at the definition and all uses for each of these
variables, resulting in a high number of conflicts. Several merge scenarios in-
cluded conflicts due to layouting changes (tabs vs. spaces and automatic code
formatters). In some scenarios, complex refactorings were performed, which
led to conflicts.



Indicators for Merge Conflicts in the Wild: Survey and Empirical Study 23

6.2 Model of Conflict-Prediction Indicators

To determine whether the indicators in combination can predict the occurrence
of merge conflicts, we build a stepwise-regression model9. Stepwise regression
determines a weighted combination of factors that best predict frequencies of
merge conflicts. It is important to note that we use stepwise regression not
as an evaluatory strategy, but an exploratory one that may point to future
research directions. In a nutshell, the model is significant (p<0.05), but the
adjusted R2 is 0.04, meaning that 4% of the variance in the merge conflicts
can be explained by the model. In other words, for our projects, a weighted
combination is as good/bad as a single indicator, and therefore not necessarily
useful for predicting merge conflicts.

6.3 Operationalization

Since our operationalization of merge difficulty and effort covers this depen-
dent variable only partially, we experimented with other operationalizations,
including the size of conflicts (hypothesis: conflicts spanning more lines of code
contribute more to merge effort than conflicts spanning fewer lines of code).
However, the big picture remained the same: For some projects, we found
higher correlations, but none that hold for the whole data set. Nevertheless, in
future work, further aspects of merge difficulty and effort should be included
in the investigation.

Likewise, one could play with the aggregation functions used to compute
the indicators from the values computed for the respective branches. But, as
our intent was to compare the branches, using the geometric mean is straight-
forward. In general, one has to be careful that the aggregated value remains
interpretable, otherwise this might end up in “fishing for results”.

6.4 Other Indicators

Furthermore, it is certainly advisable to include more potential indicators in
the analysis. However, to avoid a trial-and-error process and fishing for results,
we need to apply a systematic process of identifying promising indicators, be
it by means of more extensive developer surveys or by using sophisticated min-
ing techniques. For example, it could be useful to detect overlapping changes,
which might be established by a code-change analysis that compares the re-
gions edited by specific developers. Or, existing information concerning com-
munication and collaboration among developers [Joblin et al, 2015] could be
extracted from mailing lists, bug trackers, etc., to detect developers working
on the same code blocks, functions, or features, as proposed by recent aware-
ness approaches [Brun et al, 2011]. This information could be augmented by
knowledge of the organizational structure of the development teams or other

9 https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/stepAIC.html

https://stat.ethz.ch/R-manual/R-devel/library/MASS/html/stepAIC.html


24 Olaf Leßenich et al.

social information, such as the reputation of a developer, which have been used
in other work to predict software quality (cf. Section 7).

It would also be interesting to present our results to the survey partici-
pants and ask for explanations. However, since the responses were submitted
anonymously, we cannot ask the same developers again. Nevertheless, a new
survey based on these results could also help to generate hypotheses about
indicators and their aggregation.

Finally, on a personal note, in previous presentations of the results, we re-
peatedly observed resistance, suspecting that the negative results are merely
an artifact of our data set or our operationalization. We perceived a deeply
held believe that correlations should exist, with “the study done right”, similar
to our own initial expectations and the expectations of our survey participants.
We received various suggestions (including from reviewers of prior submissions
of this work), including additional metrics, different operationalizations of our
measures (e.g., commit density), normalizing by project size, or only study-
ing scenarios with conflicts. In fact, we have rechecked our data repeatedly
and tried many alternatives to our analysis, including all the suggested ones
without any substantially different results. 10 While we appreciate alternative
suggestions—every suggestion that we try and results in the same conclusion
strengthens our results—we are confident and tested our results on a substan-
tial data set. We have made all data and infrastructure available and invite
others to explore other metrics or replicate the study on a different data set. In
fact, the kind of resistance we observed in presentations and reviews empha-
sizes that the results are indeed surprising and counter common assumptions
held by the community, giving a strong incentive to also communicate such
negative result.

7 Related Work

There is substantial work that strives for increasing the developers’ awareness
of changes in parallel development. Palantír was one of the first approaches
raising the developers’ awareness of concurrent changes [Sarma et al, 2003,
2012]. It informs a developer which other developers change which other ar-
tifacts, calculates a simple measure of severity of changes, and visualizes this
information properly. FASTdash provides an interaction visualization aug-
menting existing software tools with information about what other developers
in a team are doing [Biehl et al, 2007]. In the same vein, CollabVS [De-
wan and Hegde, 2007] aims at detecting conflicts as early as possible—even
before the changes are committed—by propagating possible overlaps when
corresponding code sections are edited by developers. Syde uses information
from the AST (as we do with JDime [Leßenich et al, 2014]) to make the anal-
ysis of changes more precise [Hattori and Lanza, 2010]. All these awareness

10 Only the last suggestion, studying only merge scenarios with conflicts, leads to high
correlations that, however, are meaningless because this approach neglects the fact that
merge scenarios indeed often have zero conflicts.



Indicators for Merge Conflicts in the Wild: Survey and Empirical Study 25

approaches require a dedicated infrastructure for monitoring, analyzing, and
notifying, that developers are supposed to use in their every-day work; we
focus on a lightweight, tool-independent solution.

A further approach to avoid complex merge scenarios is speculative merging.
Crystal [Brun et al, 2011] speculates what a developer will do in the future
and checks whether those actions will result in conflicts. WeCode [Guimarães
and Silva, 2012] integrates continuous merging of committed and uncommitted
changes into an IDE and reports conflicts via a team view. While promising,
these speculative approaches require dedicated tool support, and they exten-
sively perform merges in the background, of which is unclear whether that
scales to large-scale software projects with many long-living branches.

Bird and Zimmermann [2012] studied branches intensively at Microsoft. By
means of a survey, they found that developers spend significant time dealing
with merge conflicts, and they identified the prevalence of several anti-patterns.
They identified the metrics liveness and isolation to classify the importance of
branches, and introduced a what-if analysis to approximate the consequences
of removing a branch. They use the number of actual merge conflicts as input
for their isolation metric, whereas we attempt to predict the number of merge
conflicts with lightweight metrics.

There have been some attempts to predict certain properties or situations
by means of metrics gathered from the development artifacts, their context,
and their history. In particular, fault prediction received significant atten-
tion [Nagappan and Ball, 2010; Catal and Diri, 2009; Gyimothy et al, 2005;
Bettenburg and Hassan, 2010; El Emam et al, 2001], but many other areas
have been explored, such as predicting the chance that a pull request gets
accepted on GitHub [Tsay et al, 2014], that a patch is a bug fix [Tian et al,
2012], and predicting self-admitted code hacks [Potdar and Shihab, 2014].
These approaches typically analyze social aspects of software projects regard-
ing their predictive power for software quality, but they are also possibly useful
for predicting merge conflicts. A meta-study comparing factors across different
kinds of prediction efforts may yield insights for more reliable predictors across
different projects.

Furthermore, other kinds of conflicts could be examined, for example, build
or test-suite conflicts [Brun et al, 2011]. Our setup could be adopted as a
foundation for such an analysis.

Merging is a key operation in product-line engineering based on version-
control systems. Staples and Hill [2004] explicitly documented the role of
branching and merging in product-line engineering. This early work has been
extended toward the vision of a virtual platform for product-line engineering,
which provides flexible views and operations, to which diffing and merging is
central [Rubin et al, 2013; Dubinsky et al, 2013; Antkiewicz et al, 2014]. Sim-
ilarly, many product-line projects start with a code base of several forked or
loosely coordinated products that should be integrated into a single implemen-
tation [Berger et al, 2013]. In this context, first assessing the severity of the
differences among the products and then reverse engineering them are central
challenges [Duszynski et al, 2011; Kim et al, 2007; Rubin and Chechik, 2013;



26 Olaf Leßenich et al.

Ryssel et al, 2010; Faust and Verhoef, 2003; Pinzger et al, 2003]. Indicators—if
they had predictive power—would be valuable information within the virtual
platform and useful to coordinate integration efforts.

Advanced merging techniques, such as syntactic or operation-based mer-
ging, can reduce the number of conflicts significantly [Mens, 2002; Dig et al,
2008; Leßenich et al, 2014; Rubin and Chechik, 2013] as compared to tradi-
tional text-based merge tools. During experiments, we could verify that our
syntactic merge tool, which resolves formatting issues and ordering conflicts,
is able to reduce the number of reported conflicts. Finally, such approaches
enable the detection of refactorings, which are likely to introduce merge con-
flicts [Dig et al, 2008; Mahouachi et al, 2013].

8 Conclusion

Software merging is a challenging and tedious task in the practice of soft-
ware engineering [Mens, 2002; Bird and Zimmermann, 2012]. Recent work on
speculative merging [Brun et al, 2011; Guimarães and Silva, 2012] and aware-
ness tools [Biehl et al, 2007; Dewan and Hegde, 2007; Hattori and Lanza,
2010; Sarma et al, 2012; Guimarães and Silva, 2012] for parallel development
suggests that complex merge scenarios should be avoided. While this work
is promising, we strive for a solution that avoids assumptions that these ap-
proaches make, including the usage of a specific IDE and about the complexity
of the merge scenarios involved (many small merges vs. few large merges).

In a survey, 41 developers shared their experience on which factors cause
merge conflicts. From the survey responses and our own intuition, we extracted
a set of 7 indicators for predicting the number of conflicts in merge scenarios.
By means of an empirical study on 163 open-source Java projects, involving
21,488 merge scenarios and 49,449,773 lines of code, we computed correlations
between the indicators and the number of conflicts in a merge scenario.

As a key result, we found that none of the 7 indicators—as suggested by
the developer survey—can predict the number of merge conflicts. Nevertheless,
despite this overall negative’result, our study, data, analysis, and experiment
infrastructure form a solid basis for replication and follow-up studies (e.g.,
involving further indicators and more aspects of merge difficulty) as well as for
research on alternative conflict-prediction approaches (e.g., domain-specific)
and conflict-avoidance strategies (e.g., speculative merging).

Finally, the results of our study shall serve as a warning to practitioners
and researchers when making assumptions about merging and merge conflicts.

Acknowledgments

We thank all survey participants for their insightful comments and suggestions.
This work has been supported by the German Research Foundation (AP 206/4,
AP 206/5, and AP 206/6).



27

(a) (b)

(c) (d)

Fig. 13 (a) Number of developers vs. number of conflicts, (b) Number of days of develop-
ment vs. number of conflicts, (c) Number of changes AST nodes vs. number of conflicts, (d)
Commits last two weeks vs. number of conflicts

Appendices

A Further Indicators

In addition to the indicators derived from our hypotheses in Section 2, we
experimented with other potential indicators as well. Here, we present the
results that we computed using these alternative indicators.

First, we computed the number of developers that were involved in each
of the two competing branches of a merge scenario. Our intention was that
the more developers contribute to a merge scenario, the more likely it is that
there will be conflicts, as developers are unaware of what the others are chang-
ing. Following the procedure we applied to our other indicators, we computed
the geometric mean of both values and correlated it with the number of merge
conflicts. We observed almost no correlation (cor=0.08, p<0.05), so we assume
that this indicator is not useful for predicting merge conflicts. The correspond-
ing scatter plot is shown in Figure 13a.

Another assumption also mentioned in the survey is that branches that
are developed over a long time without a merge are more likely to lead to
merge conflicts. To test this hypothesis, we computed the number of days of



28

development for both branches, and correlated the geometric mean with the
number of conflicts. As shown in Figure 13b, we did not even observe a weak
correlation here (cor=0.15, p<0.05), so we had to reject this idea as well.

To test H4, we use the number of changed lines of code to capture the size
of changes within a merge scenario. An alternative representation of that can
be expressed via the number changed nodes in the abstract syntax trees that
are merged. A scatter plot of this variation ofH4 can be seen in Figure 13c. As
for the results, the correlation we observed is even lower (cor=0.25, p<0.05)
than the line-based metric presented in Section 5 (cor=0.43, p<0.05).

As mentioned in Section 5, we tested a variation of H2 by looking at the
last two weeks before the merge instead of only the last week. The result is
displayed in Figure 13d.

B Developer Survey

In what follow, we show the complete questionnaire from which we derived
our hypotheses.

Introduction

In this survey, we assess the frequency, cause, and nature of merge conflicts
in the context of version-control systems. There are 35 small questions—when
asked for numbers, a rough estimate is sufficient. You can leave comments on
most questions, but you do not have to. Also, each question is optional. Your
data will of course be anonymized. If you are interested in the results, you can
leave your e-mail address at the end of this survey. If you have any questions,
please contact us.

Olaf Leßenich1, Janet Siegmund1, Christian Kästner2, Sven Apel1, Claus
Hunsen1

1 University of Passau, 2 Carnegie Mellon University

1. In your opinion, what are typical factors and situations that most
likely lead to merge conflicts?



29

Conflicts

We have some questions regarding commit conflicts that you encountered. If
you are working on more than one project, please consider the project you
mainly work on. All questions are optional.

2. What is done in your project to prevent/reduce conflicts?

3. What is the policy on how to deal with conflicts?

4. Do you sometimes avoid a pull/update because of potential
conflicts?
© Yes
© No
Optional Comments:

5. How often do conflicts occur?
© Almost never © Not so often © Sometimes © Very often © Almost at
each commit
Optional Comments:

6. How large are the conflicts typically?
© Small © Medium © Large



30

Optional Comments:

7. Where do conflicts typically occur?
© Only in one file © In more than one file
Optional Comments:

8. How long does it take to resolve a typical conflict?
© < 5 minutes
© 6 to 30 minutes
© > 30 minutes
© > 1 hour
Optional Comments:

9. What induces conflicts in your project?
© Almost never © Not so often © Sometimes © Very often © Almost at
each commit
Optional Comments:

10. Of what kind are typical conflicts?
� Organization (or lack of it, that is)
� Wrong use of version-control system
� Commit size
� Number of commits
� Time between synchronization



31

� Heterogeneous environments (different OS, editors/IDEs, . . . )
� Customer specifications
� Release pressure
� Conflicts on a certain day of the week (e.g., fridays)
� Other: __________
Optional Comments:

11. Do you see any relations between causes and different types of
conflicts?

12. Which kind of conflicts do you find most difficult to resolve? Do
you see a pattern?

13. Are there hotspots for conflicts in the code-base, i.e., are there
regions or files that are very often part of conflicts?
© Yes © No
Optional Comments:

14. Are the same or different developers causing most of the
conflicts?
© Same developers © Different developers



32

Optional Comments:

15. In your opinion, what could be done to improve the situation?

Project-Specific Questions

Now for some project-specific questions. If you are working on more than one
project, please consider the project you mainly work on. All questions are
optional.

16. Which version-control system(s) do you use?
� Git
� Mercurial
� Subversion
� CVS
� Bazaar
� DARCS
� BitKeeper
� Perforce
� Other: __________

17. How many developers work on your project?
© 1 to 2
© 3 to 5
© 6 to 10
© 11 to 30
© 31 to 50
© 51 to 100
© 101 to 500
© > 500

18. With how many developers do you typically collaborate?



33

© None
© 1 or 2
© 3 to 5
© 6 to 10
© 11 to 20
© > 20

19. How often does a commit occur from anybody on the project?
© Daily
© Weekly
© Monthly
© Other: __________

20. How large is a typical commit? (number of changed lines)
© Less than 5 LOC
© 5 to 20 LOC
© > 20 LOC
© > 50 LOC
© > 100 LOC
Optional Comments:

21. How often does a release occur?
__________

22. What commit policies are typically enforced?
� Must build
� Must adhere to coding style
� Must pass test suite
� Must pass code review
� Other: __________
Optional Comments:

23. Are there branches or forks/clones of your project?
Number of branches: __________



34

Number of forks/clones: __________
24. Are there forks or clones of your project that are maintained by
a different community/company?
© Yes © No
Optional Comments:

25. What are the release policies? Which criteria must be fulfilled
before the release? (E.g., no critical bugs, code reviews, testing by
customer)

26. What describes your development model best?
� Agile
� Waterfall
� “Code and fix”
� Other: __________
Optional Comments:

Personal Information

Finally, some personal background information to set your responses into con-
text. If you are working on more than one project, please consider the project
you mainly work on. All questions are optional.

27. Gender:
© Male
© Female



35

28. Age:
__________

29. Educational Background:
© No degree © Bachelor’s Degree
© Master’s Degree
© Ph.D.
© Other: __________

30. Education Background: Area (e.g., computer science):
__________

31. Since how many years are you programming professionally?
__________

32. With how many programming languages do you have passing
familiarity? (Rough estimate)
__________

33. What is the size of the project you work on?
© Small (< 900 lines of code) © Medium (900 - 45 000 lines of code)
© Large (> 45 000 lines of code)

34. Are you working on an open-source project or a proprietary
project?
� Open-source project
� Proprietary project

35. What’s the domain of your project (e.g., database, embedded
system) If multiple domains apply, please separate each domain by
comma.

Further Comments



36

36. Do you have any further comments on commit conflicts or this
survey?

37. You can leave your e-mail address if you are interested in the
results (but of course you do not have to):
__________

Thank you very much for you time. We highly appreciate your input. If you
have any questions, please contact us.

Olaf Leßenich1, Janet Siegmund1, Christian Kästner2, Sven Apel1, Claus
Hunsen1

1 University of Passau, 2 Carnegie Mellon University

References

Anderson T, Finn J (1996) The New Statistical Analysis of Data. Springer
Antkiewicz M, Ji W, Berger T, Czarnecki K, Schmorleiz T, Lämmel R, Stănci-
ulescu t, Wąsowski A, Schaefer I (2014) Flexible Product Line Engineering
with a Virtual Platform. In: Companion Volume ICSE, ACM, pp 532–535

Apel S, Liebig J, Brandl B, Lengauer C, Kästner C (2011) Semistruc-
tured Merge: Rethinking Merge in Revision Control Systems. In: Proc.
ESEC/FSE, ACM, pp 190–200

Berger T, Rublack R, Nair D, Atlee JM, Becker M, Czarnecki K, Wąsowski A
(2013) A survey of variability modeling in industrial practice. In: Proc. Int.
Workshop on Variability Modelling of Software-intensive Systems (VaMoS),
ACM, pp 7:1–7:8

Bettenburg N, Hassan A (2010) Studying the Impact of Social Structures on
Software Quality. In: Proc. ICPC, IEEE, pp 124–133

Biehl JT, Czerwinski M, Smith G, Robertson GG (2007) FASTDash: A Visual
Dashboard for Fostering Awareness in Software Teams. In: Proc. CHI, ACM,
pp 1313–1322

Bird C, Zimmermann T (2012) Assessing the Value of Branches with What-if
Analysis. In: Proc. ACM SIGSOFT FSE, ACM, pp 45:1–45:11

Brun Y, Holmes R, Ernst MD, Notkin D (2011) Proactive Detection of Col-
laboration Conflicts. In: Proc. ESEC/FSE, ACM, pp 168–178

Catal C, Diri B (2009) A Systematic Review of Software Fault Prediction
Studies. Expert Systems with Applications 36(4):7346–7354



37

Dewan P, Hegde R (2007) Semi-Synchronous Conflict Detection and Resolu-
tion in Asynchronous Software Development. In: Proc. ECSCW, Springer,
pp 159–178

Dig D, Manzoor K, Johnson R, Nguyen TN (2008) Effective Software Merging
in the Presence of Object-Oriented Refactorings. IEEE TSE 34(3):321–335

Dubinsky Y, Rubin J, Berger T, Duszynski S, Becker M, Czarnecki K (2013)
An Exploratory Study of Cloning in Industrial Software Product Lines. In:
Proc. CSMR, IEEE, pp 25–34

Duszynski S, Knodel J, Becker M (2011) Analyzing the Source Code of Mul-
tiple Software Variants for Reuse Potential. In: Proc. WCRE, IEEE, pp
303–307

El Emam K, Benlarbi S, Goel N, Rai SN (2001) The Confounding Effect of
Class Size on the Validity of Object-Oriented Metrics. IEEE TSE 27(7):630–
650

Faust D, Verhoef C (2003) Software Product Line Migration and Deployment.
Software: Practice and Experience 33(10):933–955

Guimarães ML, Silva AR (2012) Improving Early Detection of Software Merge
Conflicts. In: Proc. ICSE, IEEE, pp 342–352

Gyimothy T, Ferenc R, Siket I (2005) Empirical Validation of Object-
Oriented Metrics on Open Source Software for Fault Prediction. IEEE TSE
31(10):897–910

Hattori L, Lanza M (2010) Syde: A Tool for Collaborative Software Develop-
ment. In: Companion Volume ICSE, ACM, pp 235–238

Hudson W (2013) Card Sorting. In: Guide to Advanced Empirical Software
Engineering, The Interaction Design Foundation

Jedlitschka A, Pfahl D (2005) Reporting Guidelines for Controlled Experi-
ments in Software Engineering. In: Proc. ESE, IEEE, pp 95–104

Joblin M, Mauerer W, Apel S, Siegmund J, Riehle D (2015) From Developer
Networks to Verified Communities: A Fine-Grained Approach. In: Proc.
ICSE, IEEE, pp 563–573

Kim M, Notkin D, Grossman D (2007) Automatic Inference of Structural
Changes for Matching Across Program Versions. In: Proc. ICSE, IEEE, pp
333–343

Leßenich O, Apel S, Lengauer C (2014) Balancing Precision and Performance
in Structured Merge. Automated Software Engineering pp 1–31

Mahouachi R, Kessentini M, Cinnéide MÓ (2013) Search-based refactoring
detection. In: Proc. Int. Conference Genetic and Evolutionary Computation
Conference (GECCO), pp 205–206

Mens T (2002) A State-of-the-Art Survey on Software Merging. IEEE TSE
28(5):449–462

Muşlu K, Bird C, Nagappan N, Czerwonka J (2014) Transition from Central-
ized to Decentralized Version Control Systems: A Case Study on Reasons,
Barriers, and Outcomes. In: Proc. ICSE, ACM, pp 334–344

Nagappan N, Ball T (2010) Making Software: What Really Works, and Why
We Believe It, O’Reilly, chap Evidence-based Failure Prediction, pp 415–434



38

Pinzger M, Gall H, Girard JF, Knodel J, Riva C, Pasman W, Broerse C,
Wijnstra JG (2003) Architecture Recovery for Product Families. In: Proc.
Workshop Software Product-Family Engineering, Springer, pp 332–351

Potdar A, Shihab E (2014) An Exploratory Study on Self-Admitted Technical
Debt. In: Proc. ICSME, IEEE

Rubin J, Chechik M (2013) N-way Model Merging. In: Proc. ESEC/FSE,
ACM, pp 301–311

Rubin J, Czarnecki K, Chechik M (2013) Managing Cloned Variants: A Frame-
work and Experience. In: Proc. SPLC, ACM, pp 101–110

Ryssel U, Ploennigs J, Kabitzsch K (2010) Automatic Variation-point Identi-
fication in Function-block-based Models. In: Proc. GPCE, ACM, pp 23–32

Sarma A, Noroozi Z, van der Hoek A (2003) Palantír: Raising Awareness
Among Configuration Management Workspaces. In: Proc. ICSE, IEEE, pp
444–454

Sarma A, Redmiles D, van der Hoek A (2012) Palantír: Early Detection of
Development Conflicts Arising from Parallel Code Changes. IEEE TSE
38(4):889–908

Siegmund J, Schumann J (2014) Confounding Parameters on Program
Comprehension: A Literature Survey. Empirical Software Engineering
20(4):1159–1192

Siegmund J, Siegmund N, Apel S (2015) Views on Internal and External Va-
lidity in Empirical Software Engineering. In: Proc. ICSE, IEEE, pp 9–19

Stanciulescu S, Schulze S, Wasowski A (2015) Forked and integrated variants
in an open-source firmware project. In: Proc. ICSME, pp 151–160

Staples M, Hill D (2004) Experiences Adopting Software Product Line Devel-
opment without a Product Line Architecture. In: Proc. APSEC, IEEE, pp
176–183

Tian Y, Lawall J, Lo D (2012) Identifying Linux Bug Fixing Patches. In: Proc.
ICSE, ACM, pp 386–396

Tsay J, Dabbish L, Herbsleb J (2014) Influence of Social and technical Factors
for Evaluating Contribution in GitHub. In: Proc. ICSE, ACM, pp 356–366


	Introduction
	Survey and Hypotheses
	Empirical Study
	Threats to Validity
	Results
	Discussion and Perspectives
	Related Work
	Conclusion
	Appendices
	Further Indicators
	Developer Survey

