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In recent years, axiom systems for the verification of
concurrent algorithms have been developede. A set of concurrent
processes is suitably represented by a concurrent statement, and
variables shared between processes are represented by abatract

data obh jects.

Thia thesis summarizes different formats of coacurrent

statements and shared abs trac t data types, for the
representation of concurrency with varylng degrees of
granularity. Previously proposed axiomatic requirements on

thelr semantics are intaerrelated, and new axioms, in particular
for the manager data type for dynamic resource allocation, are
formula ted. Partial correctneas as well as termination are the

subject of inveatigatione.

Strengths and weaknesses of the discussed language features
and axiom systems are illustrated by comparing several
implementations of solutions to a few concurrent programming
prohlems, and their proofs. A number of basic principles
facilitating the verification of concurrent algori thms are

exemplified.

The study of axiomatic regquirements on the semantics of
concurrent programming features and of technigues for proving
concurrent algorithms correct leads to more appropria te
solutionr and sSometimes even to better specifications of

programming problems with concurrency.
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1 Iantreduction

With the rising nuaber of software tools, the veriflication
of concurrent algorithms has recelved a large amount of
attentlion in recent yearse. Hoare was one of the first to point
out the need for a formal proof technique particularly for
concurrent algori thms [Hoa72a ]. Time~-dependent errors caused by
the concurrent, {interleaving or parallel) execution of
processes are an additional unrel lability factor, which 10es not
apply for sequential programs, and which 1is especially difficult

to graspe.

Conceptually, there are two different approaches to verify

concurrent systems, on the basis of [Flo67]:

a) The processes, the sequential units of the concurrent
program;, are first verified sequentially without
consideration of their concurrent environmente. Seconily, the
assertions made in the sequential proofs at different points
of process executlon are shown to be preserved by every
possalble concurrent execution of the processes, a property

which has been called non-interference [OwGr76a, OwGr76ble.

This approach emphasizes the asystem structure as a
collection of sequential processes. Such a view of
concurrent programs supports baslc principles of software
design:! Information hidlng and modularity [Par72]. Because
contenporary concurrent programming languages dHescribe
algorithmse as a collection of processes, proofs can he

carried out at the text level of the source programs.

Owicki and Lamport (see references in chapter 6) follow
this approache. Owickl uses Hoare's me thod of outlining a
proof by inserting assertions about the state of the program

variables Into the program text [Hoa69 ).

b) Rather than formulating assertions about the execution of

segquential processes, the concurrent execution of the entire
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program is descrlbed. Firat the program hase to be
transformed into a representation that suits verification,
usually a flow graph modele One can view each node of the
graph as some state of concurrent execution and each directed
edge asa a transformation of one state into ano ther. (Keller
introduces a bipartite graph Instead [Kel76ls) Aszertions
are associated with nodes; they describe the program state of
every concurrent execution when it passes through that node,

Lf 1t does so.

This technique doe s not have to contaln a
non—interference argument, because the execution of the
entire program I8 deacribed. {For mul tlprocessor systems

lnterference problems may arise, though.)

In both approaches, following ([Flo67)], the constralnts in a
program specl flcation are expressed by initial assertions and
its goa ls by final assertions. Intermediate ams3zertlions
associated with different states of execution of the program,
regardless of whether they are attached to statements in the
source text,; to nodes in a flow graph, or to something else in a
different model, will outline the transformation of the iInitlal
into the final assertion by every execution of the program. The
state transformations are only valld under the assumption that
t he tranaforming actions terminate {so~called partial

correctness). Termination is, in general, argued separately.

In this thesis, we shall only look at Owicki's approach,
the process~bhy-process verification of concurrent algorithms by

interleaved program assaertlons. The notation
npn g npnw

expresseas that, under the assumption P immedlately before the
execution of statement S, R will hold immediately after 1ts
termination. P is called the precondition (prel(S)}, R the
postcondition {(post(S)) of S. The statement NMPpP 5§ HRn is

referred to as a proof ory iIf axiomatlc, proof rule for Se {The

&
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special character " may be interpreted as a comment delimlter.
In the literature braces are used, [P} S (R}, but we need them

for set denotatione.)

Sometimes the change of a variable state by a statement is

descr ibed explici tly by dummy values, such as
x=ch § "x=f(c)"

Another notation is to express a variable's output atate

directly by its Iinput state:l
"ore(S)" S "x'=f(x)"

x!' refers to x after the execution of S.

Abstracting completely from executiony, S can be vierved as a
pradicate tranaformer mapping P onto R. Analogously, knowing S
and Ry one can derive the weakest precondition P=wp(S,R) such
that "PW g NpN (gee [Dij76))e In [GriT76]y Gries points out the
signi ficance of pre- ancd postcondlitions for program
specl ficatlon and argues that deriving weakest precondi tions

from postconditions and statements aids in program development.

The tool for the solution of a programming problen 1s the
set of language features, the prograaming language one decildes
to usee. The basis for the verification of the program is a
corresponding set of axiomatic proof rules for those language
features. They define the semantics of the language, and the
l anguage implementor has to make sSure that all ax iomatic
regquirements are mete. The user then may assume their valldity
without argumente An example for the axiomatic definition of a
language is [HowiT73], which deflines Pascale. All popular
sequential statements used in the following will comply to the .

semantics of Pascale.

The rule for the assignment sta tement 13, for iInstance:
X
"p "™ x = E “P©
E

x
where P / is the assertion formed by replacing every free
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occurrence of x in P by E, for example
x+ldDy” x = x+1 "xd>y"

In the case of the assignment statement termination is trivial:
It may always be expected to terminate, presuming the expression
F ia legales For other statements that perform iterations, for
inastance, termination 1s more complex. Frequently the partial
correctness and termination behaviour of a language feature are
axiomatized separatelyy but a single axiom way also comprise

both aspects. We shall introduce a formalism later.

Important for the successive deduction of assertjons
between statements is the rule of consequence:?

wpIn g WRYm, P=>pt, RY=>R

a

Both - and a=>b mean a implieas be Vhereas the jimplication
h

denoted by the right arrow has to be proven, the horizontal bar

expresses an axiomatic implication that holds by definition, 1f

the presumption, the upper operand, i walide. (In the

1iterature, for => often  or > are used.)

The addition of concurrency to a language complicates
verification. At this pointy, we shall not look at particular
specl flcations of concurrency but only discuss the problem of
verifying statements thaty in some fashion, are specified to

execute concurrently.

After the derivation of proof rules for each of the
concurrent statements from assertlions about their seguential
contexts, non-interference must be proven additionally: For each
statement, its execution may not affect any assertion made in
the proofs of other statements that execute concurrently. More

formally:
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Let S and T be statements concurrent to each other, and let
the proof for S he "P" S "R®, - Then T does not interfere with

the proof of S 1ff
i) "Rapre(T)" T "R™
il) For any statement S' contalned in S
Yprel(S! Japre(T)I®" T "pre(s*')"

A set of statements concurrent to each other is called
interference—free Iff no elementary actlion in any of them

interferes with the proof of any other statement in the set.

Elementary actions are tho se that c¢can 8safely be treated as

indivisibles

Interference must only be considered in the case of
concurrencyes To avoid interference problems in particular
program parts, one may want to define statements as elementary.

The notation is
[s];

where S is the statement to be elementary. For Intermediate
assertions in S, non-interference is an axlomatic regquirement

and need not be provene.

Elementary actions are of ten less appropriately called
indiviasible or atomice. The requlirement that achieves
non—interference is that, with respect to accesses to shared
variables, the elementary statement ac ts like an indivisible
statement. Howe ve 1y 1t need not be indivisible regarding

accesses to other data.

To interrelate the progress of concurrent processes, one
often has to enrlch the algorithm by additional variables,
Owicki calls them auxiliary variables. They keep track of the
processes' sequential execution histories. The treataent of
auxiliary variables may not affect the flow of control or data

in the rest of the program. More formally:



-6 -

x is called an auxiliary wvariable 1iff x appears in the
program only in assignment mta tements of the form x:=Ey, where

the expression E may contaln any auxiliary or program

variable.

An auxiliary variable axiom states that the proof of an
algorithm with auxlliary varilables also holds for its
implementation without auxiliary variables [DwGr76a, OwGr76b].

The following +two chapters bulld the framework for this
thesis with a discussion of recent approaches to the

speclfication of concurrency and rules for its verlficatl on.

Chapter 2 deals with shared abstract data types that
provide different grains of concurrency for the access to their
data. Shared abstract data types are an important aid in the
communication of thelr concurrent accessorse. The types
investigated here are monitors [Hoa74], managers [ SKB77]),
classes synchronized by path expressions [F1Aa76], and general
shared classes [Owi77b]e. Proof rules for partial correctness
are given, it previously developed. Termination of calls to
shared abstract data objJectas 1s dlscussed thoroughly in

chapter 4.

Chapter 3 1is8 concerned with the speclfication and
verification of concurrent processes. A representation sultable
for verificationy, the concurrent statement, is motivated and
defined in different formse Proof rules for partial correctness

and termination are given.

Chapter 4 is the core of the thesis. The tools previously
deacrlbed are compared in two applications: a concurrent system
synchronized by a semaphore and a system using a pool of
resourcess After correlating different verification technigues
and motivating thelir necessity, new proof rules are developed:
partial correc thess axioms for the abstract da ta type manager
and termination axioms for calls to shared abstract data

objects, in general.

i
i
i
I
P
|
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The theslis ends with some conclusions about the usefulness
of the exhiblted concepts and with suggestions for further

regsearche.



2 Shared Abstract Data Iypes

The concept of abstract data types, which first attrac ted
attentlion in SIMULA {DaRo72), has in recent years received much
conalideration, due to it®s emphasis on modularity and rescurce
protection. It is a very important structuring factor in

programming, especially operating system designe.

An abstract data type defines a data structure by a set of
variable declarations, and all operations on them by a set of
procedures, An initial statement determines the state of the
data before their use. A data object of some abatract data type
comprises an incarnation of the variables declared in the data
type and access rights to it via the operations defined In the

data type, by procedure calls of the fora
objectnames procname({parameters);

The data are protec ted from any access of a different kind,

s Rey direct assignment.

Two of the many advantages of this concept bec ome

particularly evident in this thesis:
a) Information Hiding

A programmer using an object of some abstract data type
does not have ¢to worry about implementation detalls
concerning Itae access. Only the semantics of the data type

operations have to be understood.

Following {Hoa72b], wve shall distinguish the
specifications A of some abastract data type, which state the
semantic properties, and 1ts concrete implementation 7, which

achieves these properties.

The specifications contaln the following sta tements:

i
i
v
i

i
i
;
;
i




Regf{A): states presumptions for parameters of the

abstract data type,

Init(A): states the initial propertles of the data,

I(a): states an invariant assertion that

characterizes the data between accesses,

Operations: .e

op
i

{parameters)

pre:d states the presumptions for correct

functioning of op ,
i

post: states the result of op , assuming
i

[L17175] discusses

abhstractions.

To verify the
type, a mapping
abstract object A4,

op epre 18 fulfilled at its execution,
i
LE W

several specification technligues for data

correct Ilmplementation of an abstract data
will often be needed that assocliates the

characterized by the specifications, wi th

the concrete ohject Cy characterized by the implementation.

We call this mapping the abstraction function

A = F{C)

For the correctness of the concrete object then the following

have to hold:

1.) 1{C) => 1{A)

2+) "Reql({A)" initial statement "Init(A)ATI(C)"™

3e) For each operation oplvar X; ¥)

Noapeprel{ X, ¥s AYAT(C)IY

bhody of procedure op

“opepost{ X,y ,A)AT(C)"
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where X is a vector of variable parameters,

and ¥ is a vector of constant (value) parameters.

In the case that operations are allowed to execute
concurrently on the same data object X, the call of an
operation op also needs special proof rules, since the

expected rule
wpn X-opl;gi) npw
where

_ X y caller
P = Xeopepre_ _
e i

»

X y caller

R Xeope post_
1

may not he interference-free. To prove non-interference, one
has +to take the environment of the caller into account.

Owickl suggests an "adaption™ axiom [Owi77a, Owi77b]:

npn X,.opla,e) "RY

L~ ——— i — — - -

n"v{PA _A_ R=>Q)" X.opla,e) ™Q"
aszicaller) .
where a comprises the actual varlable paraseters,
e comprises the actual value parameters,
k comprises the variables free in P and R,
but not Q, a, and e,
Py R as above,

and zZ({caller) 18 the list of wvarliables changed by op.

We only state this result for the sake of completeness and

shall not elaborate on It any further.

Stepwise Verlificatlion

The abatract data type supports a bottom-up verification

of the programe

If one postulates that any two abstract data abjects may
not access each other In turny directly or Indlrectly

{forward-referencing), abstract data objects can be organized
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in an access hierarchy of the following foram [Len77]:

i« Level 0 is the met of data objects that do not accens

any other data object.

2. Level 1 contains all abstract data objects X with the
propertiesa?
i) there exists a data object on level 1-1 which is
accessed by X,
i1) all data objects accessed by X are on levels |,

such that  j<i.

This hierarchy can be imposed on the set of abstract data
types, because all objects of the same type nmust bhelong +to
the =same hierarchy level. The slgnificance of hierarchles

for program structuring has been recognlized In [Par74].

One can prove the correctness of an access hierarchy by
successive verification of its levels 0O, 1, 2, etce. In
particular, changes in level 1 can affect the correctness of
only levels J such that j2i; in other words: once verlified,
the core of the hlerarchy will be correcty, in whatever

environment it Is implemen ted.

We will be lookina at shared data types, il.e., data types whose
objects may be regqulired for access by several processes,
possibly concurrently. The main difference from priva te data
types is that the conslistency of the shared data, expressed by
the invariant assertion for the data type;, has to be maintailned
by a proper synchronization of the accesses to thea. The
distinguished shared data types we shall look at differ mainly

in their means of synchronizing accesses.

The verification of shared abstract data types has to
contain an argument for proper synchronlzation as well as
non—-inter ference. Note that an operation may also interfere

with itself, when several processes execute it concurrently.
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Synchronizing sccesses to shared data objects creates the
poasihility of deadlock 1In access hlierarchies for Some typese.
This matter will be mentloned but not covered by axiomse. For
proof rules, we assume that a shared data object does not access

any other shared data ohject In its operations.

The shared abstract data type that has first been
formula ted and implemented and that is today most popular is the

monl tor [Hoa74]. [ts synchronization scheme has two levels:
i) short-term scheduling

ensures that the moni tor procedures are executed autually
exclusive to each othere. It is part of the language and not

influenced by the nprogrammer.
ii) medium—term scheduling

is=s the synchronization of processes in accordance with the
state of the moni tor data. It has to be defined by t he
designer of the moni tor. The tool provided by the language
is a Enndltlnn data type. aniableﬂ of type condition may
only pe declared local to a monitor object and represent
walting gquenes of accessors of that object, with no further
specified scheduling policye. They are initlally eapty and

manipulated by way of two standard procedures:
If cond is a condltion queue,

condewalt; suspends the callery, adds it to the gueue
condy and rel eases the moni tor for further

access,
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condesignal; if any process is wailiting in cond, suspends
the caller and grants access to the process in
cond with higheat prioritye. We shall only
axiomatize and dlscuss this signalling
algorithm. For different policies see
[ How76b ].

The use of scheduling operations during a moni tor accese
introduces the problem of deadlock in an access hierarchy of
monitors.,. Say, monltor A accesses monlitor B, and processes do
not access B directly, but only through A. If then some process
is being delayed inside a procedure of A because of medi um—term
acheduling in By, it blocks access to A, which disables others to
enter B and to establish the resumption conditlion. The process
is blocked Indefinitely, and A as well as B are inaccessible.
An example for such a case in a rescurce management system is
fsketched in [SKB77]; another in a message switchling system lis

deacribed In [Len77].

As a conseguence, monitor hierarchies are not desirable.
But there are other shared data types that allow at least a

restricted use of access hlerarchies.

To verify synchronization in monitors, we define the
following partial correctness axioms for wait and signal from

[OwWi77a):

"PAT(C)™ cond.wait "pal(C)AaBl{cond) ™
"PAI{C)AB{cond)" conde.signal "PAI(C)"

Here, Rlcond) represents the resuaption condition for processes
that are waiting In condy and P contalns only parameters, local
variables, or constants free. C names the implementation of the
monitor that contains conde. The appearance of I(C) In the rules
for wailt and signal Indicates that the scheduling operations do
not affect shared data; the appearance of P says that they do
not affect local data. Only the condl tion queue 13 involved.

The invariant has to be valid at times of scheduling, because it
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will hold whénevar the accessor of the monitor 1s swl tched.

Several different suggestions have heen =made for moni tor
proof rules. Others will be outlined and discussed in

chapter 4.

The concept of A manager has recently been proposed in
[s¥R77]). A manager is a shared abstract data type for the
dynamic allocation of objects of some other {private or shared)
ahstract data tyne to processes. [t Ils not to be confused with

the apecial processes that are called managers in {Jast77].

The manager has exactly the same synchronization scheme as
the monitor, but does not completely protect all of the data
specifled in ite. One declaration in the manager is the pool of

allocatable resources, €«gey

var pnol:! array indexset pf resource;

The cdata type of the allocatable objects is de termined by the

header of the manager definition:
type managername = manager of capabllity: resource;

Processes define an access right to the resource pool by

declaring
var ob ject: resource from managername;
Access rights to the manager ltself are never apeclfied.

The access right to a resource object established by the
ahove declaration is not fixed for the entire execution time, as
it would be if no manager were involved, but only temporarily.
T he manager diastributes the temporary access rights (so-called
capabilitiea) among processes that require them, and this may

involve synchronizatione. For an easlier implementation and
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verificatlon, the restric tion i8 made that every procese may be
granted at most one access right by a manager object at a time;
in other words, no process may hold more than one object from a
fixed resource poole. An implicit parameter declared in the
header of the manager definition, here with name capablli ty,
holds the current access right (1f any) of the process that |is

preforming the manager calle.

The binding of capabillties to processes 1Is performed by

two standard procedures which are used In manager operations?

bind{r); grants the caller a capabillity to resource object r,

release; withdraws the caller's current capabilitye.

The manager resolves the deadlock problem with access
hlerarchlies for two-level hlerarchies, as described in [SKR77]:
Replace the monitors in the higher levely, that are in danger of
blockingy, by a manager. In a hierarchy that is not a tree
{where the lower level means the leaves), the replacement may,
however, lead to some logs of wmodular structure. Multi-level
hierarchies remaln problematic, but are probably rare in

applicatlionse.

For the verification of managers, we need additional axioms
for the binding operations. They have not been proposed in
previous publicatlions and will be formulated in chapter 4,
together with a detailed description of the semantics of bind

and release.

2.3 Path Expression Classes

[CaHa74, F1Ha76] suggest defining the concurrency peraltted
among operatlons on an abstract data ob ject by a single
expression assoclated with the data type: its path expression.
The operands 1In the path expression are the data type's

procedures, and several operators relate their executlions to



each other:
i) segquence: opli op2

opl and op2 are executed consecutively,; opl only before

op2, op2 only after opl.
ii) selection: opl, op2
Fither opl or op2 iIs executed, but not nei ther nor both.
n
ili) repetition: (op)

op 18 executed repeatedly, n times in sequence. If nis

omjitted, op is executed indefinitelye.
iv) wmimultaneous execution: {op)

op may be executed concurrently to itself until, at some
timey, no process is executing ope. Then no subseguent call

to op will be executed.
More complex is the
n
v) reastricted repetitive selection: (opl+top2)

A seguence of calls to opl or op2 18 executed,; preserving

the assertion
0D < #lopl)+t#lop2) S n

#{op) is the number of times op has been executed on the

data object since iIts inlitialization.

The path expression is In the Implementation of an abstract data

tyne denoted by
path expression end;

The expression may he evaluated repeatedly, ieeey pathec.end has

the same msemantics as (ees)e As an example, the expression

path (read}, write end:

denotes the synchronlization of concurrent readers and writers on
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ahared data: Readers may access the data concurrently as long as

there ls no wrlting acceas; a writer needs exclusive access.

Path expressions are a very high-level and somewhat
reastricted aynchronlzation concept. Synchronlzation does not
take place inslde the operations, but rather the calls to data
type procedures are synchronized, much in the spirit of the
with-when statement for the speciflcation of conditional
critical sectlons [Hoa72al. This may cause a loss of scheduling

flexibility.

On the other hand, path expressions merge the definlition of
short—term and medium-term scheduling, leaving both to the
programmer, and thereby introduce a more general short-term
scheduling scheme than 18 provided by monitors and managers.
Operations are not in any case mutually exclusive, but may be
executed concurrently as long as the consistency of the data lis
preserved. However, because the calls of operations are subject
to synchronlzation, either an entire operation opl is mutually
exclusive with an entire operation op2, or both are entirely

concurrent to each other.

The feature of optional concurrency wmay help to avoid
deadlocked access hierarchiese. But cases such as the one
deacrlbed in section 21 can 8till be unpreventable. The ma jor
merit of path expressions ls the useful combination of efficlent
concurrent execution and struc tured specification of

synchronizationes

In proofs, for every statement in some class procedure,
non-interference with the procedures concurrent to It has to he
shown « The pre— and post~conditions of any procedure need not
be interference~free In the proof of the abstract data type, but
the accordling assertions for the call of the procedure must be
interference-free Iin the calling procesa (see the Iintroduction
to this chapter). As another consequence of concurrency, Aan

addltional requirement for the sequential correctness of not
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coméletely exclusive operations 1s, that the c¢lass invarliant
must be valld between any two elementary actions of the

procedures MNMore formally:

Let op be a procedure of class C that Is concurrent to some

operation of C« Then for all elementary actions A in op,
pref{A) => I(C)

has to hold.

2.4 General Shared Clas
[OwliT77b)] defines the most general form of shared abstract

data tynes, the zeneral shared class.

Synchronization takes place inside "the <class operations,
and any sta tement In some operation may be made mutually
exclusive or concurrent with any other statement or 1 tself. A8
a aynchronization tool, condition queues are conceivable,y, but
ODwicki chooses an In terms  of scheduling decisions slightly
higher—level concept, the semaphore. Ag with path expressions,
both short- and medium—term scheduling are the responsibility of

the rclass programmers
Proof rules are needed for the sSemaphore operations.
{fOwi77b] does not state any, we will discuss them in chapter 4.

To simplify verificationy, Owlckl requlires the body of class

procedures to have the format
begin declarationsa; enter; operate; exlt end;
where

i} enter and exlt are elementary actions or null statemen ts,

and operate is composed of elementary actions,
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il1) the variables accessed by enter and exit are called
control variables; those accessed by operate, data
variables. A varlable local to a class may not be both

control and data variable.

The effect of the above =struc ture for class procedures is a
senaration of the variables affected by the operation into
control variables that gulde synchronization, and data variables
that define the state of the class object as it 1s perceived by
the caller. Conseguently, control variables should not appear
in pre— and postconditions for the class operatlions and the
initial statementy, but only in the class Invariant. Since enter
and exlt c¢can be null, this postulation is8 not really a
regstriction. It indicates, however, that a sync hronization
acheme that frames the operations (like the path expression) is

in general easier to verl ty.

The proof rules for shared classes are the same as for path

expression classese.
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3 The Concurrent Statement

In the last decadey mseveral representations of concurrency

have been suggested [Brl73). Restricting ourselves to a

g truc tured syntax merely leaves us with two choices:

a) Process Modules

b)

Processes are represented as self-contalned modules
comprising data and actlonsy, much in the sense of abstract
data‘*ypea- Execution of a process object may be caused by a

speclal start statement.

This approach 1s a structured formulation of the fork
statement from [Coné&d) and is implemented in Concurrent
Pascal [Bri75)]. Concurrent executlion of several processes is
successively Initiated by forking the path of control via
start statements on di fferent process objects Into several

paraliel paths,

The structured concurrent extenslon to PL/1, CsSP/k
[HGLS78)y, works in a similar manners. Herey, all processes are

imnlicitly started after program inltliallzation.
The Concurrent Statement

[{Con63)] also introduces a join statement, dual to fork,
which relates the time of termination of some process to the
state of execution of other concurrent processes. With fork
only, one cannot determine when a process has terminated.

The atructured notation is
cobegin S1//S2//eee//Sn coend;

where cobegin refera to a '"multi-fork and coend to a
"multi— join of n processes Sle Concurrent execution of the
S5i begins at the point of cobegin and ends at coendy when all
Si have ternina ted. Nesting of concurrent stateaents is
legal and in particular useful for statements about t he

termination of a subset of m concurrent processes, m<n.
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For verification, the concurrent statement is the more useful
cholicey because it permits the foraulation of an assertion about
the program state after the termination of some concurrent
proce as, in the form of a postcondition for a concurrent
atatement. Wilithout a joln of parallel execution paths, we would

not know at which point in the program that assertlon holds.
Three formats of concurrent statements appear in the literature:
a) The general concurrent atatement [OwGr76al

does not protect shared variables by a special data
structure. Its synchronization primitive 1is the await

statement.

h) The concurrent statement with resource [Hoa72a, OwGr76b]

specifies shared data in a resource declaration which
protec ts them automa tically from accesses that cause

inconsistency; but does not associate the data wi th the
operatlions on them. Its primltive for synchronization and

access of shared data is the with~when sata tement.
c) The concurrent statement with abstract data types [Owi77al

providea full protection and, moreover, hides matters of

synchronlization in the abstract data typesn.

We will not look closer at the concurrent statement with
redource. It is merely a predecessor of the concurrent
satatement with abstract data types and has the same capabilltiesr
Iin expressling concurrency, if in the latter abstract data types
are used that do not permit concurrent execution of their

operations {(monitors or managers).

The general concurrent sta tement 18 more powerful. Shared
data may be accessed in non-elementary actions as in the
concurrent atatement with abstract data types which permit
concurrent execution of theilr operatlons {path expression

classes or general shared classes).
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3«1 The General Concurrent Statement

P e

As described before, the general concurrent satatement has

the form!

cobegin S1//82//eee//Sn coend;

Variables dec lared outslde the statement are global to all Sly-

those declared inside are local to the proceas that contains the
declaration. For simplicity, the language has no procedures.
Fxaecution of the concurrent statement terminates when all

proceases Si have terminated.

Wea need not requlre any assumptions about the
indivisibility of statements in the Si it the followling

convention is obeyed:

EFach expression F may refer to at most one variable y which
can be changed by another process during the evaluation of E,
and E may refer to vy at most once. The same restriction is

required for assignment statements x:=E.

Theny only memory reference has to be indivisible. Note that

asslernments of the form
x = fix);

refer to x several times as well as assignments to data

g truc tures, such as
A 2= Bj

for arravs A and Be. Such statements do not follow the previous
convention and have to be spec ified elementary if they are

desired as such?
[A := B];

The awalt statement provides the synchronization +tool for the

concurrent accens of shared variablese. The general format s

|
|
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where [S] denotes an eleamentary statement that is executed only
if B Is trues If B is falese, the process executing arait i=s
delayed and continues with [S] when B bhecomes true. It is
arsuned that await performs fair scheduling: more specifically,
the process executing awajt ls delayed only until B becomes
true. S may not contaln a concurrent statement or another
await, to avoid deadlock problems caused by nested awajts [as

with hierarchles of shared abstract data types).

Dwicki's proof rules for the general concurrent statement are

WPi" Si "Ri" interference—-free

H>3

i=1

n n
" AIPI" cobegin S1//eve//Sn coend ™ aliu"
i= i=

"PpPARM S NPRw

and =~=—— -
"P® await B [S] "R"

where the sequentlial proofs for the processes, "PI" Si "Ri", are
interference~free Iff for all 1 every statement In Si does not
1nt.rfere_ with the assertions in the proofs of all S j, Jj#l.
(For the definition of "does not interfere with" see chap ter 1.)
[OwGr76a] polnts out that one can reduce the non-inter ference
test to awajit statements and assignaent statements outside
awaitsa. All other statements are elementary and therefore

trivially interference-free.

3.2 The Concurrent Statement with Abstract Data Types

For many applications, especially in operating systems, it
will not be necessary to manipulate data shared by concurrent
processes before thelr executione. In this case, the ef fect of
the concurrent statement Is clarifled iIf all shared data are

defined as m abstract data objects asmsociated with it:

—————
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The first action of the concurrent statement 1ls to initialize
all shared ob jects and thereby create the initial environment
for all processes, Since the synchronization is part of the
abatract data type operations, no apecific synchronizat lion

primi tive need be defined for this form of concurrent sta tement.

Let us make the restriction that the concurrent statements
we look at may have only the following combinations of shared

abastract data types:

a) monitors or managers

b) path expression classes or general shared classes

This is only for demonstration purposes. We shall demonstra te
that excluslive shared abs tract data types are easier to handle

than those that permit concurrency.

A more severe restriction 1s that we do not al low
hierarchies of shared data types. With the excep tion of the
resource type in managers, no access right may exi st between
different shared data ob jects. Therefore the proof rules

introduced In chapter 2 sufficee.

Owicki defines the partial correctness axiom for the
concurrent statement with abstract data types, according to the

previous semantic description:

Hpin S1 "Ri" interference- free

>3

i=1

™ n
" AlInitICJH => { A PiI)"

shared Cl:TlyeessyCmiTm cobegin S1//eee//Sn coend;

m n
"l A I(CJ)) A lialnil"
= =

.

Herey; non-interference means
i) for concurrent statements with moni tors or managers:

For shared abstract data types with only mutually exclusive

operations, the requirement is that the Pl and Rl are safe,
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ie.eey9y do not refer to variables that are changed in several
processes {in analogy to the concurrent statement with
resource)e Then,y, interference in the original sense { see
chapter 1) cannot occur, because 8such variables are only

manipulated In elementary actionse.

il) for concurrent statements with path expression classes or

gzeneral shared classesn:

For shared abstract data types that allow concurrent
execution of thelr operations, the usual non-interference is
required (in analogy to the general concurrent statement).
Howevery, the only sta tements that can interfere are calls to
nperations of shared abatract data types; other statements

cannot access shared datae.

We emphasize again tha t the above semantics define a gquilte
restrictive concurrent statement, in the sense that no
computation carrled out before its execution has any ralevance
for lte More relaxed semantics as expressed by the axion

n
A1 Wp i Si "RIY jnterference-free
1=

—— —— —————— ————— —— . — . T~ — . T, -

m n
"{ A I(CY)) A ( A PL)"
=1 i=1

ed CliTlyeeesCm:Tm cobegin S1//+++//Sn coend;
"R IC)) A (A RL)W
J=1 i=1
are conceivable and will often be necessary in applications,
where a concurrent computation is merely part of a larger
sequential context. In this case, the shared data ohjects
belong to the environment surrocunding the concurrent statement
rather than the concurrent statement lItself, and they have to be

initialized and may be manipula ted before its execution.

This thesis will only use the former semantics. We are

interested In the mere structure of concurrent computations.
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3¢3 Termination of Concurrent Statements

Proof rules glven so far in this thesis only refer to
partial correcthesas. For the termination argument, a set of
termination axloms has to be defined, or the partial correctness

axioms have to be extended to cover termination.

The termination rules desacribed here are taken from
[OWGrT76ale. After the proof of sequential termination of the
processes specified in the concurrent statement, It has to he
s hown that termination is not affected by their concurrent
executions Therefore, the definition of non~interference |{snee
chapter 1) has to be extended by non~interference with

terminatione.

A common practice to argue termination is to define a
function on a well-founded sety, a Sset that ls ordered in such a
way that no infini te decreasing sequences of elements exist
[ MaWaTR ], for instance the positive integers, and to show that
the algorithm decreases this function successively. Then it
must reach a lower bound Iin a finite time and termina te. Hence,
the additional requirement for a statement T not to In terfere

with the proof of a concurrent statement S can be formula ted:

ilii) Given a proof for S that uses a termination func tion *t,

T does not interfere with the termination proof of S 1Iff
t=c A pre(T)" T "tsc"
¢ is a dummy value as described in chapter 1.

A set of sStatements concurrent to each other is then called
Inter ference~free 1ff no elementary action In any of them
inter feres with the partial correctness or terminati on proof of

any other statement In the set.

If the above non—interference 1is established, processes may
atill be held up by iIndefinite blocking caused through

synchronization. Proof rules dealing with this problem are more
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complex and, of course, depend on the synchronizatlon scheme
useds For the awalt in general concurrent statements, [J2wGr76a]

proves the following criterion:?

Let S be a statement whose partial correctness rule is
"ph 3 MR", Let the awailts of S that are not contained in

concurrent statements of S be

A : awalt B [...]
J

Let the concurrent statements of S which are not part of

other concurrent statements of S be

k k
T : cobegin S'//---//S coend;

k n
De fine
D(3S) = [Vipre(A )a=B 1 v [v(D (T )]
J J . k 1 k
_ k Kk k
D (T ) = [A{post{sS )vD(S }))] A ([vD(S )]
1 X i i i i i

Then =D{(S) implies that no execution of S can be blocked

indefinitely.

The proof uses induction on the nesting level of concurrent
statementse. D(S) is a recurslve characterization of blockinge.
It the first term of D{S) I8 true, S is held up at some

statement A . D (T ) says that some process ln the concurrent
J 1 k

statement T is blocked despite the fact that all o thers have
k
terminated.
In the case of the concurrent statement with abstract data
types, absence of indefinite blocking means that all calls to
shared abstract data type operations terminate. This matter

will he discussed in chapter 4.

The combined partial correctness and termination axi om for

any format of the concurrent statement is
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n
Al HpL" S1 "RIN" jnterference-~free A
i=
n
lAl S1 cannot he blocked Indefinltely

"pPH concurrent atatement of SlyeseySn "RM

where non~-interference and P and R are defined for the

formata as In the smections 3.1, 3+2.

di fferent
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4 The Feasibillity of Verification Concepts

We shall now try %o evaluate the significance and
sultability of implementation and verification concepts, a part
of which has been iIntroduced in the previous chapters. This s
the main chapter of the thesis, and it may be unde rs tood as a
collection of (hopefully) clariftying comments and new
contributions concerning the verification of concurrent

algorithms.

The selected applications are popular and widely-ased in
concurrent programminge. If they appear a little arbitrary, keep
in mind that their only purpose Is to illustrate verification
concepts, We do not attempt to cover the most important

algorithms for concurrent programming.

4.1 Acrguing Optimal Scheduling of Processes

Synchronized by Semaphores

This section discusses the structure of arguments for
eafficlent scheduling in a parallel programming environment. As
example serves the proof of the property of a semaphore
administering a section of critical codey, to grant entry
whenever the critical sectlon is executed by less than a
constant number, my of processes. Whereas the former part of
the requirement {to grant entry) characterlzes the semaphore's
schedullng task, the latter ("wheneverse+s") 1is an efficiency

constraint.

We shall study several semaphore implementations that have
been published, and investigate the requlrements that are

necessary for the verification of the above scheduling property.

The first lmplementation and ite proof is taken from

[OwGrT6al. It uses the general concurrent statement.
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cobeglin S1//82//ee+//Sn coend;

where each Si has the fTorm

while true do

begin
non=-critical section;
Pl(a);
critical section;
Vi),
non-critical section;

end;

Moreovery the SiI handle 8 like a semaphore, ie.e.; do not access

s except in calls to P and V where

Pis)
Vis)

awalt >0 [s = a-1]

(L
—
/]
-8
]
]
+
b
el

Here, - means that the left operand is a substitution for the
rizht operande. {Remember, the language does not contain

procedures,)

To prove the scheduling property, we relate the execution
of the different processes to sach other by auxiliary variablese.
For every process Siy, the binary auxiliary variable INC[i]
indicates whether Si is cdrrently executing the critical section
protected by the saemaphore (INC[i]=1) or not (INCI[i]=))e The
scheduling property of the semaphore is then expressed by the

invariant
- n n
I = (0<s=m- §lluc{1] A AIINC[l]‘[O'l]}
i= i=

That is, the semaphore value must represent exactly the number

of processes that may still enter the critical section.

Presuming that the semaphore and the auxiliary wvariables
are only referred to in places explicitly shown, the proof

putline is:?



)

a m

INC{1),INC{2]3eesyINCIn] 2= 0;,0500e50;
n

"I A A INC[1]=0OT
i=1

cobegin S1//82//«e«//Sn coend:

"false"
where for every Si

"I A INC[1]=0"
while true do
begin
"T A INC[i]=0"™
non—-critical section;

"1 A INC[1])=0O"

-
[
=
a
~
-
[
.-
H
-
[y
-

awalt a>) (s := g-1
"I A INC[1])=1"
critical section;
"T A INC[1])=1"™
[s = s+1; INC(1]) := 0);
"I A INC[]]=0"
non-crltical section;
"I A INC[i1]=0"

end;

Nfalse"

The postcondition iIs false to indicate that the process does not

terminate executlone.

In the prootf of Si, every assertion 1is Interference-free,
since all processes keep I invariant throughout their execution,
and, of the auxiliary varlables, Si changes only INC[1i] which is

not changed by any other process.

The invariant also yields the efficlency constraint on the
semaphore: The short argument that requests are granted as soon
as less than m processes execute the critical section is given

in [OwGr76a)] (more exactly, a blocked process implies that m
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processes are executing the critical section).

For the multiple assignment statement to the auxiliary
varlables, we use the simple axlom
xl..-..xn
np " Xl geeesxn 1= Clyeesepgcn "P"
Clg.o.,‘!ﬂ

where the cljyesegycn are constants. For a more detailed

discussion of multiple asslgnment axloms see [Gri78).

Let us briefly review the strategy of the outllned proof:
The desired property follows from a lemma based on a cleverly
chosen invariant. The Invariant comprises the behaviour of all
processes that access the semaphore, by means of auxiliary
variables that each describe the history of one process. (S ome
people call them history wvariables [Bri73, How76als.) Each
auxiliary variable could have been defined locally to 1its
process, rather than Jjoining them all in a global arraye. Then
the precondition for each process SiI would be I, and INCi=0,
where INCl1 is the auxiliary variable of Si, would be established
before the while loope The present version has been chosen for

the sake of analogy with the following example.

The structure of the invariant depends on the schedul Ing
property to be proven, and finding it may require a good deal of
intuitions. Owicki makes the point that more sophisticated tools
are required to verify optimal scheduling in a uniform way, as

opposed to termination or the absence of deadlock.

It ia important to note that the optimal scheduling
argument is hased on the assumption that dwicki's
asynchronizatlon schemey the await statement, performs optimal
schedulingy, lLeeey delays the executing process only unt il 1ts
resumption condition is satisfied. This presuamption is a2 hidden
requirement that is not reflected in the proof rule for await.
The await statement Is a very high-level synchronization scheme.
In the following implementations we will use a lowver—-level
scheme that can sufficiently be described by axiomatic pre— and

postconditions.

]
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Rather than defining the semaphore as a global variable and
Ziving semantic restrictions for lts use, one should incorporate
it as an abstract data type, as wmonitor, for Instance.
Different monitor iImplementations of the semaphore appear iIn the

11iterature (for example [ Hoa74, How76al)es We define:

type semaphore = monitor(m: integer);
begin
var s: integer;

q: condition;

then qewait;

end P3
proc V3
begin

begin s = m end;

end semaphore;
hared sem: semaphore cobegin Sl1//eee//Sn coend:

where the Si have the form

non-critical section;
semeP }

critical section;
sem.V;

non-crlitical section;

end;
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Having in mind to carry through exactly the same proof as
in the previous program, let us speclfy the properties of the
semaphore monitor. Following the proof rule for the concurrent

statement with moni tors {(chapter 3.2)y we want:

n
semaphore.Inlit => (s=m A A11HC[1]=0)
i=
n n
semaphore. I <=> (059=n—l§ INC[1] A allﬂclileto.lll
3 i=

The P nperntlbn will define the entry, the V operation the exit

of the crltical sec tion. Thus the speclfications are?

semaphore: integer s
Req: m>0
n
Init: a=m A A TINCI[1]}=0
i=1
n n
I: O<a=m— > INC[i] A A INC[iJe(0,1)
i=1 i=1
Nperations: P

pre: INClcaller ]=0
poat?: INCicaller ]=1

v
pre: INClcaller ]=1
post: INCl[caller }=0

Because the auxilliary variables have to be referenced by the
semaphore operations, they must be part of the monitore. A
definition local to the processes is not possible anymore.
Here, a concept arises that is laportant for the verification of
concurrent programs with shared abstract data types: The use of
"orivate® auxiliary wvariables in the shared da ta type
{recognized In [Owi77al). All accessors of the data object need
exactly the same type of auxiliary variable, in order to keep
track of their history concerning the access of that data object
that will be recorded inside the data type operatlions. Hence,
only one auxiliary variable is declared, but the type prefix
private indicates that each accessor has its own Incarnation.

To distinguish different incarnationsa, a caller-id iIs iamplicit
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parameter of every data type operationy, and a reference to the
auxiliary wvariable X in some operation actually accesses the

private auxillary varlable x[{caller] of the caller.

We =8hall 3see later that the concept of private variables
also has {ts significance for the Implementation of abstract
data typese. Here it affects only the proofy, sSilnce we only
declare auxiliary variables to be priwvate. The proof outline,

using the rules described in chapter 2.1 and 32, is:

type semaphore = monitor{m: integer):

begin

var 2. integer;

R
-]
.
.
-
-e

INC: auxiliary private

gq: condltion;

proc P;
begin
"I A INC{caller]l=0"
if 8=0 then "I A INClcaller]=0 A s=0"

gqewait;
UT A INClcaller]=0 A s>O"
8 :I= s-1;

"INCi{caller]l=0 A a20"

"T A INC[caller]=1"

g8 1= g+l;

"INClcaller]l=1 A s>0"

INC = :

"I A INClcaller]=0 A s>0"
qgesignal;

"I A INClcaller]=0"
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s := m; INC 1= 0;

n
"I A 8=m A A‘IHC[1]=0“
i=

"(a=m A A INC[i]=0) => true®
Nepruel
shared sem: semaphore cobegin S1//e+.//Sn coend:

" falase

where for each Si

"I A INC[i])=0"
non-critical section;
"1 A INC[i]=0OM"
semeP ;
"T A INC[i])=1L"
critical sectlon;
"T A INC[1]=1"
sem.V 3
"YT A INC[i]=0"™
non-critical section;
"T A INC[i])=0"

end;

"false®

Note that, by using a lower—-level synchronization aschemey no
scheduling axiom need be presumeds. The fact that the processes
are delayed only if m other processes are executing the critical

section can directly be drawn from

pre(gewai t) => =B (cond)

q
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That processes are resumed Immediately when sSome leave the

critical sectlon 18 derived from the invariant.

1t would be preferable and helpful in the search for a
auitable invariant to enforce optimal scheduling of an abstract
data type'!s synchronization scheme by its proof rules. [ How76a]
proposes proof rules for walt and slgnal that lmply optimal
achedul ings As a consSeqguencesy the callers scheduled by the
monitor need not anymore be considered in the proof of that
property. The idea is to postulate in the precondi tion of
condewalt and in the postcondition of condesignal that the
resumption condition for processes waiting In cond 1s false.

The exact proof rules are?

"PAJAEY cond.walt "paJaBl{cond)”

"paJaB{cond ) A~cond.empty" conde.signal "PAJAE"

JAE form the monitor invariant I, where E is a term that extends
J to JAFE => =B{cond), for all condition gueues cond in the

monitor, and P is as before.

This more explicit structure of the invariant forces the
verifier to produce assertions that imply optimal schedullnge
The inclusion of ~condsempty In the precondition of cond.signal
preventa a second axiom for executlon on an empty gueue, where

signal acts like the empty stateament, skip.

The semaphore implementsa tion is wvery similar to the

previous one:l

type semaphore = monjtor(m: integer);

begin

var 8 integer;

q: condlitlion;



begin
if 8=0 then qewait;
& = s-1;

end P;

if geempty then gesignal;

end V3
begin s = m end;
end semaphore;

The only difference is that ge.signal is prefixed by an if to

ensure its precondi tione.

For the proof, wve need an auxiliary variable that plays the
role of INC In the previous casees Private variables are of no
usey since we do not want to consider the callers of the moni tor
individually, as we dlid before. The solution is to keep track
of the queue lenzths for condition queues in the moni tor. They
are the only link to the processes If one only wants to regard
the monltor in the verlficatione. For each condition cond in the
moni tor, we introduce an auxiliary variable condleny; the gqueue

length of conde.

In the special case of the semaphore, the length of q,

gleny, dually extends s. The expression
S = s—~qlen

could be interpreted as a "hyper"-semaphore with exte ndedi range
in the negative integers. §$<0 is the loglical comdition for
synchronization to take placee. If S decreases to S<0, a delay
is necessary, it S increases to §=04 a resumption must be

performed. A valid invariant is

J = (min{syqlen)20)
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But it does not yield optimal scheduling. We wish a walting
process to be resumed as soon as the semaphore value becomes

greater than zero, ie.e«y the explicit resumption condition is
Big) = (=1 A gqlen>0)

but, unfortunately

J 2> -Blq)
The additional raquirement

F = (min(syqlen)<0)
extends J appropriately, such that the desired invariant is
JAE = I = {(min(sygqlen)=0)

With this invariant,

Bl{ag) => 5=<0

ie2esy resumption only takes place when S<0 and, mOTeove 'y the
code of P shows that a de lay occurs only if S<0. Hence,
synchronization Iis performed only when it is logically

necesSsarys

The speci fications of this semaphore are simplel

semaphore: integer s
Req: m20
Tnit: s=m A gqlen=0
I: min{s,qlen)=0
Operations: P

pre.: true

post: false

\ 4
pre: true

post: false

T he trivial rul es for the semaphore operations (any assertion
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may sServe as pre- or postcondition),

il1lustrate that indeed no callers are involved in the proof.

as opposed

lLet us first give the proof outline and then

problems:

type semaphore = monitor(m:integer);
begin
var s: integer;
aglent auxiliary integer;

q: condiltion;

glen = glen+1;
"min{sygqlen—-1)=0"
if s=0 then "a=) A glen21"
gewalit;
g=1 A glenzl®
"min({s,qlen)-1=0"

s-13

s

glen = gqlen-1;

nyn

8 = s+1;

"min(s~-1,qlen)=0"

1f ~g.empty then "s=1 A glen>0
qesignal;

] ] I'l

Vi

o
2

A ~qeeapty"

discass

aF
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The proof is acceptable as long as one presumes that
~geempty <=> glen>0

at least in the preconditlion of qesignal, le.e., that glen really
counts the waiting processes properly. It would be best to make
this assertion part of the Invariant, but unfortunately it is

not invariantly true.

[How 76a parforms a sSimilar proof on the basis of

Habermann's semaphore speclifications [Hab72 ]. Subsati tute

s nv-np

glen na=-np

However, then V contains a test on gqlen>0 rather than on
~gesempty which, according to Howard, implies =a non—eapty
condition qge This results In a change of the auxiliary variable
glen to a program variable and makes the semaphore

imnlementation entirely artificial.

For the proposed proof rules, the use of aaxiliary
variahles is essential. Without them, the frequent case of
synchronized calls to monitor operations (in which wait and
aiznal frame the procedure body) is not wverifiable. The
meaningful use of walt requires at least one assignment before

its call in the monitor operatione.

The cause of all the troubles is that the proper updating
of qlen is the responsibility of the verlfier {or even
programmer) and has to be ensured by the intermedlate assertions
in the monitor opera tions. qgqlen should instead be an auxiliary

variable manipulated only inside walt and signal, and not burden
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the algorlithms defining the monitor procedures.

This motivates a new concept, the concept of a hidden proof
variable which only appears in assertions and not in the
algorithm,. Proof rules in this spirit are defined in [How76b].
The hidden variable cond.len plays the role for the former
auxiliary varjable condlen.

* & x %
"PAJ AE M condswa it "pPaJ AB {cond)}™

"PAJAB(cond)" condesignal APAJAEN

"econdelen20" b = conde.empty "b'={cond.len=0)"
where for every condition cond in the monitor

Blcond) => condelen>0

*
The superscript indicates the substitution of condelen+l for

condelene The Internal axiomatic regulrements on condeslen are

initially: ° condelen=0

invariantly: condelenz0) A {cond. len>0 <=> -~condeempty)

These proof rules reflect that condelen is incrementedi at the

start and decremented at the end of each waiting period.
With unal tered specifications, the proof outline is:

type semaphore = monitor{m: integer);
hegin
var 8! integer;

g: coniitlion;

prec P;
begin
"I A Qqelenz20"™
if s=0 then "s=0 A gelen+l20"
gqewait;

g=] A gqelen+l1>0"
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"O<min{sygelen)<l A s=1"
8 1= s-13
"] A gelenz20%

end P3

"min{s~13qelen)=0"

if ~qeempty then "s=1 A gq.len>0"
gqeslignal;

"l A qelen>0"

end V3

8 1= m;
T A s=m A gelen=0"
end;

end semaphore;

This proof endsa the investigation of the veriflcation of

optimal scheduling by semaphores.

We started with an implementation by the general concurrent
atatement that does not I solate the semaphore structure from its
concurrent environment. The popular concept of auxiliary
variables providied us with an Invariant from which the desired

dynamic behaviour of the system could be conc ludede.

Defining the semaphore as a monitor enabled a proper
speci fication of its characteristics. A se cond concep t, the
private variable, interrelated the abstract data type and 1ts

accessorsy ylelding the same invariant as in the first case.

Particularly restrictive monitor proof rules and a new

representation of its accessors in the proof by means of a third
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concept, the hidden variable, guides the verifier 1In the

development of assertions that imply optimal scheduling.

We do not intend to rate any of these techniques over the
others, The general concurrent statement is useful for the
handl ing of dynamically changing shared data =sets, as in
[GrliT7T7)e The verification of monitors with private variables is
sauitable for static shared data specifications with external
properties {(ie.e¢y non-trivial proof rules for the operations on
them) « In the case of the semaphore which only bears a purely
internal synchronization property,; the restrictive monitor proof

rules seem most sultable.

4.7 Simplifying the Resource Pool Implementa tion

The purpose of this section is to investigate the
suitablility of several langummge consatructs and their proof
rules for the implementation and verlification of an abstract
da ta type that allocates resources from a pool for private
access. We shall start with a very general approach and
discover the trade-offs In security and ease of verification by
restrictions that are appropriate for this specific problem.
Since resource allocation is an important operating systems
concept, restrictions for its easy use seem wort hy of

influencing the design of a seystems languagee.

We shall start with specifications that define the abstract
private pool object R. The subsegquent implementations will he
related to these specifications by the abstrac tion functlon F
that interprets the concrete implementation C as the abstract

object R:
R = FIC)

{ For more details see the Introduction to chapter 2.)
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The private pool will administer a set R of shared
resources r whizh are either Iin private use or free!l
-

u {r}] =R U R
ieunitid i inuse free

R

(U denotes the distinct union.) Each of the resources in use
will belong to one and only one process:

- u R {caller)
inuse callereprocessid inuse

-

R

These are the properties that characterize the abstract object
and that have to be preserved by the operationse. ITnitially, all
resources will be available:
] = [} A R = u (r
inuse fr ee ileunltid i
The speclfications of the pre— and postconditions for the

operations followe.

With some resemblance to ([FlHa76)], the abstract private

resource pool may be summarized to:

privatepool: R = U (r )
ieunitid i

Reqs true
Init: K ={} A R = U (r
inuse free leunitid i
A A r initialized
rel
1: F = R v R A
inuse free
R = u R {caller)
i nuse callereprocessid I1Inuse
Operations: get(r)
pre: true
post: R? =R -{r} a

free free

R {caller) =R {caller)V {r]
L nuse inuse



put(r)

pre: reR {caller)
inuse

posti R?' =R Ufr] A
free free

Rt {caller)=R (caller)~(r)
i nuse inuse
npllr'..ol

pre: reR {caller) A «ee
inuse

post: reR {caller) A <ee
inuse
op2(ryees)

No te that the pool contains the administrative as well as the

resource driving operations.

We shall now proceed with the Implementa tions and thelr
proofs, given Iin a somewhat abridged form. In every case, we
first present the program text Including auxiliary variables,
and then give a proof outline for the two adminiatrative
operations et and pute. The proof of the Initial statement is
trivial and left oute After that follows an argument about

non—interferences.

The first implementation, taken from (Owl77bl, uses a
ceneral shared class. It permits complete control over the
exclusion mode between any two astatements within the class
operations. The synchronization tool is the semaphoree. Our
intention 1is, of coursey, to provide mutual exclusion of get and
put, and to allow any statements of driving routines to execute

concurrentlys.




type uniti

type priva

begin

d = lesuni tcount;

tepool = shared class;

var pool: array uni tid of resource;

free: powerset of unlitld;

freecount, mutex: semaphore;

owner: array unitid of processid;

By

auxi liary array processid of De..15

b: auxiliary integer;

proc get{var unit: unitid);

[ freecount.?P; a 1= a+l];

[mutexe.P; mlcaller]

unit

owner[u

[ free := free-[(unit}; a = a-1];

= 11
:= oneof(free);

it] = caller;

=]

[mutex.V; mlcaller] := 01];

end get;

proc put{unit: unitid);

begin

1f owner{uni t)#caller then retu

[mutexeP; mlcaller] = 1]3

[free := freeUlunit); b 1= b-1];

owner{unit)] = pil;

{mutexeV; micaller] := 0];

[ freecounte«V; b 1= b+1];

end put;

s B

3

oc opl{unit: unitidieeces);

egin operate on poollunit] end;

roc op2{unlt: unitidjees);



begin
free = allunits;

freecount = unitcount; mutex = 1;

1
= b = m 2= D3

a
for i:=1 to unitcount do init poollil]

end privatepool;

allunits Ims the ®8set constant of all one—-element sets in the
powerset of unitid. The odd if statement in put {rather +than
defining the entire procedure as if with the complementary
condition and saving the return) Is due to the required enter;

opera te; exit format of class operations [(see section 2.4).

Owlicki glives very implementation-oriented specifications
for the private pool, which saves her from considering an
abstraction functlon (we did the same for the semaphore moni tor
in the last section)s This function is our next concern. Ve

define the mapping

R = F{freejyowner)
where

R = (iliefree A ownerl[l)=nil)
free

R = {i|lidfree A ownerl[ilznil)
inuse _

R (caller) = (i|iéfree A owner[ll=caller)
inuse

The assertion
A (iefree <=> owner[i]l=nil) A 0s|freel <uni tcount
ieunitid

implies the abstract invariant I(R), but does not suftice as

class invariant, because unfortunately i1ts invariance may be

violated. The reason is tha t get and put do not properly

exclude each othere.



- 49 -

The shared class uses semaphores as a synchronization tool.
In our case, the slze of the free set determines the
synchronization and has to be expressed by a semaphore,

freecount. The desired relation is
freecount = |free]

But this cannot be Invariantly maintainede. The synchronlization
on freecount has to be performed outside the critical section of
the mutual exclusive rest of the operations, in order to avoid
deadl ocke. Hencey, the proper maintenance of the equallity may be
interrupted, and callers may find freecount decreased without
according reduction of free (by get), or the free set axtended
without proper update of freecount {(by put)e. Two aaxiliary
variables, a and by, keep track of these cases. The invariant

equality is
freecount = |free| +b-a

The sequencing of the auxiliary varlable updates (differing from

[OwliT77b]) ensures that always a>0y b<0, and thus
freecount < |free]

This indicates that the sSemaphore synchronization may not be
optimal, because not all freed resource objects may immediately
be counted. It turns out that semaphores are a synchronization
concept tha t is aometimes too constrained and not
problem-oriented. Here, it leads to an unnecessarily weak
invariant. {In this particular case, the with-when statement

reaolves all problemse)

The auxiliary array m yields the mutual exc lusion
Invariant, qui te similarly to the private variable INC for the
semaphore monitor in the previous sectione. The en ti re class

invarlant is



- 50 -

I = A (Lefree <=> owner(ll=nil)
ieunitid
A freecount = |free|+b-a
A O<freecountsSunitcount A O<mutex<l
A mutex = 1- p ml{caller]
callereprocessid
Let us proceed with the proof outline for the private pool
operations. We will wuse the followlng axioms that are not

stated Iin the references:

a) Let xy, 8 be set variables. Then

gz (}J" x = oneof(s) "xes"

In the private pool, x iIs a variable of type unitid. That
causes no harm, because the representa tion of Sy free,

only contalns subsets from unitid with cardinality 1.
bh) "sem>0" sem.P "gem'=max(D,sem-1)"
c) "gem20" sem.V "gem' =sem+1"
The outline for the two procedures get and pat is:

proc get{var unit! unitid);
begin
wyn
[ freecount«P; a 1= a+l]}
nyn (i)
[mutex«P; micaller] = 1];
L I n
unit = oneof{free);
ownerfunit] = caller;
"unitefree A owner{unitl=caller"
[ free := free-{unit); a = a-11];
"] A owner{unitl=caller"
[mutexeV; micaller])] := 0];
"I A owner{unitl=caller" (implies ge t.post)

end get;



proc put{unit: uni tid)};
hegin
"] A owner{unitl=caller® {follows from pu?-pre}

if ownerf[unit]l#caller then return;

"I A owvner{unit]l=caller"

[mutex.P; mlcaller]) = 1];

"J A owner{unit]l=caller”

[free 3= freeU{unlt}; b = b-1];

"unjtefree A owner{unit]l=caller"

ownerfunit] = nil;

"I A unitefree®

[mutexaV; micaller] = 0]);

"T A owner{unltlzcaller" (i)
[ freecount.V; b = b+1];

“T A owner{unitlzcaller" {(implies part of pat.post)

end put;

To show non—interference is always o very tiresome taske.
It will not be argued heree. [OWiT77h] satatem the general
technique and gives some examples. Several remarks are duey

thoughe.

The non-interference of get and put is not as trivial as
[DwiT7Tb] says. If the operations were each one entire crltical
sectiony nothing were to be provens But in the present
implementation the assertions marked (i) and (ii) have to be
c heckedes First, note that both (i) and (ii) imply the invariant
i, a necessary requirement for non—-interference {see
section 2.3). Since (1) is only the invariant, there cannot he
interference. But {(ii), in fact, has to be relaxed so that the
poatcondition of put only implies a part of the specification
putspost:

K =R Vir)
free free
is not guaranteed. Another process may have interrupted the
execution of put and Just taken the resource re. Thia is not

harmful, thoughe. What we really want the private pool to do is
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not to lose freed resources, and the invariant together with the
verifiable part of putspost state that, if the resource r is not
free, it must be in wuse by sSome other processe. In the
aspecl fications,
put.post: R? {caller)=R {caller)~-(r)
inuse inuse

really would have sufficedy and we revise it accordingly, nows.
Although we do not have to test the pre— and postconditions of
the operatlons for non-interference in the proof of the abstract
data type, in the verlification of the callers a too strong
specification may cause problems. We started with the usual
private pool specifications {(as in [F1lHa764 Owi77b]) to become
aware of the problem of overspecification. The following
discussion bullds on the relaxed pool specifications (even

though the stronz specifications might be satisfied).

{OwiT7b)] points out the problem of overspecl fication in
another respecte. The rules for P and V may cause interference
ir too stronge. In fact, the axioms we use are not
interference—-free. Ther efore we  joined the call to the
semaphore operation in an elementary action with an appropriate
auxiliary wvariable assignment that relates the auxiliary
variable interference-free to the semaphore state. We then only
referred to this Interference-free relation rather than a

specific semaphore state.

The enter; opera te § exit format reguired for class

procedures is in this case:

seteenter = [freecount.P; a = a+l]

rpetsexit skip

put.enter skip

1t 1

puteexit [freecounteV; b 1= b+l]

The variables mutex and m are not control variables, although
they are really synchronizinge. The latter is, however,

reflected by the fact that, Iin the proof outline, they only
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appear in the class invariant {compare section 2.4).
Identifying the set of control wvariables with that of the
aynchronlzing variables was not possible because of the danger
of deadlock in the procedure get. Joining mutex. P and
freecount.P in one elementary action would have violated the
enter; operate: exit format, but, it seems, still would have
lead to a verlifiable class, even with a put procedure that
satisfies the stronger sSpeclificationa {for the sake of coarser
concurrency). The necessity of a special format regquirement is

at Jeast not immediately obvious.

The occurrence of a P operation inside an elementary action

requires a little explanation. In the proof, the sta tement
freecount.P;
for instancey is replaced by
[ freecounteP; a = at+1];

where a is an auxiliary variable. {Because accesses to
auxiliary variables will never be executed, they may appear
unrestric tedly 1Inside elementary actionse.) However, this
atatement is as little an elementary action as the P operation

itsel fe. For Py there are two cases:

a) The caller is not delayed in P.
Then P is elementary, and so are statements [5] containing

a call to P,

b) The caller is delayed in P.
Then there are two elementary actlions!:
i) the delayineg of the craller, and

ii) 1ts resumption and the update of the semaphore.

Nontheless, generally P is said to be elementary, and the delay
action is interpreted as synchronizling mechanism for the call to
P rather than as part of P. If one adopts this view for
elementary actions whose first statement is a call to P,

nrocesses will possibly be delayedy, but before the execution of
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the elementary actione. The semantics are the same as for the

await synchronization In the general concurrent statement.

As already dlscussed, the dlfficulties with the invariant
can be overcome by a higher-level synchronization scheme. To
equip the shared class with with—-when statements rather than
semaphores might be too restrictive for a flexible
speci fiability of the concurrency relations, its most important
propertys. Our application does not need a very flne concurrency
grain, and we may use a mo re structured approach to the
synchronization in shared data typesy, the path expression. In
this scheme, the operations may be defined either nutually
exclusive or entirely concurrent to each other. For our
purpose, this is sufficient. We do not require partlal
exclusion of oneratlons. Moreover, if the calls to operatlions
are synchronizedy, the execution of mutually exclusive operations

is guaranteed not to be interrupted. The implementation is?

type privatepool = class;
begin
var pool: array uni tid of resource;
free. powerset of uni tid;
owner: array unitid of processid;
uni tcount
rath ((get—-put) y oply op2yessl end:

proc get{var unit: unitid);

owner{funit] = caller;

free := free—f{unit);

i
L
!
i



]

proc put{unit: unltid);

hegin
if ownerf{uni tl=caller then

begin
free := freel{unit);
nil

owner{uni t] := -

[

end put

-s

proc opl{unlt: unlitidiess);

begin operate on poollunit] end;

proc op?2{unit: unitidiese);

begin
free = allunits;
owner 1= nil;

end;

end privatepool;
The abstraction function
R = F{freejyowner)
stays as before, but the invariant is now as deslred

I = A

feuni tid
Addi tional assertions to derive proper synchronization are

necessary, since the path expression defines all that. {For
exnression syntax see section 2.3.) All driving operations

execute concurrently to each other and get and puty whereas

two latter are matually exclusive. NMoreover
0 <€ #(get)—#{put) < unitcount

ls enforced by synchronizing the calls to get and pute.

proof outline is now easy:

(letree <=> owner[l]=nil) A 05| free|<unitcount

not
the
may

the

The



proc get(var unit: uni tid);
begin
nyn
unit = oneofl free);
"uni te free"
owner[unit] = caller;
"unitefree A owner{unitl]lzcaller™
free = free-{unit];
"I A owner{unit]=caller® {implies ge t.post)

end get;

proc put{unit: uni tid);
begin
"I A owner{unitl=caller"®” {follows from putepre)
if ownerfunit]=caller then
hegin
"I A ownerlunit]l=caller"
free = freeUlunit};
"unitefree A ownerfunitl=caller"
owner{funit] = nil:
"I A unite free"
end ;
"T A owner[unit]#caller" {implies pat.post)

end nut;]
The invariant term
0<|free| <unitcount
is preserved because
|free| = unitcount-{#{get)—#{put))

Non-interference of the operations 1s proven as before, where

the mutual exclusion of get and put is now really triviale.

The merita of the path expression are apparent: All
synchronizing and their associated auxiliary variables disappear

f rom the proof. The path expression provides the control part
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of the class Invariant. {Note that the procedures are bound to
bear the enter; operate;} exit format.) The data part of the
invariant has to be derived in addition from the semantics of

the operations.

How serious the restrictions in synchronizatlon with path
expressions are is debatables. In our case, they are only

advantageous.

The third implementation uses the recently Introduced
manager data type for the dynamic allocation of resources. Its
purpose is to administer the access capabilities (as called 1in
the original paper [SKB77]) to the objects in the resource pool.
The granted resourcey, implemented as a private class object, is
then directly accessible by the owner process. The advantage is
that the owner process implicitly gets access to the actual
resource object rather than an identification that could be
misused or get lost by faulty handlinge. Conseguently, ~fe have
to delete the driving operations from the specification of the
priva te pool. They are part of the granted object rather than

the pool manager. The implementation 1sl

type privatepool = manager of element! resource;
begin
var pool: array unitid of resource;
uni t: uni tid;

free: powerset of unitid;

nofree: condition;

proc wet;

begin
if free=nil then nofree.walt;
unit := oneof{free);
free := free—{unit}:
bind(poollunit]);

end get;



proc put;
begin
for uniti=1 to uni tcount

while element#pool [unit]

< ¥ W48

o
I
]
L 1]

release;
free = freeUlunit};
nofreee.signal;

end put;

end privatepool;

In one respecty, the semantics of the manager are

restrictive for the given pool specifications: every process

too

may

only possess at most one resource object in the pool represented

by some object of type privatepool. Thereforey, the precondition

of get has to be strengthened:
get.pre: R {caller)=()
inuse

Againy, a few not obvious axioms will be used:

a) The following rule for the for-while loop rejuires

the iteration Index x I8 known outside the loope.

"Kf[ﬂ.o.h] L) P([n..x—l ]’ A BR g "P{[a-.x]l"

"P(LD"

for x:=a to b while B do S;

that

"{xe[aneeb] A P{lascax—1]) A ~B) V (xf[aeceb] A P{[asb]) )"

b) LIPS owner(l J2caller A owner(arg)=nil"
ieanitid

bind{arg);

"owner{arg)=caller”

Note that the bind procedure only corresponds to the

part

of the bind function in {SKkB77] that assumes

i
;
:
}
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entry_hold_count=0. The precondition ensures that the

calling process does not already access the poole.

c) "owner{<imp par>)=caller™
release;

"owner{<imp par>)=nil"

<imp par> is the implicit parameter described in [ SKB77],

element, in our cases.
d) Tnitially: owner=nile.
The last three axioms will be motivated in the next sectione.

The former array owner is now a function, defined on the
set of process—-id'sy and plays the role of a hidden varlable as
introduced Iin the previous sectione. Hence, the abstraction

function becomes:

R = F(freeyowner)

where
R = (i]liefree A owner{pool{il)=nil)
free
R S (i1lidfree A owner{poollil)znil)
inuse
R {(caller) = (i|iffree A owner{poollil)=caller)
i nuse

The invariant is

= A (iefree <=> owner(poolli]l)=nil)
feunitid

A 0<| free|l<unitcount

A {owner{poollil)=caller =>

A owner{poolljlltcaller)
J#1

T he last term in the invariant states the semantic restriction
of the manager to srant at most one object at a time to a fixed
Process. That isy, R {caller) containa for every caller at
inuse
most one element.
We proceed with the proof of the manager procedures,; using

Dwicki's axioms for condi tion gqueue handling (see section 2.1):



proc get;
begin

"I A A owner{pool{i])z2caller” {follows from get.pre)
leuni tid

1f free=nil then "I A free=(}"
nofree.wal t;
"Y A freex(l"
"T A freex()"

unit = oneof{ frees)

-

"I A unitefree”
free := free- {(unit)
unitéfree A owneri{pool{unit])=nil

A owne r{ pool il ]) 2cal ler"

A
ieunitid
bind{poollunit]);

"I A owner{poollunit])=caller" {implies ge t.post)

end get;

proc put;
begin
"I A owner(element)=caller" {follows from put.pre)
for uniti=1 to unitcount
while elementzpoollunit]

do "uniteunltid A A element#poollil
l![l.c“ﬂit‘l]

A element#poolluni t]”®
skip;

LIS element#poollil]”
iel{leeunit)

"T A (uniteunltid A

A elementzpool[i] A element=poollunit}) v
ie[leeunit-1]

{unitfunitid A A elementzpoolli] )" (=)
iel le eunitcount]}

"y A A elementzpoolli] A element=poollunit]}"
ltIl..unlt—ll

Il A owvner{pool{unit])=caller™
release;
"unitftree A owner{poollunit])=nil"

free := freel [unit);



"T A unitefree"
nofree.signal;
"] A owner{element)#caller" (implies paute.post)

end put;

Note that the term after the v in the postcondi tion of the
for-while loopy marked (%), is false by the capability handling

of managers,

This 1is the end of our development of private pool
implementationse. In our first attempt we used a very powerful
concept, the general shared class. The constralnts of its
synchronization scheme, the semaphore, and di fficulties because
of too fine concurrency lead to overcomplicated assertions in
the proof. We found that the common specification of a resource
pool is too strong for this implementation and, in general,

postulates too muche.

Tntroducing a higher-level synchronizatlon concept, the
path expression, resoclved all these problems. Stilly, the shared
class, with whatever synchronization sche me, Joins
administrative and deriving operations on the pool. The callers
have some responsibility in not touching the resource
identifications that are handed to them as "tlckets" for the

resource grante.

The manager data type only encompasses the pool
administration and hands the granted resource to the caller.
Using the manager agaln simplifties verlfication. The

non-interference argument is entirely superfluous.

This section exempll fies hetter than the last one the
prover development of an abstract data structure. One starts
with specifications that comprise all desired properties. Then
one tries to find the most appropriate implementati on for that
abstract structure. A mapping between the abstract aind the
concrete object has to show that really all desired properties

are met.
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In the last section, an example motivated the usefulness of
the abstract data type manager and intuitively introduced Its
proof rules. Now we shall develop them in more generality and

formalitye.

The manager acta very similarly to the wmonitor. Its
operations are mutual exclusive, and synchronization of 1ts
accessors is provided by walit and signal on conditlion gqueues.
Consequently, the axloms for the manager's invariant, initial
statement, and procedure bodies are exactly the same as for the

monl tor.

However, addi tional proof rules have to define the dynamic
allocation by managers: the treatment of capabilities. We
require that capablilities are only updated by the standard
operations bind and release, much as condition queues bYy wait
and signale Therefore, bind and release are defined more
generally than in [SKB77) where they are only used for private

but not for shared resource allocationes
We consider the abstract data type
type nllocator = manager of capability: resourcejess

Tnside this manager, an ob ject of type regsource appears as

though it were defined a=s

type Fesource = record instancel resource;

capabilityset: powerset of processid;

The capahilitvset contains al]l 1d's of processes that possess a
capability to the resource object. For private resources it is
elther empty or contains one processe. We define the two

procedures
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proc bind{object: resocurcel;

begin
if capability=nll then
" begin
with object

o capabillityset := capabllltysetU{caller);
capabillty = object;

proc release;
begin
if capability#nil then
begin
¥ith capability do
do capabilityset := capabilityset—(caller];
capability = nil;
end;

end release;

The capability 1s an example of a private program variable (of
type resource) that is not auxiliary. Every process has its own
incarnation that is only updated on its reques t, and all
incarnations are handled similarly. Iinitlallyy, all capabilities
and capabilitysets are nil. We decided to implement bind as a
procedure rather than a function {as done in [SKB771]1), because

this seems to be a more natural concepte.

Nowy the general proof rules for the two operations can be

understood:

"capabilitylcaller ]Jzob ject™"
bind(object);

"capabilityl(caller)=oh ject"

"capabilitylcaller J=ob ject"
release;

"capabilitylcallerl=nil"®
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We reguire that capabilities and capabilitysets are not upda ted
outside bind and release. Then the following assertions are

preserved:?
I{capability) =
A {capabilityli)=nil <=> A iédre.capabilityset)

leproceasid reR

A A {capability[i)#nil <=> Vv (capabilitylil=x A
ieprocessid xeR

iexecapabilityset A A ifrecapablilityset))
reR- {x}

T{capability) expresses that, at any point of time, every
process may possess at most one capabllity. It Is part of the
manager invariant, since It is true after initialization of all
capabilities to nile Tlcapability) enables an alternative use

of the capability or capabilityset variable in assertions.

For private resource management, the rule for bind has to

he stronger:

"rcapabilityl[caller]=nil A object.capabilityset=nil"
bindlob ject);

"ecapabilitylcaller]l=ob ject"

Tt 1mplies, together with JY({capabllity), that capabilitysets
contain At most one processe. The capabilityset is a hidden
proof variable, in this case, in fact, a function corresponding
to the intuitively introduced owner function in the private pool

example {(see previous section).

Note that, by generalizing the binding schemey, bind is less
powerful than in [(SKB77]. Therey, It was Introduced speci fically
to ensure a proper distribution of private resources. Here, it
handles resource distribution in general, and only an especially
strong precondition guarantees that private resources remain

private.

Aasertions about the resource ob jects (private or shared)
are handled like assertions about shared abstract data types,

only that for the caller, unless 1t 1s the managery, the 2nabling

-



predlicate
capabllitylicaller]=object
has to holde
As 1llustration, let us modify the pool specifications to

suit the allocation of shared resources and iImplement it by a

managere.

sharedpool: R= U (r )
ileunitia 1

Req? true
Init: R ={) A R = U {r )
inumse free leunitid i
A A r initiallzed
rerR
-
) - R =R U R A
Ilnuse free
R = v R (caller)
lnuse callereprocessid inuse
Operatlions: get(r)
pre: {reR Vv r=undef) A R {caller)=(])
inuse
post: reR => (R! =R » R =R '
inuse inuse free free
R? {caller)=(r)})
inuse
rzundef => V {(r'=x, R? =R -{x},
xeR free free
R {caller)=(x]})
inuse
put( r)
pre: R (caller)={(r}
inuse
post: R! (caller)=(]
i nuse
Note that R does not anymore form a distinct union of the
inuse
R (1) over 1 in processid. The postcondition of put is
inuse

agaln weakly mpecified. An additional requirement
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{ A rfR (1)) =>
ieproceasid inuse
i#caller
{(r? =R ~[(e)y R? =R v {r})
inuse Ilnuse free free

that the resource r ia made available if the caller was its only

owner could cause inter ference problems in the caller proof.

Since in the shared pool the resource objects are
dlst{ngulshnbla. the precondition of put has to be more specific
than in the private pool. Note that our first private pool
implementations also made the objects distingulshable for the
competitors (by an explicitly passed id parameter). This may be
desirabley e«gZey for message passing, but is not a requirement

for the general specifica tions.
The manager implementation follows:
conat undef = 0;

unde fe s uni tcount;

type ext_unitid

type sharedpool = manager of element: resource;
begin
var pool: array unitid of resource;
uni ¢l uni ti
free: p

nofree: condition;

proc get{var 1d: ext_unitid);
begin
1f id=undef then

begin
if free=nil then nofree.wait;
id := oneof{free);

end;

if idefree then free := free-—{id]};
bind({poollid});

end get;
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proc put;
begin
for unit:i=1 to uni tcount
while elementzpool{unit] do skip:
release;
if poollunit)ecapabllityset=nil then
begin
free = freel (unit);

nof ree. signal;

5
b

for uniti=1 to unitcount do init poollunit);

end sharedpool;

The ahstraction function isa

R = Flfree,pool)
where
R = (iliefree A poollilecapabilityset=nil]
free
R = [iliédfree A poollilecapabllitysetznil)
inuse
R {caller) = (i|iffree A callerepoolli Jecapabilityset]
i nuse
R {caller) contains for every caller at most one e lement.

inuse

The invariant is

T = (iefree <=> poolll Jecapabill tyset=nil)

A
feunitiga
A 02| free|<unitcount

A Tlelement)

The proof of get?



- 68 - i

proc get{var id: ext_uni tid): !
begin

"T A element[caller]l=nil (follows from get.pre)

A jdeext _unitida®

if id=undef then

"] A id=undet®
1f free=pnil then "I A free=()}"
nofree.wait;
"1 A id=undef A freez([]"
id = oneof(free);
"I A idefree A ideunlitiada®
end;
"I A ideunl tia®
if idefree then "I A ldefree"
free := free-{(id};
"jdéfree A elementicaller)=nil"
bind(poollid]);
"y A element{caller ]J=poollid'] A Flid)" (implies ge tapost)

end get;

where F(id) rela tes the input and output state of the parameter

id as follows:

Flid) = {ideunitid => id'=id)
A (id=undef => (id'efree A free'=free-{1d'}))

The proof of put:



proc put;
begin
"] A element{caller}#nil® (follows form pute.pre]
for uniti=1 to unitcount
do "uniteunitid

A element{caller lzpoollil]

A
i!‘[ lesunit-1 ]
element{call er JZpool[unit]}"®

A
kip:

A element{caller J#pool{1l]”
i![ loo“ﬂlt]

"T A {unlteunitid A

A element{callerlzpoolli] A
ieflesunit-1)

element{caller J=pool[unit]) Vv (unitédunitid A

A element[caller J2pool[l ])}" (*)
iellesunitcount]

Y A element[caller ]2poollil]

)

iel[leeunit—-1]}]
A elementicaller l=poollunit]®

release;

"unitéfree A element{caller }=nil"

if pool{unit]ecapabilityset=nil then

begin
free = freelU {unit];
"T A unitefree A element{caller]=nil"
nofree.signal;
end;
"] A element{caller ]=nil" {implles pate.post)

end put;

The for-while axiom has been introduced in the previous section.
Herey, more formally than in the proof there, the term after the
v in the postcondition of the for-while loopy, marked (¥), is
false by the validity of I{element) in I.



4.4 Termination Proofs of Call

1o Shared Abstract Data Objects

The previous prooef outlines for the semaphore and the
resource pool only argue the partial correctness of their

implementations. Termination has to be shown separately.

This section illustrates termination arguments for
operations on shared abstract data types. We shall not be
looking at the termination of sSequential statements. This

matter receives consideration in a number of publications, e«gey

{Man74, KaMa75, MaWa78].

Cur concern is to derive conditlons under which the
synchronization of operations on sSome abstract data object
cannot lead to non-termination of the call statement in the
calling process. Again, the proof technique follows clodely
that of [Owi77ble We assume that the only cause for a process
delay 18 synchronization on some abstract data object. Effects

of system achedullng are not regardede.

The notation A-B indicates that a computation is bound to
eventually reach astate B If It reaches state A at some point.

We shall use expressions like
A - BaC

which expresses that state A is followed by the valldity of B
and Ce. Nothing is sald about the length of time that B and C
holde But there is some polnt after A occurred at which hoth B

and C are true.

The following predicates are of importance in teraination

proofs:



start(i,L):

process 1 1s about to execute statement L,
finish(iu,L):

process i just finished the execution of statement L,
blocked{i,L):

process i is delayed In the execution of statement L.

Fvery language statement is characterlized by an axiom that
defines ita pre- and postcondition for termination, very
gimilarly to itas partial correctness axiome The termination
axlom has the form:
termination condition
L statement; el = M S e A e S el o T
termination expression
If the terminmtion condition can be shown, the statement
terminater’s according to the stated termlination expresslone
Owicki's termination axiom for the concurrent statement is only
suitable for the trivial case of disjoint processes {no
interaction through synchronlzation or access of shared data

[ Hoa75])):

L: cobegin S1//ee¢e//Sn coend;

n
Aistnrt(i,Si] - finish(i.51)
i=

———— ——————— T - —— .-

{start{0yL)Aprei(L)) - {(finish{O,L)Apost{L))
The termination axioms for the sequential statemen ts in our

examples are falrly straight-forward and will not he given here.

We only use loops that are bound to terminate, for loops. For

Let us now start with the investigation of shared abstract
data typese. The termination ot any synchronized operation

Tep(x3¥) Is expressed by its delay assertlion:

{blocked{calleryTep(X;¥y) }ATepeDelay) = ~TepeDelay) =>

(start{calleryTep(x:y)) =~ finish{callerysTspl(Xxyy}))
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TeneDelay is a condition that has to be proven necessary for
non-termination of procedure T.py, the delay condition of Tepes
{TepeDelay need not necessarily be the nega tion of the
resumption condition In the proof of Te.p but must imply it.) ir
the delay assertion holds with a proper delay condition, the

procedure call Iin process | is axiomatized
L: Tct‘i(;';):

{blocked{iyL)Apre (L)ATepeDelay} = -Tepe.Delay

X y caller

pre(L) and post{L) are taken from the partial correctness proof
of statement L. The axiom expresses that, while i is blocked in
a call to T.py Tep's resumption condition must eventually arilse.
In order to prove this, it is convenient to assume that the
scheduling policy of the abstract data type T is fair, le@ey
only a finite number of processes may postpone the resumption of
any delayed proce Ss to a polnt of time after their own.

resumptiones [OWwiT77h] states the termination condition
(start{i,L)Apre(L)AT.peDelay) = <TepeDelay

from which may be concluded only that some wal ting process | is

eventually resumed, 1ee.y

x caller
{atart{i,L)Aapre(L)) - (finish{jy,L)Aapost{(L)AT.pepost_
a

J

The termination of the call statement in process i is not

<

al

imolled.

These tools are sufficlent to prove the termination of
operatlions syn: hronized by a path expression. The delay
assumption and the condition for the termination of the =zall

statement may be concluded directly from the path expression.

For shared data types with lower-level sync hronization
schemes, we need addi tional axioms. [OwiT7T7b] defines rules for

t he use of semaphores, the synchronization scheme of Jwicki's



general shared class:
L1: sem.P;

{blocked(caller,Ll)Apre{Ll)Aasen=0) - sem>0
(start{calleryL1)Apre{lLl)) - (finish{caller,L1)Apost(L1))

L2: sem.V;

(start{caller,L2)Apre{1L2)) - (finish{caller,L2)Apost(L2))
Note that sem.V terminates unconditionally.

The termination postcondition is more explicit than the
partial correctnesas postcondition, because it may lnclude
variant assertions that do not hold as precondlition of the next

statements In this case,

poat(Ll) (sem"=max(0,8em-1))

and poat{L2) {sem"=sem+1)

are not interference~ free in the partial correctness proofe.
They are valid immediately after the termimtion of L1 and L2
respectively, but need not rema in invariantly true until the

execution of the following statement (see section 4.2).

Finally, let us define axioms for the even lower-level
synchronization scheme of managers and moni tors, condition
queue s Her e, we have the choice between different partial
correctness rules, and the termination axioms look dif ferent,

*
accordinglye. Agaln, the superscript Indlicates the

substitution of condelent]! for condelen, whereas the subscript

expresses the substitution of condelen-1 for cond.lens



1« Following [Owi77a)

Partial correctness:

* *x *
"paAl n condewait "pal AB {cond)™

"PAIAB{cond)®" conde.signal "PAI"™
where
Bleond) => =conde.empty
Termination:?
11 condewait;

{blocked{caller,L1)Apre (L1)A-B{cond))
*
- (post {(Ll)astart{ j,L2))
*

7 . — - —— o~ — T ———— . -~ —— T ————" -~ —

(start{calleryLl1)Apre{lLl)Aa-Bl{cond]))
- [{finish{calleryLl)Aapost(Ll))

L2: conde.signal;

{start(caller,L2)Apre(l.2)) = (finish{caller,L2)Apo3at(L2))
2« Following [How76b]
Partial correctness:
® % x %
WPAJ AE W conde wait "PaJ AB (cond)™
"PAJAR(cond )" cond.signal "PAJAE"

where

Blcond) => condelen>D

and JAE => =B(cond)



Termination:
L1: condewait;
lblockedlcaller.LllApret(Lll] - (post-(Li)AstartIJ'LZ)l
(start(callery,Li}Apre{(Ll)) - (finish{caller,Li)Apoat{Ll))

L2: condeslgnal;
(start(caller,L2)Apre(iL2)) - (finish{caller,L2)Apost(L2))

In both cases, the termination axioms express the same, only In
the first case they have to compensate the weaknesses of the
partial correctness axiomse. The idinfluence of signal on the
termination of walt has to be explicitly stated, since the
synchronization scheme permits resumption conditions to remain
unsignalled. It is Important to realize that the conslideration
nf gueue lengths 1s essential for termination argunents in
ahgatract data types with conditien gueue synchroni zation.
Therefore, Owicki's partial correctness rules have been extended

accordinglye.

The termina tion of bind and release in the manager is

defined by the trivial termination axiom:

I.: bind(obJject); or L: release;

(start{caller,L)Apre(L)) = (finish{caller,L)Apost(l.))

We are now able to prove the termination for somz of our
semaphore and resource pool implementations in the previous

sectionse
1. semaphore monitor
a) semaphore.P;

semaphore.P.Nelay: s=1
(If a>0, P trivially terminates.
8=0 => -~RBlg)ly the negated resumption condi tion.)

The termination of P requires its delay assertion
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(1) ({blocked{caller,P)as=0) - s>0) =>
{(start{caller,P) - finish{caller,P))

The only problem in this implication 1s the termination of
L: gqewait;
in P. We have toe show

{ii) (blocked{(caller,L)Apre (L)) -
*

{post (L)astart{jsgesignal))
*
The following holds:
pre (L) => (I A a=0 A qgelen>0)
®

The only operation that cany by lncrementing s, validate

B{(g) and hence post (L) is V. Doing so0o, it is bound to
&
execute signal, which verifies (1i).

The presumption in the delay assertion implies the

execution of signal which verifies (i).

Proving that a call to P does terminate means proving

the presumption In the delay assertion for P:
{blocked{caller,P) A 8=0) - s>0

One has to argue that some other process in the system
mus t eventually execute V, if 8=0 and the caller is still
blockedes In our case this holds because of the infinilte

loop structure of the processes.
semaphore.V;

semaphore«Va.Delay: false
{V is not synchronized.)

Vg delay assertion is

{{hlocked(caller,V)afalse) - ~false) =>
{start{caller,V) - finish(caller,V})

or simply

1
i
g
b
[
i

[
4
i
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start{(caller,V) - finish{caller,V)

2« privatepoo] manager

a)

h)

privatepool .get{(id);

privatepool.get.Delay: free=nil
(free=nil => ~B{nofree),; the negated resumption
conditione.)

et has the delay assertion

(1) {{blocked(cal ler, get)Afree=nil) - treeznil) =>

{starticaller,get) - finishi{caller,get))
The only problem in this implication is the termination of
L: nofree.walt;
in gete We have to show
(ii) lhlockedlcal]er,Llﬂpret(L]] -
[post*(Llhstnrt(J.notree.algnnl]J
It holds
Dre*IL) => (I A free=nil A nofree.len>0)

The only operation that can, by inserting in free,

validate B{nofree) and hence post (L) Is release. Doing
t
foy it I8 bound to execute signal which verifies (i1).

The presumption in the delay assertion Ilmplies the

execution of signal which verifies (i)e.

Proving that a call to get terminates, as before,
means arguing that release must eventually be executed 1if

the free mset 1ls empty and some process is wal tinge.
privatepool.put;

privatepool «sput .Delay: false

(put is not synchronized.)
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The delay assertion is, unconditionally

start{calleryput) = finish(caller,put)

sharedpool manager

Exactly like 2., the privatepool manager.

pri

The
out

get

pri

vatepool general shared class

proof is very similar to the previous example and is
lined in [Owi77b)le Validation of the delay assertion for

is deduced from the invariant
freecount = |free|+b-a

vatepool path expression class

a) privatepool egeti{unit);

b)

privatepool.get.Delay:
C = ({#{get)-#{put) > unitcount)

{from the path expression)

The delay assertion

{{blocked(calleryget)AaC) = =C) =>

(start{caller,get) = finishlcaller,get))

is enforced by the path expressione. Its presumption is

verified as above.
privatepool .put;
privatepool «sput.Delay:

C = (#lget)=#lput) < 0)

{from the path expression]

The delay assertion

{(blocked{caller,put)aC) = C) =>

(start{calleryput) - finiash(caller,put))
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is enforced by the path expresslone. Its presumption
holds, for Instance, if each process calls get and put

every other time, starting with get.

Note that the path expression synchronizes put as well. Errors
due to unsynchronized calls of put in the other implemen tations
have to be (and are) taken care of in its code. The termination

proofs demonstrate very well the power of path expressionse.
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5 Cenclusions

The Investigation of verification techniques for concurrent
algorithms motivates several language features for the

s truc tured representation of concurrencys.

We understood the sul tablility of the concurrent atateneﬁt
for the representation of a set of concurrent processes. It
syntactically frames the concurrent execution In the program
text with cobeginesescoend and (in the more sophisticated
formats) deflines the data shared among processes by resource or
shareds This supports the documentation of correlations and

interferences between processes.

Secondlyy and above all, we realized the slgni ficance of
shared abstract data types for structured concurrent
progcrammings For seguential structured programming, principles
like stepwise refinement, modulari ty, and the development of
program families have been suggested [DDH72, Par76]e. Carried
over to concurrent programmingy, the ma jor goal comprising all

these technigques is:

Design your concurrent program as a collection of interacting
processesy, and keep the design problems as much as possible
in a sequential contexte. In another step, worry about thelr

interactione.

T he process serves much the same purpose in concurrent
programming as the procedure in seguential programminge. The
dealgn problem is=s broken inte parts that are easier to

comprehend and solve by themsel ves. The call convention of the
procedure corresponds to the synchronizatlon and interference of
processes. It is the interface that specifies all communication

between the module (procedure or process) and iIts environmente.

Shared abstract data types achieve the isolation of this
interface from the concurrent program modules, the processes.

Processes may be designed without regard to thelr
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synchronizatlion and interference. The proper specification of
the communication device, the set of shared abstract data types
for the concurrent statement, takes care of all that. The
advantageous effect of this principle is documented by t he

verificatlion regquirements: the problem of non~interference can

.be [almost) entirely absorbed In abstract data typa Se An

illustrating argument for the need for separating the interface
to its environment from the process is that it becomes properly
specifiable. Abstract da ta types are built according to a
general specification pattern that comprises all external and

internal requirements on the defined data.

One need not stop at this point. The manager data type
indicates that abstract data types can also represent di fferent
kinds of apecialized higher- level communication between
processes, in this case the competition for resources. Dthers

are conceivables.

A =srtill not sufficiently solved problem is deadlock in
access hlerarchies of shared abstract ata types. The manager
provi des a safe and use ful design tool for an important subset
of applications, but none of the given data types supports a
practical general technique for deadlock avoidance. Recent
issues of the ACM SIGOPS journal Operatlng Systems Reviews
contain a discussion on this subject, started by [Lis77]. It
seems that deadlock avoidance Imposes very strong regulrements

on the integrlity of shared data objec tse.

AS it appears in Owickil's proof me thod, t he
non-interference argument is the most cumbersome and problematic
part of concurrent correctness proofs. It leads to a proof
effort that grows non—-linearly with the size of the program and
possibly to a revision of the previously developed seguential
proofs for the processes (if interference has been detected)e.
Usual ly, interference will only become evident after the
sequential proofs have been completed. The use of shared

abstract data types weakens these problems somewhat and provides
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two alternatives for the structured development of concurrent

programsa:

a}) If the nature of concurrent communication 1s known with the
program specification, the definition of the shared abstract
data types 1Is possible or has been done before the
development of the processes, and it can aild in a
constructive process desligne This will be the approach for
concurrent systems wlth very simple or widely-used

commun ication patterns, e.gey competition for resources.

b} If the nature of concurrent communication i8 not documented
by the program speclficationy; the processes are constructed
first, with calls to ficticious data type operations. Then
the specifications for the abstract data types are deduced to
satisfy all call asgertions in the different processes,
according to the rule of consequences Thise will be the more

frequent approach, for complex concurrent systems.

In certain cases, a complete absorption of concurrency matters
in abstract data types may not be possiblee. This is reflected
by the context sensltive "rule of adaption", which analogously
also applies for procedures [Owi77b, Hoa71]. Without
restrictions on concurrency, one cannot hope to reaich the

ultimate goal, entire isolation of interference considerationse.



This chapter contaings a selection of papers published on or

related to the axiomatic wverification of concurrent algorithmne.

. Some

contributions are briefly described, and polnts of

discussion are Atreased.
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Princh-Hansen, P.

i

Concurrent Programming Concept
4

Computing Surveys 5, {(Dece 1973), 221245

Brinch-Hansen gives a hiastory of the development of

a) concurrency concepts:
i) fork/joln

11) cobegine..coend

b) synchronization concepts!
i) event atatements
ii) sema phores
iii) eritical reglons

Lv) conditional crltical regions

The necersity of history variables=s {auxiliary
variables 1In [OwGr76a, OwWGr76b]) for the veriflicatlon
of concurrent algorithms is recodnl zed. Hiastory
variables may be interpreted as protocol variables.
Thelr treatment may not affect the flow of control and

data In the rest of the programe.

Princh-Hansen, Pa.

IFFE Transs. on Softe. EFnge SE-1, 2 {(June 1975), 199-207



[ CaHaT74]

{Con6]]

{ PaRo72)

[ DDHT72]
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The Specification of Process Synchronization
by Path Expressions

in "Operating Systems", Lec ture Notes iIn
Computer Sclence 16, Goos and Hartmanls (Eds.),

Springer Verlag, 1974, 89-102

Introduction to different forms of path expressions:

sequencey selection, repe tl tion and s imul taneous
executlion. Presentation of popular examples: readers
& writers, producer—-consumer, semaphore. Discussion

of the implementation of the proposed synchronizatlon

scheme.

Conway, M<.E.
A Multiprocessor System Design

—— i — -

AFTPS Confe Proce 24, FJCC 1963| 139-146

Dahl' Ne=Je ;3 Hoarey, CesAeRe
Hierarchical Programming Structures

in [DDH72], 175-220

Dahly De=Je; Di jkntra, E.W.; Hoare, CeA R,
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AePaleCs Studies in Data Processing 8,
Academic Press, 1872, 220 p.

Dijkstra, E.W,
A Discipline of Programming
Prentice-Hall, 1976, 217 pe.
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Flony Le, Habermann, A.N.

Towards the Construction of

Veriflable Software Systems

Proce 2nd Inte Confe. on Software Engineerlng,
13.-15.10.19764y San Francisco, Cal., 141-148

Habermann tries to overcome the monli tor drawbacks (mee
entry [Hoa74]) by the following change In the concept
of an abstract data type that represents shared datal
rather than providing mutual exclusion and
aynchronl za ti on primltl ves for every operation, a
"nath expression" defines the scheduling constraints
{short-term and medium-term) for the operations in
respect to each other and the state of the data. It
has to Incorporate mutual exclusion as well as all
synchroniza tion conditions. Thereby the calls to
operations are synchronized ra ther than thelr

executionse.

The concept is exemplified for the bounded buffer
and the producer—consumer problem. It is argaed that
the use of path expresaslons not only structures the
synchroniza tion on shared abstract data types, but
also facilitates t he proof of synchronlization

properties.

Habermann's abstract data type provides a more
flexible short-term scheduling scheme than the moni tor
but does not solve the problems with deadlocks 1in
access hierarchles. The impacts of the restrictions

on synchronization are debatable.

Floyd, R.We.

Assigning Meanlings to Programs

Procs of Symposia in Applied Mathematics 18,
American Mathematical Society, 1967, 19-32
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Gries, D.

An Illustration of Current Ideas on the Derivation

of Correctness Proofs and Correct Programs

IEFE Trans. on Soft. Enge SE-24 4 (Dec. 1976), 238-244

Griesy D.
An Exercise in Proving Parallel Programs Correct
Comme ACM 20' 12 lDeco 197?'. 921-930

A8 a non-trivial example for a verification with
Owicki's axlom system [OwGr76a, OwZr76b), Sries proves
the  correctness of the on—the-fly mgarbage collec tor
for a LISP implementation by Di jkstra. The concurrent

environment consists of the garbage collector process

‘and the communicating algoritha {(muta tor) the LISP

program has to usee.

Since the problem specifies a highly dynaasic set
of shared varlables, the general concurrent statement
(without resources) is used. The two processes
collector ‘and mutator are proven sequentially correct
and shown to be Interference-free. Termination need

not be verified: both processes run forever.

Note: The problem does not require synchroni zation,
but auxiliary variables have to be handled in

elementary ac tionse.

Gries, D.
The Multiple Assignment Statement
IEEE Transe on Soft. Enge SE-4, 2 ({Nar. 1978), 89-93

Gries defines axioms for multiple assignments to
simple varliablesy, to a single subscripted variable,
andy as a new contribution, to several subscripted

variables.

e
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The axjiom for the multiple assignment to simple
variables is
Kl.--o + XN
np " xl....,xn = el.-...en npn
le-v.u en
To satisfy these axlomatic semantics, all expressions

ei have to be evaluated before any assignment to some

xi is performed.

The axlom for the multiple assignment to a single
subsacripted variable in the array b is
b
"p " hir)] = e "PH
{(bir:e)

where the array (birte) is defined by

{bi;rze) (i) if i=r then e else bl1l)

For several redefini tions of subscripted variables I1n
by Grles defines the rule
b
"p " b[!" ]|..,b[l‘ﬂ] := el e sy N " pwM
{(birlielyseyrnien)
which Implicitly defines the order of assignaent,
because the ordering of the pairs riZei affects the
semantica. A more general rule that allows

unrestricted concurrency is mentioned but considered

impractical.

Example proofs are given for an al gorithm

maintaining a linked list and an array sort algorithme.

Gries makes the point that multiple assignments
are easler to comprehend than equivalent sequences of
simple ass ignments. But to understand and simplifty
the precondltion, the assertion characterizing the
multiple asslgnment, may require considerable
intuition and effort that may be exponential In the
number of updates per formed by the multiple

assignment,.
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Habermann, Ae.N.

Synchronization of Communicating Processes
Comme ACN 15, 3 (Mar. 1972), 171-176

Habermann defines the data atruc ture semaphore through

three counters:

nwi s) the number of attempted executions of waltis),
npl =) the number of successful executions of walt(s),

nals) the number of executions of signalis).
The semaphore invariant I1s defined as
np({s) = min{nwi{s) ,C[(s8 }tns(s))

where C[a] i8 the initial value of the semaphore s.
Ymplementations of the bounded buffer and a

producer—-consumer system are provens

Holty; ReCe; Grahamy GeSe; Lazowskay E.De; Scott, M.A.

Structured Concurrent Programming

Add ison~-Wesley Series In Computer Science,

1978, 262 p.

Hoarey, C.AsRe.
An Axiomatic Basis for Computer Programming

Comme ACM 124 10 (Oct. 1968), 576-580, S83

Hoa rey CaAe Re

Symposium on Semantlics of Algorithmic Lenguages,
Lec ture Notes in Mathematics 188, Engeler {Ed.),
Springer Verlag, 1971, 102-116
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Hoarey, C.A«R.

Towards a Theory of Parallel Programming

in "Operating Systems Techniques"™, Hoare and Perrott
(Edse)ly AaPolaCse Studies in Data Processing 9,
Academic Press, 1972, 61-71

Hoare lays the foundation for the formal treatment of
concurrent statements. The concurrent etatement and
the notion of a resource as the set of shared
variables associated with a concurrent statement are
introducede. The with-wvhen construct is sugpested for
the representation of critical sSections on shared

datas.

Hoa re imposes and formalizes semantic
restrictlons on his constructs for a clean handling of
shared data (only resource variables may for several
processes be sub jec t to change, and then only in
critical sections) and glves proof rules for the
concurrent and the wlith~vhen statement. Shared data
are characterized by an assertion that has to he
invariant at times when the data are not accessed

{compare [Hoa72b])e.

Hoarey, CeAs Re
Proof of Correctness of Data Representations
Acta Informatica 1 (1872), 271-281

Hoare extends his axiom system for program
ver lfication to prove abstract data types correct.

Fesential arguments:

a) A mapping has to provide the relationship between
the speclfications of the data type and its

implementation.

b) A correct Implementation of an abstract data type

is characterized by
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i) an lnvariant assertion that has to be valida
after initlalization between accesses of the
shared data,

i1) the fact that each operation defined on thes
data type has the effect of its specification.

Hoarey CeA+Re

Monitors: An Operating System Siruc turing Concept
Comm. ACM 17, 10 {(Oct. 1974), 549-557
Corrigendum: Comm. ACN 18, 2 {(Feb. 1975), 85

Hoare Iintroduces the monitor concept for a clean
access of shared variables in a concurrent
environment. The monltor is an abstract data type

that provides

i) mutual exclusive execution {short-term scheduling)
of its operations,

i1) primitivea fTor the synchronlization (medlum-term
schedul ing) of its accessorse that may be used 1iIn

any monitor operatione.

The correctness of monitors ls proven by Hoare's axiom

system for abatract data types [Hoa72b}:

A1) "true" initial statement L

{A2) ©wIw each monitor operation "I

where [ isa an assertion about the monltor data that is
invariant between accesses, plua the following

synchronlization axioms:

{A3) nyw condewal t “IAR{cond )"
{Ad4) "IAB(cond)" condesignal ngn

for each condition queue cond In the monitor, where
B{cond) ie the resumption condition for processes
delayed in conde. {(AD) and {(A4) ensure that the

monitor Iinvariant holda whenever the accessor of the
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monitor object changes by asynchronization.
Problems: Too stringent concurrency constraints.

i) No individual short-term scheduling scheme
for different types of operations {eege

read and wr ite).

ii) Monitor hierarchies introduce the danger of
deadlocke.
iii) Substructures of monltor data mast be

accessed mutually exclusive with respect to
each other {(i.e.; only one substructure may
be accessed at a time).

iv) The synchronizatlion axioms do not support

optimal schedulinge.

Hoarey, C.AeRe.

Parallel Programming: An Axlomatic Approach

Computer Lanzuages 1, 2 {(June 1875), 151-160

Hoare makes the firat attempt to include shared
abstract data types into the verification of parallel

processes. Processes are classifled as fol lows:

i) dis joint processes {(no shared data)
iil) competing processes {message passing)
i1i1) cooperating processes (shared data,
no synchronization)
iv) communicating processes (shared data,

synchronization)

Proof rules for concurrent execution and restricted

communication are given.
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Howard, JesH.

Proving Monitors
Comme ACN 19, 5 (May 1876), 273-279

Exemplification of history variables in monitor proofs
(see entries [Bri73,; OwGrT76bl) . fHoward argues that
history variabl ea are essential to capture the
relationship between Independent program modules, in

this case monltor operations.

For a support of assertions that guaran tee
optimal schedul ing, Foward strengthens Hoare's monl tor
Invariant [Hoa74] to imply non-validity of all

resumption conditions in the moni tor:
I = JAE => -~A(coad) for all queues coni

The new axioms are:

(A1') “truen inltial statement HIAE"
{A2') MJaAgE® each monitor operation "JAE"
(A3') "nJaAg" condewait "JaB(cond}®
(A4') "JaB(cond)" conde.signal "JAE"

where, for convenlence, B{cond) => —conde.empty, slnce
condesignal acts on the empty condition gueus like a
null statements The axiom system relies heavily on

the use of auxiliary variables.

Howardy JeHe

—— i e s =

Proce 2nd Inte Confe. on Sof tware Engineering,

13.-15, 10,1976y San Franclscoy, Cale., 47-52

Formulation of proof rules for five =signalling

conventions in monitors:
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1) signal and walt

il1) signal and urgent wait
1ii) signal and continue
iv) automatic signalling

v} signal and return

(1) to (iv) are shown to be eguivalent iIn the sSense
that they can express the same class of
synchroniza tion problemse. {v), the policy of

Concurrent Pascal [Bri75)], is strlctly weaker.

Howard introduces a speclial type of moni tor
variable that plays the role of a hidden proof
variable and internal ly keeps track of the length of a
condi tion queues. The handling of hidden variables Iin
proof outlines is safer and easier than that of
auxiliary variables.

Hoa 9 CeAeRe; Wirth, N.

re
Axiomatic Definition of the

-

-
.
2

gramming Language Pascal
Acta Informatica 2 {(1873), 335-35S5

Although an axiomatic definition of a particular
language, this paper is a good reference for

correctness proofs in many algorithmic languageS.

The semantics of the common language features
(assignment, control struc tures, etces) are concise
and gZenerale. Each of them may apply for other

languages, even with slightly different semantics.

The axioms provided here can also guide in the
formulation of different axlioms for the language of

the usere.



- 04 -

[ JaSt77] Jammel; AeJes; Stieglery, HeGe
Managers vs. Monltors

Informa tlon Processing 77, Proce of the
YFIP Congressy, 8:.~12.8.77, Toronto, 827-830

[ KaNa75) Katz, SeMe; Nanna, Z.

A Closer Look at Termination
Acta Informatica 5 (1875}, 333-352

[Kal76] ‘81’81‘, ReMe
Formal Verification of Parallel Prograas

Comme ACN 19, 7 {(July 1976), 371-384

{Lam77] Lamport, L.

IEEE Transe on Softe. Enge SE~3, 2 (Mar. 1977), 125-143

[Len77) Lengauery Ce

Strukturierter Betriebsasystementwurft

.

HNT-B 236, Hahn-Mel tner~Institut fir
Eernforschung Berlin GabH, July 1977, 73 pe.

[Lip7S] Liptony; RaJe
Reduction: A Method of Proving
Properties of Parallel Programs
Commas ACM 18y 12 {(Dec. 1875}, 717-721

{Lis77]) Lister, A.
The Problem of Nested Nonitor Calls

ACM Operating Syatems Review 11, 3 (SJuly 1977), 5-7
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I.Liskovy, BeHe; Zilles, SeN.

Specification Technlgues for Data Abstractions

TEEE Trans. on Soft. Enge SE-1, 1 (Mar. 1875}, 7-19

The purpose of formal specifications for data
abstractions is to describe the abstract object in a
conc ise, complete and unambiguous manner by a set of
axlomatic assertions that can be presumed in proofs of
programs which use the data abstractionse. That the
presumptions are met by the implementation has to be
shown in the correctness proof of the module

representing the data abstraction.

The advantages of formal specifications are
stressed: as a typical "problem—oriented™ concept it
is helpful In the des ign, implementation, verification
and documentation of data abstractions and their

accessorse.

The characteristics of speclfications of data

abstractions are i1llustrated at a stack specificatione.
Different speclification technliques are assessed:

i) Use of a flxed description disclipline

ii) Use of an arbitrary description discipline
1il) Use of a state machine model

iv) Use of axiomatic descriptions

v) Use of algebraic descriptions
The assessment criteria arel

i) Formality {(manthematically sound notation)
ii) Constructibility (support of design process)
iii) Comprehensiblity (documentary effect)

iv) Minimality {(conciseness and completeness)

v) Appliciability (for a large class of concepts)
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Manna, Ze.
Mathematical Theory of Computation

e Sl

McGra.r-Hlll, 1974' 448 Pe

Manna, Ze.; Waldinger, R.

Ihe Logic of Computer Programming
IFFE Trans. on Soft. Enge SE-4y, 3 (May 1978), 199-229

The paper glives an overview of technigues for the
development and verification of segquential algorithmse.
As example =serve several implementations of the

#gcd—~func tione Four aspects are investlgated:

1) partial correctness
ii) termina tion
iil) program transformation and optimization

iv) program development

The paper contains an extensive bibliography and hints

for further research.

Owlickliy SeSe; Grieay D.
An Axliomatic Proof Technigue for Parallel Programs I

Acta Informatlca 6 (1976), 319-340

Semantic restrictions for the concurrent statement are
formula ted that allow communication and
synchronlzation between concurrent processes without
specification of shared variables In =a resource
{OwGr76bl}. This language 18 more powerful than
Hoare's [Hoa72al. Communication is controlled by way
of an await statement which defines what Owickl will
later call an "elementary action™ [Owli77b]. {fere it

i conditional, Leeay may include a synchronization

conditione. Syn tax?

For this construct, non—interference is harder to
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express than for the concurrent statement with
resource [Hoa72a, Ousr?Gb]. A s8set of processes is
interference~free iff there is no statement in anyone
of them that interferes with the proof of the others,
leeay whose execution changes assertlions In the proof
ot some other process in the set. The interference
argument has also to cover termination, which can be

shown with Owicki's axiom system [Ow3r76b].

Owlcki argues that the comparison of process

proofs rather than thelir execution gareatly clarifies

the verificatlon of concurrent algorithmse. Her
standard proof policy |1is to prove the partial
correctness of each concurrent proce ss, verify

non—interference, and make a termination argument for

the concurrent statement.

Owickiy SeS5e¢; Gries, D.

Verifying Properties of Parallel Programs

An Axlomatic Approach

Comme ACM 18, 5 (May 1976}, 279-285

Hoare's axiom system for the concurrent statement with
resource [Hoa72a)l is relaxed concerning the use of
var iables in assertions and extended by an axiom that

enables the use of auxiliary variables.

An auxiliary variable Is defined as a variable x
that appears in the program only in ass ignment
statement of the form x:=Ey, where the expression E may
contain any auxiliary or program variable. The axiom
asta tes that an assertion which holds for the program
including auxiliary variables and does not rafer to
the latter, is also valid for the program without

auxillary variables.

Mutual exclusion and blocking in respes

termination of concurrent statements can be proven by
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looking at speclfic expressions of assertions In the
partial correctness proofs of the sequential actions
in the concurrent statement and the resource
invariant,. Owicki argues that a general method of
proving concurrent algorithms correct has been found,
whose appliciability, however, depends on the
synchroniza tion faclilli ties in the used programming

languages

Owickly, S«5.

Specifications and Proofs for Abstract

Data Types in Concurreat Programs

Teche Repe 133, Stanford Electronics Laboratories,
Apr . lg??, 21 Pe

Owicki extends the verification of monitors to
incorporate the processes that access them. As link
between the caller and the moni tor, for verification
purpases the concept of a private variable is

invented.

A private variable is defined in the monitor, but
is represented by a private incarnation for every
caller of the wmonitor object. Auxiliary private
varlables rela te not only the callers to the monl tor
but also to each other. This enables statements about
the monitor's schedullng propertles if one does not
want to use the restricted monitor proof rules of

[HO'?EI&' How76h ]a

The monitor is incorpora ted in the concurrent

statement as replacement of the resource declaration.
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Owickiy S5

Verifying Concurrent Programs with Shared Data Classes
Teche Repe 147, Stanford Electronics Laboratories,
Augs 1977, 20 pe

Realizing the monitor problems (see entry [Hoa74]),
Owicki defines a general shared class which allows the
programmer to specify the exclusion mode between any
twno statements in its operations. The sync hronizatlion

tool 18 the semaphoree.

To simplify verification, the format of shared
clase operations is restricted to an enter; operate;
exit structure, where the atomlc (Owicki calls them
elementary) actions enter and exit only access class
variables that aid synchronization (8o-called control
variables). The operate part only accesses variables
that characterize the data object as It is viewved from

the callers [so-called data variables).

Proof rules are given which include termination,
interference and calls between different class objects
(access hierarchier). Interference, not part of
moni tor proofs because of the general exclusion in
monitors, turns out to be a problematlic aspacte.
Practical hints for a2 safe non—-interference argument
and sophisticated rules for the calling environment
are glvene Fxamples inc lude the resource alloca tor

and readers & wri ters.

Parnas, DeLe.

On the Criteria Used in Decomposing

Systems into Modules

[ V-1
<
)
2]
.

Comme ACM 15, 1 1972), 1053-1058
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Parnasy DeLe.
On a "Buzzword?”: Hierarchical Structure

Information Processing 74, No. 2 (Software), Proce of

the IFIP Congress, 5.-10.8.74, Stockholm, 336-339

Parnas, D.L.

——— e e — i e e e et

TEEE Transe. on Softe Enge SE-2, 1 {Mar. 1976), 1-9

berschatzy Ae; Kieburtz, R.B.; Bernstein, A«J.

1
Extending Concurrent Pascal to

Allow Dynamic Resgurce Management

TEEE Trans. on Soft. Enge. SE~-3, 3 (May 1877), 210-217

An abstract data type for the dynamic allocation of
resources, the managery, 1is proposed. The approach is
implemented in the environment of Concurrent Pascal

{Bri75]).

The idea is to break up the static access scheme
of the abstract data type language in a safe and
structured manners. Processes state an access right to
the manager which incorporates the pool of allocatablile
resources., During program execution they may reguest
resources from the pool, will eventually get a
temporary access right (capabili ty) granted and

release it after use.

The elements in the pool are indistinguishable
outslide the manager, unless ildentifications are passed
as parameter of the manager procedures. For the
management of private data objects, two standard
operations, bind and release, to be used Inside the

manager prevent multiple allocatione.
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The manager is a solution to the monitor hierarchy
problem (see entry [Hoa74]) for two-level hierarchies.

Multi-level hierarchies remain problema tice.
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