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Finding Faster Configurations using FLASH
Vivek Nair, Zhe Yu, Tim Menzies, Norbert Siegmund, and Sven Apel

Abstract—Finding good configurations of a software system is often challenging since the number of configuration options can be large. Software engineers
often make poor choices about configuration or, even worse, they usually use a sub-optimal configuration in production, which leads to inadequate
performance. To assist engineers in finding the better configuration, this article introduces FLASH, a sequential model-based method that sequentially
explores the configuration space by reflecting on the configurations evaluated so far to determine the next best configuration to explore. FLASH scales up
to software systems that defeat the prior state-of-the-art model-based methods in this area. FLASH runs much faster than existing methods and can solve
both single-objective and multi-objective optimization problems. The central insight of this article is to use the prior knowledge of the configuration space
(gained from prior runs) to choose the next promising configuration. This strategy reduces the effort (i.e., number of measurements) required to find the
better configuration. We evaluate FLASH using 30 scenarios based on 7 software systems to demonstrate that FLASH saves effort in 100% and 80% of
cases in single-objective and multi-objective problems respectively by up to several orders of magnitude compared to state-of-the-art techniques.

Index Terms—Performance prediction, Search-based SE, Configuration, Multi-objective optimization, Sequential Model-based Methods.
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1 INTRODUCTION

Most software systems available today are configurable; that
is, they can be easily adjusted to achieve a wide range of
functional and non-functional (e.g., energy or performance)
properties. Once a configuration space becomes large, it
becomes difficult for humans to keep track of the interac-
tions between the configuration options. Section 2 of this
article offers more details on many of the problems seen
with software configuration. In summary:
• Many software systems have poorly chosen defaults [1],

[2]. Hence, it is useful to seek better configurations.
• Understanding the configuration space of software sys-

tems with large configuration spaces is challenging [3].
• Exploring more than just a handful of configurations is

usually infeasible due to long benchmarking time [4].
This article describes FLASH, a novel way to find better
configurations for a software system (for a given workload).
FLASH is a sequential model-based method (SMBO) [5], [6],
[7] that reflects on the evidence (configurations) retrieved
at some point to select the estimated best configuration to
measure next. This way, FLASH uses fewer evaluations to
find better configurations compared to more expensive prior
work [8], [9], [10], [11], [12].

Prior work in this area primarily used two strategies.
Firstly, researchers used machine learning to model the con-
figuration space. The model is built sequentially, where new
configurations are sampled randomly, and the quality or
accuracy of the model is measured using a holdout set. The
size of the holdout set in some cases could be up to 20% of
the configuration space [11] and needs to be evaluated (i.e.,
measured) before even the model is fully built. This strategy
makes these methods not suitable in a practical setting since
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the generated holdout set can be (very) expensive. Secondly,
the sequential model-based techniques used in prior work
relied on Gaussian Process Models (GPM) to reflect on the
configurations explored (or evaluated) so far [13]. However,
GPMs do not scale well for software systems with more than
a dozen configuration options [14].

The key idea of FLASH is to build a performance model
that is just accurate enough for differentiating better config-
urations from the rest of the configuration space. Tolerating
the inaccuracy of the model is useful to reduce the cost
(measured in terms of the number of configurations evalu-
ated) and the time required to find the better configuration.
To increase the scalability of methods using GPM, FLASH
replaces the GPMs with a fast and scalable decision tree
learner.
The novel contributions of the article are:
• We show that FLASH can solve single-objective perfor-

mance configuration optimization problems using an or-
der of magnitude fewer measurements than the state-of-
the-art (Section 7.1). This is a critical feature because, as
discussed in Section 2, it can be very slow to sample mul-
tiple properties of modern software systems, when each
such sample requires (say) to compile and benchmark the
corresponding software system.

• We empower FLASH to multi-objective performance con-
figuration optimization problems.

• We show that FLASH overcomes the shortcomings of prior
work and achieves similar performance and scalability,
with greatly reduced runtimes (Section 7.2).

• Background material, a replication package, all mea-
surement data, and the open-source version of FLASH
are available at supplementary website (http://tiny.cc/
flashrepo/).

The rest of the article is structured as follows: Section 2
motivates this work. Section 3 describes the problem for-
mulation and the theory behind SMBO. Section 4 describes
prior work in software performance configuration optimiza-
tion, followed by the core algorithm of FLASH in Section 5.
In Section 6, we present our research questions along with
experimental settings used to answer them. Prior work in
this area addresses a single-objective problem with the only

http://tiny.cc/flashrepo/
http://tiny.cc/flashrepo/
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Family Software
Systems

Objectives #Config
Options Configuration Options Description Abbr # Configu-

rations Prev
Used

Stream
Processing
Systems

wc-c1-3d Throughput 3 max spout, spliters, counters Word Count is executed by varying 3 configurations of
Apache Storm on cluster C1

SS-A1 1343

[15]

Latency SS-A2

wc-c3-3d Throughput 3 max spout, spliters, counters Word Count is executed by varying 3 configurations of
Apache Storm on cluster C3

SS-C1 1512
Latency SS-C2

wc+wc-c4-3d Throughput 3 max spout, spliters, counters Word Count is executed, collocated with Word Count
task, by varying 3 configurations of Apache Storm on
cluster C3

SS-D1 195
Latency SS-D2

wc-c4-3d Throughput 3 max spout, spliters, counters Word Count is executed by varying 3 configurations of
Apache Storm on cluster C4

SS-E1 756
Latency SS-E2

wc+rs-c4-3d Throughput 3 max spout, spliters, counters Word Count is executed, collocated with Rolling Sort
task, by varying 3 configurations of Apache Storm on
cluster C4

SS-F1 196
Latency SS-F2

wc+sol-c4-3d Throughput 3 max spout, spliters, counters Word Count is executed, collocated with SOL task, by
varying 3 configurations of Apache Storm on cluster
C3

SS-G1 195
Latency SS-G2

wc-5d-c5 Throughput 5 spouts, splitters, counters,buffer-size,
heap

Word Count is executed by varying 5 configurations of
Apache Storm on cluster C3

SS-I1 1080
Latency SS-I2

rs-6d-c3 Throughput 6 spouts, max spout, sorters, emitfreq,
chunksize, message size

Rolling Sort is executed by varying 6 configurations of
Apache Storm on cluster C3

SS-J1 3839
Latency SS-J2

wc-6d-c1 Throughput 6 spouts, max spout, sorters,emitfreq,
chunksize,,message size

Word Count is executed by varying 6 configurations of
Apache Storm on cluster C1

SS-K1 2880
Latency SS-K2

FPGA
sort-256 Area 3 Not specified The design space consists of 206 different hardware

implementations of a sorting network for 256 inputs
SS-B1 206

[13]

Throughput SS-B2

noc-CM-log Energy 4 Not specified The design space consists of 259 different implementations
of a tree-based network-on-chip,targeting application specific
circuits (ASICs) and,multi-processor system-on-chip designs

SS-H1 259
Runtime SS-H2

Compiler llvm Performance 11 time passes, gvn, instcombine,inline,
... , ipsccp, iv users, licm

The design space consists of 1023 different compiler settings
for the LLVM compiler framework. Each setting is specified by
d = 11 binary flags.

SS-L1 1023
Memory Foot-
print

SS-L2

Mesh
Solver Trimesh # Iteration 13 F, smoother, colorGS,relaxParameter, V, Jac-

obi, line, zebraLine, cycle, alpha, beta,preSmo-
othing, postSmoothing

Configuration space of Trimesh, a library to
manipulate triangle meshes

SS-M1 239,260

[16]

Time to Solu-
tions

SS-M2

Video
Encoder X264-DB PSNR 17 no mbtree, no asm, no cabac, no

scenecut,..., keyint, crf, scenecut,
seek, ipratio

Configuration space of X-264 a video encoder SS-N1 53,662
Energy SS-N2

Seismic
Analysis
Code

SaC Compile-Exit 59 extrema, enabledOptimizations,
disabledOptimizations,ls, dcr, cf, lir, inl,
lur, wlur, ...maxae, initmheap, initwheap

Configuration space of SaC SS-O1 65,424
Compile-Read SS-O2

TABLE 1: Configuration problems explored in this article. The abbreviations of the systems (Abbr) are sorted in the
order of the number of configuration options of the system. The column #Config Options represent the number of
configuration options of the software system and #Configurations represents the total number of configurations of the
system. See http://tiny.cc/flash systems/ for more details.

exception of ePAL [13]. Hence, we evaluate FLASH sepa-
rately for single-objective and multi-objective performance
configuration optimization problems. In Section 7, we ap-
ply FLASH on single-objective performance configuration
optimization and multi-objective performance configuration
optimization. The article ends with a discussion on various
aspects of FLASH, and finally, we conclude along with a
discussion of future work.

2 PERFORMANCE CONFIGURATION OPTIMIZATION
FOR SOFTWARE

This section motivates our research by reviewing the numer-
ous problems associated with software configuration.

Many researchers report that modern software systems
come with a daunting number of configuration options. For
example, the number of configuration options in Apache
(a popular web server) increased from 150 to more than 550
configuration options within 16 years [3]. Van Aken et al. [1]
also reports a similar trend. They indicate that, in over 15
years, the number of configuration options of POSTGRES and
MYSQL increased by a factor of three and six, respectively.
This is troubling since Xu et al. [3] report that developers
tend to ignore over 80% of configuration options, which
leaves considerable optimization potential untapped and

induces major economic cost [3].1 For illustration, Figure 1
offer examples of the kinds of configuration options seen in
software systems.

Another problem with configurable systems is the issue
of poorly chosen default configurations. Often, it is assumed
that software architects provide useful default configura-
tions of their systems. This assumption can be very mis-
leading. Van Aken et al. report that the default MySQL
configurations in 2016 assume that it will be installed on
a machine that has 160MB of RAM (which, at that time, was
incorrect by, at least, an order of magnitude) [1]. Herodotou
et al. [2] show how standard settings for text mining appli-
cations in Hadoop result in worst-case execution times. In
the same vein, Jamshidi et al. [15] reports for text mining
applications on Apache Storm, the throughput achieved
using the worst configuration is 480 times slower than the
throughput achieved by the best configuration.

Yet another problem is that exploring benchmark sets for
different configurations is very slow. Wang et al. [17] comments
on the problems of evolving a test suite for software if every
candidate solution requires a time-consuming execution of
the entire system: such test suite generation can take weeks
of execution time. Zuluaga et al. [18] report on the cost
of analysis for software/hardware co-design: “synthesis of

1. The size of the configuration space increases exponentially with the number
of configuration options.

http://tiny.cc/flash_systems/
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only one design can take hours or even days”.
The challenges of having numerous configuration op-

tions are just not limited to software systems. The problem
to find an good set of configuration options is pervasive
and faced in numerous other sub-domains of computer sci-
ence and beyond. In software engineering, software product
lines–where the objective is to find a product which (say)
reduces cost and defects [19], [20]—have been widely stud-
ied. The problem of configuration optimization is present in
domains, such as machine learning, cloud computing, and
software security.

The area of hyper-parameter optimization (a.k.a. parameter
tuning) is very similar to the performance configuration
optimization problem studied in this article. Instead of
optimizing the performance of a software system, the hyper-
parameter method tries to optimize the performance of a
machine learner. Hyper-parameter optimization is an active
area of research in various flavors of machine learning. For
example, Bergstra and Bengiol [21] showed how random
search could be used for hyper-parameter optimization of
high dimensional spaces. Recently, there has been much
interest in hyper-parameter optimization applied to the area
of software analytics [22], [23], [24], [25], [26].

Another area of application for performance configura-
tion optimization is cloud computing. With the advent of big
data, long-running analytics jobs are commonplace. Since
different analytic jobs have diverse behaviors and resource
requirements, choosing the correct virtual machine type in
a cloud environment has become critical. This problem has
received considerable interest, and we argue, this is another
useful application of performance configuration optimiza-
tion — that is, optimize the performance of a system while
minimizing cost [5], [27], [28], [29], [30].

As a sideeffect of the wide-spread adoption of cloud
computing, the security of the instances or virtual machines
(VMs) has become a daunting task. In particular, optimized
security settings are not identical in every setup. They
depend on characteristics of the setup, on the ways an appli-
cation is used or on other applications running on the same
system. The problem of finding security setting for a VM
is similar to performance configuration optimization [31],
[32], [33], [34], [35]. Among numerous other problems which
are similar to performance configuration optimization, the
problem of how to maximize conversions on landing pages
or click-through rates on search-engine result pages [4], [36],
[37] has gathered interest.

The rest of this article discusses how FLASH addresses
configuration problems (using the case studies of Figure 1).

3 THEORY

The following theoretical notes define the framework used
throughout the article.

3.1 What are Configurable Software Systems?
A configurable software system has a set X of configura-
tions x ∈ X . Let xi represent the ith configuration of a
software system. xi,j represent the jth configuration option
of the configuration xi. In general, xi,j indicates either an
(i) integer variable or a (ii) Boolean variable. The config-
uration space (X) represents all the valid configurations

of a software system. The configurations are also referred
to as independent variables. Each configuration (xi), where
1 ≤ i ≤ |X|, has one (single-objective) or many (multi-
objective) corresponding performance measures yi,k ∈ Y ,
where yi,k indicates the 1 ≤ kth ≤ m objective associated
with a configuration xi. The performance measure is also
referred to as dependent variable. For multi-objective prob-
lems, there are multiple dependent variables. We denote
the performance measures (y ∈ Y ) associated with a given
configuration by (yi,1, ..yi,m) = f(xi), in multi-objective
setting yi is a vector, where: f : X 7→ Y is a function which
maps X ∈ Rn to Y ∈ Rm. In a practical setting, whenever
we try to obtain the performance measure corresponding
to a certain configuration, it requires actually executing
a benchmark run with that configuration. In our setting,
evaluation of a configuration (or using f ) is expensive and
is referred to as a measurement. The cost or measurement
is defined as the number of times f is used to map a
configuration xi ∈ X to Y . In our setting, the cost of an
optimization technique is the total number of measurements
required to find the better solution.

In the following, we will explore two different kinds
of configuration optimization: single-objective and multiple
objective. In single-objective performance configuration opti-
mization, we consider the problem of finding a good config-
uration (x∗) such that f(x∗) is less than other configurations
in X . Our objective is to find x∗ while minimizing the
number of measurements.

f(x∗) ≤ f(x), ∀x ∈ X \ x∗ (1)

That is, our goal is to find the better configuration of a
system with least cost or measurements as possible when
compared to prior work.

In multi-objective performance configuration optimiza-
tion, we consider the problem of finding a configuration
(x∗) that is better than other configurations in the con-
figuration space of X while minimizing the number of
measurements. Unlike, the single-objective configuration
optimization problem, where one solution can be the best
(optimal) solution (except multiple configurations have the
same performance measure), in multi-objective configura-
tion optimization there may be no best solution (best in
all objectives). Rather there may be a set of solutions that
are equivalent to each other. Hence, to declare that one
solution is better than another, all objectives must be polled
separately. Given two vectors of configurations x1, x2 with
associated objectives y1, y2, then x1 is binary dominant (�)
over x2 when:

y1,p ≤ y2,p∀p ∈ {1, 2, ...,m} and
y1,q < y2,q for at least one index q ∈ {1, 2, ...,m}

(2)

where y ∈ Y are the performance measures. We refer to
binary dominant configurations as better configurations. For
the multi-objective configuration optimization problem, our
goal is to find a set of better configurations of a given
software system using fewer measurements compared to
prior work.

3.2 Sequential Model-based Optimization
Sequential Model-based Optimization (SMBO) is a useful
strategy to find extremes of an unknown objective (or per-
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Fig. 1: An example of Sequential Model-based method’s working process from [7]. The figures show a Gaussian
process model (GPM) of an objective function over four iterations of sampled values. Green shaded plots represent
acquisition function. The value of the acquisition function is high where the GPM predicts larger objective and where
the prediction uncertainty (confidence) is high such points (configurations in our case) is sampled first. Note that the
area on the far left is never sampled even when it has high uncertainty (low confidence) associated.

formance) function which is expensive (both in terms of
cost and time) to evaluate. In literature, a certain variant
of SMBO is also called Bayesian optimization. SMBO is
efficient because of its ability to incorporate prior belief as
already measured solutions (or configurations), to help di-
rect further sampling. Here, the prior represents the already
known areas of the search (or performance optimization)
problem. The prior can be used to estimate the rest of the
points (or unevaluated configurations). Once we have eval-
uated one (or many) points based on the prior, we can define
the posterior. The posterior captures our updated belief in
the objective function. This step is performed by using a
machine learning model, also called surrogate model.
The concept of SMBO is simple stated:
• Given what we know about the problem...
• ... what should we do next?

The “given what we know about the problem” part is
achieved by using a machine learning model whereas “what
should we do next” is performed by an acquisition function.
Such acquisition function automatically adjusts the explo-
ration (“should we sample in uncertain parts of the search
space) and exploitation (“should we stick to what is already
known”) behavior of the method.

This can also be explained as follows. Firstly, few points
(or configurations) are (say) randomly selected and mea-
sured. These points along with their performance measure-
ments are used to build a model (prior). Secondly, this
model is then used to estimate or predict the performance
measurements of other unevaluated points (or configura-
tions).This can be used by an acquisition function to select
the configurations to measure next. This process continues
till a predefined stopping criterion (budget) is reached.

Much of the prior research in configuration optimiza-
tion of software systems can be characterized as an explo-
ration of different acquisition functions. These acquisition
function (or sampling heuristics) were used to satisfy two
requirements: (i) use a ‘reasonable’ number of configura-
tions (along with corresponding measurements) and (ii)
the selected configurations should incorporate the relevant
interactions—how different configuration options influence
the performance measure [38]. In a nutshell, the intuition
behind such functions is that it is not necessary to try all
configuration options—for pragmatic reasons. Rather, it is
only necessary to try a small representative configurations—
which incorporates the influences of various configuration
options. Randomized functions select random items [8], [9].
Other, more intricate, acquisition functions first cluster the
data then sample only a subset of examples within each

cluster [10]. But the more intricate the acquisition function,
the longer it takes to execute—particularly for software with
very many configurations. For example, recent studies with
a new state-of-the-art acquisition function show that such
approaches are limited to models with less than a dozen
decisions (i.e. configuration options) [13].

As an example of an acquisition function, consider Fig-
ure 1. It illustrates a time series of a typical run of SMBO.
The bold black line represents the actual performance func-
tion (f—which is unknown in our setting) and the dotted
black line represents the estimated objective function (in the
language of SMBO, this is the prior). The purple regions
represent the configuration or uncertainty of estimation in a
region—the thicker that region, the higher the uncertainty.

The green line in that figure represents the acquisition
function. The optimization starts with two points (t=2).
At each iteration, the acquisition function is maximized
to determine where to sample next. The acquisition func-
tion is a user-defined strategy, which takes into account
the estimated performance measures (mean and variance)
associated with each configuration.. The chosen sample (or
configuration) maximizes the acquisition function (argmax).
This process terminates when a predefined stopping con-
dition is reached which is related to the budget associated
with the optimization process.

Gaussian Process Models (GPM) is often the surrogate
model of choice in the machine learning literature. GPM is
a probabilistic regression model which instead of returning
a scalar (f(x)) returns the mean and variance associated
with x. There are various acquisition functions to choose
from: (1) Maximum Mean, (2) Maximum Upper Interval,
(3) Maximum Probability of Improvement, (4) Maximum
Variance, and (5) Maximum Expected Improvement.
Building GPMs can be very challenging since:
• GPMs can be very fragile, that is, very sensitive to the

parameters of GPMs;
• GPMs do not scale to high dimensional data as well as

a large dataset (software system with large configuration
space) [39]. For example, in SE, the state-of-the-art in this
area using GPMs for optimization was limited to models
with around ten decisions [14].

4 PERFORMANCE OPTIMIZATION OF CONFIG-
URABLE SOFTWARE SYSTEMS

In this section, we discuss the model-based methods used in
the prior work to find the better configurations of software
systems.
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4.1 Residual-based: “Build an Accurate Model”
In this section, we discuss the residual-based method for
building performance models for software systems, which,
in SMBO terminology, is an optimizer with a flat acquisition
function, that is, all the points are equally likely to be selected
(random sampling).

When the cost of collecting data (benchmarking time)
is higher than the cost of building a performance model
(surrogate model), it is imperative to minimize the number
of measurements required for model building. A learning
curve shows the relationship between the size of the
training set and the accuracy of the model. In Figure 2, the
horizontal axis represents the number of samples used to
create the performance model, whereas the vertical axis
represents the accuracy (measured in terms of MMRE—
Mean Magnitude of Relative Error) of the model learned.
Learning curves typically have a steep sloping portion early
in the curve followed by a plateau late in the curve. The
plateau occurs when adding data does not improve the
accuracy of the model. As engineers, we would like to stop
sampling as soon as the learning curve starts to flatten. Two
types of residual-based methods have been introduced in
Sarkar et al. namely progressive and projective sampling.

(1) Progressive Sampling uses an iterative sampling strat-
egy to inform the process of building the performance
model. It starts by sampling a small set of configurations
and their corresponding performance measures to build a
model and validating the model using a holdout set. Con-
figurations are iteratively sampled and used to construct the
performance model until the performance model achieves
a specified accuracy (measured in terms of MMRE). The
sampling process terminates when a predefined threshold is
reached. One of the shortcomings of progressive sampling is
that the resulting performance model achieves an acceptable
accuracy only after a large number of iterations, which
implies high modeling cost. There is no way to determine
the cost of modeling until the performance model is already
built, which defeats its purpose, as there is a risk of over-
shooting the modeling budget and still not obtaining an
accurate model.
(2) Projective sampling addresses this problem by approxi-
mating the learning curve using a minimal set of initial
configurations, thus providing the stakeholders with an
estimate of the modeling cost.

We use progressive sampling as a representative be-
cause projective sampling adds only a sample estimation
technique to the progressive sampling and does not add
anything to the sampling itself.

The residual-based method discussed here considers
only performance configuration optimization scenarios with
a single-objective. In the residual-based method, the correct-
ness of the performance model built is measured using error
measures such as MMRE:

MMRE =
| f (x )− y |

y
· 100 (3)

For further details, please refer to Sarkar et. al [9].
Figure 3 is a generic algorithm that defines the process of

progressive sampling. Progressive sampling starts by clearly
defining the data used in the training set (called training

0 50 100 150 200 250 300 350 400
Size of Training Set

0

20

40

60

80

100

A
cc
u
ra
cy

 (
%
)

Fig. 2: The relationship between the accuracy and the number
of samples used to train the performance model of the
running Word Count application on Apache Storm. Note that
the accuracy does not improve substantially after 20 sample
configurations.

pool) and used for testing the quality of the surrogate model
(in terms of residual-based measures) called holdout set. The
training pool is the set from which the configurations would
be selected (randomly, in this case) and then tested against
the holdout set. At each iteration, a (set of) data instance(s)
of the training pool is added to the training set (Line 9).
Once the data instances are selected from the training pool,
they are evaluated, which in our setting means measuring
the performance of the selected configuration (Line 12).
The configurations and the associated performance scores
are used to build the performance model (Line 14). The
model is validated using the testing set2, then the accuracy
is computed. In our setting, we assume that the measure
is accuracy (higher is better). Once the accuracy score is
calculated, it is compared with the accuracy score obtained
before adding the new set of configurations to the training
set. If the accuracy of the model (with more data) does not
improve the accuracy when compared to the previous itera-
tion (lesser data), then life is lost. This termination criterion
is widely used in the field of Evolutionary Algorithms to
determine the degree of convergence [40].

4.2 Rank-based: “Build a Rank-preserving Model”

As an alternative to the residual-based method, a rank-
based method has recently been proposed [11]. The rank-
based method is similar to residual-based method in that
it has a flat acquisition function, which resembles random
sampling. Like the residual-based method, the rank-based
method discussed here also considers only performance
configuration optimizations with a single-objective. For fur-
ther details, please refer to Nair et. al [11].

In a nutshell, instead of using residual measures of er-
rors, as described in Equation 3, which depend on residuals
(r = y−f(x))3, it uses a rank-based measure. While training
the performance model (f(x)), the configuration space is

2. The testing data consist of the configurations as well as the corresponding
performance scores.

3. Refer to Section 3.1 for definitions.
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1 # Progressive Sampling
2 def progressive(training, holdout, lives=3):
3 # For stopping criterion
4 last score = −1
5 independent vals = list()
6 dependent vals = list()
7 for count in range(1, len(training)):
8 # Add one configuration to the training set
9 independent vals += training[count]

10 # Measure the performance value for the newly
11 # added configuration
12 dependent vals += measure(training set[count])
13 # Build model
14 model = build model(independent vals, dependent vals)
15 # Test Model
16 perf score = test model(model, holdout, measure(holdout))
17 # If current accuracy score is not better than
18 # the previous accuracy score, then loose life
19 if perf score <= last score:
20 lives −= 1
21 last score = perf score
22 # If all lives are lost, exit loop
23 if lives == 0: break
24 return model

Fig. 3: Python code of progressive sampling, a residual-based
method.

1 # rank−based method
2 def rank based(training, holdout, lives=3):
3 last score = −1
4 independent vals = list()
5 dependent vals = list()
6 for count in range(1, len(training)):
7 # Add one configuration to the training set
8 independent vals += training[count]
9 # Measure the performance value for the newly

10 # added configuration
11 dependent vals += measure(training set[count])
12 # Build model
13 model = build model(independent vals, dependent vals)
14 # Predicted performance values
15 predicted performance = model(holdout)
16 # Compare the ranks of the actual performance
17 # scores to ranks of predicted performance scores
18 actual ranks = ranks(measure(holdout))
19 predicted ranks = ranks(predicted performance)
20 mean RD = RD(actual ranks, predicted ranks)
21 # If current rank difference is not better than
22 # the previous rank difference, then loose life
23 if mean rank difference <= last rank difference:
24 lives −= 1
25 last rank difference = mean RD
26 # If all lives are lost, exit loop
27 if lives == 0: break
28 return model

Fig. 4: Python code of rank-based method.

iteratively sampled (from the training pool) to train the
performance model. Once the model is trained, the accuracy
of the model is measured by sorting the values of y = f(x)
from ‘small’ to ‘large’, that is:

f(x1) ≤ f(x2) ≤ f(x3) ≤ ... ≤ f(xn). (4)

The predicted rank order is then compared to the actual
rank order. The accuracy is calculated using the mean rank
difference (µRD):

µRD =
1

n
·

n∑
i=1

∣∣∣rank(yi)− rank(f(xi))
∣∣∣ (5)

This measure simply counts how many of the pairs in the
test data have been ordered incorrectly by the performance
model f(x) and measures the average of magnitude of the
ranking difference.

In Figure 4, we list a generic algorithm for the rank-based
method. Sampling starts by selecting samples randomly

1# ePAL Multi−objective SMBO
2def ePAL(all configs, ε, size = 20):
3# Add |\textit{size}| number of randomly selected
4# configurations to training data
5train = random.sample(all configs, size)
6# Measure the performance value for sampled training data
7train = [ measure(x) for x in train ]
8# Remove the measured configurations from configuration space
9all configs = all configs \ train
10# Till all the configurations in all configs has been either sampled or←↩

discarded
11while len(all configs) > 0:
12# Build GPM
13model = GPM(train)
14# Get prediction and corresponding confidence intervals
15# associated with each configuration in all configs
16µ, σ = model.predict(all configs)
17# Only keep configurations discard based on uncertainty
18all configs = all configs − discard(all configs,µ, σ, ε)
19# Find and measure another point based on acquisition function.
20new point = measure(acquisition function(all configs, µ, σ))
21# Add new point to train
22train += new point
23return train

Fig. 5: Python code of ePAL, a multi-objective SMBO.

from the training pool and by adding them to the training
set (Line 8). Then, the collected sample configurations are
evaluated (Line 11). The configurations and the associated
performance measure are used to build a performance
model (Line 13). The generated model (CART, in our case)
is used to predict the performance measure of the configu-
rations in the testing pool (Line 16). Since the performance
value of the holdout set is already measured, hence known,
the ranks of the actual performance measures, and predicted
performance measure are calculated. (Lines 18–19). The
actual and predicted performance measure is then used to
calculate the rank difference using Equation 5. If the rank
difference (µRD) of the model (with more data) does not
decrease when compared to the previous generation (lesser
data), then a life is lost (Lines 23–24). When all lives are
expired, sampling terminates (Line 27).

4.3 ePAL: “Traditional SMBO”
Unlike the residual-based and rank-based methods, epsilon
Pareto Active Learning (ePAL) reflects on the evaluated
configurations (and corresponding performance measures)
to decide the next best configuration to measure using
Maximum Variance (predictive uncertainty) as an acquisition
function. ePAL incrementally updates a model (GPM) rep-
resenting a generalization of all samples (or configurations)
seen so far. The model can be used to decide the next most
promising configuration to evaluate. This ability to avoid
unnecessary measurement (by just exploring a model) is
very useful in the cases where each measurement can take
days to weeks.

In Figure 5, we list a generic algorithm for ePAL. ePAL
starts by selecting samples randomly from the configura-
tion space (all configs) and by adding them to the training
set (Line 5). The collected sample configurations are then
evaluated (Line 7). The configurations and the associated
performance values are used to build a performance model
(Line 13). The generated model (GPM, in this case) is used to
predict the performance values of the configurations in the
testing pool (Line 16). Note that the model returns both the
value (µ) as well as the associated confidence interval (σ).
These predicted values are used to discard configurations,
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which have a high probability of being dominated by an-
other point (Line 18). Domination is defined in Equation 2 4.
After configurations (which have a high probability of be-
ing dominated) have been discarded, a new configuration
(new point) is selected and measured (Line 20). The selected
configuration new point is the most uncertain in all configs.
Then, new point is added to train, which is then used to
build the model in the subsequent iteration (Line 22). When
all the configuration in all configs have been discarded (or
evaluated and moved to train) the process terminates.

Note again, since ePAL is a traditional SMBO, it shares
its shortcomings (refer to Section 3.2).

5 FLASH: A FAST SEQUENTIAL MODEL-BASED
METHOD

To overcome the shortcomings of the traditional SMBO,
FLASH makes certain design choices:
• FLASH's acquisition function uses Maximum Mean. Maxi-

mum Mean returns the sample (configuration) with high-
est expected (performance) measure;

• GPM is replaced with CART [41], a fixed-point regression
model. This is possible because the acquisition function
requires only a single point value rather than the mean
and the associated variance.

When used in a multi-objective optimization setting, FLASH
models each objective as a separate performance (CART)
model. This is because the CART model can be trained for
one performance measure or dependent value.

The basic idea of CART is as follows: CART recursively
partitions the set of configurations (based on a configuration
option) into smaller clusters until the performance of the
configurations in the clusters are similar. Each split of the
set of configurations is driven by a decision on the configu-
ration option that would minimize the entropy or prediction
error. These recursive clustering is represented as a binary
decision tree. So, when we need to predict the performance
of a new configuration not measured so far, we use the
decision tree to find the cluster which is most similar to
the new configuration.

FLASH replaces the actual evaluation of all configurations
(which can be a very slow process) with a surrogate eval-
uation, where the CART decision trees are used to guess
the objective scores (which is a very fast process). Once
guesses are made, then some select operator must be applied
to remove less-than-satisfactory configurations. Inspired by
the decomposition approach of MOEA/D [42], FLASH uses
the following stochastic Maximum Mean method, which we
call Bazza5.

For problems with o objectives that we seek to maximize,
Bazza returns the configuration that has outstandingly max-
imum objective values across N random projections. Using
the predictions for the o objectives from the learned CART
models, then Bazza executes as follows. Note that the first
step (randomly assigning weights to goals) is a technique
we burrow and adapt from the MOEA/D algorithm [42].

4. ePAL then removes all ε-dominated points: a is discarded due to b if µb+σb

ε-dominates µa − σa, where x ε-dominates y if x + ε � y and “�” is binary
domination- see Equation 2

5. Short for “bazzinga”. Also, “Bazza” is Australian for “Barry” which the name
of Barry Allen of the Flash T.V. series; and the childhood nickname of the 44th
United States President Barack Obama.

1def FLASH(uneval configs, fitness, size, budget):
2# Add |size| number of randomly selected configurations to training data.
3# All the randomly selected configurations are measured
4eval configs = [measure(x) for x in sample(uneval configs, size)]
5# Remove the evaluations configuration from data
6uneval configs.remove(eval configs)
7# Till all the lives has been lost
8while budget > 0:
9# build one CART model per objective
10for o in objectives: model[o] = CART(eval configs)
11# Find and measure another point based on acquisition function
12acquired point = measure(acquisition fn(uneval configs, model))
13eval configs += acquired point # Add acquired point
14uneval config −= acquired point # Remove acquired point
15# Stopping Criteria
16budget −= 1
17return best
18
19def acquisition fn(uneval configs, model, no directions=10):
20# Predict the value of all the unevaluated configurations using model
21predicted = model.predict(uneval configs)
22# If number of objectives is greater than 1 (In our setting len(objectives) = 2)
23if len(objectives) > 1: # For multi−objective problems
24return Bazza( predicted )
25else: # For single−objective problems
26return max(predicted)

Fig. 6: Python code of FLASH

• N vectors V of length m are generated and filled with
random numbers of the range 0..1. This represents the
various weight vectors. The idea is to decompose one
problem into a set of N sub-problems (uniformly spread
N weight vectors.

• Set max = 0 and best = nil .
• For each configuration xi

– Guess its performance scores yi,j using the predictions
from the CART models.

– Compute its mean weight as follows:

meani =
1

N

N∑
n

m∑
j

(Vn,j · xi,j) (6)

– If mean > max , then max := mean and best := xi.
• Return best .

In summary, given a set of V weight vectors of length
m, Bazza finds the vector that scores best across N different
weighted sums, each of which is computed with random
weight vectors.

The resulting algorithm is shown in Figure 6. Before ini-
tializing FLASH, a user needs to define three parameters N,
size, and budget (refer to Section 8.2 for a sensitivity analysis).
FLASH starts by randomly sampling a predefined number
(size) of configurations from the configuration space and
evaluate them (Line 4). The evaluated configurations are
removed from the unevaluated pool of configurations (Line
6). The evaluated configurations and the corresponding per-
formance measure/s are then used to build CART model/s
(Line 10). This model (or models, in case of multi-objective
problems) is then used by the acquisition function to deter-
mine the next point to measure (Line 13). The acquisition
function accepts the model (or models) generated in Line 10
and the pool of unevaluated configurations (uneval configs)
to choose the next configuration to measure. The model
is used to generate a prediction for the unevaluated con-
figurations. For single-objective optimization problems, the
next configuration to measure is the configuration with the
highest predicted performance measure (Line 26). For multi-
objective optimization problems, Bazza is applied. The con-
figuration chosen by the acquisition function is evaluated
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and added to the evaluated pool of configurations (Line
12-13) and removed from the unevaluated pool (Line 14).
FLASH terminates once it runs out of budget (Line 8).

Note the advantages of this approach: SMBO is a widely
used method [43] for many important tasks (cloud config-
uration [5], hyperparameter optimization [44]) so even a
small improvement in this method would be significant for
a large of number of domains Truly FLASH includes many
novel innovations. The following list shows the significant
innovations of this work and the delta to prior research.
1. Evolutionary algorithms (EAs) have been used for op-
timizing black-box optimization [45]. Using Evolutionary
Algorithms is relatively straightforward since it requires no
domain knowledge to solve a problem.
Challenge: Evolutionary algorithms suffer from two prob-
lems. Firstly, there is the issue of the number of evaluations
required for an EA. A standard EA experiment is 100 in-
dividuals mutated for 100+ generations [46]. This renders
Evolutionary Algorithms unsuitable for our domain since
individual evaluation can be very slow (requires re-running
a benchmark suite). A second problem with EAs is the
problem of slow convergence (i.e., the performance delta
across these generations may be very slow and take a long
time to stabilize [47]). For this reason, research in this area in
the last decade has explored non-EA methods for software
configuration [8], [9], [10], [11], [16].
New approach:
• Here we explore SMBO for software configuration op-

timization.
• While SMBO is gaining some popularity in other do-

mains [5], [48], [49], this article is the first reporting a
successful application of SMBO to software configura-
tion.

2. Prior work in this area used some surrogate model
learned by data mining (e.g., with CART [8], [9], [10]), pos-
sibly combined with random sampling. Such surrogates are
useful for guiding the construction of better configuration
models since they can be much faster to execute than (say)
re-running a benchmark. Hence, an optimizer that uses such
surrogates can terminate relatively quickly.
Challenge: One drawback with surrogate models is that
they require a holdout set, against which the surrogate
model (built iteratively) is evaluated. Interestingly, prior
work does not discuss the cost of populating, which may
require exploring up to 20% of the total configuration
space [11].
New approach:
• We found that applying SMBO removes the need for

this hold out. We build the model incrementally, thus
the configurations (and their performance) sampled at
a given point in time used to intelligently select the next
data point to collect.

• This work is the first successful application of such
incremental model construction (with no holdout sets)
for software configuration.

3. Standard SMBO algorithms are a widely used method
for finding good samples (as used in hyper-parameter
optimization). Standard SMBO builds its models using a
method called Gaussian Process Models. Due to internal
complexities of some of its matrix operations, GPM can
handle only a dozen configuration options (or less), while

modern software may required many more configuration
options.
Challenge: How can we scale SMBO to much larger config-
uration options?
New approach:
• One of the core innovations of this article is the use

of CART (one CART per goal) for surrogate modeling.
That is, we replace GPM with CART. GPM takes time
O(M3) [50] while recursive bifurcating algorithms like
CART are much faster (takes time O(MN2) to build its
trees where M is the size of the training dataset and N
is the number of attributes [51]). Furthermore, methods
such as CART have been extensively studied, and very
fast incremental versions are simple to implement—see
Domingos et al. [52], which is to say that if CART ever
gets slow, there are many alternatives, we could try that
would readily speed it up.

• Theoretical complexity results aside, we demonstrate
empirically that that our CART-based method scales
much better than GPM. As of 2016, published state-
of-the-art results [14] report that they were unable to
use more than 10 attributes within a GPM. As of 2018,
our own experiments confirm that GPM cannot scale to
more than a dozen configuration options. As shown in
Figures 10(a) and (b), FLASH scales linearly in number
of attributes to models that defeats SMBO. We regard
FLASH's ability to scale linearly in number of attributes
to be a major contribution of this article.

4. One advantages of SMBO algorithms such as GPM is
that they identify region(s) of most variance within a model.
Such regions represent zones of most uncertainty (and sam-
pling there has greatest chance of most improving a model).
Challenge: If we are not using GPM, how can we find the
best regions for future sampling?
New approach:
• Another core innovation is the Bazza algorithm. Bazza

assumes that the greatest mean might contain the
values that most extend to the desired maximal (or
minimal) goals. Bazza finds that region in linear time
(since it only has to track the most extreme values seen
so far).

• Bazza is an important innovation since standard meth-
ods for finding the best candidates within a population
of size M require time O(M2) [53]. But as shown in this
article, our methods require only O(M).

5. The kernels used in Gaussian Process Model assume
“smoothness” [50], or in other words, the configurations
which are closer to each other have similar performance.
In the case of software configuration, this assumption is
highly unlikely since we know of many software options
where a small change can lead to radically different software
performance (e.g. switching from link lists to B-trees is a
single change to one value of one configuration option—but
that change can lead to dramatic speed ups in the software).
Challenge: How to avoid GPM’s smoothness assumptions?
New approach:
• We use CART, a learner that recursively bifurcates train-

ing data into different regions. The important point here
is that CART makes no assumption that neighboring
regions have the same properties.
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• Unlike prior work, our use of CART makes no limiting
assumptions about the smoothness of the space.

6 EVALUATION

6.1 Research Questions
In prior work, performance configuration optimization was
conducted by sequentially sampling configurations to build
models, both accurate (residual-based method) and inaccu-
rate (rank-based method). Both methods divide the configu-
ration space into (i) training pool, (ii) validation set, and (iii)
holdout set. They sequentially select a configuration from
the training pool and add it to the training set (which is a
subset of the training pool). The configuration (along with
the corresponding performance measure) is used to build
a model. Both methods use a validation set to evaluate
the quality of the model. The size of the validation set
is based on an engineering judgment and expected to be
a representative of the whole configuration space. Prior
work [11] used 20% of the configuration space as holdout
set, but did not consider the cost of using the validation set.

Our research questions are geared towards assessing
the performance of FLASH based on two aspects: (i) Ef-
fectiveness of the solution or the rank-difference between
the best configuration found by FLASH to the actual best
configuration, and (ii) Effort (number of measurements)
required to find the better configuration.
The above considerations lead to two research questions:
RQ1: Can FLASH find the better configuration?
Here, the better configurations found using FLASH are
compared to the ones identified in prior work, using the
residual-based and rank-based method. The effectiveness of
the methods is compared using rank-difference (Equation 7).
RQ2: How expensive is FLASH (in terms of how many configu-
rations must be measured)?
It is expensive to build (residual-based or rank-based) mod-
els since they require using a holdout set. Our goal is to
demonstrate that FLASH can find better configurations of a
software system using fewer measurements.

To the best of knowledge, SMBO has never been used for
multi-objective performance configuration optimization in
software engineering. However, similar work has been done
by Zuluaga et al. [13] in the machine learning community,
where they introduced ePAL. We use ePAL as a state-of-the-
art method to compare FLASH.

We do not consider the work by Oh et al. [54], which
uses true random sampling to find the better configurations.
We do not compare FLASH with Oh et al.'s method mainly
for the following reason: Oh et al.'s work supports only
Boolean configuration options, which limits its practical
applicability. FLASH, and the prior work considered in this
article, do not have this limitation. Moreover, Oh's work is
limited to single-objective problems. Since it does not build
a performance model during the search process, it cannot be
easily adapted to multi-objective problems. One may argue
that running Oh et al.'s approach alternatively on different
objectives (of a multi-objective problem) could lead to a
set of solutions on the Pareto Front. However, this is not a
proper alternative since these runs (on separate objectives)
are independent of each other (i.e., they are run separately
and cannot inform each other).

Since ePAL suffers from the shortcomings of traditional
SMBO, our research questions are geared towards finding
the estimated Pareto-optimal solutions (predicted Pareto
Frontier 6), which is closest to the true Pareto Frontier (which
requires measuring all configurations) with least effort. We
assess the performance of FLASH by considering three as-
pects: (i) Effectiveness of the configurations between the
Pareto Frontier and the ones approximated by an optimizer,
and Effort evaluated in terms of (ii) number of measure-
ments, and (iii) time to approximate the Pareto Frontier.
The above considerations lead to three research questions:
RQ3: How effective is FLASH for multi-objective performance
configuration optimization?
The effectiveness of the solution or the difference between
the predicted Pareto Frontier found by optimizers to the true
Pareto Frontier,
RQ4: Can FLASH be used to reduce the effort of multi-objective
performance configuration optimization compared to ePAL?
Effort (number of measurements) required to estimate the
Pareto Frontier which is closest to the true Pareto Frontier,
and
RQ5 Does FLASH save time for multi-objective performance
configuration optimization compared to ePAL?
Since ePAL may take substantial time to find the approxi-
mate the Pareto Frontier, it is imperative to show that FLASH
can approximate the Pareto Frontier and converge faster.

Our goal is to minimize the effort (time and number
of measurements) required to find an approximate Pareto
Frontier as close to the actual Pareto Frontier as possible.

6.2 Case Studies
We evaluated FLASH in two different types of problems
namely: (1) single-objective optimization problems and (2)
multi-objective optimization problems using 30 scenarios
(15 scenarios in multi-objective settings) from 6 software
systems. These systems are summarized in Table 1. More
details about the software systems are available at http:
//tiny.cc/flash systems/.

We selected these software systems since they are widely
used in the configuration and search-based SE literature [8],
[9], [10], [11], [13], [15], [16], [54] as benchmark problems
for this kind of optimization work. Furthermore, extensive
documentation is available at the supplementary Web site
for all these models.

6.3 Experimental Rig
6.3.1 Exploring RQ1, RQ2
For each subject system, we build a table of data, one row
per valid configuration. We then run all configurations of
all systems (that is, that are invoked by a benchmark) and
recorded the performance scores. Note that, while answer-
ing the research questions, we ensure that we never test
any prediction model on the data that we used to learn the
model.

To answer our research questions, we split the datasets
into training pool (40%), holdout set (20%), and validation
pool (40%). The size of the holdout set is taken from prior

6. Pareto Frontier is a set of solutions which are non-dominated by any other
solution.

http://tiny.cc/flash_systems/
http://tiny.cc/flash_systems/
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work [11]. It is worth to note that this is a hyper-parameter
and is set based on an engineering judgment. To perform a
fair comparison while comparing FLASH with prior work,
the training pool and validation pool are merged for FLASH
experiments.

The experiment to find better configuration using the
residual-based and rank-based methods is conducted in the
following way:
• Randomize the order of rows in the training data
• Do

– Select one configuration (by sampling with replace-
ment) and add it to the training set

– Determine the performance scores associated with the
configuration. This corresponds to a table look up but
would entail compiling or configuring and executing a
system configuration in a practical setting.

– Using the training set and the accuracy, build a perfor-
mance model using CART.

– Using the data from the testing pool, assess the accuracy
either using MMRE (as described in Equation 3) or rank
difference (as described in Equation 5).

• While the accuracy is greater or equal to the threshold
determined by the practitioner (rank difference in the case
of rank-based method and MMRE in the case of residual-
based method).

Once the model is trained, it is tested on the data in
the validation pool. Please note, the learner has not been
trained on the validation pool. The experiment to find better
configuration by FLASH is conducted in the following way:
• Choose 80% of the data (at random)7

• Randomize the order of rows in the training data
• Do

– Select 30 configurations (by sampling with replacement)
and add them to the training set

– Determine the performance scores associated with the
configurations. This corresponds to a table look up, but
would entail compiling or configuring and executing a
system configuration in a practical setting.

– Using the training set, build a performance model using
CART.

– Using the CART model, find the configuration with best
predicted performance.

– Add the configuration with best predicted performance
to the training set.

• While the stopping criterion (budget) is not met, continue
adding configurations to the training set.

Once FLASH has terminated, the configuration with the
best performance is selected as the better configuration.
Please note that unlike the methods proposed in prior work,
there is no training and validation pool in FLASH. It uses
the whole space and returns the configuration with the best
performance.

RQ1 relates the results found by FLASH to ones of
residual-based and rank-based methods. We use the ab-
solute difference between the ranks of the configurations
predicted to be the best configuration and the actual optimal

7. We use 80% because other method find the better configuration sampling
from a training set of 40% and test is against a testing pool of 40%. To make sure,
we make a fair comparison, we use FLASH to find the best configuration among
80% of the configuration space.

configuration. We call this measure rank difference.

RD = |rank(actualbest)− rank(predictedbest)| (7)

Ranks are calculated by sorting the configurations based
on their performance scores. The configuration with the
minimum performance score, rank(actualbest), is ranked 1
and the one with the highest score is ranked as N , where N
is the number of configurations.

6.3.2 Exploring RQ3, RQ4, and RQ5
Similar to RQ1 and RQ2, for each subject system, we build a
table of data, one row per valid configuration. We then run
all configurations of all systems and record the performance
scores. To this table, we add two columns of measurements
(one for each objective) obtained from measurements.

To measure effectiveness, we use quality indicators as
advised by Wang et al. [55]. The quality indicators are:
• The Generational Distance (GD) [56] measures the closeness

of the solutions from by the optimizers to the Pareto
frontier that is, the actual set of non-dominated solutions.

• The Inverted Generational Distance (IGD) [57] is the mean
distance from points on the true Pareto-optimal solutions
to its nearest point in the predicted Pareto-optimal solu-
tions returned by the optimizer.

Note that, for both measures, smaller values are better. Also,
according to Coello et al. [57], IGD is a better measure of
how well solutions of a method are spread across the space
of all known solutions. A lower value of GD indicates that
the predicted Pareto-optimal solutions have converged (or
are near) to the actual Pareto-optimal solutions. However,
it does not comment on the diversity (or spread) of the
solutions. GD is useful while interpreting the results of RQ3
and RQ6, where we would notice that FLASH has low GD
values but relatively high IGD values.

To answer our research questions, we initialize ePAL and
FLASH with randomly selected configurations along with
their corresponding performance scores. Since, ePAL does
not have an explicit stopping criterion, we allow ePAL to run
until completion. For FLASH, we allowed a budget of 50 con-
figurations. The value 50 was assigned by parameter tuning
(from Section 8.2). The configurations evaluated during the
execution of the three methods are then used to measure
the quality measures (to compare methods). Note that we
use two versions of ePAL: ePAL with ε = 0.01 (ePAL 0.01),
and ePAL with ε = 0.3 (ePAL 0.3) 8. These ePAL versions
represents two extremes of ePAL from the most cautious
(ε = 0.01)—maximizing quality to most careless (ε = 0.3)—
minimizing measurements. 9

Other aspects of our experimental setting were designed
in response to the specific features of the experiments.
For example, all the residual-based, rank-based and FLASH
methods are implemented in Python. We use Zuluaga et
al.'s implementation of ePAL, which was implemented in
Matlab. Since we are comparing methods implemented in
different languages, we measure “speed” in terms of the
number of measurements (a language-independent feature)
along with runtimes.

8. Refer to Section 4.3 for definition of ε
9. We have measured other values of epsilon between 0.01 and 0.3, but due to

space constraints we show results from two variants of ePAL



IEEE TRANS SE. SUBMITTED NOV‘17 11

SS
-A
1

SS
-A
2

SS
-B
1

SS
-B
2

SS
-C
1

SS
-C
2

SS
-D
1

SS
-D
2

SS
-E
1

SS
-E
2

SS
-F
1

SS
-F
2

SS
-G
1

SS
-G
2

SS
-H
1

SS
-H
2

SS
-I1

SS
-I2

SS
-J1

SS
-J2

SS
-K
1

SS
-K
2

SS
-L
1

SS
-L
2

SS
-M

1
SS

-M
2

SS
-N
1

SS
-N
2

SS
-O
1

SS
-O
2

0

10

20

30

40

50

60

70
R
an

k 
D
iff
er
en

ce
 (
R
D
)

Residual-based

SS
-A
1

SS
-A
2

SS
-B
1

SS
-B
2

SS
-C
1

SS
-C
2

SS
-D
1

SS
-D
2

SS
-E
1

SS
-E
2

SS
-F
1

SS
-F
2

SS
-G
1

SS
-G
2

SS
-H
1

SS
-H
2

SS
-I1

SS
-I2

SS
-J1

SS
-J2

SS
-K
1

SS
-K
2

SS
-L
1

SS
-L
2

SS
-M
1

SS
-M
2

SS
-N
1

SS
-N
2

SS
-O
1

SS
-O
2

0

10

20

30

40

50

60

70

R
an
k 
D
iff
er

en
ce

 (
R
D
)

Rank-based

SS
-A
1

SS
-A
2

SS
-B
1

SS
-B
2

SS
-C
1

SS
-C
2

SS
-D
1

SS
-D
2

SS
-E
1

SS
-E
2

SS
-F
1

SS
-F
2

SS
-G
1

SS
-G
2

SS
-H
1

SS
-H
2

SS
-I1

SS
-I2

SS
-J1

SS
-J2

SS
-K
1

SS
-K
2

SS
-L
1

SS
-L
2

SS
-M
1

SS
-M
2

SS
-N
1

SS
-N
2

SS
-O
1

SS
-O
2

0

10

20

30

40

50

60

70

R
an
k 
D
iff
er

en
ce

 (
R
D
)

Flash

Fig. 7: The rank difference of the prediction made by model built using the residual-based method, the rank-based methods,
and FLASH. Note that the y-axis of this chart rises to large values; e.g., SS-M has 239,260 possible configurations. Hence, the
above charts could be summarized as follows: “the FLASH is surprisingly accurate since the rank difference is usually close
to 0% of the total number of possible configurations.”

SS-A2
1 Rank-based 1.0 4.0 s
1 Residual-based 2.0 5.0 s
2 Flash 9.0 18.0 s
SS-C1
1 Residual-based 0.0 2.0 s
1 Rank-based 1.0 3.0 s
2 Flash 3.0 6.0 s
SS-C2
1 Rank-based 2.0 2.0 s
1 Residual-based 2.0 5.0 s
2 Flash 7.0 16.0 s
SS-E2
1 Residual-based 0.0 0.0 s
2 Rank-based 1.0 2.0 s
2 Flash 1.0 1.0 s
SS-J1
1 Residual-based 0.0 1.0 s
2 Flash 1.0 13.0 s
2 Rank-based 13.0 42.0 s
SS-J2
1 Residual-based 0.0 1.0 s
2 Rank-based 2.0 14.0 s
2 Flash 4.0 16.0 s
SS-K1
1 Residual-based 0.0 1.0 s
2 Rank-based 1.0 3.0 s
2 Flash 1.0 3.0 s

Fig. 8: The median rank difference of 20 repeats. Median
ranks are the rank difference as described in Equation 7,
and IQR the difference between 75th percentile and 25th
percentile found during multiple repeats. Lines with a dot
in the middle ( s ), show the median as a round dot
within the IQR. All the results are sorted by the median
rank difference: a lower median value is better. The left-hand
column (Rank) ranks the various methods for example when
comparing three techniques. For SS-A2, a rank-based method
has a different rank since their median rank difference is
statistically different. Please note, this chart only shows
software systems where FLASH is significantly worse than
methods from prior work.

7 RESULTS

7.1 Single-objective Problems

RQ1: Can FLASH find the better configuration?
Figure 7 shows the Rank Difference of the predictions us-
ing FLASH, the rank-based method and the residual based
method. The horizontal axis shows subject systems. The
vertical axis shows the rank difference (Equation 7).

• The ideal result would be when all the points lie on the
line y=0 or the horizontal axis, which means the method
was able to find the better configurations for all subject
systems or the rank difference between the predicted
optimal solution and the actual optimal solution is 0.

• The sub-figures (left to right) represent the residual-based
method, rank-based method, and FLASH.

Overall, in Figure 7, we find that:
• All methods can find better configurations. For example,

FLASH for SS-J1 predicted the configuration whose perfor-
mance score is ranked 20th in configuration space. That is
good enough since FLASH finds the 20th most performant
configuration among 3072 configurations.

• The mean rank difference of the predicted optimal config-
uration is 6.082, 5.81, and 5.58 10 for residual-based, rank-
based, and FLASH.

So, the rank of the better configuration found by all the three
methods is practically the same. To verify the similarity
is statistically significant, we further studied the results
using non-parametric tests Scott-Knott test recommended
by Mittas and Angelis [58] and Arcuri & Briand [58].

Scott-Knott is a top-down clustering approach used to
rank different treatments. If the approach finds an inter-
esting division of the data, then some statistical test is
applied to the two divisions to check if they are statistically
significantly different. If so, Scott-Knott recurses into both
halves. To apply Scott-Knott, we sorted a list of l = 20 val-
ues of performance of different method found by different
methods. Then, we split l into sub-listsm,n to maximize the
expected value of differences in the observed performances
before and after division. For example, for lists l,m, n of size
ls,ms, ns where l = m ∪ n:

E(∆) =
ms

ls
|m.µ− l.µ|2 +

ns

ls
|n.µ− l.µ|2

We then apply a statistical hypothesis test H to check if
m,n are significantly different (in our case, the conjunction
of A12 and bootstrapping). If so, Scott-Knott recurses on the
splits. In other words, we divide the data if both bootstrap
sampling and effect size test agree that a division is statisti-
cally significant (with a confidence level of 99%) and not a
small effect (A12 ≥ 0.6).

10. The median rank difference is 1.61, 2.583, and 1.28.
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Fig. 9: Measurements required to find better configurations with the residual-based method as the baseline.

For a justification of the use of non-parametric boot-
strapping, see Efron & Tibshirani [59, p220-223]. For a
justification of the use of effect size tests, see Shepperd
and MacDonell [60]; Kampenes [61]; and Kocaguenli et
al. [62]. These researchers warn that, even if a hypothesis test
declares two populations to be “significantly” different, then
that result is misleading if the “effect size” is very small.
Hence, to assess the performance differences we first must
rule out small effects using A12.

In Figure 8, we show the Scott-Knott ranks for the three
methods. The quartile charts show the Scott-Knott results
for the subject systems, where FLASH did not do as well
as the other two methods. For example, the statistic test
for SS-C2 shows that the rank difference of configurations
found by FLASH is statistically larger from the other meth-
ods. This is reasonably close, since the median rank of the
configurations found by FLASH is 7 of 1512 configurations,
where for the other methods found configurations have a
median rank of 2. As engineers, we feel that this is close
because we can find the 7th best configuration using 34
measurements compared to 339 and 346 measurements used
by other methods. Overall, our results indicate that:

FLASH can find better configurations, similar to the
residual-based and the rank-based method, of a soft-
ware system without using a holdout set.

RQ2: How expensive is FLASH (in terms of how many
configurations must be executed)?
To recommend FLASH as a cheap method for performance
optimization, it is important to demonstrate that it requires
fewer measurements to find the better configurations. In
our setting, the cost of finding the better configuration is
quantified by number of measurements required (i.e., table
lookup). Figure 9 shows our results. The vertical axis repre-
sents the ratio of the measurements of different methods are
represented as the percentage of number of measurements
required by residual-based method since it uses the most
measurements in 66% scenarios.

Overall, we see that FLASH requires the least number of
measurements to find better configurations. For example,

in SS-E1, FLASH requires 9% of the measurements when
compared with the residual-based method and the rank-
based method. There are few cases (SS-M1 to SS-O2) where
FLASH requires less than 1% of the residual-based method,
which is because these systems have a large configuration
space and the holdout set required by the residual-based
method and the rank-based method (except FLASH) uses
20% of the measurements.

For performance configuration optimization, FLASH is
cheaper than the state-of-the-art method. In 57% of the
software systems, FLASH requires an order of mag-
nitude fewer measurement compared to the residual-
based method and rank-based method.

7.2 Multi-objective Optimization
RQ3: How effective is FLASH for multi-objective perfor-
mance configuration optimization?
Table 2 shows the results of a statistical analysis that com-
pares the quality measures of the approximated Pareto-
optimal solutions generated by FLASH to those generated
by ePAL.
• The rows of the table shows median numbers of 20

repeated runs over 15 different scenarios.
• The columns report the quality measures, generational

distance (GD), and inverted generation distance (IGD).
Recall smaller values of GD and IGD are better.

• ‘X’ denotes cases where a method did not terminate
within a reasonable amount of time (10 hours).

• Bold-typed results are statistically better than the rest.
• The last row of the table (Win (%)) reports the percent-

age of times a method is significantly better than other
methods overall software systems.

One way to get a quick summary of this table is to
read the last row (Win(%)). This row is the percentage
number of times a method was marked statistically better
than the other methods. From Table 2, we can observe that
FLASH outperforms variants of ePAL since FLASH has the
highest Win(%) in both quality measures. This is particularly
true for scenarios with more than 10 configuration options,
where ePAL failed to terminate while FLASH always did.
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We further notice that ePAL-0.01 has a higher win
percentage than ePAL-0.3. This is not surprising since (as
discussed in Section 6.3.2) ePAL-0.01 (optimized for quality)
is more cautious than ePAL-0.3 (which is optimized for
speed measured in terms of number of measurements).
This can be regarded as a sanity check. It is interesting to
note that FLASH has impressive convergence score (lower
GD scores)—it converges better for 93% of the systems,
but not so remarkable in terms of the spread (lower IGD
scores). However, the performance of FLASH is similar to
ePAL. It is also interesting that, for software systems where
FLASH was not statistically better, these are cases where the
statistically better method always converged to the actual
Pareto Frontier (with few exceptions).

FLASH is effective for multi-objective performance con-
figuration optimization. It also works in software sys-
tems with more than 10 configuration options whereas
ePAL does not terminate in reasonable time.

RQ4: Can FLASH be used to reduce the effort of multi-
objective performance configuration optimization com-
pared to ePAL?
In the RQ4 section (right-hand side) of Table 2, the number
of measurements required by methods, ePAL, and FLASH
are shown. Rows show different software systems and
columns shows the number of measurements associated
with each method. The numbers highlighted in bold mark
methods that are statistically better than the other. For
example in SS-K, FLASH uses statistically fewer samples
than (variants of) ePAL.

From the table we observe:
• FLASH uses fewer samples than ePAL 0.01. In 9 of

15 cases, ePAL 0.01 is, at least, two times better than
FLASH.

• (Variants of) ePAL does not terminate for SS-M, SS-N,
and SS-O even after ten hours of execution—a prag-
matic choice. The reason for this can be seen in Table 1:
these software systems have more than 10 configuration
options and the GPMs used by ePAL does not scale
beyond that number.

• The obvious feature of Table 2 is that FLASH used fewer
measurements in 12 of 15 software systems.

FLASH requires fewer measurements than ePAL to
approximate Pareto-optimal solutions. The number of
evaluations used by FLASH is less than (more careful)
ePAL-0.01 for all the software systems and 12 of 15
software systems for (more careless) ePAL-0.3.

RQ5:Does FLASH save time for multi-objective perfor-
mance configuration optimization compared to ePAL?
Figure 10 compares the run times of ePAL with FLASH.
Please note that we use the author's version of ePAL in our
experiments, which is implemented in Matlab. However,
FLASH was implemented in Python. Even though this may
not be a fair comparison, for the sake of completeness, we
report the run-times of the test. The sub-figure to the left
shows how the run times vary with the number of config-
urations of the system. The x-axis represents the number

of configurations (in log scale), while the y-axis represents
the time taken to perform 20 repeats in seconds (in log
scale), which means lower the better. The dotted lines in the
figure, shows the cases where a method (in this case, ePAL)
did not terminate. The sub-figure in the middle represents
how the run-time varies with the number of configuration
options. The x-axis represents the number of configuration
options, and the y-axis represents the time taken for 20
repeats in seconds (in log scale), which means lower the
better. The sub-figure to the right represent the performance
gain achieved by FLASH over (variants of) ePAL. The x-axis
shows the software systems, and the Y-axis represents the
gain ratio. Any bar higher than the line (y=1) represent cases
where FLASH is better than ePAL.

From the figure, we observe:
• From sub-figures left and middle, FLASH is much faster

than (variants of) ePAL except in 2 of 15 cases.
• The run times of ePAL increase exponentially with the

number of configurations and configuration options,
similar to the trend reported in the literature.

• (Variants of) ePAL does not terminate for cases with
large numbers of configurations and configuration op-
tions, whereas FLASH always terminates an order of
magnitude faster than ePAL. This effect is magnified in
case of a scenarios with large configuration space.

Overall our results indicate:

FLASH saves time and is faster than (variants of) ePAL
in 13 of 15 cases. Furthermore, FLASH is an order of
magnitudes faster than ePAL in 5 of 15 software sys-
tems. In other 2 out of 15 cases, the FLASH 's runtimes
are similar to (variants of) ePAL.

8 DISCUSSION

8.1 Why CART is used as the surrogate model?

Decision Trees are a very simple way to learn rules from
a set of examples and can be viewed as a tool for the
analysis of a large dataset. The reason why we chose CART
is two-fold. Firstly, it is shown to be scalable and there is a
growing interest to find new ways to speed up the decision
tree learning process [51]. Secondly, a decision tree can
describe with the tree structure the dependence between the
decisions and the objectives, which is useful for induction
and comprehensibility. These are the primary reasons for
choosing decision-trees to replace Gaussian Process as the
surrogate model for FLASH.

8.2 What is the trade-off between the starting size and
budget of FLASH?

There are two main parameters of FLASH which require
being set very carefully. In our setting, the parameters are
size and budget. The parameter size controls the exploration
capabilities of FLASH whereas parameter budget controls the
exploitation capabilities. In Figure 11, we show the trade-
off between generational distance and inverted generational
distance by varying parameters size and budget. The markers
in Figure 11 are annotated with the starting size of FLASH.
The trade-off characterizes the relationship between two



IEEE TRANS SE. SUBMITTED NOV‘17 14TABLE 2: Statistical comparisons of FLASH and ePAL regarding the Performance measures are GD (Generational
Distance), IGD (Inverted Generational Distance) and a number of measurements. For all measures, less is better; X
denotes cases where methods did not terminate within a reasonable amount of time (10hrs). The numbers in bold
represent statistically better runs than the rest. For example, for SS-G, GD of FLASH is statistically better than of ePAL.

Software GD IGD Evals

epal 0.01 epal 0.3 FLASH epal 0.01 epal 0.3 FLASH epal 0.01 epal 0.3 FLASH

SS-A 0.002 0.002 0 0.002 0.002 0 109.5 73.5 50
SS-B 0 0 0.005 0 0.003 0.001 84.5 20 50
SS-C 0.001 0.001 0.003 0.004 0.004 0 247 101 50
SS-D 0 0.004 0.014 0.002 0.007 0.009 119.5 67 50
SS-E 0.001 0.001 0.012 0.004 0.008 0.002 208 54.5 50
SS-F 0 0.016 0.008 0 0.006 0.016 138 71 50
SS-G 0 0 0.023 0.003 0.006 0.004 131 69 50
SS-H 0 0 0 0 0 0 52 28 50
SS-I 0.008 0.018 0 0.008 0.018 0 48 30 50
SS-J 0 0 0.002 0.002 0.002 0 186 30 50
SS-K 0.001 0.001 0.003 0.001 0.002 0.001 209 140 50
SS-L 0.01 0.028 0.006 0.007 0.008 0.009 68.5 35 50
SS-M X X 0 X X 0 X X 50
SS-N X X 0.065 X X 0.015 X X 50
SS-O X X 3.01E-07 X X 3.20E-06 X X 50

Win (%) 73 67 93 67 33 67 0 33 80

Fig. 10: The time required to find better solutions using ePAL and Flash (sum of 20 repeats). Note that the axis's of the
first two figures (left, and center) are in log scale. The time required for FLASH compared to (variants of) ePAL is much
lower (with an exception on 2 of 15 software systems). The dashed line in the figure (left and middle) represents cases
where ePAL did not terminate within a reasonable time (10 hours). In the right-hand figure, we show the performance
gain (wrt. to time) achieved by using FLASH. All the bars above the dashed line (y=1) performs worse than FLASH.

conflicting objectives, for example in Figure 11, point (10)
achieves high convergence (low GD value) but low diversity
(high IGD value). Note, that the curves are an aggregate of
the trade-off curves for all the software systems. From the
figure 11 we observe that: The number of initial samples
(size in Figure 6) determines the diversity of the solution.
With ten initial samples the algorithm converges (lowest GD
values) but lowest diversity (high IGD values). However,
with 50 initial samples (random sampling) FLASH achieves
highest diversity (low IGD values) but lowest convergence
(high GD values). We choose the starting size of 30 be-
cause it achieves a good trade-off between convergence and
diversity. These values were used in the experiments in
section 7.2.

8.3 Can rules learned by CART guide the search?
Currently, FLASH does not explicitly reflect on the Decision
Tree to select the next sample (or configuration). But, rules

learned by Decision Tree can be used to guide the process of
search. Though we have not tested this approach, a Decision
Tree can be used to learn about importance of various
configuration options which can be then used to recursively
prune the configuration space, similar to the approach of
Oh et al. [54]. We hypothesize that this would make FLASH
more scalable and be used to much larger models. We leave
this for future work.

8.4 What are the shortcomings of FLASH?
FLASH suffers from the following shortcomings.
• Parallelization: FLASH like all sequential model-based

approaches completes evaluating a configuration before
evaluating a new one. However, in practice, this feature
can lead to really long runtimes. A possible extension
might be to evaluate multiple configurations in parallel.
This has not been considered in this version of FLASH
and is something we leave for the future work.
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Fig. 11: The trade-off between the number of starting
samples (exploration) and number of steps to converge
(exploitation). The ideal point in these trade-off curves is
(0,0), which mean the algorithm has perfect convergence
(GD = 0) and perfect diversity (IGD = 0). The trade-
off curve for multi-objective performance configuration
optimization is shown with budget of 50 evaluations.

• Non-stationary: FLASH assumes that the benchmark or
the load in the system is stationary. Hence, there is no
inherent mechanism in FLASH which would adapt itself
based on the change in workload. This non-stationary
nature of the problem is a significant assumption and
currently not addressed in this paper. Addressing this
aspect may include an ensemble-based approach where
a new model is built at a specified time interval. The
importance of the model is defined by a time-dependent
weight decay of the model, that is, older the model, the
lower its significance (weight).

• Cost Sensitivity: FLASH also assumes that the cost of
evaluating all the configurations are same. However, in
practice, this is not true. For example, the wall clock time
of running a specific benchmark on a software system
with and without caching can be substantially different.
In practice, stakeholders may demand to find a good
configuration within a specified time limit (instead of the
number of configurations measured). We leave this for
future work.

• Cold Start: FLASH randomly selects the initial config-
urations to evaluate, which can affect its effectiveness.
One of the way to reduce the impact of randomness its
to select the initial points based on domain knowledge
or use transfer learning from similar software systems
that have been optimized in the past, to select the initial
configurations of FLASH.

9 THREATS TO VALIDITY

Reliability refers to the consistency of the results obtained
from the research. For example, how well can independent
researchers reproduce the study? To increase external reli-
ability, we took care to either define our algorithms or use
implementations from the public domain (SciKitLearn) [63].
All code used in this work are available online 11.

11. http://tiny.cc/flashrepo/

Validity refers to the extent to which a piece of research
investigates what the researcher purports to investigate [64].
Internal validity concerns with whether the differences found
in the treatments can be ascribed to the treatments under
study.

For the case-studies relating to configuration control, we
cannot measure all possible configurations in a reasonable
time. Hence, we sampled only a few hundred configurations
to compare the prediction to actual values. We are aware
that this evaluation leaves room for outliers and that mea-
surement bias can cause false interpretations [65]. We also
limit our attention to predicting PF for a given workload;
we did not vary benchmarks.

Internal bias originates from the stochastic nature of
multi-objective optimization algorithms. The evolutionary
process required many random operations, same as the
FLASH was introduced in this article. To mitigate these
threats, we repeated our experiments for 20 runs and re-
ported the median of the indicators. We also employed
statistical tests to check the significance of the achieved
results.

It is challenging to find the representatives sample test
cases to covers all kinds of software systems. We just se-
lected six most common types of software system to discuss
the FLASH basing on them. In the future, we also need to
explore more types of SBSE problems for other domains
such as process planning, next release planning. We aimed
to increase external validity by choosing case-studies from
different domains.

10 CONCLUSION

This article proposes a sequential model-based method
called FLASH, an approach for finding better configurations
while minimizing the number of measurements. To the
best of our knowledge, this is the first time a sequential
model-based method is used to solve the problem of per-
formance configuration optimization. FLASH sequentially
gains knowledge about the configuration space like tradi-
tional SMBO. FLASH is different from the traditional SMBOs
because of the choice of the surrogate model (CART) and the
acquisition function (the stochastic Maximum-Mean Bazza
function). We have demonstrated the effectiveness of FLASH
on single-objective and multi-objective problems using 30
scenarios from 7 software systems.

For a single-objective setting, we experimentally demon-
strate that FLASH can locate the better configuration of 30
different scenarios for seven software systems, accurately
compared to the state-of-the-art approaches while removing
the need for a holdout dataset, hence saving measurement
costs. In 57% of the scenarios, FLASH can find the better con-
figuration by using an order of magnitude fewer solutions
than other state-of-the-art approaches.

For multi-objective setting, we show how FLASH can
overcome the shortcomings of traditional SMBO (ePAL)
while being as effective as ePAL as well as being scalable
to software systems with higher number (greater than 10) of
configuration options (where ePAL does not terminate in a
reasonable time-frame).

Regarding future work, the two directions for this re-
search are i) test on different case studies and ii) further

http://tiny.cc/flashrepo/
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improve the scalability of FLASH. To conclude, we urge
the SE community to learn from communities which tackle
similar problems. This article experiments with ideas from
fields of machine learning, SBSE, and software analytics
to create FLASH, which is a fast, scalable and effective
optimizer. We hope this article inspires other researchers to
look further afield than their home discipline.
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learning approach to the multi-objective optimization problem. Journal of
Machine Learning Research, 2016.

[14] Ziyu Wang, Frank Hutter, Masrour Zoghi, David Matheson, and Nando
de Feitas. Bayesian optimization in a billion dimensions via random
embeddings. Journal of Artificial Intelligence Research, 2016.

[15] Pooyan Jamshidi and Giuliano Casale. An uncertainty-aware approach to
optimal configuration of stream processing systems. In Modeling, Analysis
and Simulation of Computer and Telecommunication Systems, 2016.

[16] Norbert Siegmund, Sergiy S Kolesnikov, Christian Kästner, Sven Apel, Don
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