A Methodology for Programming
with Concurrency

by
Christian Lengauer
Technical Report CSRG-142

April 1082

The Computer Systems Research Group (CSRG) is an interdisciplinary group
formed to conduct research and development relevant to computer systems and
their applicatior. It is jointly administered by the Department of Electrical
Engineering and the Department of Computer Science of the University of
Toronto, and is supported in part by the Natural Sciences and Engineering Coun-
¢il of Canada.

® Copyright 1982 by Christian Lengauer and the Cornputer Systems Research
Group, University of Toronto.

Abstract

In this methodology, programming problems which can be specified by an
input/output assertion pair are solved in two steps:

(1) Refinement of a correct program that can be implemented sequentially.

{2) Declaration of program properties, "semantic relations”, that allow relaxa-
Lions in Lthe sequencing of the refinement’s operations {(e.g., concurrency).

Formal properties of refinements comprise semantics (input/output
characteristics) and (sequential) execution time. Declarations of semantic rela-
tions preserve the semantics but may improve the execution time of a

refinement. The consequences are:
(a) The concurrency in a program is deduced from its formal semantics.
Semantic correctness is not based vn concurrency bul precedes it.

(b) Concurrency is a property not of programs but of executions. Programs do
not contain concurrent commands, only suggestions (declarations) of con-
currency.

{c) The declaration of too much concurrency is impossible. Programs do not
contain primitives for synchronization or mutual exclusion.

Acknowledgements

It is not unusual to begin a list of acknowledgements for a Ph.D. with thanks
to the supervisor. However, in my case, the person to thank, Eric Hehner,

deserves a very special mention:

Rick provided the idea underlying the methodology presented here (the use
of declarations te express correcl concurrency) while I was still thinking in trad-
itional ways, and in the initial phase of my research he helped me gain
confidence in the approach. Without this initial push I would likely not have
undertaken this work. Rick’s interest and support never wavered. He even
invited me to accompany him on his sabbatical leave to Burope - another crucial

factor to my success. I feel privileged to have had Rick as supervisor.

The other members of my advisory committee, Allan Borodin, Scott Gra-
ham, and Richard Holt also influenced considerably the direction of my
research. Last but not least, my external examiner, C.A.R. Hoare, put the final
touches on the thesis.

My sincere thanks to all of them; I am leaving this Department of Computer
Science with the belief that I have received the best of graduate educations.

Discussions with several other people have helped increase my insight into
the properties of my methodology. 1 would like to stress the contributions of
Like Best, David Gries, llugh Redelmeier, and Michel Sintzoff.

I gratefully acknowledge financial support by the Social Sciences and
Humanities Research Council of Canada and the World University Service of

Canada.

One cannot live on work alone. I was fortunate to find in Toronto many nice
people to relax and have fun with. In particular, | would like to thank Don, Ben,
Ignacio, lvor, Sam, Mary Anne & Sami, Pierre & Danielle, and Larry & Sherry for
their continuing company and friendship which is as much a reward for my stay

in Toronto as my degree.

Finally, there are all those who stayed behind: my family back home. Until 1
am a parent of grown children I shall not comprehend what it takes to see them
leave and seek their fortunes on another continent. Wherever 1 was, my parents
and my brother have always been close to me, and | know their love and support

will never fail. To them 1 dedicate this thesis.

To my parents and my brother

Table of Contents

Introduction

1.1 Concepts of Concurrent Programs
1.2 Divising a Methodology

1.3 Thesis Contribution

1.4 Notation

1.5 Thesis Outline

Careful Prograrnming with Concurrency: An Informal Presentation
2.1 Refinement
2.2 Concurrency
2.2.1 Semantic Relations
2.2.2 Semantic Declarations
2.3 Example: Sorting

Problem Specification

3.1 Semantic Specificalion
3.2 Time Specification

3.3 Example: Sorting

Program Development (The Refinement Proof System)
4.1 Timed Assertions
4.2 Formal Refincment
4.2.1 Language Rules
4.2.2 Refinement Rules
4.3 Formal Treatment of Concurrency
4.3.1 Semantic Relations
4.3.2 Semantic Declarations
4.4 Example: Sorting

The Computations of a Program (The Trace Proof System)
b.1 Trace Sets

5.2 Semantic Transformation of Trace Sets

5.3 Program-Specific Semantic Declarations

5.4 Fxample: Sorting

5.5 Operational Models for Traces

[+ I

«©

10
11
13
15

16

4
1

18
17

19
21
23
23
30
30
31
37
38

42
42
48
85
56
60

Implementation

8.1 Trace Sets

8.2 Semantic Transformation of Trace Sets
8.2.1 Before Run Time
B8.2.2 At Run Time

6.3 lixample: Sorting {Networks)

6.4 Trace Machines

More Examples

7.1 The Sieve of Eratosthenes
7.2 The Dining Philosophers
7.3 Producing and Consuming

Conclusions

8.1 Summary

8.2 Related Research

8.3 Further Research

8.4 On the Purpose of Programming Methodologies

References

Appendix: Formal Treatment of Examples
A.1 The Factorial Program

A.2 The Sieve of Eratosthenes

A.3 The Dining Philosophers

82
63
65
65
68
71
72

76
76
78
81

83
83
86
87
89

92

95
95
g6
g7

1 Introduction

1.1 Concepts of Concurrent Programs

The last decade has brought considerable advances in the field of program-
ming methodology, in general, and in the understanding of concurrency, in par-

ticular.

The popular technique for programming concurrency is to define a set of
concurrent units, processes, and to control their interaction by some means of
synchronization. The early language constructs proposed in the sixties, fork and
join for processes [ConB3] and semaphores for synchronization [Dije8], were
intuitive but difficult to formalize. However, the invention of formal methods for
the specification of program semantics [HoaB9] increased our understanding

and ability to handle process programs.

We commence the program development by specifying, in a concurrent

command, a set of processes, 57,52,...,5n,
cobegin S7 /. S2 //...// Sn coend

which are sequential within themselves but are executed in concurrence with
respect to each other. The double slashes (/) signify concurrent execution. To
prevent concurrency where it may lead to incorrect program behaviours, we add

some construct for conditional delay. For instance,
await <B -» SL >

appearing in process Si suspends the execution of Si until logical condition B is
satisfied. Typically, B will be generated by some concurrent process Sj, j#i.
Upon validation of B, the execution of Si proceeds with statement list SL. While
SI, is being executed, any concurrent operation that might causc correcctness
problems (for example, invalidate B again) is suspended. The technique of fore-

ing activities of different concurrent processes inlo a secguence in order to

-2 -

preserve correctness is called mufual exclusion. To protect statement S by

mutual exclusion, it is framed with angle brackets:
<S5 >

These constructs for programming with processes (the concurrent com-
mand, conditional delay, and mutual exclusion) can be formally defined
[OwGr768a, Lam77], and we can convince ourselves of the correctness of a pro-

cess program by

(a) first verifying all processes separately as if they were isolated sequential

programs, and then
(b) proving the correctness of their interactions in concurrent execution.

A good example is the proof of a concurrent garbage collector [Gri77].

There are, of course, problems and the one we are particularly concerned
with in this thesis is the apparent lack of guidelines or critgria to aid the pro-
gram design. A proof system alone does not necessarily provide support for the
development of correct programs. We might continually produce code and dis-
cover that it is incorrect. What we need is a methodology, a programming cal-
culus that merges program design and verification in order to obtain correct

and, maybe, even particularly suitable programs.

Let us explain why the approach to concurrency just described does not

serve as a methedology for program developmenl:

There are no guidelines for the choice of processes. But even if there were,
dividing a program into processes is a bold first step, because it usually defines
too much concurrency, which then has to be properly pruned with conditional
delays and mutual exclusion. Failure to undo all incorrect concurrency leaves
one with an incorrect program. Unfortunately, parallel correctness can only be
established after the development of the processes involved has been com-
pleted. Thus the development of processes and the proof of their correct
cooperation are strictly separated. One has to understand all process interac-

tions in their entirety in order to arrive at a correct program.

-3 -

Our goal is a programming methodology that includes aspects of con-
currency. In addition to a formally defined language in which one can communi-
cale programs to the computer, we aim at methods for a correct and suitable
stepwise development of such programs. In this methodology, concurrency will
be a property nol of a program bul of an execution. If the semanlic properties of
the program permit concurrency, an implementation should be able to make
use of it to whatever extent is possible and practical. But the semnantics will
determine the concurrency, not vice versa. Then the correctness of the program
does not depend on our understanding of concurrency. A conseguence of this
view is that our programming language will not contain primitives for sequenc-
ing, concurrency, or synchronization. These are aspecls of executions, not of

the program itself.

We will develop and prove concurrency in steps. Each step will increase the
concurrency of the program’s executions by observing local properties of some
program components. A global understanding of the concurrency permitted by

the program is notl necessary.
~

We will be result-oriented, i.e., only interested in results of programs and
the speed with which these resulls can be oblained, bul not in cerlain program
behaviours. Qur programs will suggest suitable computations rather than
expressing a sel of given compulations. In contrast, process programs are

behaviour-oriented, i.e., designed with specific computations in mind.

A much-dreaded sign of the complications parallelism introduces into pro-
grams is that the complexity of proofs explodes with increasing concurrency.
This is blamed on Lhe necessily Lo argue consistency of shared data. To prevent
such an argument, one can either discipline the use of shared variables [Hoa74,
OwGr76b], but that restricts also the potential of concurrency. Or one can elim-
inate shared variables altogelher [GCW79, Hoa78b], but may in proofs still have
to deal with shared auxiliary variables [AFRB0, LeGr81]. Awuziliary variables are
variables added Lo a program in order to obtain a proof [OwGr78a, OwGr76b].
Our methodology uses shared variables, and sublle concurrency may require a

complex proof. But proofs do not contain auxiliary variables.

There are also the obstacles of deadlock and starvation. Deadlock, the
situation where the concurrent execution cannot proceed, can occur in ter-
minating as well as non-terminating applications. Criteria for the prevention or
avoidance of deadlock have been investigated [Holt72, Lam?77, OwGr78a,
OwGr76b]. For terminating programs, total correclness implies absence of
deadlock. Starvation, the situation where some action concurrent with others
can in theory be activated but actually never is, can only occur in non-
terminating programs. To avoid starvation one often appeals to a fair scheduler.
We shall show that, under certain very simple restrictions, the generalization
from terminating to non-terminating programs does not have to pose additional
concurrcncy problems. All programs derived with our methodology will be
implicitly free from deadlock and starvation without recourse to an outside

authority like a scheduler.

1.2 Devising a Methodology

Qur foremost interest is in the result of a program’s execution, and in the
constraints under which this result can be achieved. In this thesis, we do not

consider additional constraints on the program’s behaviour.

Consequently, we want to solve programming problems that can be formally
specified by an input/output assertion pair. Because we are looking for resuits,
we do not permit programs to generate the false output assertion. This restricts
the range of specifiability to finite problems, i.e., problems that have terminat-
ing solutions (the false output assertion indicates non-termination). An infinite
problem must be expressed by a specifiable finite segment whose terminating

solution can be applied repeatedly.

Solutions cannot contain event-driven activities but might be part of a sys-
tem with real-time constraints. In such a case we may, in addition, specify exe-

cution time requirements.

The program development consists of two phases:

(1) Formal refinement of a totally correct program that can be implemented

sequentially.

We will use methods that can, if used correctly, only produce refinements
whose semantics satisfy the problem specification. The proof of a refinement
will also yield a first estimate of its execution time, namely a measure for its

sequential execution.

{2) Declaralion of program properties, so-called semantic relations, that allow
relaxations in the sequencing of the refinement's operations (e.g., con-

currency).

We will define semantic relations between refinement components and pro-
vide ruies for their declaration. Semantic declarations will preserve the seman-
tics of the refinement but may suggest faster executions, e.g., by permitting

concurrency.

Semantic declarations are a mechanism for the stepwise development of
concurrency. They only require a local understanding of the refinement com-
ponents appearing in the declared relation. Remember that we are interested in
outputs, not in program behaviours. Accordingly, we view concurrency as a tool
for satisfying execulion time requirements, not for obtaining certain program

behavicurs.

1.3 Thesis Contribution

There are two different approaches to programming with concurrency:
(a) consider a concurrent world in which sequentiality is the special case,
(b) consider a sequential world in which concurrency is the special case.

We take the latter view: we provide a sequential setting (refinements) and
add concurrency (semantic declarations). The refinement calculus is a
conglomerate of ideas and concepts previously published, tailored to our needs.

The main contribution of this thesis is the way in which coneurrency in

refinements is expressed and treated.

1.4 Notation

We use the logical operations A (and), V (or), ~ (not), > (implication), =

(equivalence), and quantifiers A (for alt i) and V/ (there exists i). N denotes the
T T

natural numbers, R the real numbers.

Program properties are described in the weakest precondition calculus.
The weakest precondition for statement S with respect to postcondition R
(introduced as wp(S,R) in [Dij75, Dij76]) is here denoted S{R}. We sometimes
index statements, e.g., Singex OF assertions, e.g., Ringey. The subscripted weakest

precondition is written S {R }ingex. Carefully distinguish S {R Yingex» S {Rindex}, and

Sindex!R g !

R? is predicate R with every free occurrence of variable z replaced by

. verr &y . s
expression £. R;’ Fﬂ is R with the free occurrences of all r; simultaneously
* Yooy

replaced by the corresponding £y.

We will treat an array of variables as a (partial) function. Given a function
f. (f:i:v) is a function as f, except that it maps i onv. (f:i17,...in:v1,...,un) is
as f, except that the images of all %, are simultaneously redefined as the

corresponding vi. (For more details see [Gri78, GrLeB0].)

SLg. is statement list SL with every occurrence of statement S replaced by

gtatement S'.

1.5 Thesis Outline

Chapter 2 gives an informal introduction to our methodology and presents a

first programming example.

-7 -

Chapters 3 to 6 build the core of the thesis. They deal with the formal
details of the methedology and its programming language RL (for Refinement
Fanguage), and demonstrate themm on the same programming example. A
reader who wants to gain only a quick impression of our research may skip these

four chapters and will still understand most of chapters 7 and 8.

Chapter 3 introduces the formal specification of the programming problems
the methodology aims to solve. RL programs have to exhibit formal properties
which meet the specification. There are two aspects to these properties: seman-

tics (input/output characteristics) and execution time.

Chapter 4 introduces a preliminary proof system for the development of RL
programs, the refinement proof system. It is powerful enough to aid the pro-
grammer in the discovery of a solution to the semantic part of the problem

specification. The refinement proof system describes

(1) the properties of a refinement, namely its semantics and (sequential) exe-

cution time, and

(2) semantic properties of parts of the refinement, properties that will suggest
computations whose semantics arc thosc of the refinement but whose exe-

cution times may be different.

The refinement proof system deals with refinements, not with computa-
tions. It can provide an execution time for refinements, but not for computa-

tions.

If the refinement's (sequential) execution time is not sufficient, a more
detailed proof system, the trace proof system, has to be employed. This is the
reaim of Chapter 5. The trace proof system describes computations, so-called
"traces”, as opposed to programs, and serves to verify that there are traces that

have the refinement’s semantics but arc sufficiently fast.

RL programs (described by the refinement proof system) provide algo-
rithmic options. Traces (described by the lrace proof system) reflect algo-
rithmic decisions.

Chapter 6 comments on the implementation of RL programs. The central

problem is the selection of a satisfactory trace.

~8 -

The remaining chapters are again less formal.

Chapter 7 presents a collection of further examples. Each makes some
point about the methodology. For the readers of chapters 3 to 8, a formal treat-

ment is provided in Appendix A.

Finally, Chapter 8 reviews the flavour of our methodology and relates it to
previous work in the area, describes directions for further research, and adds

some general comments on the use of programming methodologies.

2 Careful Programming with Concurrency:
An Informal Presentation

This chapter gives an informal intreduction te the methodology and

presents a first programming example.

2.1 Refinement

The first step of the program development is the derivation of a refinement

from the input/output assertion pair that specifies the problem.

We use a special language, RL (Refinement Language), for this purpose. RL
is closely related to the refinement language of [Heh?79]. Its central feature is a
primitive procedure concept, which can be implemented efficiently enocugh to be

used extensively as a refinement mechanism.

Statements in RL can either be refined, or basic {not refined). A refined
statement is an invented name, say 5. Its meaning is conveyed by a refinement,
S: 8L, relating the name S to a refinement body SL. Refinements may be
"indexed", e.g., Sj: SL, where index j is a variable referenced in S/. An indexis
a primitive form of value parameter: j may not be changed by SL.

In practice, indices will have to be identified by an index declaration in the
refinement, e.g., S (j: int): SL, where SL refers to j. But, for the sake of brev-
ity, RL does not contain a mechanism for data declarations. We will identify

indices as parts of the refinement name that appear in its body.

There are four options of refinement; we call them refinement rules: con-
tinuance, replacement, divide (and conguer), and case analysis. Each
refinement rule employs a different programming feature: null, assignment,
statement composition, or alternation. Divide (and conquer) and case analysis
employ a fifth programming feature: the refinement call. Null and assignment

are the basic (not refined) statements of RL.

- 10 -

{(a) continuance: §: skip (null)

skip does nothing at all.

{b) replacement: S: z:=F {assignment)

x:=F gives variable x the value of expression E.

{c) divide-in-2: S: §1;82 {composition)
S1;S52 applies statement S2 to the results of staternent S7.
A divide-in-n comprises n—1 divide-in-2 in one refinement step. A spe-

n
cial case of divide-in-n is the for loop. We have a special notation: i;‘.S"i

stands for S7:...;8n.t

(d) caseanalysis: S: ifB71-»S71]..[Bn-Snfi {alternation)

The construct Bi-Si is called a guarded command [Dij75, Dij76].
Logical expression Hi is guard for alternative 8i. The alternative whose
guard evaluates to true is selected. We restrict case analysis to be deter-

ministic: no two guards of an alternation may be true at Lthe same Llime.

We write if Blhen S fi for if 3~»S | ~H-skipfi.

Note the absence of a popular language feature: indefinite repetition. Ttera-
tive algorithms are formulated as recursive refinements or, in simple cases, by
for-composition. While our preference of recursion over repetition is not essen-

tial for the methodology, the concept of refinement is.

R.2 Concurrency

R

The second step of Lhe programn development is the declaration of semantic
relations between parts of the refinement. Semantic relations may allow relaxa-

tions in the sequencing of the refinement’'s operations. The purpose of their

t The loop bounds must be constants in the loop scope. 1 is a constant for every step Si
and local to the loop.

-11-
declaration is to speed up the refinement's execution, e.g., by concurrency.

It is important to realize that, while this step may improve the execution
time of a solution, it is not going to change or add to its semantics. Semantic
declarations only make certain semantlic properties, which are already laid

down in the refinement, more apparenl.

2.2.1 Semantic Relations

Semantic relations between parts of a refinement indicate possible relaxa-

tions in sequencing such that its semantics are preserved.

We introduce one unary and four binary relations for refinement com-
ponents. The unary relation is idempotence; the binary relations are commuta-
tivity, full commutativity, non-interference, and independence. Refinement
compenents are either statements or guards. Components in general are
denoted with the letter C , statements in particular with S, and guards with 5.
This section gives only an informal characterization of semantic relations. The

precise definitions are in Sect. 4.3.1.

(a) idempotence
!B always
IS ifl S;S has the same effect as S

An idempotent component C may be applied consecutively any

number of times.

(b) cormmutativity
Bl & B2 always
S& B iff S leaves B invariant
St &S2 i S7:;82 has the same effect as S2;57

Commutative components C7 and €2 may be applied in any order: C2

following C7, or vice versa.

- 12 -

{c) full commutativity
C1xC2 iffl = ¢7&c2 for all basic components ¢f in C7 and ¢2 in 2

Full commutativity is commutativity rippled down the refinement
structure. The execution of fully commutative components C7 and €2 may
be interleaved. Only their basic operatioﬁs must be indivisible.

(d) non-interference
Ct<pC2 iff every basic component of C7 or C2 gets no more than one
view or update of the set of data shared by C7 and C2.

The non-interference of components C7 and €2 lifls the mulual exclu-
sions, i.e., permits the divisibility of their basic components (assignment
and guard evaluation).

(e) independence
Ccrilce iff C1xC2 A C1+pC2

Independence combines full commutativity with non-interference.
Independent components €7 and C2 may be executed in parallel (on
machines with indivisible memory reference).

Examples:

(1) S:z:=3, !8

(2) S:z:=y, B:z=3, ~(S&B), S<+»B

(3) St:y:=z+1, S2:x:=3, ~(S7&S2), S1+» 852

(4) S:t:=p:p:=q:iq:=t, B:p\Vg. S&B, ~(SxB), ~(S<»5)

() S7:t:=i-liii=t;t:=i+lii=t, S2:j:=1, S1&S2, ~(51%52), St 82
(8) St:zi=z+a, S2:z:=zx+b, STxS2, ~(S51<>52)

() S:ec:=F, B:aAb, S|IB

(8) St1:u=f(w), S2:v:i=g({w), S71]|S2

Most independence relations will be evident from the following

=13 -

Independence Theorem:

Two components €7 and €2 of which neither changes any variables

appearing in both can be declared independent (proof in Sect. 4.3.1).

All independence relations declared in programming examples of this thesis

are applications of the independence theorem.

2.2.2 Semantic Declarations

A semantic relation is declared by stating the relation either after a
refinement, or within a refinement by replacing the composition operator ";"
with the appropriate relational operator (in-line declaration). Relational opera-
tors bind stronger than ";". We will only declare idempotence, commutativity,

and independence.

Relations that hold always, such as between guards, do not have to be
declared. To this category belong also relations involving skip, and relations
between S and ~A if already declared between S and B (see Sect. 4.3.1). There-
fore the hidden guarded command ~H -+skip in ifH thenS fi can be
neglected for semantic declarations. for loop index calculations can also be

ignored.
A set {(or complex) declaration, e.g.
{57,523 1| {71,723
comprises declarations between all set members, in this case,
St1iiT1, St1liTe, S2|iT1, S2||T2

A predicate qualifying the range of refinement index values may be used to

define the sets involved. For example,

Apred(ij): SiliSj
iJ

-14 -

stands for the set of declarations Si|{Sj such that i and j satisfy pred(ij). A
set index in a complex declaration is passed on to all set members. Assume, for
instance, the independence of turn signals of different cars in a traffic system: if
we give the operations of the left and right turn signals of car i the names left;

and 7ighi;, we will declare
{\j i#j: {leftright}; || {left,right 1,

Semantic dcelarations define additional computations for the refinement
they augment. Computations may contain statements and guards with —> as
sequencing operator. We will at this point say no more about the structure of
computations and only give a vague idea of the effect of semantic declarations
(for details see Chap. 5):

Refinement § is characterized by a set of sequential computations. The
semantic declarations extend Lhis sel as follows: Lake some computation for S,

then

(a) 1c adds computations with instances C —>C replaced by C,

and vice versa,

(b) C71&C2 adds computations with instances C7 = €2 or €2 —>C1
swapped,

(¢) C1||C2 adds computations with instances C7 ->(C2 or €2 —>C1
replaced by C7 parallel with C2.

Where further computations can be obtained, the same declarations extend

the computation set thus derived, etc. (transitive closure).

Note that semantic relations, although valid, may not be exploitable (i.e.,
may not generate new computations) for the refinement they are declared for.t
The declaralion and exploitation of semantic declarations are separate con-
cerns. We advise to first declare all sermmantic relations that can be proved, and

only in a later step worry about their exploitability.

¥ Example: A conventional for loop implementation with inoremental step calculation will
render semantic relations between loop steps unexploitable. Ta exploit them, an index value
has to be assigned to every step before any step is executed.

-15-

2.3 Example: Sorting

The problem is to sort an array a[0..n] of numbers into ascending order in

time O(n). Our refinement is an insertion sort adapted from [Knulil]:

n
sort n: ; S
i=1
S0: skip
(i>0) S esi; Si—1
cs i: ifa[i-1]>ali] then swap i fi

swap i: tlili=ali=~1]; ali-1]i=ali]; ali]:=¢t[i]

/_\jj#i—l,'i,i-i-l: csi |l cs j
i

Note that for {i—j|> 1, c¢s < and cs j are disjoint: they do not share any vari-
ables. Hence they fulfil the premise of the independence theorem and can be

declared independent.

To declare semantic relations for some refinement, one does not need to
understand the refinement as a whole. A local understanding of the components
appearing in the declared relation is sufficient. Most declarations come easily to

mind and have a simple proof.

We will not investigate the question of which relations might be automati-
cally declarable, although it is & very interesting one. For the purpose of this
thesis, it suffices to assume that the programmer declares every semantic rela-
tion; however, we permit the omission of relations that hold always {see

Sect. 2.2.2).

-18 -

3 Problem Specification

3.1 Semantic Specification

The programming methodology presented here can be applied to problems
that are described by an assertion pair, what we call a semantic specification.
Tet us pick a problem and agree on a name for it, say, S. The semantic
specification of problem S consists of an input assertion, S, pre, and an output

assertion, 8. post:

S. pre: P
S post:t R

or, if it is clear that S is the problem referred to,
(P.R)

where P and R are predicates. P describes the problem's input states and is
called the inputl asseriion, [describes the problem's output states and is called
the output assertion of 5. The problem name S can be viewed as a statement

that has to be refined such as to transform P into R.

We aim for results, and therefore do not permit the false output assertion.
This restricts the range of specifiability to finite problems, those which have ter-
minating solutions (the false output assertion indicates non-termination). An
infinite problem must be expressed by a specifiable finite segment whose ter-

minating solulion can be applied repeatedly.

3.2 Time Specification

The intention is to malke solutions to problem & efficient. In general, noth-
ing special has to be specified to express this. But for certain problems an arbi-

trary attempt may not be good enough. Then the semantic specification is

- 17 -

augmented by a performance specification. We deal only with one aspect of
performance: execution time. Other important factors are, for instance, space
and number of processors. (Ideally, the sole criterion should be cost, which usu-

ally involves all of the above and more.)

Let us assume that result S. post is only useful if obtained wilhin a certain
time bound. Then a solution to & can only be considered correct if its execution
adheres to this time bound. Te rcquest a time bound, we add a fime

specification to the semantic specification of problem S:

S.pre: P
S.post: R or (P.R,t)
S. time: ¢

t is an integer function ¢ (Zg) of the problem’s inputs #g (¢ is the vector of vari-
ables that appear in the input assertion S. pre) and defines, for every input, a
time bound for the execution of solutions to S. { may also be an "order of”

expression.

In order to verify a time bound, the execution time of the operations per-
formed by the used computer hardware has to be known. In this thesis it will be
described by a hardware-dependent function, A, which maps every hardware
operation, say, op on an intcger time 4&g,. For instance, A= denotes the execu-
tion time of an assignment. By predefining A, a time specification may be linked
to a special machine, or a class of machines. A requirement that gives weights to
operations can be expressed this way. Such requirements are general practice

in the analysis of the time complexity of algorithms.

3.3 Example: Sorting

The problem of sorting an array a[0..n] of numbers intc ascending order in

0(n) time can be specified as follows:

- 18 -

sort n. pre: A afi]eR
sort n. post: /'\(051.<; sn D a [1‘.]50: [3]) A perm{a.a)
sort n. time: O(n)

where perm(a.,c) 13 the predicate that is true if the result.ms array a'is a per-

m.ut.at.mn of its ongme.i value g, and false otherwise.

-19-

4 Program Development (The Refinement Proof System)

In this chapter we introduce a preliminary proof system for the develop-
ment of RL programs, the refinement proof system. It is powerful enough to aid
the programmer in the discovery of a sclution to the semantic part of the prob-

lem specification. The refinement proof system describes

(1) the properties of a refinement, namely its semantics and (sequential) exe-

cution time, and

(2) semantic properties of parts of the refinement, properties that will suggest
computations whose semantics are those of the refinement but whose exe-

cution times may be difierent.

The refinement proof system deals with refinements, not with computa-
tions. It can provide an execution time for refinements, but not for computa-

tions.

If the refinement's (sequential) execution time is not sufficient, 2 more
detailed proof system, the trace proof system, has to be employed. This is the
realm of Chapter 5. The trace proof system describes computations, so-called
"traces'’, as opposed to programs, and serves to verify that there are traces that

have the refinement’'s semantics but are sufficiently fast.

RL programs (described by the refinement proof system) provide algo-
rithmic options. Traces (described by the trace proof system) reflect algo-

rithmic decisions.
From now on we will use the following terminology:

Definition:

(a) A siatemend is a skip, assignment, or refinement call.

-20 -

{b) A refinement list is

(c)

(d)

(e)

()

(8)

(h)

§)

(i) a statement, or
(ii) a composition S7;52 of two statements S7 and S2, or

(iii) an alfernation if B7-S1[... [Bn-+Sn fi using n logical expressions Bi
and n stalements Si. Bi-Si is a guarded command with guard Bi

and alternative Si.

A refinement is the association of a refinement list S with an identifier S
by S:SL. We also call SL Lhe refinement of S, and S the refinement name

for SL.

The application of statement S in a refinement is an instance of S, or also, if

S is a refinement name, a call of S.

The statements and guards in the refinement of S arc the primary
components (primary statements and primary guards) of S. The applica-

tion of a primary component by S is a primary component instance of S.

The proper components of a refinement S are its primary components and

their proper components (transitive closure).

The components of S are & itself and its proper components (reflexive tran-

sitive closure).

Statements for which no refinement is given and guards are basic. State-

menls Lhat are refinement calls are refined.

Variables and constants that appear exclusively in components of S are
local to S. Variables and constants that appear in S and in some S which is
not a component of S are global to S and shared by S and S'. Variables glo-

bal to S that are changed only by components of S are private to S.

We will denote a specific instance of component C in some refinement list by
the lower case equivalent, ¢, and consider this name unique to that instance
of C. Component instances can be interpreted as different components,
each with only a single application (to syntactically transform different
instances of component C into different components, apply the following
replacement algorithm: replace every instance of C by a unique name ¢ and

add c: C before that instance of C; if ¢ is recursive, identify its recursive

-21-

calls by ¢;: cé’}__:).

(1) Refinement S with a set D of semantic declarations is the semantic version

of S described by D, denoted SB. (If D=¢, SD is S.)

{m) A semantic version SD that may be called from a user environment is an RL

program.

4.1 Timed Assertions

Our methodology will enable not only the determination of total semantic
correctness but also the derivation of an upper bound for the program's execu-
tion time that might be a prerequisite for performance correctness. Therefore
we must use timed assertions for the description of program states. The idea is

similar to [Shaw79].

Definition:

A timed assertion P is of the form PgemA Piime. Where the semantic
puart, Pga, is a predicate about the program’s variables, and the time part,
or time stamp, Pune. is a predicate asserting the state of a fictitious vari-
able, clock, as an integer function timep of the vector # of program vari-

ables:
Pyme =q clock 2timep(2)

A timed assertion with time part true is a semantic asserfion. A

timed assertion with semantic part true is a {trne assertion or lime stamp.

Variable clock simulates a clock that keeps traclc of the execution time of
the program. It is a hidden variable [Len78], appearing in assertions but not in
programs. It is not an auxiliary variable [OwGr76a, OwGr76b]. Both hidden and
auxiliary variables need not be implemented, but auxiliary variables must be

added to the program to obtain a semantic proof. This methodclegy does not

-22 -

The time stamp of timed assertion P specifies an execution time constraint
for the program state described by the semantic part of P. In accordance with
the weakest precondition calculus in which programs are derived from the
postcondition "backwards”, we run the program clock backwards, i.e., view time
as "running out” rather than progressing. A time stamp may be interpreted as a
predicate, Py, or a function timep, whatever is more convenient. To make the
parts of timed asserlion P explicit, we will occasionally write (Pgem, Pyme) OT

(Pgem, timep).

Definition:

Consider statement S and assertions P and R. We let {P] S {R} stand
for an argument that establishes the truth of the formula P>S{R}, i.e., a
proof that component S terminates and transforms assertion P into asser-
tion R. We call {P{ S {R] a proof of total correctness of S with respect to
specification (Pgem, Rgem. timep~timeg). The derivation of {P} S {R]
yvields for every statement §' of S an assertion P satisfying the formula
P'58'{R'], where R' is an assertion previously derived and known. P' is
called the precondition, pre(S'), R' the posicondition, post(S'), of &' in the
proof {P3} S {R}.

A proof of S can be outlined by framing every statement in the pro-
gram text with its pre- and postcondition enclosed in curly brackets.

[OwGr76a] calls this a proof outline and gives an example.

When proving a solution to some timed problem specified by, say, (PR, t)
(where P and R are now semantic assertions), we normalize the output time
stamp to 0 to obtain as input time stamp {, and write {P.¢]S {R} for
{P.t{ S tR,0}. [Pt} S {R} can be read: "in order for S to establish R, nothing
more than P has to hold immediately before the execution of S; also, if we start

.S with a supply of at least £ time units (clock2t), the execution of § will not
exceed that supply of time (clock 20)." Consequently, the execution of S will not

require more than ¢ time units {choose ¢ as input time).

There are, in general, many different proofs of S with respect to (P,R,£). As

a solution to a logical inequality, /' is one of many admissible preconditions for

-23 -

statement S’ of S. It is best to select the closest possible approximation of
weakest precondition S'"{R'} for the proof. Everything stronger than the weakest
precondition adds unnecessary constraints, but the weakest precondition itself

may be difficult to express [Dij76].

4.2 Formal Refinement

This section presents the formal definition of the programming language RL
and its refinement mechanism. The language features of RL are described by a
set. of axiomatic weakest preconditions, so-called “language rules". Each
language rule defines the semantics and execution time of one programming
feature. The process of program refinement is governed by four "refinement
rules”. Each refinement rule states for a different refinement option under what

conditions it is applicable.

Most of this section is condensed from previous publications, notably of

Dijkstra | Dij76] and Hehner | Heh79].

4.2.1 Language Rules
This section presents the formal definition of the programming language RL.

In the following rules we denote the evaluation time of expression £ by a
fonction T(E). This thesis is not concerned with the opiimization of expression
evaluations (see, e..g., [Kuck?7, Sto67] for research in this area), and therefore
we do not provide a rigorous definition for T(£). However, we will later in this

section define T(S), the execution time of a statement S.

The rules also refer to an im plementation-dependent function A that maps
each hardware operation on its execution time. A discussion of A is beyond the
scope of this thesis. Note that for concurrent parts of a computation that are

executed on processors of diffierent types different functions A apply.

-24 -

Definition (Language Rules):

(L1)
(L2)

(L3)

(14)

For all timed assertions R and some implementation-dependent

integer-valued function A:

null: skip{R} =4 R
assignment:
_ z, clock
(a) simple: z:=E{R} =q Rp clock -T(E)-A-

(b) subscripted: z[E1 |:=E2{R] =4
z, clock _
R(::Ef :E2), clock-T(E1 })~T(E2)~A=
Thus an array is treated as a (partial) function and an assign-
ment to an array element as a change in the whole function (as in

the axiomatic definition of Pascal [HoWi73]).

For the sake of simplicity, we do not distinguish the execution time
of a simple and a subscripted memory reference: A.. is identical in both
cases. We are also assuming that the value of an expression is always

within the domain of the variable it is assigned to.
composition: S1;S2{R} =4 ST1{S2{R}}

Note that the time part of this rule reflects the time of sequential
execution: the input time stamp of S2 serves as output time stamp of
S1. However, this is only a first estimate. Semantic declarations
(Sect. 4.3) may yield computations for S7;S2 with improved execution

time.

n
We can parameterize composition: _;I.S'i stands for S7:...;Sn. We

i=
call this construct a for loop. The loop bounds must be constant in the
loop scope. i is a constant for every step St and lucal Lo Lthe loop.

alternation: if B1-S1]... | Bn>SnfitR] =4

n _ . clock
(M ABLASURYY) ok —1(B1,.... Bn)—Ay

T(B1,...,Bn) denotes the evaluation time of guards B7,....Bn. We
could set T(B7,...Bn) =g T(B71)+...4+T(Bn), but often not all guards will

(L5)

have to be evaluated. A detailed definition of T(87,...,.Bn) is not of our

concern. Ay accounts for the branches necessary to select an aliernative.

If no guard is true the alternation fails. The present rule assumes
that no two guards will be true at the same time, i.e., that the alterna-
tion is deterministic. We make this restriction in order to keep opera-
tional models for programs sirnple. Non-delerminismm reguires a back-
trarking mechanism in trace models for programs [Hoa78a].
refinement call: {call §¢ with actual indices ¢ of

refinement S7: SL with formal indices §)

7. clock

(a) norecursion: SR} =4 SLERic-r clock ~T{2)~A
. , Ci - “Lcall

Acan represents the time spent transferring control to the

refinement body.
{b) direct recursion:

A recursive refinement is approximated by a sequence of
increasingly deeper finite recursions. To express the approximations
we need a fail statement that will, however, not appear in RL pro-
grarmns, its sole purpose is to define formally recursive refinement:
fail: abort{R] =4 false

The ith approximation (S); of recursive refinement Sg: SL
performs at most < recursive steps or fails:

(S)y abort,

sy
(S9)i-1”

Note that {S¢);_y is a component of (59). The properties of recur-

(i>0) (S9): SL

sive call 8¢ are the limit of the properties of its finite approxima-

tions {(S5¢);:

- 26 -
S¢IRY =4 N (SEhiR]

(c) indirect or multiple recursion:

The definition of the approximations is messier but conceptu-
ally not different: they also represent increasing levels of recursion

(see [Heh83]).

To avoid proving a refinement S for different postconditions R, calls
can be related to a single refinement proof with respect to, say, postcon-
dition § (g should not refer to indices or local variables of S): if 2 is the
list of global variables of S and @ ranges over the values of # which estab-

lish €,
Z 2
(526Q) A A(QyPRY)) > SeiR3

The details of this and a still simpler call rule are discussed in [GrLe80].

A more general reference is [Gri81).

Examples:

(1) z:=z+1fz=c, clock20} = (z=c-1, clock 2 T(z+1)+A..)

(R) =m=z+lizi=z+lizr=c, clock20] = z:=z+1{z=c~1, clock 2 T(z +1)+A..}
= (z=c—2, clock 22T(z+1)+2A..)

(3) ifz#0- z:=0]z=0- skip fi{x=0, clock 20}

clock
{((z=0, clock 2T(0)+A=)V (=0, clock:s:D))cZock_T(xao' £=0)—Ayg

tit

Y (z=0, clock 2 T(O)+ A=+ T(z)+ Dyogy+Ay)

V (2=0, clock 2 T(z)+Aeq+Ay)

Some remarks on for loops are necessary:

A for loop is an indexed composition, but the corresponding semantic rule
(L3) does not describe the properties of the index calculation. Censeguently,
although index calculations may be part of a program, they will not be described

by thet program’s formal properties. The following assumptions justify the

¥ Here we describe the guard evaluation time T(z#0, z=0) as the time T(z) needed to
fetch z plus the time A, of testing z for 0.

-27 -

neglect of index ralculations:

{a) For any for loop, all index values can be calculated before any step is exe-
cuted.
This assumption permits the neglect of index calculations for semantic

decelarations.

(b) Index calculations are typically a negligible part of the program.
This assumption justifies the neglect of the execution time of index cal-
culations. (If all index values are calculated concurrently with program
parts previous to the for loop, their impact on the program’s executlion

time is indeed close to nil.)

The semantic part of (L1) to (L3) is taken from Dijkstra [Dij76], except for
the subscripted assignment rule (L2b) which is from [Gri78]. The semantic part
of {L4) is a weakened version of Dijkstra's alternation rule [Dij75. Dij76]: we
presume deterministic alternations. The semantic part of (L5) is from [Heh79]
and subsumes Dijkstra's do...od repetition rule [Dij78]. The time part of (L1) to
(LB) is new, but a similar execution time calculus for a similar language can be

found in [Shaw79].

To test that RL as defined by the language rules has some elementary,
always desirable properties, we can check that the language rules satisfy a set of

suggested healthiness criteria:

Definition (Healthiness Rules):

(H1) Si{false} = false {excluded miracle)
(H2) R1>R2 > S{R1}>S{R2} (monotonicity)
(H3) S§RTIASIR2} = SIR1ARZ]

(H4) S{R1}VSIR2} = S{R1\VR2}

(115) A (RyDRpy) D SINV Rl = WV S{R,] (continuity in postconditions)
k20 k20 k20

l? KS‘
(HB) ,-:\(SitRIDS IR = SL 9,533 O>SL Q‘nw !) (continuity in statements)

(H1) to (1I5) have been proposed by Dijkstra [Dij76]; (HB) appeared later.

This list is not exhaustive; more healthiness rules could be added. For a proof of

- 28 -

(H1) to (H8) for the semantic part of language rules (L1) to {L5) see [Heh83]. The
time part does not pose any healthiness problems: it can in every language rule
be interpreted as an assignment to the hidden variable clock, and assignments

are healthy.

Further properties follow: for instance, we can prove Hoare's "rule of conse-

quence” [Hoab69]: .

(P} S IR}, POP, ROR
(PSR} *

Proof:
We may assume {P'}S {R'}, P2>P', R'DR
and have to deduce (P} S {R}.
(ROR) > (S{R'I>S{R}) Iisguaranteed by (H2).
Therefore, using our definition of {#'} S {R'{,
(PP} SRy = (POS{R'Y) > (P2>S{R}), andthus
(PoP') > (P>S{R}) = {P}IS IR}

The execulion timme of a statement S is defined as its weakest time precon-

dition with respect bo Lime postecondition O:

Definition:
The ezecution time T(S) of statement S is T(S) =4 Siclock20}yme

(Remember that T(S) can be interpreted as a predicate or a function.)

To conclude this section, let us investigate the execution time of some

example refinements:
Consider the following program computing the factoerial of n:

factn: Hn=0->r:=1
| n>0- fact n—=1; r:i=rn

fi

- 29 -

We can determine the number of multiplications performed by call fact k
by assuming a machine A that only takes time for multiplications (one time unit

per multiplication):

T(fact 0) 0

(>0) T(foactk) = T(factk—-1)+1

which yields T(fact &)=k with domain k20. For the derivation of the formal

properties of fact k see App. A.1.

To illustrate further that our axiomatic system can be used to determine
the time complexity of algorithms, here is a second example, a program which

searches for a number z in an ordered array a[i.7—1] (binary search):

BS: ifi=j -» found:=false
| i<j -» k:=div(i+j, 2);
ifalkl<z » i:=k+1; BS
I alk]l=z » found:=true
I a[k]>z > ji=k~1; BS
fi
fi

We want to count the tests of elements in array a[i.j—1]. We therefore set
T(alk]<z, alk]=z, a[k]>z)=1, and let every other operation be for free. We
are only interested in the worst case over all possible array inputs of a fixed
length, i.e., an upper bound f(j—i) in the array length j—i: T(BS) = f{(j-1i).
One worst case occurs when each comparison of a[k] and z establishes a{k |<z.

Inspection of BS yields for f(j—1i) the recursive equation
FG=1) = 1+ fG~-div(i+z2)+1) = 1+ f(§ —%?il) = 1+ f(l%h

Following standard complexity methods, we substitute Bhggu—i)

T(BS) = f{(j—i) = O(lloga(y~iJl) .

for j—i to obtain

- 30 -

4.2.2 _ Reﬁnementhu!es

While the language rules describe the properties of the programming
features of RL, the following refinement rules ensure the derivation of a semanti-
cally totally correct program, ie., a program that satisfies the semantic prob-

lem specification and provide a proof that complies with the language rules.

Definition (Refinement Rules):

Consider semantic specification (P,R). To obtain a refinement such

that [P} S {R} choose one of the following:

(R1) continuance: choose S': skip if POR

b
(R2) replacement: choose S: z:=E if PORp

(R3) divide-in-2: choose S: §71;82
if \{(P:Sfiqi/\q:aszmg)

A divide-in-n comprises n—1 divide-in~Z refinements in one step. A
special case of divide-in-n is the for loop {see previous section).
(R4) case analysis: choose S: ifB7-S7{..1Bn->Snf

it P2\ (Bi ASitR})

Rutes (R3) and (R4) ask for further refinements. For more details on their

proper choice see the notion of progress in [Heh79].

The refinement rules are taken from [Heh79], except that our case analysis

requires deterministic aliernations.

4.3 Formal Treatment of Concurrency

The refinement rules guarantee only semantic (not time) correctness. A
specified execution time constraint may not be met because only semantic
assertions, not time stamps, are taken into account. If the refinement is too

slow, declarations of semnantic relations between certain refinement components

-31 -
have to yield a faster version.

This section deals with the mechanism by which the execution time of
refinements can be improved: semantic relations and their declaration. Seman-
tic declarations do not extend or change the refinement in any way. They only
make some of its properties more apparent, properties that can be exploited to

speed up the execution.

4.3.1 Semantic Relations

Semantic relations provide information about the semantic properties of a
refinement. This information can be used to improve the refinement’s perfor-
mance. We consider five semantic relations: idempotence, commutativity, full

commutativity, non-interference, and independence.

To determine the full commutativity of two refinements we will, at least in
the general case, have to identify the postconditions for their primary com-

ponent instances. Therefore we introduce the notion of a tail:

Definition:
Consider refinement S: 8L and a primary component instance ¢ of S.
The tail £(S,c) of S with respect to ¢ is the part of SL that succeeds c:
(i) if S: s then #(S,s'): skip,
(ii) if S: sf;s@2 then £(S.s7) s2,and {(S.s2): skip.

(iii) if S: if..[[bi-si]...fi then ¢(S,b6i): si,and ¢(S,si): skip.

In the following, components in general are denoted with the letter C, state-

ments in particular with &, and guards with 5.

As the refinement rules (see previous section), the semantic rules are

defined with respect to semantic postconditions oniy:

-92-

Definition (Semantic Rules):

A semantic relation is an expression of the form /C, C1&(C2,
c1%C2, Ct+«sC2,0r C1lIC2.

For any semantic assertion R,
(S1) idempotence:
‘B =4 true
'S =a (SIR}=S:S{R})
(S2) commutativity:
Bl &p B2 =g true
S&pB =4 (BAS{R}=S{BAR})
S1&pS2 =g (S1:S2{R}=52;St{R})

(83) full commutativity:
(a) basic C7 and C2: C71%pC2 =4 C7&pC2
{b) basic C, and refined & with primary component instances ¢

SupC =4 /:\C¢§c(s.qjlnic

(c) refined S, and refined S' with primary compoenent instances e

Sxp S =g /bsgit{S'.c.;')IRlcil

(84) non-interference:
C1«+C2 =4 any expression E in C7 contains at most one refer-
ence to et most one variable changed in C2; if C7
’ contains z:=E and CZ2 references z, then E does
not refer to = nor to any variable changed by C2;
also, all of the above holds with C7 and CZ inter-

changed.
{S5) independence:

C1llgC2 =q C1%pC2 A C1«»C2

-33 -

Examples:

(1) S:z:=3, S = (z:=3{R} = z:=3;z:=3{R}) = (R; s (R;);) = true
(2) S:z:=y, B:z=3, S&pB = (z=3Az:=y{R} = z:=yfjz=3AR}) =
(:rza/\R; = y=3/\R:) = (R;D (z=3=y=3))

(3) S71:y:=x+1, SR: xw=3,

S1&y=c 52 = (yr=z+Liz:=3{y=c} = z:=8jy:=z+ily=c}) =

((y=crd, | = (ty=c)) 4)g) = (z+1=c = B+1=c) = (2=3)

Every semantic relation Zp consists of equivalences SL7{R} = SL2{R}. In
case an equivalence is difficult to prove, try to prove something stronger: the

conjunction.

Let us discuss non-interference (S4). This relation is taken from Gries
[Gri77], but Gries does not give it a name and calls something else, close to our

full commutativity, non-interference. We quote some examples from [Gri77]:

Suppose component. €7 changes a variable a. In order for component C2 not
to interfere with €7, it may not contain statements like a:=a+1 or b:=a+a+1.
If C1 references a, then in C2 an assignment a:=a+1 must be written
t:=a+1; a:=t, where ¢t is not. shared by C7. The same restriction holds for an
array, where we consider an assignment a[i]:=F to be a change of the whole
array a. Although the non-interference rclation (S4} looks syntar,;tic, it is a
semantic condition: if there are subscripts, the set of common variables may

depend on the subscripts’ values.

(S4) requires indivisibility of memory reference. To quote [Gri77] again:

Suppose component (7 changes variable (location) At while component C2
is referencing A. The memory must have the property that the value of 4 which
C2 receives is the value of 4 either before or after the update, but not a possible

intermediate value.

Tt is presumed that each assignment updates only one memory location.

- 34 -

There is no reason why we should insist on Lhis specific non-interference
criterion (S4) other than that we believe it is the most practical. Other non-
interference relations that make different demands at the hardware, e.g.,
existence of a test-and-set operation may replace (S4). Be aware, however, that
the choice of non-interference criterion determines the independence a

refinement will contain.

The following relation of free non-interference does not rely on nice

hardware properties. It is stronger than (84) and thus yields less independence:

(S4') free non-interference:

free

C1+» C2 =4 neither C7 nor C2 reads a bit that the other
changes; 7 and C2 may change a common bit b if
all assignments to b by C7 or C2 yield the same

value, and neither C7 nor C2 reads b.

{S5') free independence:

free

rrlea
Ct il pC2 =4 C1 %pC2 A Ci<pC2

free
Certainly C7+«»C2 does not imply Cl+p C2, but curiously, although it

free
should, C7+«» C2 does not imply C7 +» (2 either. Consider the following situa-

tion (due to Eike Best):

Let z and y be two-bit variables, 7,y €{0, 1, 2, 3}. Then the refinements

S1: z :=2(y mod2) + z mod 2
S2: z := 2(r mod?2) + y mod 2

do interfere, ~(S7 «/>S2), but do not interfere frecly, Sfr:%e-fSZ: S1 swaps the
high-order bit of z with the low-order bit of v, and S2 swaps the other two bits.
The reason is that the definition of «» that we adopted from [Gri77] is. simply
but restrictively, phrased in terms of variables, not in terms of bits. Naturally,
free non—interference.works also on machines with indivisible memory refer-

ence,

-35-

Proofs of semantic relations follow the same concept as proofs for state-

ments, but the terminology differs somewhat:

Definition:

(1) Consider semantic relation Z and semantic assertions P and R. We let
{P} Zr stand for an argument that establishes the truth of the formula
P>Zg. We call {P}Zg a proof of semantic relation Z for scope (P.R). Pis
called an enabling condition, R a result condition for Z.

(2) A proof of semantic relation Z

for scope is denoted and Z is called
(i) (P,K) for every R 1Py z general under P
(i1) (Lrue,R) ZR unconditional for R
(iii) | {true,R) for every R Z global

I'or proofs of full commutativity, C7 % (2, globality is a very important con-
cept. If all mutual commutativities that constitute relation C1xC2 hold glo-
bally, the consideration of intermediate proof assertions in 7 and C2 can be
spared. A full commutativity whose mutual commutativities are not global
reflects very difficult semantics for which no easy handles should be expected.
In fact, most semantic declarations should be global - at least within the realm
of the refinement they are declared for (this weaker form of globality is called

"program-specific’'; see Sect. 5.3).

As a guideline for a derivation of refinements with potentially high con-
currency there is a theorem that guarantees the free independence of two
refinement components. Most independence declarations will be applications of

this theorem and will not require an extra proof:

Theorem (Independence Theorem):

Two components (7 and €2 of which neither changes any variables

appearing in both can be declared globally freely independent.

- 38 -

Proof:
B1&B2:
Always true.

S&B :

Pick any postcondition R. According to the premise B does not refer

to program variables changed by S. Therefore S keeps B invariant:
S{B}] = B
Commutativity follows by the identities:
BASIR}] = S{BJASIR} = S{BAR}
S1&S2:

Pick any postcondition R. For any statement S, the weakest precondi-
tion S{R} is derived by substituting variables changed by S in R, maybe
using case analysis. According to the premise, the vector Z of variables
changed in one or both of S7 and S2 is split into lwo distinel subvectors z7
of the variables changed by S7, and z2 of the variables changed by S2.
S1{R} results from substituting only variables of z7 by expressions using
only variables of z7 and constants, and analogously for $2. (For the pur-
pose of this proof, program variables changed neither by S7 not by S2 can
be considered constants.) Such distinct substitutions yield the same

result, in whatever order performed. Therefore
ST{S2IR}] = S2iS71{R)}
C1=Ce.

The previous argument can be applied to any pair of components of
C1 and C2.

free

CtesC2:

Clear: there are no common data.

We can relax the independence theorem in one special case to make full use

of the requirement for free non-interference:

-37 -

Theorem (Supplement to Independence Theorem):

Globally freely independent components C7 and C2 may assign the
same value to a giobal bit variable as long as neither of them reads that

variable.

We conclude this section with the proof of a property mentioned in
Sect. 2.2.2, which permits the neglect of the hidden guarded command
~B - skip in if B then S fi:

Lemma:
For all statements S, guards B, and timed assertions R,
S&pB > Sé&p~B
Proof:

(a) Assume S&pB and R25.
Then BAS{R} = S{BAR] S{R} vyields S{R}{>B .
Thus ~BASIR} = false = Si~BARY, ie., Sdg ~B .

IH

(b) Assume S&zpB and RD>~H.
Then BASIR} = S{BAR]}
Thus ~BASIR} = S{R] = S{~MBARY, e, S&p~B.

Sifalse] = false yields S{R}>~B .

The lemma expresses that statement S keeps guard B invariant if S com-
mutes with B. S&p B says Lhal, while establishing R, S preserves the truth of B;
S &g ~B says that, while establishing R, S preserves the untruth of B.

4.3.2 Semantic Declarations

Semantic relations are documented in the program text by way of semantic

declarations.

Definition:

A sementic declaration is a semantic relation Z stated after or within

some refinement S for some scope, i.e., with optional enabling condition P

- 38 -

and result condition R. For in-line declarations in refinement S, Pand R

are intermediate proof assertions for S.

The syntax of semantic declarations is described in Sect. 2.2.2. We will only

declare idempotence, commutativity, and independence.

4.4 Example: Sorting

We will now prove the sorting program of Sect. 2.3 with respect to the
semantic part of the specification in Sect. 3.3. We will also derive the worst-case
execution time of the refinement and find out that it does not satisfy the time
specification. We do not yet have the tools for a time proof of sort n with

independence declaration.

Let us denote the execution time of a comparison by ¢ and that of a swap by

s, and let

Ryj =ar R(a;‘ﬂ.j!a[j]-“[‘:])

Then the properties of the refinement's components are:

sort n: iElSi
SO {R{ skip {R}
(i>0) Si: fesi (S i-1{R}}
csi;Si-1
(R
es i {((ali-1]sa[i] AR) v

clock

(a[i=1]>a[i]A swap i (R3-14)) cpoep -

ifa[i-1]>a[i] then swap i fi
{R}

-39 -
clock
swap it H{Ri-14) gyock ~ s
t[il:=ali-1]; ali-1)=ali]; a[i]:=t[i]
R}

/_’}jvﬂi—l,i,i+1: csillesy
%

The recursive expression for Si{R{ will suffice for our purposes. The
independence declaration holds globally because its operands obey the indepen-
dence theorem of Sect. 4.3.1: for }i—j|> 1, ¢si and cs j do not share any vari-

ables.

The properties of sort n can be stated precisely but awkwardly.! sort n {R}
lists every perrriutation. its execution time, and the conditions under which it
must be applied to sort the array; e.g., for a three-element array {n=2) the fol-
lowing weakest precondition can be formally derived:

clock
sort 2{R} = ((a[D]éa[l]éa[E]/\R)clock-—ac

clock

AV (a[O]Sa[E](a[l]/\ Rl'z)clock—-Bc—s

clock
Vv ((L[Z](a[ﬂ]éa[l]/\ (R0.1)1.2) clock =3¢ —2s

clock

Vv (al1]<e[0]sa[2] A Rq 1) clock =3¢ —s

clock
Vv (a[l]Sa[2]<a [U]/\ (R 1.2)0, 1) clock =3¢ —2s

clock
VvV (a[2]<a[1]<a[0] A ((Ro 1)1.2)0.1) cpock —3c —3s)

The next lemma presents the semantics of sort n as a predicate in the vari-

able 7.

Let I, denote the set of permutations of (0, 1,....k) with 1, as identity.

Define for any permutation m €Il ,

T The use of permutations is awkward in the inductive essertion method. Hints for
specifications which enable easier proofs are in [GeYe78].

- 40 -

Ruy =at Rigi0,. k:a[m(0)].....a[m(k)])
ord(a[0..k]) =4 {y(05i<jsk > a[i]sal;])

Ry, =R. ord(e[0..k]) says that subarray a[0..k] is in order s.

ord(a[0..k), says that a[0..k] is in order S after permutation .

Lemma:

For semantic R, A (sortk{R} = v/ (ord(a[0.k])AR),)
k20 m €Tl k

Proof:

swap t represents the permutation ¢£:(0,...,i-1,4...,k) F> (0,...,ii-1,....k),
i=1...k . Define additionally ¢f =4 1,. Let L,CIl; be the set of permuta-

tions oy performed by a sequence of strictly decreasing swaps:

- I i

Ly =ar loplop=cple.oct, 0S5k, 1<i<l, 1815k, Ji<Fie1 !

Induction on k:
Base: SO{R}{ =R, sort 0{R}=R
ind. hyp.: Skf{R} = \ (ord(a[0.k])AR),

sortk {R} = \ (ord(a[0.k])AR),

ﬂ'*Ent &

ind. step: Sk+1{R} = csk+1{Sk{R}}

= (a[k]sa[k+1]ASk{R}) V (a[k]>a[k+1] A S kR Jake1)
(a[k]sa[k+1]A c\é (ord{a[0..x])AR),.) Vv

(alk]>alk+1]A(\; (ord(@[0.k]) A R)gees)

\/ (ord_(a [0..k+1]) AR)’bﬂ

Op+1€0E 41

sort k+1{R} = sortk; Sk+1{R} = Y (ord(af0..k]) A

Vv d{a{0..k+1 R
. (era(@0.k+1) AR)g,, Jn,

= Vv (ord(af[0.k+1])AR),, .

Tee1€0z 4y
To explain the last identity: every permutation 741 can be written as

a composition oy 40w, and vice versa.

-41 -

sort n sorts any n+1 elements on which = is a total ordering. Thus it

satisfies the semantic specification of Sect. 3.3 and sorts any n+1 numbers:

sort n. pre 5 V. ord{(a[0..7n]
nn€ll, "

I

V. ord(a[0.n1)s, A perm{a,a)

ﬂ“Eﬂ“

v/ (ord{a[0..n]) A perm(a,a’)},

i €0,

v (ord(a[0..n]) A ord(a[0..n]) A perm(a,a’))x_

np€lly,

sort n §sort n. post}

We do not have to know the time properties of sort n for every array input.
An execution time for a worst-case input will do because we specified only a

worst-case requirement.

The following lemma provides the worst-case execution time for refinement

sort n.

Lemnma:

A T(sortk) < M‘C'S
k20 2

Proof:
Induction on k:

Base: T(S0)=0, T(sort 0)=0

ind. hyp: T(Sk)sSkcs, T(sortk)s -’Yﬁéﬂ-)ﬂc-s

ind. step: T(S k+1) S max(1, 1+T(S k)) s (1+k ye's,
T(sort k+1)=T(sort k) +T(S k+1)

S(ﬂ%—l—l+1+k)-c-s = k+12k+2 ‘¢'§

The assumption that every csi has to swap yields equalities every-
where in the proof: the time bound is exact for an array input in decreas-

ing order.
The refinement alone does not satisfy the time specification: ﬂk—z-‘-—l—z--c-s is

O{k?). To verily that the independence declaration decreases the execution time

sufficiently we have to use the trace proof system (Chap. 5).

- 42 -

5 The Computations of a Program (The Trace Proof System)

In the previous chapter we have developed a proof system, Lhe refinement
proof system, which can describe the properties of refinements and suggest
different computations with identical semantics. We now turn to a more power-
ful proof system, the trace proof system, which can describe these computa-
tions. It will serve to formalize the effects of semantic declarations on the set of

computations of a refinement.

We represent the computations of a program by sets of directed graphs
called traces. (In fact, each trace still represents a set of computations, i.e., is
rather a simpler program.) The trace set T'(S') of refinement S contains the
computations as prescribed by S with composition interpreted as sequential
execution. Semantic declarations DeD for S transform its trace set and any
trace set derived by a previous transformation into a semantically equivalent
trace set. The transitive closure of all these transformations contains the com-
putations of the semantic version SD of refinement S. The goal is to create a
transformation that satisfies not only the semantic but also the time

specification of the problem.

5.1 Trace Sets

In this section we will describe the trace set T'(S) of a refinement S, i.e.,

the set of computations as prescribed by S.

Definition:
A trace 7 is a finite directed connected acyclic graph with the follow-

ing properties:
The node set of T comprises instances of basic statements and guards

in RL, plus concurrent command nodes, < I:? > , where 71 and 72 are two

- 43 -

traces, called the tines of < I_:{, > . All nodes have indegree 1 and outde-
gree 1, i.c., a trace is a sequence.

A directed arc between two nodes v7 and v2, v1 =>wv2, is an output
arc of v1 and an input arc of v2. An arc is called an entry (exit) arc of T if

it is not an output {(input) arc for any node in 7.

We can compose traces 77, 72 In sequence to 77 —> 72 by merging the

exit arc of 77 and the entry arc of 72.

Concepts for traces can be applied to trace sets in the usual fashion:

for trace sets T, T2,
T >T2 =4 {71 >72|11€TT, T2€T2 }

<Tl> =4 (<Th> | r1eT1, T2eT2]

We may sometimes not take the trouble to distinguish a one-element set

and its element, and omit the entry and exit arc when spelling out a trace.

The trace set of component C contains the computations as prescribed by C

with composition interpreted as sequential execution:

Definition (Computation Rules):
The trece set T{C) of component C is of the following form:
(CO0) guard: T(B) =4 (B}
(C1) nulk T (skip) =ar {skip}
(C2) assignment:
{a) simple: T(z:=F) =q [z:=EF}
(b) subscripted: T(z[E1 :=E2) =4 {z[&1]=£2]

(C3) composition: T(S1:52) =a T(S1)—>T(S2)

n
(C4) alternation: T(if B1+S1[..[Bn-Sn i) =a U (T(Bi)—> T(5i))
i=1

-44 -

(C5) refinement call: (call S¢ with actual indices & of

refinement §7: SL with formal indices 3)
(a) no recursion: T(S2) =4 T(SL)

{b) (direct) recursion: T(S2) =4 iki:a T((Se))

where (S9)y: abort,
Sq
(8% -1’
and fail: T (abort) =4 ¢

(i>0) (Sg): SL

Examples:
(1) T(ifz#0 - 2:=0]z=0 - skip fi) = {220 —> z:=0, z=0 - skip]
(8) T(factn) = fn=0—> r:=1,

n>0 > n=0 > ri=1 > r:i=rn,

n>0 > n>0 > n=0 = r:=1 = ri=rn — TI=7r'n,

v}

The traces of a refinement S do not reflect its refinement structure: they
contain only basic components. Of course, the traces of a refincment do not
contain concurrent commands - composition is translated to sequential execu-

tion.

Traces do not contain alternations, only guarded commands. The selection
of a guarded command from an alternation in RL corresponds to the selection of
the trace that contains that guarded command from the alternation's trace set.

(Remermber that RL programs reflect options while traces reflect decisions.)

The traces of indexed refinements contain formal, not actual indices. The
trace set semantics, to be defined next, will attribute to every occurrence of a
formal index in a trace the actual index value established by the most recent

call.

Let us now describe the properties of the trace set T{C) of component C by

trace rules similar to the language rules for RL (see Sect. 4.2.1):

- 45 -

Definition (Trace Rules):

For all timed assertions K and some implementation—dependent

integer-valued function A:

- ' clock
(TO) guard: T(B)R} =a BAR 50 -1(B)
(T1) nulk T(skip){R} =a R
(T2) assignment:
z, clack
(a) simple: T(z:=E}R} =a Rp ciock-T(E)-A=

(b) subscripted: T(z[E1]:=E2}{R} =a
T, clock
Rip.B1:E2) clock=T(E1)-T(E£2)-A=

(T3) composition: T(S1:S2)R} =g T(S1HT(S2)R 3

(T4) alternation: T(if B1»>51]...1Bn+Sn){R} =a

n clock
(Y (BiAT(SORY)) ook ~T(BY.....Bn)~y

(T5) refinement call: (call S with actual indices ¢ of
refinement Si: SL with formal indices 7)

Y, clock
(a) no recursion: T(S2){R} =4 T(SL)IR iE;'. clock —T(2)=Acen

(b) (direct) recursion: T(SE)R] =g i‘;/‘JT((Sé’),;)ER]

where (S})g: abort,
. S SI SY
(i>0) (S Ja ‘(ST)ioy
and fail: T{abort){R] =4 false

Definition:
The ezecution time T{T{C)) of the trace set of component C is

T(T(C)) =4 T (C)fclock 20%me

The following theorem states that a refinement and its trace set have ident-
ical properties. This identity is crucial. It ensures the compatibility of our two

proof systems: whatever a refinement represents in the refinement proof system

- 48 -
is properly represented by its trace set in the trace proof system.

Theorem:
For all refinements S and timed assertions R, T(SYR} = S{R}.

Pruof:

The identity is directly evident by comparison of language rule (i)

with trace rule (Ti), i=1,..., 5.

We have defined the trace calculus in terms of trace sets which are derived
from refinements. This permitted a trivial transformation of the refinement cal-
culus into a calculus for traces: language rules (L1) to (L5) and trace rules (T1)
to (T5) are identical. However, what is really needed is a calculus for traces
independent of their derivation. Hoare's operational definition of the weakest
precondition operator for traces [Hoa78a] provides such a calculus and is con-

sistent with our trace rules.

5.2 Semant_ic Transformation of Trace Sets

Semantic declarations add computations for S as described informally in
Sect. 2.2.2. Formally, a set D of semantic declarations for refinement S
transforms the refinement’s trace set T'(S) or a previous transformation
thereof into a new trace set. The transitive closure T(SD) of all such transfor-

mations contains the computations for the semantic version SD of S.

We will see that all trace sets in T(SD) have identical semantics: the
semantics of S. We call a trace set with the semantics of S a trace set Jor S.
7T(S) is the unique trace set of S. We do have a rule for the sequential composi-
tion of traces, given by (T3) and (C3). But some of the transformed trace sets
will contain concurrency, and we need one more trace rule that describes the

properties of concurrent composition:

-47 -

Definition (Additional Trace Rule):

(T8) concurrent command: < ;Eg;; >R} =4 C1llg, €2 A

clock
((T(C"r)‘_) T(CZ))ERnum] . T(C'1)E-Rhme] A T(Cz)iRtime;)clock—ﬁo

The semantics of a concurrent command are sequential: those of any inter-
leaved computation. The full commutativity included in the independence
requirement guarantees that all interleaved computations have the same pro-

perties (semantics and execution time).

The execution time of a concurrent command is the maximum of the execu-
tion times of its tines, plus some constant A., that accounts, e.g., for processor
management. The non-interference included in the independence requirement
guarantees that both tines can be executed in parallel without delays. (We

disregard delays due to indivisible memory reference.)

With trace rule (T6) we have the means for expressing parallelism and can
turn to the formal description of the effects of semantic declarations. A seman-
tic declaration transforms a trace set by replacing parts of certain traces in it.

To identify these parts, we use the concept of a subtrace set:

Definition:
(a) T7 is a subtrace set of trace set T2,

T’ ; T2 =ar T\/T" T2 = Th% T —> Tt
it

(b) ‘T1 is a subtrace subsef of trace set T2,

TIECTZ =4 \?/_’(Tf CTATCT2)

¥ < ;{',’. ~>LECT, then T' and T'" are called ¢ine seis of T.

Because we transform program components into trace sets we are pri-
marily interested in trace sets, not traces, and subtrace sets, not subtraces -
although a subtrace set with only one element can be regarded in place of a sub-
trace. According to our definition, a collection of subtraces does not necessarily

constitute a subtrace set. We require that a subtrace set can be isolated by

-48 -

trace set composition, an operation which in mathematically complex fashion
mutually connects all members of the sets involved. Program components can
always be isolated this way, and our trace sets are derived from program com-
ponents. Again, a calculus independent of the derivation from programs could

be presented, but it would be more complicated.

The tine sets of trace set T are not subtrace subsets of T. In particular, the
tines of trace T are not subtraces of 7. A trace is a sequence of nodes. To know
all operations of trace 7, we have to look at the nodes of T and, if we encounter a

concurrent command node, look recursively at the nodes of its tines.

Now that we can identify parts of traces and trace sets, let us formalize the
substitution of one part for another. Of the following definition, part (a) deals
with sublrace subsets, part (b) describes the recursive treatment of concurrent

commands:
Definition:

1 :
(a) If Tis atrace set, Tpg is T with subtrace (sub)set T replaced by trace set

T2,
Th—~>T2—>Tt if r\/f T=Th")ﬂ —)Tt (i.e., ﬂET)
it
1 T ' .
Tpo =a | (T\T')u T'py if \!,'/Tf ETCT (ie, T1CCT)
T otherwise

1

For concurrent commands, (< >)pe =a < 771> -

T”

T2

(b) Trace set T is T with T1 in place of T2 iff

. Tt
iy T = Topy. or

-49 -

(ii) Tper is a concurrent command in T, and T"is

iy J
T with (Tw)rz in place of Tpar.

We will use the notion "T with T in place of T2" to let semantic declara-
tions transform trace sets by replacement of certain of their activities. But first
we have to identify which trace set parts ought to be replaced, i.e., we have to

select those components in the trace set that match the semantic declaration.

In the subsequent definitions we consider a refinement S, instances ¢f, ¢7'
and c2 of components C7 and C2 of S, a semantic relation Z involving €7 and

c2t, and its declaration D under cnabling condition P and for result condition R.

To find out for which parts of trace set T declaration D applies, we proceed
in three stages. First, we find all instances of components C1 and C2 in T. Then
we select those instances that are adjacent. Only adjacent instances can be can-
didates for a semantic transformation. Finally we check the scope in which
every candidate appears, i.e., inspect the pre- and postcondition of every adja-
cent instance pair. We may consider performing a transformation only if the
scope of the declaration is matched, i.e., if the precondition implies the enabling
condition of the declaration and the postcondition is implied by the result condi-

tion of the declaration.

Definition:
(1) The instance set I7(C) of component C in some trace set T is

I7{C) =4 {c| cisaninstanceof C, and T(c)ECT

or ¢ €Ip(C) for some tine set T' of T |

" For idempotence Z involves only C7: all definitions apply without consideration of C2.

(2)

(3)

- 50 -

Ip(C) is the set of all component instances of C appearing in T.
With respect to some trace set T, relation Z can be interpreted as
Zyr =4 ((c1,02)| T(c1)>T(c2)ECT or T (c2)>T(c?)ECT
or (cf,c2)€ Zy for some tine set T' of T,
(c1,c2)elp(C1)xIge(C2) }
(c1,c2)€ Zy is a candidate for Z in T. A candidate is a component pair in T
which matches the operands specified in relation Z.

With respect to some trace set T with proof, declaration D can be inter-

preted as

Dy =4 {(c1.c2)| pre(T(c1)>T(c2))>P,
Ropost(T(c?)—>T(c2)), (c1,c2)eZg }
(c1.c2)€ Dy is an applicator of D in T. An applicator is a candidate in T
which appears in the scope specified in declaration D. D with C71, C2
replaced by c?, c¢2 is the declaration instance d of D at applicator (c7,¢2).

An in-line declaration indicates the location of some of its instances.

DeCZyClp(Ct)xiIg{(CR2).

At last, we are ready to perform a semantic transformation! We can isolate

in T an applicator (c7,c2) of declaration P and define the effect of declaration

instance d at (c7,¢2). d generates from T its transformation 7"

Definition (Generation Rules):

(G1)

(G2)

The declaration instance d of D at (c?,c2) generates T from T iff
dis [!c?, and T'is T with T(c7) in place of T(c?)—> T'(c?"),
Or Vice versa, or

dis c?t&c2, andT'is T with T'(c2)—> T'(c7) in place of

T{c?7)—> T(cR), or vice versa, or

-51-

(G3) dis cffic2., and(forarbitrary T")F'isT

with in place of
T(c1)—>T(c2)
. . T(c1
cither (1) < "Egzg > T(c2)=>T{c1)
or i) | <TGIRAT"> | Ten)> <plez)>
or (iii) <T"?(£ 1) <"_T'{c;}>—a-r(c1)

or some subsumed commutativity or independence gen-

erates T from T

There must be three rules for the development of concurrency (G3): one to
ercatc concurrent commands (i), and two to extend already existing concurrent

commands to the right (ii) and to the left (iii).

Definition:
(a) Semantic declaration instance d generafes T' from fT:lief} iff d gen-
erates T'' from some T;.

(b) Semantic declaration 0 generates T' from T iff some declaration

instance of D generates T' from T.

We can now describe the computations of semantie version SD. We have to
build the transitive closure of all transformations of trace set T(S') by semantic

declarations in D.

Definition:
The transformation set T(SD) of semantic version SD is defined indue-
tively:
To(SD) = (T(S)}
{i)O) T((SD) —daf T{_i(SD) v f Tp] D\é/DD generates TD from T§_1(SD) }

T(SD) =g };"n T{(SD)

For all i>0, T5_(SP)< T;(SP). In the absence of recursion T'(SD) is finite:
there is a k such that T;_(SD)=T;(SD) for i2k, indicating that further

-82 -

applications of semantic declarations do not generate new trace sets. If D=g¢,

then T(SD)={T(S)}; thus S¢ is S.

We want to prove that the transformation of a trace set does not alter its
semanlics, i.e., Lhal every lrace set in T'(SD) has the semantics of S. We have,
in the refinement proof system, defined semantic relations for refinement com-
penents. However, now we are in the trace proc:; system and are dealing with
trace sets, not with refinements. We must characterize semantic relations in

terms of trace sets.

The next lemma does just this. It can be. viewed as justification for our
choice of generation rules, The lemmma implies that the transformation of a trace
set does not alter its semantics, and the following theorem concludes induc-
lively that all transformations of T'(S) must have the semantics of T(S), i.e.,

the semantics of S.

Lemma:
For any components C, {1, C2, and semantic assertion R,

(@) &C (T(CHR] =(T(C)>T(C)HIRY})

(b) Cr1&pC2 ((T(C1)>T(C2) R} = (T(C2)—>T(C1))}R})

i

I

(For semantic purposes, independence reduces to full commutativity, which
is defined in terms of commutativity.)
Proof:
For statements S, $7, S2, and guards B, 7, B2, and semantic assertion R,
(&) B = true = (BAR =BA(BAR))
| = (TB)R}=(T(B)>TBNR})
'rS = (S{R}=S:SIR}) = (T(S)=(T(S)>T(S)HR})

(b) B1&pB2 = true = (BIA{B2AR)=B2A(B1AR))
= ((T(B1)>T(B2))IR} = (T(B2)—>T(B1))IR})
S&pB = (BASIR]=SIBAR})

= ((TB)>TENR) = (T(S)>TB)R})
(81;52{R}=82;81{R})
= ((T(S71)>T(S2)R} = (T(S2)—=> T(S1)IR})

S1d&pS2

-59-

Theorem:
For any semantic version SD and any semantic assertion R,

TE;(\SD) T{R}=StK]

Proof:
Induction on the number of transformations:
Base: D=¢, T(SP)={T(S)}. T(S)R}=S{R} (previous theorem).
ind. hyp.: Assume an nth transformation T of 7'(S'), and T'{R}=S{R}.

ind. step: Let some deD generate T' from T. Since the weakest precondi-
tion of the subtrace set in T which d replaces and its substitute
are in all cases identical (previous lemma), T' has the same

semantics as T. Thus T'{R}=S{R].

The semantics of different trace sets for S are identical, but their execution
times will, in general, differ (otherwise the semantic declarations were point-
less). To make the semantic version a solution to the problem, at least one

trace set has to stay within the specified time limit:

Definition:

We let {P.t} SD {R} stand for an argument that establishes the truth
of the formula (P.¢)D T{R, 0} for some trace set T € T(SD), i.e., a proof of
total correctness with respect to specification (P,R,t) for some transfor-

mation of T(S) by D.

The previous theorem allows us to check semantic correctness of SD by
proving Lhe refinement S. However, in order to fulfil a time requirement, we
may be foreced to search T(SD) for a suitable transformation. This problem is

addressed in Chap. B.

To conclude this section, let us investigate the computational equivalence of

semantic versions:

-5H4 -

Definition:

We call two semantic versions S7Df and S2D2 of refinements S7 and
S2 basically equivelent, and write S1D7 =S2D2 i S1 D1 and S2D2
have the same transformation sets, i.e., T(S7D1)= T(S2D2).

The case D?=D2=¢ provides a definition of basic equivalence of

refinements.

Basically equivalent refinements must have the same potential for con-

currency:

Lemma:
Consider two basically equivalent refinements S1 and-S2.

For every set D1 of semantic declarations for S7 there is a set D2 of

semantic declarations for S2 such that S7D1 = S2D2 .
Proof:
If D1 =¢ set D2 =df¢'

Otherwise, for all declarations D7 € Df , D1 can be replaced by the
sequence of all declaration instances d7 of D7 in T(S7D7), yielding a
declaration set Df' such that S7D71 =S7D1'. (Joining the declaration
instances at calls of a recursion into a set declaration keeps DT’ finite.) By
expanding refinement calls we can transform Df' into a set Df" of
declarations each of which only involves conecrete components;
S1D1"=851D1'. Since basically equivalent refinements have identical

trace sets, D7 " has identical effects on S7 and S2. Set D2 =qD1".

Although S7P7 and S2P2 may be basically equivalent, onc may be prefer-
able to the other: the conciseness with which the semantic relations in a
refinement can be described depends on the refinement structure. There may
also be refinements basically different from S7 and S2 that satisfy the semantic

specification and have belter concurrency properties.

The trace proof system can describe the properties of a semantic version

SD. It can tell whether SD is a solution to the specified problem, but not

-55 -

whether it is an optimal solution or what an optimal solution will look like. Our

methodology emphasizes the development of safe, not of optimal programs.

0.3 Program-Specific Semantic Declarations

The purpose of enabling and result conditions in semantic declarations is to
determine the applicators of a declaration amocong the candidates for the
declared relation. However, it may be that the enabling or result condition of
some declaration is satisfied by all candidates and therefore irrelevant for the
program in which the declaration appears. An obviously irrelevant condition may
be omitted, rendering the declaration program-specific - applicable only to that

program in which the condition is superfiuous.

Definition:
{1) Consider a trace set T and a semantic relation Z with scope (P,R'). If
{P] T iR} is a proof with respect to semantic specification (P,R), define
(i) POST(P') as the conjunction of all postconditions of candidates
for Z in T which have a precondition imnplying /',
(ii) PRE(R') as the disjunction of all preconditions of candidates for
Z in T which have a postcondilion implied by R'.
(a) Z is general under P' in T with respect to (P,R) iff thereisa
proof {P3 T {R} suchthat R"2POST(P').
{b) Z is unconditional for R'in T with respect to (P, R) iff thereisa
proof {P} T {R{ such that PRE{(R')>F" .
(c) Z is global in T with respect to (P,R) ifl thereisa
proof {P{ T {R{ such that R'DPOST(true) and PRE (false)> P .

(2) Consider a semantic version SD where D declares relation Z for scope

(P.R').

-58 -

Z is general under ' (unconditional for R', global) in SD iff
Z is general under P (unconditional for R', global) in every T € T(SD).

Relations that hold generally (uncecnditionally, giobally) in SD may be

declared like general (unconditional, global) relations, i.e., in declarations
(i) the result condition may be vnitted if Z is general in SD,
(ii) the enabling condition may be omitted if Z is unconditional in SD,

(iii) the enabling and result conditions may be omitted if Z is global in SD.

If the generality (unconditionality, globality) of a relation in SD can easily
be detected much effort may be saved: the checking of intermediate assertions
in the traces in order to identify certain candidates as applicators becomes
unnecessary. For a semantic relation global in SP every candidale is an applica-

tor.

5.4 Example: Sorting

We have to look at the transformation set of the semantic version of sori n
presented in Sect. 2.3 and investigate if some transformation of the refinement

trace set T (sort n) satisfies the time limit of 0 (n) specified in Sect. 3.3.

Our trace notation has been designed to describe the effects of semantic
declarations, not to describe specific traces or trace sets. We present some use-
ful new notation now, but leave a more involved syntax for concise trace proofs

to the user:

< > i n>l

-57 -

The computation rules transform the refinement sori i inlo the following

trace set:
n i-t
T(sortn) = e (ﬁé T{csi-j))
= J=

We may view cs i as a basic statement because the independence declara-
tion for sert n does not refer to proper components of csi. This allows us to

interpret trace sets for sorf{ n as single traces:

n i-1
T(sortn) = 7, =a —>(—>cs1-j)
=] ;=0
e.g., for a five-element array (n =4),
Tg = ¢§1->¢es2>¢c51->¢cs3—>cs2—>c51->2c54>c83-—>cs2->csl

We proved in Sect. 4.4 that the worst-case execution time of 7, is G {n?).

We will now prove that 7, can be transformed by the given independence

declaration to

n-1

n—1
Tp =df (a vi) -> (_) ‘Un-i)
i=1 i=0

t=1

)
where wv; =4 <csi-2j > 4=0
e.g., for a five-element array,
T4 = cs1—>es2—> <§§?> —> <E§E> - <g§:1,,> —>ecs2—>cs1

~

If we neglect processor management {A..=0"), 7, has a worst-case execu-

~
]

tion time of (2n-1)c's. i.e., U(n). 7, is fastest for this semantic version of

sort m, but we need nol prove that. We only have Lo know Lhatl it salisfies the
specified time limnit.

¥ To obtain linear execution time for a program with unbounded concurrency, A, must

be negligible.

Lemma:

- 58 -

For all n, 7, can be transformed into T,.

Proof:

Induction on 7.

Base:
ind. hyp.:

ind. step:

T1=T1=cs 1 (identity transformation).

Tn can be transformed to 7.

n+l i-1 n i-1 n
_ 2 esimi) = .. .
T+t ;?l(jgncsz i) i—z(;?ocrl. i)—> (;3,051 7)

can by ind. hyp. be transformed to

i=1

n-1 2
T'ne1 =ar (;3; <ecsi-2j >j___°) >
n—i=1
n-1 2 n
—> sn—i+2j —> +1=-j
(i=n<c 7 > s=0) (;}ocsn 7)
i-1
n 2
= (> <esi-2j>)—>
i=1 j=0
n—i-1
n-1 2 n
(= <ecsn-i+2j >) > (> csn+1-j)
i=1 §=0 =0
The inductive step is to show that
——
n-1 2 n
Anet =ar (i—_>1 <csn—-i+2i > j=0) > (;_)ocs n+1-j)

transforms to
n-i=1
,_ n-1 2
Anei =daf (t—_zv1 < csn+2-i+2j > o)>ces2—>cs 1

=1

n-2
= (%‘; <esn+l=i+2j > u) -
=1 =

i+

n—i

n 2
(> <csn+l1-i+2j >)
i=n-1 j=0

=i
2

n
> L esn+1-i+25 >
=0 i

-59 -

Then 7'y 4+; transforms to
i-1 n—i

n 2 n 2
T'ns1 =at (;-—:)l <ecsi-2j > j=°} —> (:__)0 <csn+1-i+25 > ;

=[])

= Trn+1

To show the inductive step, let us define

n-i-1
n-t) 2
Kns1 =ar —> < csn—i+2j >
i=1 3=0
T
M 4y =at ;—3"055 n+l-j
n—i-|

n-1

E'n.-!-l =dr i—al <CS ‘n+2-1.+23 > 0
= J:

Then Ans1 = Knat ~> lnslr Anet = Kpsyg—> €S2 —> 05 1.

Remember that ¢sifjcsj for li—j[>1. With k=1..n-1,
the highest index in the kth node (concurrent command) of
Kn4+y i8 n—k, the index of the kth node of w44 is n~k+2. Note
that the indices in both «x,,; and u,,; are monotonically
decreasing, i.e., low indices in x,4; meet high indices in g, 4.
Thus the kth node of u,,; can be commuted to the kth con-

current command of x,,; (G2) and ravelled up as a new tine

(G31i). Doing this for all k, we obtain &,4i. H,+1 has two more

nodes, ¢s 2—> ¢s 1, which cannot be ravelled. This leaves us

with X, 44.

Tn sorts array a[0..n] in 2n—1 steps. e[0..n] can be sorted faster, in
approximately n steps, by alternately comparing all odd pairs in parallel and all

even pairs in parallel, n/2 times. However, the according trace

&
"1;:' ('Uodd -> 'Ue\'r_-r:)

[

where voqq =ar <cs2j~1> .
3

o

NI;!

Veven =ar <es 2] > j=1

- 80 -~

cannot be derived from our refinement of sorf n, not even if we additionally
declare the idempotence of cs ¢, for all i. The trace does not constitute a bubble
sort. For computations which are not a bubble sort, sort n must be refined

differently.

5.5 Operational Models for Traces

We have already in Sect. 5.1 referred to an operalional representation of
traces: the exhaustive study of Hoare [Hoa78a]. Although Hoare considers only
sequential execution, the semantics of concurrent command rule (T8) are
clearly consistent with the arbitrary interleaved execution of the two tines in his
operational model: the semantic part of (T6) is the weakest precondition of

every interleaved execution.

Operational models commonly simulate concurrency by interleaved execu-
tion, but if we want to model execution time and not only semantics we are in
need of truly parallel execution. We can represent it by tokens propagating

along the arcs of traces.

Node v of trace 7 is activated when the input arc of v carries a token. Upon
termination of the node, the token is transferred from the input to the output
arc of . If a guard evaluates to false, a token is placed on an imaginary second
output arc instead. We call it abort are since a token on it signifies abortion of
the trace. Abort arcs are exit arcs. Activating a concurrent command means

placing a token on the entry arc of every tine,

A call of a refinement S places a token on the entry arc of every trace in its
trace set T(S). If a token reaches the exit arc of its trace, that trace models a
legal computation for this call. All traces are simultaneously executed to the

point of termination or abortion.

The call of a refinement S with semantic declarations PP can be modelled by
simultaneous calls of all trace sets TeT(SD). The transformations whose

tokens come to rest first are fastest.

-B1-

We can use a formalism to describe the safe movement of tokens as defined
by Lamport {LLam77] for a set of N concurrent processes built from nodes of two
types: assignment and decision. Execution is modelled by the transformation of
program states that are values of variables paired with arcs in the process

graph. Assertions labelling arcs deseribe the legal states.

We replace Lamport's processes by traces and consider only the cases N=1
modelling sequential execution and N =2 modelling binary concurrency. Higher
than binary concurrency can be simulated by nested binary concurrent com-

mands.

To be able to use Lamport’'s formalism, we have to classify trace nodes as

assignments and decisions:

{a) basic statements (null and assignment} and concurrent commands are

assignment nodes,

(b} guards are decision nodes (remember the added abort arcs).

Lamport calls a mapping of an assertion on each arc of trace T an
interpretation I of 7. I is consistent at node v iff P2v{R}{, where P labels the
input arc and R the outpul arc of v. [is consistent iff it is consistent at every
node of 7. Any sel of intermediale asserlions [or Lrace 7 derived in conformilty
with trace rules (T0O) to (T6) is consistent.

Lamport calls an interpretation that is a proof foer T with respect to some
semantic specification (P,R) inwvariant with respect to P. To assure the con-
current correctness of two tines of a concurrent command, they must have
invariant interpretations that are mutually monofone, Lamport’'s term for con-
sistency on shared data. Our notion of independence implies Lamport's mono-

tonicity.

We encourage the reader to study Lamport’s model [Lam77] (the formalism
fills only one page). Lamport does not consider execution time, but an extension
is simple: include the effect of nodes in the hidden variable clock {this converts
decision nodes into a second type of assignment nodes}, but disregard clock in

monotonicity arguments.

-82-

6 Implementation

In the previous chapter we have described a semantic version SD by the
transformation set T(SD). Its members are the trace set T'(S) of refinement S
and a number of transformed trace sets with the same semantics as T(S'). This
chapter discusses the implementation of SD, i.e., the selection of a suitable

trace from T (SD) for execution.

First some general remarks:

Executing a program concurrently is not going to be simpler or cheaper
than a sequential execution. It is going to be faster, though, and in order to save

time in execution we will, in general, have to expend additional effort previously.

Let us assume a program that we cannot or do not want to optimize. How-
ever, we want it to take less time than it does if executed in sequence. To keep
the length of the execution within the desired limits, we have to ravel the
program's components into a sufficient number of concurrent tines. This is no
improvement of the program's computing effort. We merely choose to invest in

processing power rather than execution time.

The following observation tells us the range of execution speed-up we can

expect from a semantic transformation:

Observation:'

Let the degree of concurrency, or width, I'(T) of trace set T be the
maximum number of parallel tines in any trace of T. T(T) is the execution
time of T as defined in Sect. 5.1.

Then, for every trace set TeT(SD) generated from trace set T(S) of

some refinement S by semantic declarations D (without idempotence),

T This is really an observation about individual traces, not trace seta, But we are here pri-
marily concerned with trace sets.

-83 -
TTS) < ey < T(T(S))
(T)
The best we can hope for is that T maintains its maximum degree of
concurrency all the way, dividing the length of T'(S) by I'(T'). In other
words, the execution speed-up of the refinement by trace set T is bounded

by the degree of concurrency of T

Phrasing it more loosely {neglectling constants): to save some order of exe-
cution time, we have to add that same order of concurrency. Take, for _example.
the sorting program sortn. Its sequential execution time is 0(n®) (see
Sect. 4.4). A concurrency degree of 0(n) improves the execution time to 0{n)

(see Sect. 5.4).

However, the order of execution speed-up may fall short of the order of
number of processors involved in the execution, unless concurrency is main-

tained to an adequate extent throughout the execution.

The derivation of th.e concurrent from the sequential trace set embodies
the additional effort we have to expend. This is part of the concern of this

chapter.

We also have to describe the execution of the concurrent trace set we arrive
at. In the operational models (Sect. 5.5) we view the execution of a trace set as
the sirnultaneous execution of all its traces. For an implementation, we have to
be more realistic. There is an easy implementation for any refinement S, and
therefore also for its trace set T'(S). But we will have to restrict the effect of
semantic declarations in order to keep transformed trace sets as easily imple-

mentable,

6.1 Trace Sets

This section discusses the selection of a trace from some trace set T for

refinement & for execution.

-84 -

For T'(S'), the trace set of S, a selection is easy: if S does not contain alter-
natives, there is only one trace, and for every alternative /F in S, the trace of

T(IF) to be executed can be chosen by evaluating the guards of IF in any order.

Guard evaluation as a mechanism for trace seloction works only if the
traces containing some guard of"IF are indistinguishable up to that guard. In
other words, trace differences must always originate at guards. We will call a
trace set with this property simple. It can be represented by a. tree whose
branches originate in guards. Each path form the root to a leaf of the tree

corresponds to one trace in the set.

For every refinement S, T'(S) is simple. However, semantic transformations

may introduce non-simple trace sets. Consider the following situation:

S: S0;IF
IF: B1-S1]B2-52 6

S0 & D1, SC & B2
The trace sets for S in this semantic version are

T1 =y [SO—>B1->81,80->B2->52} = T(S)
T2 =4 {B1->S0->S871, S0->B2->82)}
T3 =4 {(SO->B1-—>S1, B2 ->50->82)
T4 =4 (B1->S0->S1, B2->50->52}

T1 and T4 are simple, but 72 and T8 are not. We have to restrict the effect

of semantic declarations such that only simple trace sets can be generated.

Restriction I

Let o stand for any binary semantic relation. Consider scme com-
ponent €, and guarded command Bk- Sk of some alternation /F with n
guarded commands. Consider a semantic declaration Zi =gt CoB1i
(i=1..n).

Then we may apply all Zi simultaneously to some instance of /7, but if

Zi does not hold for some i, no Zj {(j#i) may take effcct.

e

- B85 -

With this restriction, all guards of an alternative are subjected to identical

semantic transformations and simpleness is preserved.

If we apply it to the example, T2 and T3 are eliminated. And withdrawing

cne of the semantic declarations has the effect of withdrawing both.

6.2 Semantic Transformation of Trace Sets

This section discusses the selection of a trace set T for refinement & from

the transformation set T'(SD) of semantic version SD for execution.

We will perform most of the trace set transformations before run time. An
execution in the specified time limit must be guaranteed before run time. But
we will also during execution allow final touches that require no or negligible

additional processing.

6.2.1 Before Run Time

If we represent the trace set T'(S) of refinement S as the computation rules
(Co) to (C5) suggest (Sect.5.1), T(S) can be computed in time linear with
respect to the length of S.

The transformation set T{SD) of a semantic version SD of refinement S is
recursively enumerable (Sect. 5.2). However, the length of the transformation
sequence that generates some T from T(S) may be immense - as bad as the

sequential execution of S for every input.

The complexity of transformation of T(S8) is governed by two factors:

(1) The number of traces {the cardinality of T(S)).
The cardinality of T(S) grows exponentially with the number of alter-

nations in St if S has m alternations with n guards each, T(S) contains n™

traces.

(2)

- B -

The number of applicators in the traces.
The number of transformations of a trace grows exponentially with the
number of applicators in that trace: n applicators generate 2"~1 traces,

one for each combination of applications.

Here is some advice on how the complexity of semantic transformations can

be reduced:

(1)

)

sets:

To mitigate the impact of a large number of tr}aces. avoid deeclarations thal
refer to components inside alternatives. For the purpose of semantic
transformations, alternations that are below the level of semantic declara-
tions can be viewed as basic statements: their alternatives need not be indi-

vidually transformed.

In Sect. 6.3 we mention a class of sorting programs whose declarations
never need to refer inside alternatives. For the purpose of semantic

declarations, their trace sets reduce to single traces.

Compilable concurrency must be the result of finitely many semantic
transformations. The following restriction cuts T(SD) down to finite cardi-
nality:

Restriction II:

A semantic transformation inside a recursion may only be per-
formed if it applies identically at every level of the recursion, and then

it must be applied at all levels simultaneously.

Then T(SD) is finite, because all applications of a declaration inside a
recursion generate together at most one transformation T' from any T for

S. By definition, only recursion can make a transformation set infinite.

Weaker restrictions are conceivable. A declaration inside a recursion
may generate any finite number of transformations to keep T{SD) finite.
For a program whose fastest trace sets are not within a finite transforma-

tion set, see Sect. 7.1.

Here is a collection of commands for the semantic transformation of trace

-B67 -

rule command semantics

(G1) | discardw drop node v

(G2) | commute v left/right | swap node v with left/right neighbour
(G3i) | ravel v left/right merge node v and its left/right neigh-
beur in a concurrent command

(G3ii) | ravel v right trace 1/2 | append node v to the left of trace 1/2 of
its right neighbour (which must be a
concurrent command)

(G3iii) | ravel v left trace 1/2 append node v to the right of trace 1/2

of its left neighbour (which must be a

concurrent command)

Consider, for example, the transformation sequence which generates con-

current trace T, from trace 7, of sort n (Sect. 5.4):"

n i-3 i-3-j

[-.

: : . commute cs i—j left ; ravel csi—j left] }
1i=3 j=0 i

where ¢s i is the node representing the first instance of component csi to the

right of the node currently looked at. Thus T, can be derived from T, in one
left-to-right pass of right-to-left commutations and ravellings in time o(n?)
(O{n) for every nested for). However, a bounded number of transformations
can, if we permit unbounded input, improve the execution lime only by a con-

stant factor, never by a degree of magnitude.

To make improvements of orders of magnitude, we have to be able to recog-
nize recursive patterns in transformation sequences and apply them to the
recursive representation of trace sets. The automatic recognition of these pat-
terns is a formidable problem and beyend the scope of this thesis. Qur current
alternative is human intervention. The user should be able to communicate

recursive patterns in trace set transformations to the compiler. One way of

T ;i =T; for i=1,2. Therefore semantic transformations start with n=3.

- B -

doing this is by proving lemmas like the one in Sect. 5.4 and feeding the com-
piler the resulting trace sets. We might be able to perform at least syntactic
transformations automatically, e.g., discover the identities for 7'+ and 7'y 41 of
the proof in Sect. 5.4, Another way is to feed the compiler a parameterized
transformation sequence like the previous with parameter n for sort n. It would

then derive the transformed trace set by applying this transformation, in our

case to A, (see Sect. 5.4), but without evaluating the recursion parameter.

Improvements of orders of magnitude for unbounded input are a strong
requirement - too sirong for any specific application: machines will always be
limited in their storage and processor capacity. If we know Lhe application will
never deal with more than & inputs, say, we may prefer to simply execute a
transformation sequence withoult worrying about recursion. For example, a
reduction of the execution time of a frequently used sort n from 0(n?) to 0(n),
n<k, may well be worth expending time 0(k?%). But, knowing that there is a
transformation sequence of 0 (n?), we must still find it. The easy way is again to
let the programmer specify it, but then we may as well use the supplied
knowledge of recursion. Without recourse to the programmer, a left-to-right
pass of right-to-left commutations and ravellings works for sor{ n, and looks like
a reasonable approach for other programs as well. But, without experimental

data, nothing more can be said.

6.2.2 At Run Time

Ideally, we would like to resolve all semantic declarations statically, before
run time. But the right choice of trace set may depend on factors which are
difficult to predict, like input data or time properties. If a sufficient execution
time is already guaranteed, some remaining decisions are better resolved dur-

ing execution.

According tc our cxpcricnee in using this methodology for program
development, many programs contain only global declarations. The most likely

breach of globality is an enabling condition for conditional commutativity or

- 69 -

independence. An enabling condition can be thought of and implemented as a
case analysis of trace sets. If the condition is satisfied the acéording transforma-
tion takes effect; otherwise it does not. If both alternatives have been compiled,
the only additional operations at run time are the test of the enabling condition

and the following branch.

The only run-time technique for trace set selection that we investigate in
detail is racing. Assume a set of operations that are independent up to a point
determined by their progress relative to each other. Instead of having the com-
piler select a trace set based on predicted execution times, we can race the

operations during program execution to their point of dependence.

In RL, such a situation involves independence declarations that mutually
exclude each other. The mutual exclusion of semantic declarations is to be dis-
tinguished from the mutual exclusion of program components. A set of semantic
declarations is mutually exclusive if the application of any one declaration in
the set renders the other set members unexploitable. The following RL program

offers a possibility to race components 4 and i3:

S: A B
A AT ;A2
B: B1; B2

(1) A &B

(2) 4l B1

(3) B i At

Imagine, for instance, A and B sharing a variable in their second com-

ponent, while working in distinct variables in their first.

Commutativity (1) makes both indepcndence declarations (2) and (3)
exploitable. But whenever one is applied the other cannot be. Note that (2) and

(3) together can be refined to

-70 -

(4) A1 || B1
(5) A1 || B2
(6) A2 || Bt

A race of 4 and B makes at run time a choice between the mutually
exclusive declarations (5) and (8): start A7 and B7 in parallel, applying (4); if 87
terminates first continue in parallel with B2, applying (5); if A7 terminates first
continue in parallel with A2, applying (6). In the described program, racing 4

and B always yields an optimal execution:

If B7 is faster than A7, trace v1 =g <Bii;82 > —»42 is selected,

if A1 is faster than B7, trace T2 =4 <‘41 ;AZ > —> B2 is selected.

Their execution times are:
T(r1) = max(T(47), T(B1)+T(B2))+ A+ T(4A2)
l'r{” =ar T(A7)+Ac>+T(A2) it T(B1)ST(41)
T4 =4 T(B1)+T(B2)+A+T(42) if T(41)ST(B71)

T(T2)

max{T{A7)+7{42), T(B1))+ A, + T(B2)

T4 =4 T(B1)+Aex+T(B2) if T(41)ST(B7)
Y8 =4 T{A1)+T{A2)+ A +T(B2) if T(B1)sT(A7)

Because TP'<T#’, 7 is the better choice if B is faster than 47,

because TA'<T{!, 72 is the better choice if 47 is faster than B1.

In more complicated situations, racing may not produce an optimal execu-
tion. In fact, it can be arbitrarily bad. Assume, for instance, that A and A regain

their independence at some point:

S: A, B

A: AT ;A2 A3

B8: B1,;82;83
(1) A&B
() A |l {B1,B3}
(3) B || {41,433

-71 -

Ad .
If B7 is faster than A7, trace 77 =g <B;,"i52 > > <A2;§A3 > is chosen,

if A1 is faster than B, trace 72 =4 <A1 g?AS > = <821§§BS> is chosen.

Il we take, for example, the following execution times for A and B,

T(A1)=2 T{A2)=1 T(43) =20
T(B1)=1 TB2)=20 TH3)=1

sequential execution takes 45, trace 77 42, and trace 72 24 time units. A race
would select 7/ because B7 is faster than 47, achieving almost none of the
speed-up that is possible. Cf course, the long opecration H2 on shared data

should be in parallel with the long independent tail component A3.

Racing does not work here because the execution time of only the initial
independent parts of A and B are determining the selection. For components
which gain or regain independence after a period of dependence, methods with

look-ahead are required. But this may be too costly at run time.

6.3 Example: Sorting (Networks)

For the purpose of semantic transformations, we were able to interpret the
trace set of refinemenl sorin {Sect. 2.3) as a single trace {Sect. 5.4). Knuth
calls sort n a sorling network. A sorfing nelwork is a scrting refinement with a
"homogeneous sequence of comparisons, in the sense that whenever we compare
K; versus Kj, the subsequent comparisons for the case K;<K; are exactly the
sarmne as for the case K;>Kj, but with 7 and j interchanged” [Knulll]. The alter-
nations in such refinements are hidden inside comparafor modules (in sort n
they are the components c¢si) which, when considering concurrency, can be
viewed as basic statements. For the purpose of semantic transformations, trace

sets for sorting networks reduce to single traces.

Here is another refinement with the same semantics as sort n. We add

semantic declarations for similar concurrency:

-72 -

n
other sort n: i Si
S0: skip
Si: ifa[i-1]>a[i] then swapi; Si-1f

swap i: t[i]:=ali-1]; ali-1]:=a[i]; a[il:=t[i]

(1) (}jxi-—l,i,i+1: swap i |l a[j-1]1>a[s]
1,

(2) (}j#i-—l,i,i&l: swap i || swap j
L

other sort n has the same order of execution time as sort n: 0(n?) for the
refinement, 0(n) for the given semantic version. The exact time properties of
other sort n are better than those of sorf n: other sort n omits obsolete compari-
sons. But it is not a sorting network, and every trace must be transformed indi-

vidually.

The declarations of both sort n and other sort n obey restrictions I and 1I.

6.4 Trace Machines

In this section we describe machines that can execute trace sets. The exe-
cution of a well-formed trace set differs from that of one of its traces only by
some guard evaluations (see Sect. 6.1). Their implementation is not our concern.
We are more interested in the implementation of concurrent commands. We
therefore consider "trace" machines rather than "trace set” machines, building

on the fundamental work of Conway [Con83]:

Independence relations are binary, so we only consider binary concurrency.
Concurrent commands with more than two tines could be faster than the
according nesting of binary concurrent commands, but we will not concern our-
selves with this optimization. It is rather trivial on both the language and the

machine level.

We keep track of the level of concurrency in a trace execution by way of a

-73 -

concurrency tree. A tine T appears in the tree at the time of its execution. When
the concurrent command < :; > of tine 7 is executed, 7/ and 72 appear as
sons of 7. A fine counter identifies the concurrent command and records the

progress of its execution. The counter is shared by all tines of the concurrent

command.

The program trace can be viewed as an isolated tine and builds the root of
the tree. It is linked to a tine counter that records the progress of the call. The

concurrency tree expands as follows:

(1) At the time of program call, the program trace is established as root and

linked to an external tine counter with value 1.

() On initiation of a concurrent command < :; > in trace T, 77 and T2 are
appended to T and linked to a shared tine counter with value 2.

(3) On termination of a tine, the tine counter linked to it is decremented. A
zero tine counter indicates termination of the according concurrent com-

mand.

We can implement this mechanism in a slraight-forward manner:

We assign one processor to each tine. To start its execution, we provide the
processor with the tine’s starting address and a link to a tine counter. A con-
current command is executed by setting up a tine counter and starting its exe-
cution of the tines on different processors. Decrementing a tine counter to 0

resumes the execution of the tine that contains the concurrent command.

This implementation can be canonically mapped on a configuration of distri-
buted processors without shared memory and with message passing as commun-
ication device. Every variable is stored with the processor assigned to the tine in
which the variable is introduced, with the assumplion thal Lhis is the smallest
program part containing all tines that share the variable. During the execution
of the concurrent command, the processor that initiated it has to be available
for communication with the units processing its tines , in case they access
shared variables. (It may be fastest to pass copies of the shared variables for

local update to the tines and let them report changes back at their termination,

- 74 -

The change ' of a concurrent command < :‘; > on a global variable with value

v passed to 77 and 72 can then be synthesized by calculating v' =v7 +v2 ~v,

where vi is the value passed back by Ti).

The static assignment of processors to tines is fast and simple, but uses
unnecessarily many processors: one for each node in the concurrency tree. The
maximum number of parallel computations is the number of leaves in the tree.
We can optimize the utilization of processors by reassigning processors between

tines:

(1) At the time of program call, some free processor is selected to start exe-

cuting the program trace.

{2) On encountering a concurrent command, a processor requests the selection

of two free processors for execution of its tines and deactivates itself.

(3) At termination of a tine, the executing processor deactivates itself but, in
case that the concurrent command is terminated, only after a request te
let some free processor continue the execution of the tine containing the

concurrent command.

A special-purpose processor, the dispatcher, handles requests for processor

activation.

This implementation is not appropriate for use on a distributed
configuration because that would imply swapping of a tine's environment at each
processor reassignment. It can be better mapped on a centralized configuration

with shared memory:

Assume a cache-like paging mechanism for the assignment of memory
modules to processors. Potentially, each processor can own any module.” Store
the trace such that independent tines occupy discrete modules. With each tine
all its data and only its data are stored. A processor assigned to a tine may
access the modules the tine occupies. Since it cannot lpok at global data, the

copying scheme described previously for the distributed configuration has to be

T Conway describes such a mechanism [Con83].

=75 -

adopted. Presumably, access of global data means shared access of a memory
module. The described mapping abolishes shared access. Processors executing

in parallel will be assigned distinct modules.

If we drop the copying scheme and allow a processor to look also at modules
which contain data not local to its tine, shared accesses are a possibility, and
prerequisites of the used non-interference relalion have Lo be enforced. (We

require indivisibility of memory reference.)

&

- 76 -

7 More Examples

At this point, all of the formalism has been introduced, but several aspects

of the methodology need to be demonstrated.

We will present a number of popular examples on which methodologies and
programming languages with concurrency are usually tested. Unfortunately,
people are often more interested in the behaviour of such programs than in a
result. They essentially want to simulate activities of concurrency, synchroniza-
tion, and scheduling. Our methodology does not apply to simulation - we do not
specify behaviour. But we can express the desired concurrency, as we informally

understand it, in RL.1

The formal treatment of the examples is deferred to appendices. We

encourage the reader to look at them; they also provide new clues.

7.1 The Sieve of Eratosthenes

The odd prime numbers less than a given integer, N, are to be determined

by rectifying the initial assumption that all odd numbers are prime. We specify:

sieve, pre: A prime[i]
iel

sieve. post: 2 (prime[i] = iis prime)
1

where I =4 {i|3Si<N, i€N, i odd]

This is a second "pure"” problem, i.e., a problem which is fully specified by
an input/output assertion pair. Our program follows suggestions of Knuth

[Knull] (for a proof of correctness see App. A.2):

T Some of the behaviours are caused by space limitations which could be properly
specified, much like execution time, but are at present not taken into account.

-7 -

VN -1
1~
sieve i if prime[2i+1] then elimm mulés of 2i+1fi
{=
1A=t
elim mults of i: i, Prime [i*+21j;]:=false
K=
(1) /‘:}iatj: primeli]:=false || prime{j]
(2) {}i=j: prime[i]:=false || prime[j]:=false
i,
(3) A ! prime[i|:=false

i

Any pair of tests and/or eliminations of different numbers is independent;
any test or elimination of a number is idempotent. {Remember that guard

independence and idempotence need not be declared.)

~ According to the semantic declarations, guard prime [7] and statement
elim mults of i are independent unless j happens to be a multiple of i. Thus the
order of execution of prime[j] and elim mults of i may only be manipulated il §
is not a multiple of 4: transformed computations must maintain an order, intro-
duced by the refinement, in which guard prime[j] appears only where its truth
ensures that j is prime. In other words, no computation will call elim mulés of ©
for non-prime i. Moreover, because of idempotence, there are computations

which eliminate every multiple exactly once.

The execution time of refinement sieve is exponential in the input N. The
fastest computations for the present semantic version have an execution time
constant in A: the time it takes to eliminate one multiple. Multiples are the
index values of the second for loop. Their calculation is disregarded in the pro-
perties of sieve but is also of constant time, at the expense of exponential
space.? (We agreed to initiate a for loop with the concurrent calculation of all its

index values; see Sect. 4.2.1.)

¥ Other time/space relationships have to be coded explicitly in a recursive refinement.
The sieve presented in [LeHeB1] runs in O(N) space and Q(N) time by allowing for con-
current elimination of multiples of different primes but requiring sequential elimination of
multiples of the same prime.

-78 -

One purpose of this example is to demonstrate how difficult optimum con-

currency can be - even when derived from simple semantic declarations.

In this version of sieve there is no hope for optimum concurrency. To
derive fastest computations for every input n, all multiples would have to be
known - which makes the execution of sieve obsolete. Moreover, there is no way

to find all multiples other than by infinite enumeration.

But we can compile sieve with limited concurrency. We know, for instance,
that, if the multiples of the first m primes have been eliminated, the m+1st and
m+2nd element left in / must be prime: the m+1st certainly is, the m+2nd
must be because between a prime and its first multiple there is always another
prime.t Therefore opcrations elim mulls of i can, with increasing 1, at least
proceed pairwise in parallel. ¥

We leave it up to the number theorists to find more compilable con-
currency. The trouble with prime numbers is that there are many properties
that can only be proved with some margin of uncertainty. Such properties may
be useful if taking a multiple for prime, once in a while, does not hurt. However,
for this sieve, they are of no help. As pointed out previously, the refinement
detects primes with certainty, and our calculus does not tolerate semantic devi-

ations due to concurrency.

7.2 The Dining Philosophers

Five philosophers, sitting at a round table, alternate between eating and
thinking. When a philosopher gets hungry, he picks up two forks next to his
plate and starts eating. There are, however, only five forks on the table, one
between each two philosophers. So a philosopher can only eat when neither of
his neighbours is eating. When a philosopher has finished eating, he puts down
his forks and goes back Lo Lthinking.

T Bertrand's Postulate [HaWr80]
* For a process program exploiting this fact see [Hoa75].

-9 -

This example demonstrates how the methodology can be used to build
never-ending algorithms. That is the only point we want to make in this section.
A full formal treatment of the program modelling the five philosophers can be

found in App. A.3.

OQur methodology can only yield terminating refinements. Therefore we
modify the problem specification and give the philosophers a finite life of N
meals (allowing different philosophers individually many eating sessions is a

trivial extension):

lives. pre: all forks are on the table

lives. post: all forks are on the table, and every philosopher has

eaten exactly N times in this life

We represent the philosophers’ actions by statements up; and downy for a
movement, i.e., seizure and release of fork 1, eaf; for an eating session, and

think; for a thinking period of philosopher i (for their refinements see App. A.3):"

N 4
lives: [5 philg)
" i=0

phil;: Up;; UPig1: eatl;; down,; down,g ; think;

(1) At phil; & phil;

(2) Gj#i@l,i,i@l: eat; || eat;

(3) Qj#'i.i@l: eat; || {up, downi;

(4) - {} jni {up, downy; || fup, downd;
(5) {‘\f jei: think; || phil;

This program lets philosophers properly compete for their share of the
meal and eventually die. The declarations state that philosophers may eat at
different intervals according to their hunger (1), non-neighbours may eat at the

same time (2), forks that are presently not used for eating may be moved (3),

T @ denotes addition, © subtraction modulo 5.

- 80 -

different forks may be moved in parallel (4), and thinking philosophers do not
interact with the rest of the system (5).

The total correctness of the refinement (see App. A.3) guarantees that the
system cannot get stuck. None of the five sernantic declarations invalidates total
correctness {no correct declaration ever does), and therefore the concurrent
version is also deadlock-free. We do not need additional proof, but to help the
reader being convinced, here is a reasoning especially tailored for this algo-
rithm: a situation where every philosopher has one fork and waits for the other
cannot arise because in the refinement philosopher % lets no neighbour access
the forks next to him once he prepares for eating, and none of the declarations
permits commutations which would lift this restriction. The key is that (3) does

not commute eating sessions with the movement of forks for neighbours.

For a never-ending program, a solution to the infinite problem, the finite
lives may be called repeatedly in sequence. The user of our finite algorithms is
responsible for a mechanism for infinite repetition; we refuse to consider it in
our calculus. But we guarantee that, if the problem specification allows an
infinite repetition of the solution (i.e., if the output assertion implies Lhe input
assertion), all algorithmic properties except termination are preserved. The
user can rely on partial correctness, absence of deadloek, and absence of star-
vation without recourse to an authority outside the program, e.g., a fair

scheduler.

Our solutions may be slightly more restrictive than non-terminating solu-
tions have to be. We do not allow unbounded non-determinism, not even for
unbounded activities. In this example, the table is cleared completely in arbi-
trarily long intervals, whereas il is nol necessary for all philosophers to leave

(or, in our terminology, die).

There is a straight-forward extension to our calculus which lifts this restric-
tion: the exploitation of semantic relations between components of different
calls of refinement lives must be allowed. Then a call of lives can start before
the previous call terminates. Deadlock remains impossible, but to prevent star-

vation it must somehow be ensured that no call phil; is commuted to infinity.

-81-

This is the problem of "fair scheduling”, which we shall not address.

7.3 Producing and Consuming

Suppose that two parts of a program are almost distinct; there is only one
variable, buf. which appears in both. One part "produces” values and deposits
them into the buffer, the other "consumes" deposited values by reading them
from the buffer. The following program fragment reflects this situation. Produc-
tions and consumptions are called in turn M times; the omitted expressions in
the assignments represent the creation of item 1 in production 1, and the use of
itern 4 in consumption

M1
stream: 3 [prod;; cons; }
>

prody: buf:=

cons;: =buf

The dependence of productions and consumptions forces an execution in
sequence. But we would like some concurrency. We apply the independence
theorem (Sect. 4.3.1) and disconnect different prod/cons pairs by giving every-
one its private buffer. Then a production of some item 1 may go on in parallel
with the consumption of other items j produced previously:

M1

stream: i [prod;; cons,]

=

prod;: buflil=

cons;: =bufli]
(1) {} izj: prod; || cons;

We did not specify any special properties of productions and consumptions
other than their interaction over buf. In cases where the creation of item i does
not depend on knowledge of items O to i—1 productions may be mutuaily

independent, and similarly may be consumptions. Then we may add two more

-82 -

declarations:

() {yi#d: prody il prody
3 Ainj:

(3) ”1. j: cons; || cons;

For an implementation we must assume: a bound, say n, on the number of
variables. We modify the previous program by indexing the buffer modulo n:

M-1

stream: prody; cons;)

o [

prodi: buf[imodnl=

cons;: :=buf[i modn]
(1) /} (i#j)modn: prod; || cons;
[
(2) {'} (i#j)modn: prod; || prod;
(3) {} (i=j)modn: cons; || consy

Concurrency works only for prod/cons pairs within a certain neighbour-
hood:! productions can be at most n items ahead of consumptions, then the
buffer is full; consumptions can at most catch up with productions, then the
buffer is empty. Note that the condition "bufier empty" is part of any progrém
with producing and consuming, whereas "buffer full" arises out of a need for a

buffer bound in an implementation.

The outcome of this section is. nothing new. The solution to concurrent pro-
ducing and consuming is well-known. But we wanted to exhibit its stepwise

development in our methodology and tried not to rely on previous knowledge.

" More independence is declared but not exploitable.

- 83 -

8 Conclusions

8.1 Summary

We take the view that concurrency is a property not of programs but of exe-
cutions. Consequently, looking at programs, parallelism may be hard to recog-
nize. RL programs do not contain concurrent commands or synchronization
primitives, only declarations of independence. And because an independence
declaration may remain unexploited it only suggests that some action may or

may not be involved in a parallel execution.

The reader might feel that starting with the definition of processes helps
structuring a preogram, and that a refinement without immediate regard to con-
currency forces us to artificially order logically scparate tasks. We believe there
is a separation of concerns: modularity structures the problem solution, con-
currency speeds its execution up. For example, an airline reservation or taxi
dispatching system receives its structure from the modularity of its transac-
tions. It can well be imagined as an arbitrary sequence of transactions (in fact,

this view will be helpful), although only a concurrent execution will be practical.

Our methodology yields modularity by way of refinement (as part of the
language!) and concurrency by way of semantic declarations. A change in the
refinement is likely to affect the semantic declarations for it (but an extension
does not). Concurrency works bottom-up and is therefore susceptible to top-
down design changes. But we insist the solutions are modifiable. They only put
concurrency in its proper place: determined by, not determining the semantics
of the refinement. If a refinement does not permit ecnough parallclism, the

independence theorem advises to spread out variables over its components.

Concurrent actions are not synchronized by conditional delays but by con-
ditional concurrency. The solutions are the same but our methodology prevents
overdefinition and subsequent restriction of concurrency. The definition of con-
currency proceeds step by step on semantically correct territory, successive

declarations yielding faster and faster executions. Exclusion is not explicitly

-84 -

programmed. A process design approaches a solution from incorrect territory

by trying to exclude wrong concurrency.

However, the concurrency of RL programs in its present form is less flexible
than that of process programs. RL programs are not asynchronous as are pro-

cess programs. Consider the process program

z:=0;
cobegin <z:=z+1>; S7
yod S2; await < >0 » "use z"' >

coend

where S7 and S2 use distinet variables and do not use z. With execution times

T(z:=0)=1 T(z:=z+1)=2 T(S71)=4
Tz>0)=1 T('usez")=2 1T(S2)=3

this program can be executed in at best seven time units. (Note that the condi-

tion >0 is instantly satisfied when tested.) The corresponding RL program,

S: z:=0;4; B
A: z:=x+1; 851
B: S2;"usez"
(1) A || se
(2) B |l 51

has three concurrent traces,
z:=0 = zri=z+1 > <S2 ST >

—> "use z"

= z:=x+1 St
:I:.—U % < 82 > - <I'USEI”>

=0 —> <z:=:1:-¢£5‘12->51> - "use "

whose executions all require eight time units.

The reason for this inoptimality is that we describe the semantics of RL pro-

grams by sequences of basic RL statements. A basic statement cannot be split

Bb

further, e.g., between two concurrent commands as this example requires. To
derive an optimal solution the refinement would have to be continued, maybe, to

a very low machine level.

In our methodology proofs do not require auxiliary variables [OwGr786a,
OwGr78b]. 1t seems auxiliary variables have the purpose of relating the histories
of concurrent program parts that have been proved separately, like processes.

In our programs concurrency is not synthesized from separate histories.

We consider only programming problems with results, i.e., we can only
derive terminating programs. Infinite repetition is a mechanism of the user
environment and applics only to entire RL programs, not their parts. Absence of
deadlock is guaranteed by the total correctness of the RL program, and the

question of starvation does not arise.

We do not permit program properties to vary due to overlapped execution.
Consider the following program of two processes whose outcome depends on the

point at which the first process is executed:
cobegin <z:=1> //do<z=0-y:=y+1> od coend

There is no equivalent in RL because different interleaved executions have

different properties.t

An important application of this type is concurrent garbage collection as

described for a LISP environment in [Gri77, Dij78]:

Assume a program part mutafion i producing garbage, and a collection con-
currently appending garbage to a list of free space. In a process program the
concurrency of mutafion i and colleciion can be proved as long as we expect
afterwards only the garbage of mutations previous to 1 are collected. But in RL

the corresponding declaration

T Note that limiting the number of repetitions,
dok times <z=0 - y:=y+1>od
or skipping the assignment toy,
do <z=0 » skip> od
still does not yield programs expressible in RL: the point 'of execution of z:=1 determines
both the partial correctness and termination of the do loop.

- 86 -

mutation i |jp collection

where [} =4 garbage of mutations previous to 1 collected

is not legal. The interleavings of mutation i and collection do not have identical
properties: in some collection will pick up the garbage produced by mutation 1,
in others it will not. mutaiion i cannot be proved commutative with collecfion's
search for more garbage. The process program works because there the out-

come of guard evaluations may vary for different interleavings.

Programs whose properties vary for different interleavings are messy.
Including them into RL would seriously complicate semantic relations and the

properties of concurrent commands.

Semantic proofs are of linear complexity with respect to the length of the
program. For every trace set, time proofs are linear. The complexity of a time
proof for the program is determined by the effort expended on finding a satis-
factory trace set, i.e., by the complexity of the search algorithm and transfor-
mation sequence used, or the comprehension of the user who performs the
transformation on paper. If a satisfactory transformation can be found in linear
time, the entire proof of the program is linear. Qur examples are sort n and the

Dining Philosophers.

a.2 Related Research

The introduction and summary relate our methodology to customary pro-
gramming with processes. Throughout the thesis we refer to the proof methods
for process programs by Owicki and Gries [OwGr78a, OwGr76b]. These methods

are, however, not concerned with program development.

The view of programming with concurrency closest to ours is taken in
[La8i79]. Van Lamsweerde and Sintzoff use a concurrent command bul begin
with sequential semantics. Exclusions may be removed by way of correctness-
preserving program transformations which are not described in detail. The con-

current processes are guarded commands (transitions). The guards

-87-

(synchronizing conditions) make any order necessary for correctness explicit.
Transitions are repeated forever, and non-trivial formal techniques are neces-

sary to prevent deadlock and starvation.

Broy describes the semantics of concurrent programs by correctness-
preserving transformations but elaborates only on the opposite direction: serial-
izing concurrent statements [Broy80]. The transformations exploit a simple glo-

bal independence relation.

Idempotence appears in [HehB80], but for programs with traditional con-
currency features (concurrent commands and synchronization primitives). The

implementation described there works only for last-action calls.

Path expressions [FIHa78], incorporated in the specification language for
concurrent systems COSY [Lau79a] and recently extended to predicate path
expressions [And79], reflect an approach inverse to ours: starting out with com-
plete concurrency one declares relaticns, paths, that tighten sequencing. There
exist several semantic definitions, one with transition networks, another with
vector firing seqﬁences somewhat like our traces [Lau78b]. But since no quality
distinctions are made between difflerent sequences, there is no selection prob-

lem. As a specification tool path expressions do not come with a proof system.

Jones recognizes the lack of development methods for programs with con-
currency, he calls them "interfering programs", and proposes extensions to pre-
vious methodologies for sequential programs, what he calls "isolated programs"
[JonB0]. The basic idea is to incorporate requirements for parallel correctness

into the problem specification.

8.3 Further Research

One goal of this thesis was to deduce the concurrency in a program from its
semantic properties. We express semantic properties in the weakest precondi-
tion calculus but are not quile satisfied with the definition of the most difficult

property: non-interference.

- 88 -

It is evident that the relation «» is not "a simple convention" [OwGr76a].
Despite its syntactic looks it is a semantic condition, for example, when sub-
scripted variables are involved. We would like to relate non-interfcrence, as all
other semantic relations, to a postcondition.

free
<> is of practical relevance, but < is of theoretical interest. We know that

«b is not the weakest condition for non-interference assuming memory interlock

free
on variables. But can < still be relaxed?

Qur list of semantic relations is not exhaustive. For example, relaxing the
equivalences in the weakest preconditions for commutativity to implications
yields semi-commutativity [Hoa%?5]. Full semi-commutativity and semi-
independence are defined accordingly. (Semi-idempotence does not seem very
useful.) For a program with semi-relations semantics become an execution-
dependent property. The refinement represents the computations with the

strongest semantics. We know only S{R}>T{R} for every transformation T.

We have discussed the Dining Philosophers and derived a solution with cer-
tain limitations. For instance, we assign each philosopher a fixed number of eat-
ing sessions in advance aﬁd do not allow unbounded non-determinism, not even
for unbounded activities. Just how seriously our methodology constrains the
specification and solution of problems like the Dining Philosophers or the
Banker's Algorithm [Dij68, Lau79a] remains to be clarified. (We have developed a
Banker's Algorithm, of sorts. It is not part of this thesis but may subsequently

appear in a paper.)

Our programming calculus, as it stands, assumes a centralized machine
architecture {a number of processors with shared memory). In Sect. 8.4 we
point out that we can implement RL programs on distributed machines. The
timing calculus can even account for speed differences of processors. But to
model the time lags of inter-processor communication we need an additional
rule for inter-processor assignments which has Lhe semantics of language rule
(L2) but different time properties. This would enable us to represent distributed

computations. However, a methodology for programming distributed machines

-89 -

should make a behaviour-oriented approach and, at this point, our methodology
does not. We tried to add behaviour specifications [LeHe81] but found no satis-
faétory formalism so far. Behaviours are much more complicated than semantic

or time properties.

However, the most urgent work remains to be done on the implementation
of the concept of semantic declarations. We take a first step towards formalizing
a methodology that incorporates the derivation of concurrency rather than pos-
tulating the existence of some concurrency situation. This thesis provides a for-
mal semantic model but is rather vague on its implementation. In our approach,
the hard problem is the compilation, not the execution of the program. What
algorithm can replace the intuition of the programmer in the search for a suit-

able trace set and still be of acceptable complexity?

8.4 On the Purpose of Programmming Methodologies

One problem of formal semantics and verification is that even simple and
seemingly obvious programs have lengthy and complicated proofs. Our program-
ming methodology has been demonstrated on a set of simple "toy"” problems.
But the complexity of their formal treatment may give rise to the conclusion
that we are unable to cope with larger, more realistic problems. The purpose of

this section is to alleviate such scepticism.

Understanding the properties of a program to the last detail is a very
strong requirement. A programming methodology is expected to adhere to it,
and this adherence has to be demonstrated on examples which represent a class

of common problems but are small enough to serve their tutorial purpose.

Verifying realistic applications to the last formal detail is a complex and
tedious task which is always desirable but only feasible when the reliability of

the solution is urgent enough to justify the expense.! Every program must be

T One would hope that automatic verification, if it can be made practical, will cut the ex-
pense drastically.

-90-
provable, but a full proof should not be demanded in every case.

Often only the crucial parts will receive a formal trecatment; the rest will be
derived with some degree of informality. And although there is no guarantee
that informally derived program parts are totally reliable, a methodology should
raise confidence that they will work sufficiently well. (The permitted margin of
unreliability might determine the degree of informality in the program’s deriva-

tion.)

We shall now argue that our methodology works for both formal and infor-

mal program development:

For every program, (actually, for every trace set), its precise properties
are expressed by weakest preconditions with respect to any postcondition.
Examples are the programs fact n (App. A.1) and, for semantic properties only,

sieve (App. A.2) and sort n (Sect. 4.4).

If a weakest precondition is too hard to obtain, less will do as long as the
problem specification is shown to be satisfied. Then the effects of the program
are only known in environments described by this specification. An example is
the derivation of only a worst-case execution time for program sort n (Sect. 4.4).

For other than worst-case inputs, the exact execution time remains unknown.

An always complex weakest precondition is that of full commutativity: its
derivation takes time proportional to the product of the lengths of the operands.
We cope with that difficulty by applying the concept of globality and, in the sim-
plest cases, employing the independence theorem. The majority of indepen-
dence declarations will follow from the independence theorem and will not
require a quadratic proof. We suggest: the user has to pay for complicated pro-

grams {here, for subtle concurrency).

One could be contented with a less formal idea about the properties of a
solution or even have only an informal picture of the problem. Stepwise
refinement is a fundamental and long-established method for carefui informal

program development. The same idea applied to the discovery of concurrency in

-91 -

a program yields stepwise semantic declarations. Each declaration can be
understood in isolation and mosl declarations will be clear and simple. We
presented two informal problems and their solutions (Sects. 7.2 and 7.3), and
appended the formal work for one of them as a demonstration that our intui-
tions were correct (App. A.3). We believe that even a program with considerable

proof length can in our methodology be simple on an informal basis.

[AFR80]

[And79]

[Broy80]

[ConB3]

[Dijes]

[Dij75]

[Dij78]

[Dij78]

[F1Ha76]

[GCW79]

[GeYe78]

[Gri77]

-92 -
9 References

Apt, K.R.; Francez, N.; de Roever, W.P.: " A Proof System for Com-

municating Sequential Processes”, ACM TOPLAS 2, 3 (July 80), 359-
385

Andler, S.: "Predicate Path Expressions”, Proc. 6th Ann. Symp. on
FPrinciples of Programming Languages 79, 226-236

Broy, M.: "Transformational Semantics for Concurrent Programs”,
Information Processing Letters 11, 2 (Oct 80), 87-91

Conway, M.E.: "A Multiprocessor System Design”, AFIPS Conf. Proc.
24, FJCC 63, 139-148

Dijkstra, E.W.: "Co-operating Sequential Processes”, in Program-
ming Languages, I, Genuys (Ed.), Academic Press, 1968, 43-112

Dijkstra, E.W.: "Guarded Commands, Nondeterminacy and Formal
Derivation of Programs”, Comm. ACM 18, 8 (Aug 75), 453-457

Dijkstra, E.W.: A Discipline of Programming, Prentice-Hall, Series
in Automatic Computation, 19786, 217p.

Dijkstra, E.W. et al.: "On-the-Fly Garbage Collection: An Exercise in
Cooperation”, Comm. ACM 21, 11 (Nov 78), 9686-975

Flon, L.; Habermann, A.N.: "Towards the Construction of Verifiable
Software Systems", Proc. 2nd ini. Conf. on Software Engineering
76, 141-148

Good, D.L; Cohen, R.M.; Keeton-Williams, J.: "Principles of Proving
Concurrent Programs in Gypsy", Proc. 6th Ann. Symp. on Princi-
ples of Programming Languages 79, 45-52

Gerhart, S.L.; Yelowitz, L.: "Observations of Fallibility in Applications
of Modern Programming Methodologies", IEEE Trans. on Soft. Eng.
SE-2, 3 (Sep 78), 195-207

Gries, D.: "An Exercise in Proving Parallel Programs Correct”,
Comm. ACM 20, 12 (Dec 77), 921-930, Corrigendum: Comm. ACM 21,
12 (Dec 78), 1048

[Gri8]

[Grig1]

[GrLe80]

[HaWr60]

[Heh79]

[Heh80]

[Heh83]

[HoaB8]

[Hoa74]

[Hoa75]

[Hoa78a]

[Hoa?8b]

[Holt72]

[HoWi73]

[JonB0]

[Knull]

-93 -

Gries, D.: "The Multiple Assignment Statement”, IEEE Trans. on
Soft. Eng. SE-4, 2 (Mar 78), 89-93

Gries, D.: The Science of Programming, Springer Verlag, Texts and
Monographs in Computer Science, 1881, 366p.

Gries, D.; Levin, G.: "Assignment and Procedure Proof Rules", ACM
TOPLAS 2, 4 (Oct 80), 584-579

Hardy, G.H.; Wright, E.M.: An Introduction to the Theory of
Numbers, 4th ed., Oxford University Press, 1980, p. 343

Hehner, E.C.R.: "do considered od: A Contribution to the Program-
ming Calculus", Acta Informatica 11, 4 {1979), 287-304

Hehner, E.C.R.: "On the Design of Concurrent Programs”, /NFOR 18,
4 {Nov 80), 289-299

Hehner, E.C.R.: Programming Principles and Practice, Prentice-
Hall International, Series in Compuler Science, Lo appear in 1883

Hoare, C.A.R.: "An Axiomatic Basis for Computer Programming",
Comm. ACM 12, 10 (Oct 69), 576-580, 583

Hoare, C.A.R.: "Monitors: An Operating System Structuring Con-
cept”, Comm. ACM 17, 10 (Oct 74), 549-557, Corrigendum: Comm.
ACM 18, 2 (Feb 75), 85

Hoare, C.A.R.: "Parallel Programming: An Axiomatic Approach”,
Computer Languages 1, 2 (June 75), 151-160

Hoare, C.A.R.: "Some Properties of Predicate Transformers”,
Journ. ACM 25, 3 (July 7B), 461-480

Hoare, C.A.R.: "Communicating Sequential Processes”, Comm. ACM
21, 8 (Aug 78), 868-677

Holt, R.C.: "Some Deadlock Properties of Computer Systems”,
Computing Surveys 4, 3 (Sept 72), 179-196

Hoare, C.A.R.; Wirth, N.: "An Axiomatic Definition of the Program-
ming Language Pascal”, Acte Informatica 2, 1 (1973), 335-356

Jones, C.B.: "Tentative Steps Towards a Development Method for
Interfering Programs”, Programming Research Group, Oxford
University, Oct. 1980, 33 p.

Knuth, D.E.: The Art of Compuier Programming, Vol. 2: Semninumer-
ical Algorithms, Addison-Wesley, 1969, p. 3680, or: 2nd ed., 1981,
p. 584

[Knulll]

[Kuek?7]

[Lam77]

[LaSi79]

{Lau79a]

[Lau79b}

[LeGr81]

[LeHe81]

[Len78]

[OwGr76a]

[OwGr76b]

[Shaw79]

[StoB7]

-94 -

Knuth, D.E.: The Art of Computer Programming, Vol. 3: Searching
and Sorting, Addison-Wesley, 1973, p. 2201

Kuck, D.J.: "A Survey of Parallel Machine Organization and Program-
ming", Computing Surveys 9, 1 (Mar 77), 29-59

Lamport, L.: "Proving the Correctness of Multiprocess Programs",
IEEE Trans. on Soft. Eng. SE-3, 2 (Mar 77), 125-143

van Lamsweerde, A.; Sintzofl, M.: "Formal Derivation of Strongly
Correct Concurrent Programs", Acta Informatica 12, 1 (1979), 1-31

Lauer, P.E.; Torrigiani, P.R.; Shields M.W.: "COSY - A System
Specification Language Based on Paths and Processes”, Acia
Informatica 12, 2 (1879), 109-158

Lauer P.E.; Shields, M.¥.; Best, E.: "Design and Analysis of Highly
Parallel and Distributed Systems", in Absitract Software Specifica-
tions, Lecture Notes in Computer Science 86, D. Bjgrner (Ed.),
Springer Verlag, 1978, 451-603, or: Tech. Rep. No. 142, Computing
Lab., University of Newcastle-upon-Tyne, June 1979, 53 p,

Levin, G.M.; Gries, D.: "A Proof Technique for Communicating
Sequential Processes”, Acia Informatica 15, 3 (1981), 281-302

Lengauer, C.; Hehner, E.C.R.: "A Methodology for Programming with
Concurrency"”, CONFAR 81, Lecture Notes in Computer Science 111,
W. Héndler (Ed.), Springer Verlag, June 1981, 269-270

Lengauer, C.: "On the Verification of Concurrent Algorithms”, Tech.
Rep. CSRG-94, Computer Systems Research Group, University of
Toronto, Aug. 1978, 101 p.

Owicki, 8.8.; Gries, D.: "An Axiomatic Proof Technigue for Parallel
Programs 1", Acta Informatica 8, 4 (1978), 319-340

Owicki, S.8.; Gries, D.: "Verifying Properties of Parallel Programs:
An Axiomatic Approach”, Comm. ACM 19, 5 (May 78), 279-285

Shaw, M.: "A Formal System for Specifying and Verifying Program
Performance", Tech. Rep., Computer Science Depti., Carnegie-Melion
University, June 1879, 20p.

Stone, H.8.: "One-Pass Compilation of Arithmetic Expressions for a
Parallel Processor”, Comm. ACM 10, 4 (Apr 87), 220-223

-95-

A Appendix: Formal Treatment of Programming Examples

Al The Factorial Program

We are interested in the properties of

factn: ifn=0-»r:=1

[n>0- factn-1;7r:=rn

fi

where T(r'n)=1, Aa=A8§=A,n=0, and T(n)=T{n=0)=T(n>0)=T(1)=T(k)=0,

k being the actual index of the call.

Lemma:

7, clock

fact k §R}

Proof:

k20 A Ry clock—k

We need inductive approximations (fact k);.

false

For clarification, here is the first non-trivial approximation:

Base: (fact k)ofR} =

(fact kW{R} =
ind. hyp.: (factk)iR}] =
ind. step: (fact k)(+1§R ; -

i

If

T n
(n=0AR; V n>0ATfalse Y&

r
k=0 A Rl

. 7, clock
0sk<i A Ry clock—k

-
(n=0AR, V

7, clock n
n>0A(fact n— 1)¢$Rr_n, clock—13) &

-
k=0AR, V k>0A[0Sk—-1<i

r, clock T, clock
A (Rr'n. clock —1)(k—l)!, clock —{k-1)]
r, clock

0Sk<i+l A Ry o0 o

- 08 -

. _ 7. clock
Corollary:
For positive k, call fact k¥ performs k multiplications.

Proof:

clock
fact k fclock20} = k20 A (clock20) , . . = (k20, k20clock2k)

Thus, as function, T(fact k) =k with domain k=20.

A2 The Sieve of Eratosthenes
A proof with respect to specification

sieve. pre: i/E\I prime[i]
sieve. post: A (prime[i] = iis prime)
4

where | =4 {i|3Si<N, i€N, i odd}

is easy: by assignment rule (L2), the semantic weakest precondition of sieve is
its postcondition with all occurrences of eliminated positions prime[i] replaced

by false, Thus

sieve {sieve. post] =

K/I\W(Pme[‘l] = iisprime) A A (false = iis prime)

where M =4 in|n€l, V V n=1%+2ij}
i€l j20

The conjunct over M is true: M is the set of muiltiples in the odd numbers /.
Therefore the weakest precondition reduces to

sieve {sieve. post] = ((-:/RM prime[i]

such that sieve. pre D sieve {sieve. post] .

-97-
A3 The Dining Philosophers

It variable eaten[i] counts the meals of philosopher i and variable fork[i]
indicates if fork i is currently on the table {fork{i]=0) or not (fork[i]>0), the

semantic specification becomes:

Sa

lives. pre: Jork[i]=0

0

o
]

>

lives. post: (fork'[i]=0 A eaten'[i]=caten[i]+N)

i

Y]

Resulting values of fork and eafen are primed, initial values are unprimed.

1t should be clear that the following refinemenis of Lhe philosophers’
actions validate all five semantic declarations globally and complete the lives in

conformity with the semantic specification:

upy: fork[i]:i=1
downy: fork[i]:=0
eal;: use fork i; use fork i®1; eaten[i]:=eaten[i]+1

think;: skip

use fork 1 is an operation which touches variable fork[i] but has no effect,

for instance,
use fork i: if fork[i]20 - skip fi
The resulting RL program correctly simulates the philosophers’ behaviour,

We presented these lives in Sect. 7.2 because they are attractive in their
simplicity. But, although they exhibit the correct behaviour, their semantics are

‘not adequate for the following reason:

There are more semantic relailions which we did nol declare because they
generate undesirable behavicurs. For example, philosophers do not have to
alternate between eating and thinking; they may think at any time they wish. If
we look at the declarations as program-specific with omitted enabling predicate

/;\ fork[k]20, things are even worse: then, by dropping the qualifying predicate

-98 -

in (3), a philosopher may eat whether he has forks or not, and additional weak-
ening of the qualifying predicate in (2) to j=i lets neighbours eat at the same

time.t

A model with adequate semantics should permit only desirable behaviours.
We will strengthen the semantics of the philosophers’ actions such that they
may only be performed when the forks involved are in a proper state. Therefore

different users of the same fork have to be distinguished.

Let variable fork[i] indicate not only the position of fork i but also which
philosopher j is holding it, if any (fork[i]=j+1). Let subscripts of operations
up, down, eat, think denote strictly philosophers, and identify forks by super-
scripts relative to philosopher i (1 for his left fork i, r for his right fork i@1):

,v[4 hil,
lives: ; ; i
ive i £=n;c; alg

philg: upl; up{; eat;; downd ; down{; think;
up!: if fork[i]=0 - fork[i]:=i+1 6
up!: if fork[i®1]=0 - fork[i@1]:=i+1fi
down): if fork[i]=i+1 - fork[i]:=0fi
downd: if fork[i®1]=i+1 » fork[i®1]:=01
eat;: if fork[i]=i+1 A fork[i®1]=i+1 »
use fork i;use fork i®1; eaten[i]:=eaten [i]+1 6

thinkg: if fork[i]#i+1A fork[i®1]#i+1 - skip fi

(1) {} i phil; & phily
) {}j:ﬂi: eat; || eat;

T This illustrates that interpreting declarations as program-specific can affect their ex-
ploitability.

-99 -

(3) (a) {'}j#‘iel,‘i: eat; || {up, downi}
{(b) {} j*,i@1: eat; || fup, down i}
1 k2 m] r o1]
(4) PN YA [;1 ja [2Lk io1f
fup, da'wn.;;l' I} fup, down];:
(5) A jRis think; || phil,
i

The proof of the refinement with respect to the semantic specification and

of all declarations with respect to the global scope is left as an exercise to the

reader. Note that simullanevus ealing of neighbours can still be declared but

not exploited because of a lack of forks (2).

University of Toronlo
Computer Systems Research Group

BIBLIOGRAPHY OF CSRG TECHNICAL REPORTS 1980 - present
* - Out of print

* CSRG-108 DIALOGUE ORGANIZATION AND STRUCTURE FOR
INTERACTIVE INFORMATION SYSTEMS
John Leonard Barron
[M.Se. Thesis, DCS, 1980]

* CSRG-10% A UNIFYING MODEL OF PHYSICAL DATABASES
D.S. Batory, C.C. Gotlieb, April 1980

* CSRG-110 OPTIMAL FiLE DESIGNS AND REORGANIZATION POINTS
D.S. Batory, April 1880

* CSRG-111 A PANACHE OF DBMS IDEAS 11
D. Tsichritzis {ed.), April 1980

CSRG-112 TOPICS IN PSN - 1I: EXCEPTIONAL CONDITION
HANDLING IN PSN; REPRESENTING PROGRAMS IN PSN;
CONTENTS IN PSN
Yves Lesperance, Byran M. Kramer, Peter F. Schneider
April, 1980

CSRG-118 SYSTEM-ORIENTED MACRO-SCHEDULING
C.C. Gotlieb and A. Schonbach
May 1980

CSRG-114 A FRAMEWORK FOR VISUAL MOTION UNDERSTANDING
John Konstantine Tsotsos
[Ph.D. Thesis, DCS, June 1980]

CSRG-115 SPECIFICATION OF CONCURRENT EUCLID
Jarmes R. Cordy and Richard C. Holt
July 1980

CSRG-116 THE REPRESENTATION OF PROGRAMS IN THE
PROCEDURAL SEMANTIC NETWORK FORMALISM
Bryan M. Kramer
[M.Se. Thesis, DCS, 1880]

CSRG-117 CONTEXT-FREL GRAMMARS AND DERIVATION TREES AS
PROGRAMMING TOOLS
Volker Linnemann
September 1080

CSRG-118 S/SL: SYNTAX/SEMANTIC IANGUAGE
INTRODUCTION AND SPECIFICATION
R.C. Holt, J.R. Cordy, D.B. Wortman
CSRG, September 1980

s

CSRG-118 PT: A PASCAL SUBSET
Alan Rosselet
[M.Se. Thesis, DCS, October 1980]

CSRG-120 PTED: A STANDARD PASCAL TEXT EDITOR BASED ON
THE KERNIGHAN AND PLAUGER DESIGN
Ken Newman, DCS
October 1980

CSRG-121 TERMINAL CONTEXT GRAMMARS
Howard W. Trickey
[M.Sc. Thesis, EE, September 1980

CSRG-122 THE APPROXIMATE SOLUTION OF LARGF, QUEUEING
NETWORK MODELS
John Zahorjan
[Ph.D. Thesis, DCS, August 1980]

CSRG-123 A FORMAL TREATMENT OF IMPERFECT INFORMATION
IN DATABASE MANAGEMENT
Yannis Vassiliou
[Ph.D. Thesis, DCS, September 1980]

CSRG-124 AN ANALYTIC MODEL OF PHYSICAL DATABASES
Don S. Batory
[Ph.D. Thesis, DCS, January 1981]

CSRG-125 MACHINE-INDEPENDENT CODE GENERATION
Richard H. Kozlak
[M.Sc. Thesis, DCS, January 1981]

CSRG-126 COMPUTER MACRO-SCHEDULING FOR HIGH PRODUCTIVITY
Abraham Schonbach
[Ph.D. Thesis, DCS, March 1081]

CSRG-127 OMEGA ALPHA
D. Tsichritzis (ed.), March 1981

CSRG-128 DIALOGUE AND PROCESS DESIGN FOR INTERACTIVE
INFORMATION SYSTEMS USINGC TAXIS
John Barron, April 1981 '

CSRG-128 DESIGN AND VERIFICATION OF INTERACTIVE INFORMATION
SYSTEMS USINCG TAXIS
Harry K.T. Wong
(Ph.D. Thesis, DTS, Lo be subraitlted]

CSRG-130 DYNAMIC PROTECTION OF OBJECTS IN A COVPUTER UTILITY
leslie H. Goldsmith, April, 1961

CSRG-131 INTEGRITY ANALYSIS: A METHODOLOGY FOR EDP AUDIT
AND DATA QUALITY CONTROL
Maija Irene Svanks
[Ph.D. Thesis, DCS, February 1981]

-3 -

CSRG-132 A PROTOTYPE KNOWLEDGE-BASED SYSTEM
FOR COMPUTTER-ASSISTED MEDICAL DIAGNOSIS
Stephen A. Ho-Tai
[M.Sc.Thesis, DCS, January 1981]

CSRG-133 SPECIFICATION OF CONCURRENT EUCLID
James R. Cordy, Richard C. Holt
August 1981 (Version 1)

CSRG-134 ANOTHER LOOK AT COMMUNICATING PROCESSES
E.C.R. Hehner and C.AR. Hoare, July, 1981

CSRG-135 ROBUST CONCURRENCY CONTROL IN DISTRIBUTED DATABASES

Derek L. Eager
[M.Sc. Thesis, DCS, October 1981]

CSRG-136 ESTIMATING SELECTIVITIES IN DATA BASES
Stavros Chiristodoulakis
[Ph.D. Thesis, DCS, December 1987]

CSRG-137 SATISFYING DATABASE STATES
Mare H. Graham
[Ph.D. Thesis, DCS, December 1981]

CSRG-138 IMPROVING THE PERFORMANCE OF DATA BASE SYSTEMS
Geovane Cayres Magalhaes
[Ph.D. Thesis, DCS, December 1981]

CSRG-139 A FORMAL TREATMENT OF INCOMPLETE KNOWLEDGE BASES
Hector J. Levesque
[Ph.D. Thesis, DCS, February 1982]

CSRG-140 AN OVERVIEW OF TUNIS: A UNIX LOOK-ALIKE
WRITTEN IN CONCURRENT EUCLID
R.C. Holt, February 1982

CSRG-141 ON PROVING THE ABSENCE OF EXECUTION ERRORS
W. David Elliott
[Ph.D. Thesis, DCS, September 1880]

CSRG-142 A METHODOLOGY FOR PROGRAMMING WITH CONCURRENCY
Christian Lengauer
[Ph.D, Thesis, DCS, Apri! 1982]

Rl -l

