
CODERSMUSE: Multi-Modal Data Exploration
of Program-Comprehension Experiments

Norman Peitek
Leibniz Institute for Neurobiology

Magdeburg, Germany

Sven Apel
University of Passau

Passau, Germany

André Brechmann
Leibniz Institute for Neurobiology

Magdeburg, Germany

Chris Parnin
NC State University

Raleigh, North Carolina, USA

Janet Siegmund
University of Passau

Passau, Germany

Abstract—Program comprehension is a central cognitive pro-
cess in programming. It has been in the focus of researchers
for decades, but is still not thoroughly unraveled. Multi-modal
psycho-physiological and neurobiological measurement methods
have proved successful to gain a more holistic understand-
ing of program comprehension. However, there is no proper
tool support that lets researchers explore synchronized, con-
joint multi-modal data, specifically designed for the needs in
program-comprehension research. In this paper, we present
CODERSMUSE, a prototype implementation that aims to satisfy
this crucial need.

Index Terms—program comprehension, data exploration, func-
tional magnetic resonance imaging

I. INTRODUCTION

Program comprehension is the fundamental process of
understanding program code. Understanding program com-
prehension is important, because programmers spend most
of their time maintaining—and therefore comprehending—
existing program code [15].

Despite decades of research, our understanding of how pro-
grammers comprehend code is still limited. Many questions,
such as what makes a great programmer or how to teach
novices, are still unanswered. To shed light onto the underlying
cognitive processes of program comprehension, researchers
have begun to adopt psycho-physiological and neurobiological
measurement methods [12].

Each method provides distinct insights into certain aspects
of program comprehension, while neglecting others. For exam-
ple, eye-tracking and behavioral data (e.g., response time and
correctness) let us observe a programmer’s strategy to solve a
comprehension task, but provide only little information on a
programmer’s stress level during a task. To measure the stress
level, we need psycho-physiological methods, such as heart
rate variability or electrodermal activity [7], which, however,
do not provide information on a programmer’s comprehension
strategy. Finally, neuroimaging methods allow us to study
underlying cognitive processes [14], but not necessarily reveal
a programmer’s specific strategy to solve a comprehension
task.

Basically, each method comes with inherent benefits and
shortcomings. Hence, observing programmers with multiple

measurement methods simultaneously offers a way to a bet-
ter understanding of the complex behavioral and cognitive
processes of program comprehension [10], [11]. If we are
able to combine multiple measurement methods and integrate
the collected data in a meaningful way, we have a powerful
framework to understand even subtle phenomena in program
comprehension, such as the effect of identifier naming [5].

Integrating multiple data streams is challenging, especially
when they have different characteristics. For example, eye
tracking provides one-dimensional data with high temporal
resolution (in the order of milliseconds). By contrast, neu-
roimaging methods, such as functional magnetic resonance
imaging (fMRI), provide data that are three dimensional and
have a low temporal resolution, in the order of hundreds of
milliseconds (cf. Section II-A3). To increase our insights from
multi-modal experiments, we need appropriate techniques to
properly integrate such different data streams [10].

We have been developing concepts to conjointly analyze
multi-modal experiment data and implement them in our
tool CODERSMUSE. We are following a rapid prototyping
approach, so we are considering four data streams for now,
that is, behavioral, eye-tracking, psycho-physiological, and
fMRI data. We selected these methods, because they are the
most common methods [2], [6], [13], [14].

The prototype is designed to analyze and explore all data
streams synchronously. For example, in a recent experiment,
we investigated the neural efficiency of top-down comprehen-
sion [11], [14], in which we asked participants to comprehend
code snippets inside an fMRI scanner. In addition to brain
activation, we also collected behavioral data (i.e., efficiency
and correctness), eye-tracking data, and psycho-physiological
data (i.e., heart rate, respiration). With CODERSMUSE, we
can jointly explore all data streams instead of having to rely
on individual tools and analysis for each data stream. This
way, CODERSMUSE enables us to generate substantially new
and more holistic hypotheses for follow-up studies of program
comprehension.



TABLE I
ALL DATA STREAMS SUPPORTED IN CODERSMUSEAND THEIR CHARACTERISTICS, TYPICAL PREPROCESSING, AND MEASUREMENTS.

Data Type Delay Temporal Resolution Typical Preprocessing Typical Measurement

Important for
visualization Important for data synchronization Done before import

to CODERSMUSE

Behavioral Individual events None n/a Coding Response time, correctness

Eye-tracking Data stream None Down to less
than milliseconds

Smoothing, saccade, and
fixation detection Eye gaze

Physiological Data streams Few seconds Typically milliseconds Smoothing Stress level

fMRI 3-dimensional set
of data streams Several seconds Typically a second

3D-motion correction,
slice-scan-time correction,
temporal filtering,
spatial smoothing

Brain activation

Participant 
and 

Task Selection

Eye-Tracking 
Data Visualization

Behavioral 
Data

Time Slider to 
Replay Data

Physiological 
Data

fMRI Data 
(Region of 
Interest)

fMRI Data
(Full Brain)

2

3

4

1

5

6

7

Fig. 1. Screenshot of CODERSMUSE. On the top right, the user can select a specific task 2 . A time slider allows the user to explore data across a task’s
time line 1 . Then, several data streams will be displayed: eye-tracking data 3 , behavioral data 4 , psycho-physiological data 5 , and fMRI data 6 7 .

II. PROTOTYPE IMPLEMENTATION OF CODERSMUSE
Along with this paper, we publish an open-source prototype

implementation of CODERSMUSE. We provide a demo video
and an open-source version with sample data on the project’s
Web site.1

In Figure 1, we show a screenshot with annotated feature
explanations, which are numbered in yellow circles and
which we explain in detail in this section.

A. Integrated Modalities

Currently, CODERSMUSE supports four different modali-
ties, of which we provide an overview in Table I.

1) Behavioral Data 4 : Behavioral data include events
derived from a participant’s actions, including response cor-
rectness, response time, and click duration (i.e., time between
button-down and button-up events).

1https://github.com/brains-on-code/CodersMUSE/

2) Eye-Tracking Data 3 : Eye-tracking data are visualized
on top of an image of the current task (e.g., a code snippet).
We currently support static images, which is the most common
type in eye-tracking experiments. Dynamic content (such as
scrolling on a Web site) is not supported but may be added in
the future. Eye-tracking data are visualized as a scanpath [8].
Fixations and saccades are highlighted with different colors.
Other visualizations, such as heatmaps, can be added in the
future.

3) fMRI Data: fMRI data provide insights into the un-
derlying cognitive processes during program comprehension.
CODERSMUSE supports two visualizations of fMRI data.
First 6 , it shows the brain activation strength over time for
a specific brain region of interest (e.g., to observe working
memory load during a task). Second 7 , CODERSMUSE vi-
sualizes the full-brain activation with the Python library NIPY2

2http://nipy.org/nipy/



to observe higher level patterns (e.g., to identify involvement
of a brain area at a specific time).

4) Psycho-Physiological Data 5 :
Last, CODERSMUSE visualizes heart rate variability, respira-
tion, and electrodermal activity in the form of numeric time
series.

B. Features and Challenges

The key feature of exploring data with CODERSMUSE is
essentially a real-time replay of collected data 1 . That is,
users can (re)play data of an experiment session and simul-
taneously observe all data streams. The user can also use the
time slider to dynamically move through a task’s time line
to examine an event more closely 1 . In Figure 1, we set
CODERSMUSE to show the data of an experiment that are
split into individual tasks. That is, we select a specific task
from the entire experiment and show the data of a specific
task 2 . CODERSMUSE may also show the entire data set of
all tasks, but this limits the usefulness of the eye-tracking-data
view (as the presented code typically changes with each task).

The complexity of CODERSMUSE stems from the inherent
differences in the characteristics of the modalities, which poses
major challenges for a proper conjoint exploration (cf. Table I).

1) Data Preprocessing: Data preprocessing is an important
step to ensure high data quality, which is a prerequisite
to obtain meaningful insights. But the mandatory prepro-
cessing varies between modalities. For example, eye-tracking
data require fundamentally different preprocessing than fMRI
data (cf. Table I).

A re-implementation of every necessary preprocessing step
for each modality would be inefficient and error-prone. Thus,
the current prototype of CODERSMUSE relies on already
preprocessed data. Users are required to preprocess their
data before importing them into CODERSMUSE. On the
CODERSMUSE’s Web site, we provide template scripts and
guides on how to integrate your own data, including the
necessary preprocessing.

2) Data Synchronization: Another challenge of
CODERSMUSE is to properly synchronize the timing
of each data visualization. The integrated modalities exhibit
different temporal delays. For example, fMRI measures the
biological effect of cognitive processes (i.e., haemodynamic
response), which means that the data stream is delayed
by around five seconds [3]. To counteract this effect, the
displayed fMRI data are offset by six seconds. Similarly, the
response of electrodermal activity is typically delayed by
about two seconds [1], so we offset the presented time frame
by the same amount. Eye-tracking data have no delay. All
offsets are default settings and can be configured.

3) Data Visualization: Each modality provides fundamen-
tally different data, so we need different visualizations. For
example, visualizing one-dimensional eye-tracking data is dif-
ferent than visualizing three-dimensional neuroimaging data.
Thus, each data stream implements its own visualization,
which is inspired by state-of-the-art tools.

C. Implementation

Due to the performance requirements of handling the wealth
of data, CODERSMUSE’s prototype is implemented as a
desktop program. It is based on Python 3.6 and Qt 5.11,
making it available cross-platform.

CODERSMUSE follows a plug-in architecture, such that
each modality is implemented as a separate plug-in. This way,
different modalities can be easily supported: For example,
researchers can swap the fMRI plug-in with a new plug-
in (e.g., for fNIRS, currently not implemented). Further-
more, each plug-in can be further enhanced to individual
needs, for example, with additional view options. This way,
CODERSMUSE is also customizable.

Each plug-in creates a view for its respective data set. When
the user explores data along the time slider, CODERSMUSE’s
core triggers a view update with the current time stamp to each
plug-in. When the user interacts with a specific view (e.g., to
change observed position in the brain), the respective plug-
in accepts the request and renews the view. An interaction
between plug-ins is currently not supported.

III. FUTURE WORK

Due to the complexity and novelty of this endeavor, there is
still substantial work left. We share our early version to enable
the community, which is starting to embrace multi-modal
program-comprehension experiments, to shape the further de-
velopment of CODERSMUSE. Depending on the study, each
researcher may have different use cases for CODERSMUSE,
which we invite to communicate, for example, on the project’s
Web site or directly to us.1 For our own purposes, we foresee
the inevitable need for extension, which we discuss next.

A. Additional Modalities

So far, we have focused on supporting fMRI as neuroimag-
ing method, but there are alternatives, such as functional near-
infrared spectroscopy (fNIRS) [5]. fNIRS does not require
such a physically restrained setting as fMRI. fNIRS measures
the same underlying biological effect as fMRI, and therefore
fNIRS data are similarly delayed as fMRI data. However,
fNIRS does not provide a three-dimensional data set (in the
order of about 100,000 time series), but instead aggregates the
measured brain activation into a handful of data streams. To
support fNIRS data in CODERSMUSE, we intend to develop
an according plug-in and extend the guidelines to describe how
to use this plug-in.

Another extension would be to integrate electroencephalog-
raphy (EEG) data, for example, to observe cognitive load of
programmers, as done by Crk et al. [4], which can also be
recorded simultaneously with fMRI data. EEG data differ from
fMRI data in that they are not delayed, have a higher temporal
resolution (in the order of milliseconds), and provide typically
64 data streams, collected via channels located at different
positions around the skull.

Of course, increasing the amount of data might also affect
the performance of CODERSMUSE, such that we shall further
refine the underlying data-processing architecture.



B. Data Annotation and High-Level Patterns

To deal with the wealth of data obtained from a multi-
modal experiment, researchers should be able to annotate
individual events in each individual data stream or across
data streams, such as a peak in the neuronal response. At
first, this may merely be a manual process, but could be
extended by automatic techniques (e.g., based on a classifier)
to detect similar events in other parts of an experiment (e.g.,
as ATLAS is offering [9]). Eventually, we aim at extract-
ing higher level patterns across data streams. For example,
CODERSMUSE may indicate that long fixations on loop
initializations (eye tracking) trigger an activation in working
memory (neuroimaging) and increased cognitive load (psycho-
physiological data). Such extracted high level patterns would
allow researchers to generate new hypotheses for follow-up
studies and eventually to a more holistic understanding of
program comprehension.

IV. RELATED WORK

A meaningful combination of neuroimaging and eye-
tracking data, in addition to other modalities, is still in its
infancy, not only in program-comprehension research, but
also in neuroscience. We are not aware of any commercial
or scientific tool that integrates several modalities in one
offline data-exploration tool that fits our needs. ATLAS is a
multi-modal data-annotation tool [9], but it does not offer a
convenient integration of eye-tracking data, which is essential
for understanding a programmer in action [11].

When analyzing single-modality data, numerous tools exist.
For example, Ogama is an open-source tool to record, explore,
and analyze eye-tracking data [16]. BrainVoyager™3 and
SPM4 are two tools to analyze fMRI data. While none of these
tools combine different data streams, they inspired individual
views of CODERSMUSE (e.g., visualizations for the eye-
tracking data are inspired by Ogama).

V. CONCLUSION

CODERSMUSEenables researchers to explore synchronized
and integrated multi-modal data. This way, we intend to
unravel the mysteries of program comprehension, which has
been possible only to a limited degree, so far. In the fu-
ture and with the input of the community, we will mature
CODERSMUSE, thereby making the analysis of multi-modal
experiments accessible to a wide range of users.

ACKNOWLEDGMENTS

Brechmann’s and Siegmund’s work is supported by DFG
grants BR 2267/7-1 and SI 2045/2-1. Siegmund’s work is
further funded by the Bavarian State Ministry of Education,
Science and the Arts in the framework of the Centre Digi-
tisation.Bavaria (ZD.B). Parnin’s work is supported by the
National Science Foundation under grant number 1755762.

3Brain Innovation B.V., Netherlands, brainvoyager.com
4https://www.fil.ion.ucl.ac.uk/spm/

REFERENCES

[1] W. Boucsein. Electrodermal Activity. Springer Science & Business
Media, 2012.

[2] J. Castelhano, I. Duarte, C. Ferreira, J. Duraes, H. Madeira, and
M. Castelo-Branco. The Role of the Insula in Intuitive Expert Bug
Detection in Computer Code: An fMRI Study. Brain Imaging and
Behavior, pages 1 – 15, 2018.

[3] B. Chance, Z. Zhuang, C. UnAh, C. Alter, and L. L. Cognition-
Activated Low-Frequency Modulation of Light Absorption in Human
Brain. Proc. Nat’l Academy Sciences of the United States of America
(PNAS), 90(8):3770–3774, 1993.

[4] I. Crk, T. Kluthe, and A. Stefik. Understanding programming expertise:
An empirical study of phasic brain wave changes. ACM Trans. Comput.-
Hum. Interact., 23(1):2:1–2:29, 2015.

[5] S. Fakhoury, Y. Ma, V. Arnaoudova, and O. Adesope. The effect of
poor source code lexicon and readability on developers’ cognitive load.
In Proc. Int’l Conf. Program Comprehension (ICPC), page 11 pages.
IEEE, 2018.

[6] B. Floyd, T. Santander, and W. Weimer. Decoding the Representation of
Code in the Brain: An fMRI Study of Code Review and Expertise. In
Proc. Int’l Conf. Software Engineering (ICSE), pages 175–186. IEEE,
2017.

[7] T. Fritz, A. Begel, S. C. Müller, S. Yigit-Elliott, and M. Züger. Using
Psycho-Physiological Measures to Assess Task Difficulty in Software
Development. In Proc. Int’l Conf. Software Engineering (ICSE), pages
402–413. ACM, 2014.

[8] K. Holmqvist, M. Nyström, R. Andersson, R. Dewhurst, H. Jarodzka,
and J. Van de Weijer. Eye Tracking: A Comprehensive Guide to Methods
and Measures. OUP Oxford, 2011.

[9] S. Meudt, L. Bigalke, and F. Schwenker. Atlas – annotation tool
using partially supervised learning and multi-view co-learning in human-
computer-interaction scenarios. In Int’l Conf. Information Science,
Signal Processing and their Applications (ISSPA), pages 1309–1312.
IEEE, 2012.

[10] N. Peitek, J. Siegmund, C. Parnin, S. Apel, and A. Brechmann. Toward
Conjoint Analysis of Simultaneous Eye-Tracking and fMRI Data for
Program-Comprehension Studies. In Proc. Int’l Workshop on Eye
Movements in Programming (EMIP), pages 1:1–1:5. ACM, 2018.

[11] N. Peitek, J. Siegmund, C. Parnin, S. Apel, J. Hofmeister, and A. Brech-
mann. Simultaneous Measurement of Program Comprehension with
fMRI and Eye Tracking: A Case Study. In Proc. Int’l Symposium
Empirical Software Engineering and Measurement (ESEM), pages 24:1–
24:10. ACM, 2018.

[12] J. Siegmund. Program Comprehension: Past, Present, and Future. In
Int’l Conf. Software Analysis, Evolution, and Reengineering (SANER),
pages 13–20. IEEE, 2016.

[13] J. Siegmund, C. Kästner, S. Apel, C. Parnin, A. Bethmann, T. Leich,
G. Saake, and A. Brechmann. Understanding Understanding Source
Code with Functional Magnetic Resonance Imaging. In Proc. Int’l Conf.
Software Engineering (ICSE), pages 378–389. ACM, 2014.

[14] J. Siegmund, N. Peitek, C. Parnin, S. Apel, J. Hofmeister, C. Kästner,
A. Begel, A. Bethmann, and A. Brechmann. Measuring Neural Ef-
ficiency of Program Comprehension. In Proc. Europ. Software Engi-
neering Conf./Foundations of Software Engineering (ESEC/FSE), pages
140–150. ACM, 2017.

[15] R. Tiarks. What Programmers Really Do: An Observational Study.
Softwaretechnik-Trends, 31(2):36–37, 2011.

[16] A. Voßkühler, V. Nordmeier, L. Kuchinke, and A. M. Jacobs. Ogama
(open gaze and mouse analyzer): Open-source software designed to
analyze eye and mouse movements in slideshow study designs. Behavior

Research Methods, 40(4):1150–1162, 2008.


