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Abstract—Learning from the history of a software system’s
performance behavior does not only help discovering and locating
performance bugs, but also identifying evolutionary performance
patterns and general trends, such as when technical debt ac-
cumulates. Exhaustive regression testing is usually impractical,
because rigorous performance benchmarking requires executing
a realistic workload per revision, which results in large execution
times. In this paper, we propose a novel active revision sampling
approach, which aims at tracking and understanding a system’s
performance history by approximating the performance behavior
of a software system across all of its revisions. In a nutshell,
we iteratively sample and measure the performance of specific
revisions that help us building an exact performance-evolution
model, and we use Gaussian Process models to assess in which
revision ranges our model is most uncertain with the goal to
sample further revisions for measurement. We have conducted
an empirical analysis of the evolutionary performance behavior
modeled as a time series of the histories of six real-world
software systems. Our evaluation demonstrates that Gaussian
Process models are able to accurately estimate the performance-
evolution history of real-world software systems with only few
measurements and to reveal interesting behaviors and trends.

I. INTRODUCTION

For most software systems, performance (e.g., response time)
is a key success factor [1]. Performance is not only critical in
real-time applications [2], but performance bottlenecks may
render any kind of software unusable. Despite its relevance for
software quality and user experience, performance assessment
is all to often postponed and exercised too little and too late
in the development process [3].

Performance is shaped by the software system’s architecture
and evolves along with code added, removed, and refactored in
individual revisions1. The performance influence of evolution-
ary changes to a system can emerge cumulatively, such as when
software evolves with little respect to its original architecture.
This pattern of undisciplined architectural evolution has been
described as “architectural erosion” [4] resulting in “technical
debt” [5]. It often implies degrading performance, also known
as performance regression [6].

Performance-related problems have been addressed from
different perspectives. Most work on performance anomalies
aims at identifying performance regression and at pinpointing
the cause to an individual revision of the source code. The
detection criteria for performance regression are manifold
and comprise statistical significance tests [7], correlation

1We consider each commit to a repository as a new revision of the system.

analyses among performance metrics [8], and absolute or
relative deviation thresholds that, when exceeded [9], indicate
a possible regression. Performance regression is determined
by the performance measurements of either performance
benchmarks [10, 11] or unit tests [9, 12, 13].

All this work is able to detect performance regressions
with high accuracy. Work by Heger et al. complements this
task with a consecutive root-cause analysis [12]: it bisects the
evolution history recursively until the revision that introduced
the performance anomaly is isolated. The scope of this analysis
is limited to the local performance evolution around a potential
performance anomaly. While this is effective for understanding
a single performance anomaly, it tells not much about whether
there are notable, long-term regression trends, patterns in
performance evolution, and possible indicators for future
performance degradation. These can be learned only from the
global performance evolution of a software system, and they are
the basis to take proactive measures to direct maintenance tasks,
apply refactorings, and postpone addition of new functionality.

The naive approach to obtain a model of the global
performance-evolution history requires exhaustive performance
assessment of every single revision. Take, for example, the
highly influential Python package NUMPY. Its performance
is constantly assessed for every code change by means of a
microbenchmark suite2. Clearly, this huge effort is justified
since the package is widely used as an integral part of
most industrial-relevant Python libraries, such as SCIPY or
TENSORFLOW. However, not every project exercises this level
of performance assessment or has the resources to do so.

To obtain a good approximation of the performance evolution
history of a software project, assessing all of its revisions is only
rarely an option in practice. If the revision history is sampled
along time, such as sampling all milestones/releases or flagged
commits, this might indeed expose performance changes, but
prohibits pinpointing interesting trends and anomalies to a
distinct revision (rater than a segment of revisions) in an
unbiased manner.

An assumption that underlies our approach is that a revision
sampling strategy should be adaptive in that it actively searches
for performance changes and that it should be agnostic of a
software system’s properties. For instance, it should not rely
on the developers commit message discipline. Clearly, the goal

2https://pv.github.io/numpy-bench/

https://pv.github.io/numpy-bench/


is to model a software system’s performance evolution history
with as few revision measurements as possible. To this end, we
propose active revision sampling, an active learning approach
to model and estimate performance of arbitrary revisions of a
software system. Starting with an initial sample of revisions,
our approach interpolates the performance evolution history
and iteratively expands the sample set with new revisions. The
exploration of new sample revisions is guided by the uncertainty
of the current interpolation model.

By means of an empirical analysis of the history of six
real-world software systems, we demonstrate that performance
evolution histories can be approximated with only a small
fraction of all available revisions and that interesting perfor-
mance behavior and trends can be revealed this way. The main
contributions of this paper are:
• an analysis of the presence and frequency of notable

performance changes of a selection of six real-world
software systems; the analysis reveals common perfor-
mance evolution characteristics and guides us in the choice
of methods for estimating performance across arbitrary
revisions (cf. Section II);

• an approach to efficiently learn and estimate the perfor-
mance of a software system across arbitrary revisions with
only few measurements (cf. Section III), along with an
evaluation of feasibility and accuracy on six real-world
systems (cf. Section IV).

II. CHARACTERIZING PERFORMANCE EVOLUTION

As software evolves, with every incremental modification
of the code, performance can change as well. Performance
changes may result from purposeful optimizations or as a
byproduct of functional modifications of the software.

Our goal is to provide an efficient method to identify
substantial performance changes over the life time of a software,
which can be the basis of a root-cause analysis of performance
degradation or a method to quantify the technical debt and
development process of the software system with respect to
performance.

Before we present our method in the next section, we first re-
quire a better understanding of how performance evolves, that is,
what are common characteristics of time series of performance
measurements across multiple commits. Identifying time series
properties of performance evolution is key for developing an
appropriate modeling approach and provides insights into how
performance changes over a system’s life time. For time series
data, there exists a variety of prediction methods, especially in
the category of auto-regressive models [14]. Most traditional
methods, however, require knowledge of what characteristics
the process to be modeled has. These characteristics usually
include constant behavior (stationarity), continuous or gradual
changes (trends), and periodic changes (seasonality). Moreover,
the time series can show abrupt changes, also called change
points, which suggest to model the time series’ signal piece-
wise.

In what follows, we analyze the performance evolution of two
configurable real-world software systems as well as four Python

libraries with respect to change points. Knowing whether
performance changes abruptly or continuously allows us to
understand the limitations of traditional time series prediction
techniques.

A. Change Point Detection with CUSUM

Our first step in assessing the characteristics of performance
evolution is to systematically test our corpus of software
systems for the presence of change points. The corresponding
problem is often referred to as change point detection, and
there is a variety of statistical methods available for this task.
For our analysis, we use CUSUM, a method from statistical
quality control [15]. CUSUM is a sequential algorithm that
uses the cumulative sum of deviations between successive
measurements. The basic idea is to maintain a cumulative sum
of changes in positive and negative direction. A change point is
indicated when the cumulative sum exceeds a given threshold.
In this case, the cumulative sum of the respective positive or
negative change is reset to zero. The algorithm behind CUSUM
is defined by Page et al. as follows [15]: First, it initializes the
positive g+0 and negative g−0 cumulative sum with zero:

g+0 = g−0 = 0 (1)

Next, for each data point st of the time series at time t, the
corresponding cumulative sums, g+t and g−t , are defined as:

g+t = max(g+t−1 + st − v, 0) (2)

g−t = max(g−t−1 − st − v, 0) (3)

That is, the deviation of the current measurement st from
a target value v (drift) is added/subtracted to the positive
and negative cumulative sum. For every point in time, the
cumulative sums are compared against a threshold value h,
which, when exceeded, indicates a possible change point:

g±t =

{
0 iff g±t > h > 0

g±t else
(4)

The cumulative sum g±t is then reset to zero to enable detection
of following change points.

B. Parameterization of CUSUM

The threshold h describes a budget of change that, when
exceeded, indicates a change point. Changes in the data set can
emerge gradually or abruptly. The CUSUM method does not
discriminate between these two types, as change can accumulate
either way. This is an important property for our analysis not
to be biased toward a certain expectation. However, along with
the change points reported by CUSUM, one can consider only
change points for which the absolute change compared to the
preceding data point was substantial.

The CUSUM algorithm can be configured with two parame-
ters, the drift v and the threshold h. A guideline of how to tune
the parameters for a given data set is given by Gustafsson [16].
The guideline suggests to choose a drift v of “one half of
the expected change”. In our analysis, we employ a drift of
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Figure 1: Influence of threshold parameter h on the detection
of change points for a synthetic time series.

5 percent of the range of the time series since we consider a
change of 10 percent in performance substantial.

v = 0.05 · |max(s)−min(s)| (5)

Next, we estimate and tune the threshold parameter h. The
guideline suggests starting with a large value for h, which
is then continuously decreased until the algorithm reports
sufficiently few false positives. We adopt this procedure by
using the average standard deviation of the time series, or
more precisely, five times the average standard deviation over
a sliding window. Instead of directly changing the threshold
parameter directly, we tweak the size of the sliding window as
described in Equation 6. The rationale behind this approach is
to capture both global and local changes. For a small sliding
window, the average standard deviation corresponds to a shorter
time frame and, hence, is more sensitive to local changes. By
contrast, for a large sliding window, the standard deviation
incorporates a wider time frame and the threshold becomes less
sensitive to local changes, as these are diluted by large-scale
effects. We exemplify this influence of the sliding window size
in Figure 1, where, for a smaller sliding window, more small
change point candidates are reported (17 in total), whereas
a larger sliding window size results in a more robust and
large-scale view of possible change points (10 in total).

For an initial window size equal to the total number of data
points, the threshold parameter corresponds to the standard
deviation of the whole time series and draws a global picture
of variation over the entire performance evolution history.
We start with this initial case and decrease the window size
iteratively. As we approach smaller values of the sliding window
size w, the threshold parameter h approaches a more local
measure of variation. Hence, with a decreasing window size
the threshold becomes more sensitive to change points with
smaller amplitudes, but also false positives. We summarize our
definition of threshold h, where s denotes the overall number
of revisions, w the sliding window size:

h = 5 · 1

s− w

s−w∑
p=0

p+w∑
i=p

√
Var[sp, . . . , sp+w] (6)

C. Change Points in Performance Data

In Figure 2, we report our findings of using CUSUM on six
different software systems. We provide a detailed description of
how we selected our subject systems and respective benchmarks
in Section IV. In a nutshell, we have selected two configurable
software systems, XZ and LRZIP, because recent findings
suggest that performance bugs are often due to issues related
to configurability and occur only in certain configurations [17].
That is, for each configuration, we derive a dedicated variant (as
discussed in Section IV) with possibly different performance
histories. For XZ, LRZIP, we use 47 and 71 different variants
with identical workload. For the remaining four software
systems, performance measurement was conducted at a finer
grain with method-level microbenchmarks. Again, per method,
we derived a specific performance history for these software
systems. By untangling the selected systems in this manner,
we obtain a more generalizable picture which includes whole
system performance evolution and micro-system performance
evolution.

We have aggregated the change-point analysis results in
two different ways. For configurable systems, we report the
change points across all variants; for microbenchmarks, we
treat the sum of all method execution times as one single
benchmark. Both decisions are due to space limitations and
affect only the reporting in this paper. We have also analyzed
all undiscussed benchmarks and provide the corresponding
results online3. We consider the more condensed visualization
of the sum of all microbenchmarks as representative for the
entire software systems because, after analyzing all results, the
same conclusions can be drawn from this.

For each subject system, we varied the sliding window size
as a percentage of the total number of revisions and measured
both the number of reported change points (in red) as well
as the distribution of change point amplitudes as box plots.
The range of the sliding window size presented in Figure 2
is chosen such that it includes a range where the number of
reported change points is constant. For this range, the number
of change points is least sensitive to the influence of the sliding
window size. Each box plot was normalized to the mean of the
time series to provide a context for interpreting this measure
of “effect size”. That is, the amplitude of a change point puts
it in relation to the mean performance of the time series.

As expected, the number of change points decreases for a
greater window size. For smaller window sizes, the reported
change points include also smaller amplitudes. The rationale
is that there should be fewer changes points on a global (i.e.,
whole history) scale than local changes points, and we can
confirm this. However, our subject systems show substantial
change points for different ranges of sliding window sizes (e.g.,
for 10 % sliding window size, change points are reported for
XZ, but not for SCIPY).

This is due to the difference in sizes of the data sets: XZ,
LRZIP, and ULTRAJSON do not contain as many revisions as the
remaining systems, as shown in Table I. The results of Figure 2

3https://smba.github.io/active revision sampling/

https://smba.github.io/active_revision_sampling/
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Figure 2: Frequency of reported change points vs sliding window size for threshold h. We present the analysis results for XZ,
LRZIP, ULTRAJSON, NUMPY, SCIPY, and PILLOW (from top left to bottom right).

suggest that we are able to show and quantify the presence
of substantial changes in performance introduced abruptly by
single change points.

D. Results

The question we address in this section is whether perfor-
mance histories can be modeled with traditional time series
prediction techniques [14]. Across the configurable software
systems of our sample, we have identified various change
points. About one in each variant, on average, with an effect
size between 4 and 6 percent for XZ and around 50 percent for
LRZIP. The accumulated time series of the microbenchmarks
for the remaining five subject systems exhibit larger numbers
of change points with similar effect-size ranges, which can be
attributed to the larger revision history (with the exception of
ULTRAJSON, which has a comparably smaller revision history).
That is, we can confirm the presence of substantial change
points in all subject systems. Given this, it is important to note
that the presence of change points poses an obstacle in modeling
performance evolution since the time series data are segmented
and possible trends (or other patterns) are superimposed by
abrupt changes. We argue that missing knowledge of location
and amplitude of these change points hinders prediction of
performance evolution using traditional models, such as trend
or seasonality extrapolation from the realm of auto-regressive
models [14]. Since our intention is to efficiently estimate
performance for arbitrary versions, we conclude that any such
approach has not to only estimate performance, but especially
search and pinpoint abrupt changes in performance evolution.

III. ACTIVE PERFORMANCE APPROXIMATION

Our empirical findings on the ground truth data of
performance-evolution measurements of six software systems
in Section II suggests that software performance evolution
exhibits abrupt changes that are hard to pinpoint without
exhaustive measurements. While one could employ simple
search heuristics, such as binary search, to locate abrupt
changes, this modeling strategy is neither able to pinpoint
possible performance patterns nor an arbitrary number of
change points. To analyze performance time series in a way that
incorporates possible patterns as well as an arbitrary number
of abrupt changes, we propose an adaptive revision sampling
approach to obtain accurate performance-estimation models.
The workflow in Figure 3 outlines its key ingredients and
procedure, which we will discuss next in detail.

Figure 3: Workflow of adaptive revision sampling

A. Active Learning

A key feature in the workflow presented in Figure 3 is
the iterative cycle of actions. In that sense, our approach
follows a design strategy and family of machine learning



algorithms called active learning. Unlike ordinary machine
learning algorithms, which are trained once and then evaluated,
active learning trains repeatedly with gradually augmented
training sets. This family of algorithms is intended to choose
by itself which data are included in the training set. For instance,
if an estimation model performs poorly on the influence of a
specific parameter, it will suggest obtaining additional training
samples with emphasis on variance of this very parameter. The
motivation for this strategy is to minimize measurement effort
by continuously querying specific data to be measured [18]. In
our context, the pool of unseen observations are performance
measurements. We opted for an active learning strategy since
it minimizes the size of the training data set and guides
the process of obtaining new observations. As performance
measurement is typically an expensive task, we emphasize the
incentive of minimizing costs.

B. Gaussian Process Regression

We use Gaussian Processes (GP) to learn a model that
can accurately estimate performance for unobserved revisions
(step 2 in Figure 3). The main motivation is that a GP makes
estimations in the form of (multivariate) Gaussian distributions
rather than scalar values. These distributions provide a measure
of variance or, more importantly, a measure of confidence about
our estimation accuracy for each revision of our time line [19].
That is, given a small confidence interval, the model is confident
in its estimation, whereas a large confidence interval suggests
to use the estimation with precaution and to refine the model.
This facet of GPs is especially beneficial in the context of active
learning, as we will explain in Section IV in more detail.

Formally, a GP assumes that, for a target function f(x), each
value y = f(x) can be expressed as a Gaussian distribution
with a mean function µ : X → R and a covariance function
K : X× X→ R

f(x) ∼ N (µ(x),K(x, x)). (7)

The covariance function K, commonly called kernel, encodes
the relationship between response values, depending on the
distance of the input values. That is, for a pair of input values
(x1, x2) ∈ X, the covariance between f(x1) and f(x2) is
defined as K(x1, x2) [19]. Although we do not require any
internal knowledge about the system studied to build a GP
model, we can incorporate domain knowledge such as in the
choice or construction of the used kernel function, which is
an important success factor for our approach. For instance, for
modeling time series with seasonality, a periodic kernel function
can be used. For an overview on different kernel functions, we
refer the interested reader to the literature [19, 20].

Once we have build a GP model for a set of given
observations f(x1), f(x2), . . ., we can predict the posterior
distribution, that is, the mean m∗, and variance σ2

∗, for an
unobserved data point x∗ as

m∗ = µ(x∗) +K(x∗, x) ·K(x, x)−1 · (y − µ(x))
σ2
∗ = K(x∗, x∗)−K(x∗, x) ·K(x, x)−1 ·K(x, x∗).

(8)

With these two equations, we can obtain performance esti-
mates of unseen revisions and obtain a measure of uncertainty
about this estimate [21].

C. Active Data Selection

The key component of our active learning approach is the
repeated augmentation of the training set. The procedure that is
used to determine which observation to add to the training set
(cf. step 3 in Figure 3) is defined by an acquisition function [18].
Generally, a data point is selected such that it is most likely to
increase the prediction accuracy compared to the model built
in the previous iteration. For different purposes, a variety of
acquisition functions have been proposed [18], yet we follow
an uncertainty-aware approach and let the data acquisition be
guided by the prediction variance of the GP model directly.
To minimize prediction uncertainty and, hopefully, increase
prediction accuracy in the next iteration, we augment the
training set with the data point xnext exhibiting the maximum
prediction uncertainty σ2 in the current iteration.

xnext = arg max
x∈X

σ2
x (9)

D. Termination Criterion

The last piece of the puzzle is to decide in each iteration
whether our cycle yields a model sufficiently confident in
its estimations, or whether we need to continue refinement.
Much like for data acquisition, we employ the prediction
uncertainty. We consider a model to be sufficiently confident,
if the uncertainty measure for every revision does not exceed
a threshold specified by the user. This threshold tstop can
be estimated empirically, for instance, using the inherent
measurement bias of the performance-measurement setup. In
other words, we can measure a single revision a couple times
and report the resulting variance as the threshold beyond which
we cannot obtain more precise results. Thus, in each iteration,
we evaluate whether the following formula holds or further
refinement is necessary.

max
x∈X

σ2
x ≤ tstop (10)

E. Approach Summary

The workflow of our approach is as follows:
1) Initialize training set T = {f(x1), f(x2), . . .} with

performance measurements for a small number of revisions
XT = {x1, x2, . . .} and select a kernel function K.

2) Train a GP modelM(T,K) and estimate the performance
f̂(x) = N (µx, σ

2
x) for the remaining unobserved revisions

x ∈ X \ XT .
Check whether Equation 10 holds for the GP model. If so,
return the prediction model M(T,K). If not, continue.

3) Determine xnext according to Equation 9 as arg max
x∈X\XT

σ2
x.

4) Measure f(xnext), add xnext to XT , f(xnext) to the training
set T , and go back to step 2.

We illustrate our approach in Figure 4, where we attempt
to approximate a performance time series with about 1,000
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Figure 4: Four iterations of our adaptive approximation
approach with 5 to 8 revisions as training sets. The black
curve depicts the ground truth performance, the blue curve
depicts the GP estimate with its respective uncertainty. The
orange line highlights the revision which is next to be included
in to the training set.

revisions. In the top left subfigure, we initially train a GP model
with a training set of size five (i.e., 0.5 % of all revisions).
In all four subfigures, the black line depicts the ground truth
performance, the blue line the GP estimation, and the blue-
shaded area the corresponding confidence interval. In the initial
iteration, we are not satisfied with the maximum uncertainty
and instead select the revision with the maximum uncertainty
(depicted by an orange vertical line) to be included into the
training set in the following iteration. We proceed in this
manner with six and seven training samples. Finally, the GP
estimation in the bottom right subfigure with eight training
samples in total (i.e., 0.8 %) now clearly approaches the ground
truth.

Let us summarize the benefits of our approach:
• Instead of finding a single change point as for bisect

search, we can approximate the performance history of a
software system as a whole.

• We can use different kernel functions at different time
intervals to account for different time series properties (as
found in Section II) in an appropriate way.

IV. EVALUATION

Next, we evaluate our approach with respect to efficacy and
efficiency.

A. Subject Systems

1) Software System Selection: We have selected six real-
world, actively maintained software systems from different
domains, including file compression (XZ and LRZIP), JSON
parsing (ULTRAJSON), image manipulation (PILLOW), and
scientific computing (NUMPY and SCIPY). The selection along
with project metrics is presented in Table I. The subject

Table I: Meta-data for our subject systems. We report the num-
ber of different variants and methods per subject respectively.
In total, we consider 8,307,640 revisions in our analysis.

Software system Methods or variants #Revs. SLOC

XZ 47 variants 1,151 85,036
LRZIP 71 variants 850 45,049

PILLOW 59 methods 7,928 57,411
ULTRAJSON 4 methods 327 327,948
NUMPY 204 methods 19,914 271,976
SCIPY 174 methods 21,046 338,631

SLOC: Source lines of code were collected using the tool
cloc.

systems can be divided into two categories: XZ and LRZIP
are software systems that can be configured at load time to
obtain functionally differing variants. We analyze multiple
variants because performance bugs are often configuration-
related and emerge only under certain configurations [17]. The
second category includes Python libraries for various tasks.
Here, we obtained performance history data for individual
methods as these subjects represent libraries that are embedded
in other applications. Considering both stand-alone systems and
libraries, we obtain a more general picture about performance
evolution.

2) Deriving Performance Histories: For the two load-time
configurable software systems, we assess performance for 47
and 71 different configurations and, at least, 5 repeated runs,
resulting in more than 500,000 measurements. The selection
of system variants follows known feature-wise sampling for
binary options [22] and Plackett-Burman sampling for numeric
options [23]. Each configuration results in a different execution
for which performance can differ and evolve independently.

We selected benchmarks such that each represents a real-
world execution scenario. For XZ and LRZIP, we use the Silesia
compression corpus4, which contains about 200 MB of files of
different types. For the Python libraries (except ULTRAJSON),
we reused performance benchmarks at method-level provided
and used by the respective software projects. These microbench-
marks are used for optimizing the respective libraries, so they
reflect performance behavior relevant for maintenance. Based
on these microbenchmarks, we derive a number of performance
histories by considering each microbenchmark as a variant of
the whole software system. This way, we consider macro- and
microbenchmarks in our evaluation avoiding bias (e.g., the
controversy of whether microbenchmarks are representative for
the performance of a whole system).

Except PILLOW, the Python projects measure, track, and
publish performance measurements for their microbenchmark
using the tool airspeed velocity5. We extracted the performance
data for the three Python libraries from their respective GitHub

4The Silesia corpus can be found at http://mattmahoney.net/dc/silesia.html.
5https://github.com/airspeed-velocity/asv/

http://mattmahoney.net/dc/silesia.html
https://github.com/airspeed-velocity/asv/


repositories6, whereas for PILLOW, ULTRAJSON, XZ, and LRZIP,
we conducted the performance measurements on our own. For
ULTRAJSON, we assembled four tasks on our own, which
consist of parsing and serializing a small (size: 617KB) and a
large (size: 7.4MB) JSON file, respectively, as this is the main
purpose and most performance relevant task of a JSON library.

All measurements were conducted for all revisions on
different commercial-off-the-shelf compute clusters. However,
each software system was assessed with an identical hard- and
software setup. XZ and LRZIP have been assessed on machines
with a Core 2 Quad CPU (2.83 GHz)/16 GB RAM, PILLOW
on machines with an i7 CPU (3.40 GHz)/32 GB RAM, and
ULTRAJSON on machines with an Xeon CPU (3.00 GHz)/64
GB RAM. Per revision, we repeated each experiment five times
and reported the median measurement to mitigate measurement
bias. The coefficient of variation reported on all machines was
well below ten percent.

B. Research Questions
Our approach can be customized via the choice of the kernel

function. Different kernel functions result in possibly different
shapes of the estimation of the GP model. For the use of
GP regression models, there exists a wide variety of kernel
functions, which can be used, or composed to obtain more
complex ones [19]. For our evaluation, we selected the five
kernel functions presented in Table II, which are commonly
provided by (or can be added to) GP libraries, such as SCIKIT-
LEARN or GPY for Python. Four of the five kernels are
parametric and stationary, since they represent functions of
the distance between the input vectors, whereas the Brownian
kernel is inspired by a stochastic process, whose growth is
normally distributed, so that it is not stationary [19]. This
selection is by no means exhaustive, but we selected kernels
that are widely used in practice. In our implementation, we
use the GPY library7 for Gaussian Processes in Python and
the respective kernels. The kernel hyperparameters were not
explicitly tuned per subject system, yet the default optimizer
selects the optimal fit of, at most, 1,000 iterations. In what
follows, we motivate our research questions and describe how
we operationalized them.

RQ1: Which choice of a kernel function performs best at
estimating performance histories?

To start our evaluation, for our subject system corpus, we
compare two indicators for a setup of the five different kernel
functions: maximum uncertainty and performance estimation
error. The first indicator serves as an upper bound for model
confidence, whereas the mean absolute percentage error
(MAPE) is a measure of how well an estimation fits the ground
truth observations on a global scale. As these two indicators
change with every iteration, and, due to the lack of space, we
have decided to incorporate these dynamics in our visualization
and present it in an animation provided online.

6The measurements can be obtained for: NUMPY at https://pv.github.io/
numpy-bench/; SCIPY at https://pv.github.io/scipy-bench/.

7https://gpy.readthedocs.io/en/deploy/index.html

In addition, we evaluate our results on both macrobench-
marks and microbenchmarks. The four Python libraries repre-
sent microbenchmarks as the performance has been measured
using the method execution time. For macrobenchmarks, we use
(a) the whole systems of XZ and LRZIP including their variants
and (b) the sum of method execution times of all methods
of a respective library. The rationale behind this is to obtain
an overview of the performance behavior of a whole library
one would need to create a benchmark executing all methods.
Hence, we interpret the performance value of a revision as the
sum of all performance values of all method execution times
of this revision.

RQ2: Does active revision sampling improve modeling
performance evolution histories with GP models?

To evaluate whether selecting the next sample (i.e., revision)
based on the uncertainty of the performance estimate is rea-
sonable, we compare active revision sampling against random
sampling. In particular, we compare how many iterations are
required to obtain accurate estimation models and whether,
with each iteration, the estimation error converges robustly. For
this comparison, we evaluate on the best-performing kernel of
RQ1 on the micro- and macrobenchmarks.

RQ3: Can we estimate global change points in a perfor-
mance evolution history?

Reporting MAPE for a GP estimation provides a good picture
of how accurate global effects, such as trends, have been
modeled. However, even a small average error could mean
that abrupt changes might not be spotted in the model, as the
high error at change points can be diluted by small error of
the vast number of remaining revisions. Since change points
represent interesting events in the performance history of a
software system, we quantify whether our model is capable of
detecting them at the macrobenchmark level.

To assess whether we can derive the locations of global
change points, we apply two different off-line change point
detection algorithms to the ground truth as well as our
estimations. In this experiment, the independent variables are
the kernel, size of the sample set, and, in addition, the choice
of the change point algorithm. We decided not to reuse the
CUSUM algorithm from Section II as it is sensitive to its
parametrization. This was useful for exploring the presence of
change points of different magnitudes, yet in this context, we
focus on global change points. Instead, we employ a top-down
binary segmentation strategy as well as a bottom-up merge
strategy. The first algorithm recursively segments the given
time series at the point with the highest variation, whereas the
second algorithm merges smaller segments to larger segments
as long as the constituent segments exhibit little variation. For
both algortihms, we refer to respective implementations and
parameterization from the Python library ruptures8, where
a more detailed description of both algorithms can be found.

8https://github.com/deepcharles/ruptures/

https://pv.github.io/numpy-bench/
https://pv.github.io/numpy-bench/
https://pv.github.io/scipy-bench/
https://gpy.readthedocs.io/en/deploy/index.html
https://github.com/deepcharles/ruptures/


Table II: Selection of five widely used kernel functions. The hyperparameters ϑ describes the lengthscale of the kernel function,
σ2 describes the variance.

Name Definition

Radial Basis Function (RBF) k(x, y) = σ2exp
(
− |x−y|

2

2ϑ2

)
Rational Quadratic Kernel (RQF) k(x, y) = σ2

(
1− |x−y|

2

2αϑ

)α
Brownian Kernel (BK) k(x, y) = σ2 min(x, y)

Matérn Kernel (MK3/2) k(x, y) = σ2
(
1 +

√
3|x−y|
θ

)
exp

(
−
√

3|x−y|
θ

)
Matérn Kernel (MK5/2) k(x, y) = σ2

(
1 +

√
5|x−y|
θ +

5|x−y|2

3 θ2

)
exp

(
−
√

5|x−y|
θ

)

C. Results

1) Kernel Selection Efficacy: In Table III, we report for
different sample sizes both the uncertainty of the different
kernels as well as the respective MAPE. For the configurable
systems, we average the uncertainties and errors rates over all
variants; for the libraries, we average over all methods. We
highlight for each sample size the best kernel with respect to
MAPE in green.

As can be seen in Table III, the Brownian Kernel (BK)
achieves the lowest MAPE for nearly all subjects. Only for
ULTAJASON, we observe that the Radial Basis Function (RBF)
and Rational Quadratic Kernel (RQF) perform slightly better.
Nevertheless, for most systems, the difference is substantial,
partially resulting in a one or to two orders of magnitude
lower MAPE. Interestingly, macrobenchmarks seem to be easier
to model than microbenchmarks, which might be because
macrobenchmarks do not fluctuate in the performance behavior
over the history so much. The rationale might be that changes
at method level will have a more severe effect on execution
time at microbenchmark level than for the whole system.

A further observation is that prediction accuracy increases
when the sample grows. Although this is plausible, we
argue that suboptimally selected samples might lead to false
approximations of the GP model (e.g., in the case of SCIPY
when comparing 3 % of revisions vs. 5%̇ of revisions). Since
BK is vastly superior, we use this kernel for the next research
question.

Summary: The Brownian Kernel (BK) produces the most
accurate performance history estimations with single digit
prediction error rates, except for NUMPY (MAPE: 26.074).

2) Revision Sampling Efficiency: To learn whether actively
selecting samples improves over random sampling, we compare
the MAPE of the BK learned with active sampling against
random sampling of revisions. We repeated random sampling
ten times and use the mean. Table IV shows the corresponding
MAPE values, highlighting better values in green. The pre-
sented numbers are aggregated MAPEs over multiple variants
and methods (compare Table I). To verify whether active
revision sampling is more efficient than random sampling,
we conducted a significance test.

First, we need to calculate the weighted mean for XZ
and LRZIP, because these values represent mean values from

multiple variants (cf. Table I). Then, we use a Shapiro-Wilk
normality test to determine which kind of significance test
is applicable. Since the data are not normally distributed, we
use a one-sided non-parametric paired Wilcoxon signed-rank
test. The p-value is 0.077, which is not significant at α-level
0.95. In other words, there seems to be a favor toward active
sampling, but the difference is not significant.

Summary: Active sampling performed slightly better
than random sampling, but the effect is not statistically
significant (p-value: 0.077).

3) Global Change Point Estimation: Although the estima-
tions with a BK kernel yielded the most accurate estimation, in
this analysis, we consider estimations with all kernels since the
kernels exhibit different properties9 which can influence the
shape of the GP estimation. For all combinations of algorithms
and kernels, we compare the time-series’ ground truth against
GP estimations trained with 1 %, 3 %, and 5 % of all revisions.
We consider a change point a true positive, if a change point
inferred from a GP estimation matches a change point reported
in the corresponding ground truth within a range of ± 5
revisions.

In Figure 5 we report the F1 score, a measure that sum-
marizes precision and recall of a binary classificator for all
subject systems, kernels, training set sizes, and change point
detection algorithms. Following the results from RQ1, the
accuracy of pinpointing global change points for the majority
of experiment configurations is greater for larger training sets.
The most accurate estimations of change point locations are
achieved again using the BK. ULTRAJSON exhibits only global
few change points, resulting in high accuracy. While the BK
outperformed the other kernels for RQ1, the effect here is less
pronounced.

Summary: From our GP estimates, we are able to accu-
rately derive the locations of global change points.

9Unlike the other four kernels, the Brownian kernel is non-stationary, i.e.
corresponding estimated do not exhibit mean-reverting dynamics. Moreover,
the two variants of the Matérn kernel are only differentiable one or twice,
respectively
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Figure 5: Comparing change points reported by two different algorithms (binary segmentation and bottom-up merging) from the
observed ground thruth and from GP estimations for five different kernels and varying training set sizes. The training sample
size refers to the percentage of total commits per software system.

V. DISCUSSION

A. Kernel Selection Efficacy

Among our selection of kernel functions, estimations using
the Brownian kernel (BK) outperformed the others in terms of
the lowest error rate in most scenarios, only exceeding a MAPE
of 10 % for NUMPY. The error rates reported for the BK across
our selection of subject system range from below 1 % to 26 %,
and the highest among them are reported for microbenchmarks.
This discrepancy suggests that macrobenchmarks are easier to
learn than microbenchmarks. The estimations obtained using
the BK kernel show the applicability of this kernel to obtain
accurate estimation models using GP regression with relatively
small training sample sizes. This high accuracy was achieved
by measuring only a tiny portion of the performance history
(i.e., 1 % to 5 % of all revisions).

We attribute the accuracy of estimates using BK partly to
their general shape. Estimations obtained using BK resemble
a piece-wise linear function. Considering a segment of obser-
vations between two revisions t1 and t2, with t1 < t2, the
covariance for any pair of revisions between t1 and a point
t′ of the segment, where t1 < t′ < t2, is constant and equal
to t1 since KBK(x, y) = min(x, y). Therefore, each segment
between observations is estimated with a linear function. Given
the presence of change points, the estimates obtained using BK
provide a good fit of the observed performance histories that are
segmented by change points since those can be approximated
by narrow segments with a high slope.

B. Revision Sampling Efficiency

The comparison of models trained with our active sampling
strategy with randomly trained models has shown only a
slight, yet not statistically significant improvement in terms
of reported error in different scenarios. Random sampling is
usually be the best sampling strategy [24], but we provide a
more systematic approach, which works slightly better. The
work of Roberts et al. [21] on using GP for time series
data does not compare active data selection with a random
baseline, so our findings complement the understanding of
the combination of active learning and GP regression. In
addition, since we let GP’s uncertainty guide the acquisition of
new observations, the training sample is uniformly distributed
rather than being concentrated around change points. Therefore,
a balanced acquisition strategy might be a better extension,
because it explores the revisions guided by uncertainty and
exploits the gradient of the GP estimate to accurately approach
and pinpoint change points.

C. Global Change Point Estimation

We were able to extract most change points from the
estimated models, which we validated against an established ap-
proach to locate change points in time series. We acknowledge
that our change point analysis is more exploratory nature as
this is not our main objective (we thrive for accurate modeling
of whole performance histories). Overall, our results suggest
that, using adaptive revision sampling, extensive performance
analyses over large performance histories with just a few



Table III: For each kernel and subject system, U denotes the
mean uncertainty of a kernel over all revisions and MAPE
denotes the mean average percentage error over all revisions.
1 %, 3 %, and 5 % are the sizes of the sample set with respect
to the whole performance history. For all subjects, we report
the average over all variants and methods respectively.

Kernels 1 % 3 % 5 %

U MAPE U MAPE U MAPE

M
ac

ro
be

nc
hm

ar
ks

X
Z

RBF 0.036 2.007 0.015 1.998 0.011 1.991
RQF 1.991 1.295 0.011 0.624 0.006 0.487
BK 0.021 0.632 0.006 0.352 0.003 0.308
MK3/2 0.036 2.007 0.016 1.999 0.04 1.385
MK5/2 0.036 2.008 0.016 1.997 0.076 1.881

L
R

Z
IP

RBF 7.304 41.954 10.725 10.725 5.743 17.903
RQF 5.245 16.253 3.675 10.099 3.288 9.502
BK 1.634 4.008 1.053 3.049 0.565 2.575
MK3/2 8.772 26.338 2.183 12.285 2.326 9.882
MK5/2 7.988 26.778 5.032 14.712 4.068 11.469

P
IL

L
O

W

RBF 1.679 77.043 0.574 77.028 0.645 76.302
RQF 0.083 0.93 0.115 0.396 0.159 0.476
BK 0.301 0.831 0.205 0.32 0.066 0.299
MK3/2 1.679 77.042 0.935 76.537 0.028 0.547
MK5/2 1.679 77.04 0.837 76.663 0.036 0.747

U
LT

R
A

JA
S

O
N RBF 0.008 1.723 0.004 1.736 0.003 1.764

RQF 0.004 1.789 0.003 1.806 0.003 1.805
BK 0.002 2.58 0.003 1.818 0.003 1.818
MK3/2 0.005 1.762 0.003 1.779 0.003 1.774
MK5/2 0.005 1.772 0.002 1.789 0.004 1.795

N
U

M
P

Y

RBF 0.0 7.36 0.0 7.36 0.0 7.36
RQF 0.001 7.192 0.0 0.361 0.0 0.309
BK 0.0 0.644 0.0 0.591 0.0 0.275
MK3/2 0.0 7.36 0.0 7.36 0.0 7.36
MK5/2 0.0 7.36 0.0 7.36 0.0 7.36

S
C

IP
Y

RBF 0.0 3.102 0.0 3.102 0.0 3.091
RQF 0.003 3.065 0.0 0.041 0.0 0.029
BK 0.0 0.087 0.0 0.032 0.0 0.021
MK3/2 0.0 3.102 0.0 3.083 0.0 3.057
MK5/2 0.0 3.102 0.0 3.096 0.0 3.07

M
ic

ro
be

nc
hm

ar
ks

P
IL

L
O

W

RBF 0.057 77.289 0.02 77.281 0.029 77.267
RQF 0.11 35.902 0.188 23.156 0.133 18.86
BK 0.017 1.238 0.011 0.788 0.007 0.007
MK3/2 0.007 77.279 0.043 77.261 0.067 76.151
MK5/2 0.057 77.282 0.036 77.268 0.056 76.153

U
LT

R
A

JA
S

O
N RBF 0.007 5.717 0.004 5.718 0.003 5.601

RQF 0.005 5.683 0.005 5.008 0.003 3.364
BK 0.005 5.788 0.005 5.788 0.005 5.788
MK3/2 0.004 5.69 0.002 5.623 0.004 5.42
MK5/2 0.005 5.721 0.003 5.712 0.003 5.492

N
U

M
P

Y

RBF 0.002 110.66 0.018 107.699 0.024 35.903
RQF 0.026 80.038 0.026 29.095 0.026 27.677
BK 0.005 26.074 0.002 25.82 0.001 25.138
MK3/2 0.015 109.642 0.021 47.049 0.027 45.75
MK5/2 0.01 109.961 0.022 48.199 0.025 43.986

S
C

IP
Y

RBF 0.185 136.563 0.266 140.011 0.366 64.83
RQF 0.062 128.77 0.059 121.112 0.065 144.937
BK 0.015 8.115 0.007 8.04 0.007 8.928
MK3/2 0.269 135.829 0.323 139.226 0.113 159.222
MK5/2 0.282 135.747 0.084 138.174 0.088 159.689

measurements is possible. To the best of our knowledge, this
could not have been done before. Our approach enables a wide

Table IV: For the Brownian kernel, we report the mean average
percentage error over all revisions and compare actively (act.)
and randomly (rand.) sampled setups.

1% 3% 5%

act. rand. act. rand. act. rand.

M
ac

ro
be

nc
hm

ar
ks XZ 0.632 0.502 0.352 0.355 0.308 0.302

LRZIP 4.008 5.731 3.049 3.370 2.575 3.149

PILLOW 0.831 1.023 0.32 0.631 0.299 0.344

ULTRAJSON 2.58 1.836 1.818 1.732 1.818 1.693

NUMPY 0.644 0.806 0.591 0.479 0.275 0.323

SCIPY 0.087 0.099 0.032 0.046 0.021 0.034

range of further applications, such as tracking accumulated
technical debt and performance evolution.

D. Threats to Validity

Threats to internal validity include measurement noise that
may leak into when learning performance models. We mitigate
this threat by using the average over five repeated runs. We
quantified the deviation of measurements and made sure with
additional measurements that the standard deviation is below
10 % with respect to the mean performance of the repeated
runs. The data sets we obtained from the library developers
have been repeated 40 times for NUMPY and SCIPY and for
ULTRAJSON and PILLOW about thousand times on multiple
machines. Hence, we are confident that our raw data are
robust against measurement outliers. Moreover, our learning
and estimation pipeline could contain implementation errors.
We carefully reviewed all intermediate results to mitigate this
threat. Also, we make all scripts available at our repository.

Regarding external validity, we cannot claim that our
approach works for all kinds of software systems. With our
evaluation, we selected systems from different domains and
made sure that we consider both macro- and microbenchmarks.
Moreover, we selected popular real-world systems to test our
approach on realistic data. Nevertheless, there are still types
of system that we have not considered so far: We did not
include client-server systems nor other performance metrics
than response time.

VI. RELATED WORK

A. Performance Anomaly Detection

The question of what is a relevant performance change
is crucial for both applications in industry and academia.
We revisit a selection of approaches to identify or pinpoint
performance anomalies.

Most prior work focuses on a single performance indicator,
such as execution time. Nguyen et al. [13, 25, 26], Malik et al.
[27], and Lee et al. [11] use statistical process control (SPC)
charts, a technique derived from quality management, to detect
possible performance regressions. SPC charts dynamically
provide a simple definition of thresholds that, when exceeded,
indicate quality regression.



A more rigorous statistical approach is to formalize perfor-
mance regression as a hypothesis testing problem applying
statistical tests to ask whether a revision’s performance is
significantly different from a preceeding one, as proposed by
Reichelt et al. [7]. Their work assesses a set of different
statistical tests regarding the applicability to this problem.
Heger et al. employ continuous measurement of unit tests
as performance benchmarks [12]. They use analysis of vari-
ance (ANOVA) as an rigorous alternative [28] to statistical
testing and compare performance distributions of different
revisions. A more sophisticated notion of performance is to
consider complex indicators that are aggregated from single
indicator. Foo et al. use the correlation among performance
indicators [8, 29] and Malik et al. use performance signatures to
aggregate multiple performance indicators, for instance by first
performing dimensionality reduction on a vector of performance
indicators with PCA and tracking the evolution of PCA weights
with SPC charts [27]. Our approach incorporates only single
metrics, but aggregated performance indicators provide a
possible extension. Cito et al. apply on-line change point
detection to detect performance degradation in Web applications
and pinpoint possible root causes [30]. While our work uses
fractions of a batch of performance observations, their strategy
uses a stream of continuous performance measurements at
runtime. The application of (off-line) change point detection
is a promising further research direction to infer performance
anomalies in performance evolution histories.

B. Gaussian Process for Time Series Analysis

The application of Gaussian Process models to learn real-
world time series data is extensively, but not exclusively
discussed by Roberts et al. [21]. They employ a similar active
learning approach of uncertainty-guided active sampling to
minimize observation effort. Their proposed algorithm not
only includes new actively sampled data points with each
iteration, but, in contrast to our approach, has the opportunity
to exclude data points for which the model is highly confident.
Garnett et al. and Osbourne et al. approach the problem of
learning time series data with change points by proposing a
kernel, which includes the location of a single change point as
a hyperparameter [31, 32]. We cannot resort to such kernels
since, for a performance evolution history, we do not know if,
and, if so, how many change points there are.

C. Performance of Configurable Software Systems

Another area of research aims at learning performance
models on configurable software systems. The idea is to
model configuration options as features in a machine-learning
setting and learn a corresponding prediction function. There are
different learning techniques, such as Classification and Regres-
sion Trees [33–35], multi-variable regression [22], and deep
neural networks [36]. Although we consider also configurable
software systems, we do not model features, but revisions and
predict performance not for variants, but revisions, which is an
orthogonal task. Nevertheless, there are some ideas related to
ours. Siegmund et al. propose an active learning approach based

on heuristics to select variants that exhibit certain interactions
of configuration options [37]. Nair et al. use also the idea of GP
models’ acquisition function to sample the configuration first,
which point to the fasted configuration [38]. Oh et al. use active
sampling to find an optimal configuration without building a
performance model [39]. They do so by recursively shrinking
the search space towards the fastest configurations. Although
these techniques are orthogonal (learning and sampling in
space) to ours (in time), we see potential in combining both
toward a combined learning and sampling approach.

VII. CONCLUSION

We propose an approach to accurately estimate the per-
formance evolution history for software systems using GP
regression with an active sampling strategy. Guided by the
uncertainty provided along estimations, we iteratively expand
the training set until a desired model confidence is reached. In
an exploratory analysis, we confirm the presence of abrupt and
substantial performance changes for six real-world software
systems. We investigate the choice of five different kernels for
learning GP models, compare our active sampling against a
random sampling baseline, and estimate the locations of abrupt
changes for six different software systems.

Our work has confirmed the presence of global change points,
and we were to able to pinpoint those with high accuracy.
As global change points contribute to performance evolution,
we believe this aspect of performance evolution in particular
deserves further attention. It is an avenue of further research to
investigate the causes of change points and triangulate inferred
change point locations with insights from development and
documentation artifacts. In addition, the search for change
points in performance evolution time series can be disassociated
from the framework of Gaussian Processes provided in this
work.
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