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Abstract While polyhedral optimization appeared in mainstream compilers
during the past decade, its profitability in scenarios outside its classic domain of
linear-algebra programs has remained in question. Recent implementations, such
as the LLVM plugin Polly, produce promising speedups, but the restriction
to affine loop programs with control flow known at compile time continues
to be a limiting factor. PolyJIT combines polyhedral optimization with
multi-versioning at run time, at which one has access to knowledge enabling
polyhedral optimization, which is not available at compile time. By means of a
fully-fledged implementation of a light-weight just-in-time (JIT) compiler and
a series of experiments on a selection of real-world and benchmark programs,
we demonstrate that the consideration of run-time knowledge helps in tackling
compile-time violations of affinity and, consequently, offers new opportunities
of optimization at run time.
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1 Introduction

Automatic code optimization is becoming an increasingly challenging task.
The variety and complexity of optimization techniques have increased with
the introduction of hyperthreading, SIMD extensions, multicore processors,
general-purpose computing on graphics hardware, low-power computing, etc.
Programmers and compiler implementers are being confronted with the ar-
chitectural variety of platforms and the resulting challenges of performance
portability. Just setting a few compiler optimization flags no longer assures
high performance.

To tackle this problem, a wide variety of approaches to the automatic opti-
mization of program code has been proposed [2]. One model-based approach
is polyhedral optimization. The polyhedron model [12], in which the steps of a
loop nest are being spread across a polyhedral space, serves to optimize loop
programs automatically (e.g., via parallelization or data localization) by apply-
ing algebraic transformations. Its main benefit is that all loop transformations
can be discovered via integer linear programming at a cost that is independent
of the problem size. Among the many implementations of polyhedral optimiz-
ers similar to PLuTo [4,5], there are two projects that target mainstream
compilers: Polly [14,16] and Graphite [34].

Full automation comes at the price of limitations on the structure of the
programs that can be optimized. In particular, to be analyzable at compile
time, loop bounds and memory-access functions are limited to affine linear
expressions. For example, array access functions like A[3*i+1] are allowed,
whereas access functions like A[i*i] are disallowed. In the past, a number of
extensions of the polyhedron model have been proposed to overcome affine
linearity in certain cases, but the limitations are still severe [17]. Another
promising approach is to apply polyhedral optimization not only at compile
time but also at run time. At run time, more is known about the actual
structure of the loops, which opens up new opportunities for optimization.

While promising, it is still unclear whether leveraging run-time information
for polyhedral optimization actually pays off. We report on an empirical study of
the usefulness of just-in-time polyhedral optimization of real-world applications
and benchmark programs. Based on results of previous empirical work on the
potential of polyhedral optimization [26], we have been developing PolyJIT, an
extension to the LLVM compiler framework, which implements a light-weight,
platform-independent JIT compiler. PolyJIT overcomes classic compile-time
limitations of polyhedral optimization by delaying parts of the optimization
process to run time. However, JIT optimization comes at the price of increased
program execution time. While classic JIT compilers (e.g., the Java HotSpot
VM [24]) operate on an intermediate representation of the whole program code,
PolyJIT strives to minimize the run-time overhead by concentrating only on
an intermediate representation of loops that are likely to profit from polyhedral
optimization at run time.

Our empirical study of the merits of PolyJIT relies on 53 programs
amenable to polyhedral optimization covering a variety of 12 application
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domains, including multimedia, compression, or compilation as well as several
well-known community benchmark suites. We found that PolyJIT is able
to optimize the performance of 29 programs, with run-time speedups of up
to 57.69, when considering individual code regions, and up to 13.03, when
considering entire programs. Where polyhedral optimization is less applicable,
PolyJIT is able to avoid slowing down 38 programs although, as of yet, it has
not been able to provide a beneficial polyhedral transformation.

In summary, our contribution is three-fold:
– PolyJIT, a light-weight polyhedral JIT compiler that leverages run-time

information to optimize preselected loop nests at run time,
– an empirical study of the state and benefit of polyhedral just-in-time

compilation on real-world programs and benchmarks,
– an analysis of PolyJIT’s overhead and its influence on the total benefit of

polyhedral optimization at run time.
PolyJIT, our analysis engine, all sample programs, and all results are available
at the project’s Web site: https://www.infosun.fim.uni-passau.de/cl/PolyJIT/IJPP

2 The Polyhedron Model

The polyhedron model represents programs—in particular, loops—in an alge-
braic form as polyhedra, to make them amenable to algebraic transformations.
A major use case of the model and the corresponding transformations is to
parallelize loops; others are cache-locality and memory-usage optimization
(see Section 5). The main advantage of the polyhedron model is that loop
transformations can be applied fully automatically and independently of the
problem size. The price of full automation and feasible complexity is that not
all kinds of programs can be processed.

The polyhedral optimization of a program consists of two steps: (1) detect
the loops of a program that can be represented in the model, called Static Con-
trol Part (SCoP) [3], and (2) apply the actual transformations to optimize the
program (loop parallelization, etc.). In the following subsections, we introduce
the basic model and its limitations. A comprehensive survey of the polyhedron
model can be found elsewhere [12].

2.1 Basic Model

In the polyhedron model, a loop program consists of a number of statements.
Each statement has an associated iteration domain (which is defined by the loops
surrounding the statement) and a schedule (which determines the execution
order of the statement instances). Consider Figure 1, which gives an example
of a SCoP, to cover briefly the key concepts of the polyhedron model.

Each program statement S comes with its own iteration domain DS , which
is a subset of Zn. Each point i ∈DS in this domain represents a statement
instance (S; i); that is, statement S is executed once for every such i. Our

https://www.infosun.fim.uni-passau.de/cl/PolyJIT/IJPP
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for (int i=0; i<=n; ++i) {

for (int j=i; j<=n; ++j) {

if (i >= n-j) {

S: A[i+n][j+i] = B[n+2*i-1][j];

T: B[i+n][j-i] = A[n-2*i+1][j];

}

}

}

Listing 1: A static control part (SCoP)

example has two statements: S and T (Lines 4 and 5). They are surrounded
by two loops and an if statement and, therefore, share the iteration domain

DS = DT = {[i, j] : 0 ≤ i ≤ n ∧ i ≤ j ≤ n ∧ n− j ≤ i },

where n denotes a parameter that is constant during the execution of S and T
but unknown at compile time. We call this a structure parameter. Note that
the control flow is known at compile time because the predicate and the loop
bounds are affine expressions.

Each statement may contain memory accesses to arrays (the aggregate data
structure on which the polyhedron model concentrates); these are represented
by relations between the domain of the statement and the indices of the array
cells accessed. In our example, both statements perform a read access and,
subsequently, a write access. The read and write accesses are summarized in
the following relations R and W , respectively:

R = {S[i, j] 7→ B[n+ 2 · i− 1, j];T [i, j] 7→ A[n− 2 · i+ 1, j]}
W = {S[i, j] 7→ A[i+ n, j + i];T [i, j] 7→ B[i+ n, j − i]}

R and W map iteration (i, j) of S and T to the accessed elements of A and B,
respectively.

Transformations of the program must not violate the partial order imposed
by the program’s semantics. Therefore, the most important computational task,
when using the polyhedron model for program transformations, is to compute
the dependences between statement instances. Statement instances (T ; j) and
(S; i) are members of the dependence relation iff there are accesses of the same
memory cell in S and T (for the given values of i and j).

Determining dependences is undecidable in the general case, because this
would require the solution of arbitrary systems of equations derived from the
accesses (cf. the unsolvability of Hilbert’s 10th problem [9]). However, depen-
dences can be computed when iteration domains and accesses are defined by
affine expressions (i.e., all constraints can be written in the form M i≥b for
M ∈Zk×n, b∈Zk).1 Note that some dimensions of i can depend on structure
parameters, which allows parameters to occur additively (weak parametriza-
tion; Listing 2a) in all constraints, schedules, and memory accesses, but not
multiplicatively (strong parametrization; Listing 2b).

1 Geometrically, these objects are (Z-)polyhedra.
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2.2 Limitations

The restriction to affine expressions implies that non-affine conditions and
recursive control flow cannot benefit from polyhedral optimization. Other
consequences of the restriction are that the only aggregate data structure
allowed is the array (scalars can be represented as zero-dimensional arrays)
and the only statement type allowed in the loop body is the assignment. Calls
of functions with side-effects inside a loop body are not supported by the basic
model, because the memory access behavior and the control flow are hidden
inside the body of the function called.

Parameters at run time. The basic polyhedron model requires all loop bounds
and memory accesses to be linearly affine (Listing 2a, weak parametrization).
Non-linearity introduced by parameters (strong parametrization) cannot be
handled in the basic model.

for (int i=0; i<=n; i++) {

A[i+n] = ...;

... = A[i-1+n];

}

(a) linear memory access
(weak parametrization)

for (int i=0; i<=n; i++) {

A[m*i+n] = ...;

... = A[m*(i-1)+n];

}

(b) non-linear memory access
(strong parametrization)

Listing 2: Linear vs. non-linear memory access. The expression i−n+1 can be
handled in the basic polyhedron model. The expression m · (i− 1) + n cannot
be handled in the basic polyhedron model, due to the multiplicative parameter
m.

In Listing 2b, parameter m, although loop-invariant, is multiplied with the
value of iteration variable i, forming a non-linear expression. The value of
parameter m is known at run time, though. By substituting the value for the
parameter name, the loop nest complies with the polyhedron model.

Run-time information about parameters is not limited to constant parameter
values. If structure parameter m adopts a limited number of values, one can
provide a specialized loop code for each value. In the worst case, polyhedral
analysis and optimization have to be performed every time the loop nest is
reached by the control flow of the program.

Aliasing known at run time. As soon as we consider input languages that
support pointers, we have to deal with the possibility of aliasing. Contemporary
alias analysis can provide only a conservative approximation, leading to a
so-called may-alias, that is, an alias whose existence must be assumed but is
uncertain. There are two alternative ways of dealing with a may-alias: (1) one
postulates the corresponding dependence at compile time or (2) one tests for
the alias at run time and respects its dependence conditionally.
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In PolyJIT, we take advantage of the fact that the actual aliases are
revealed at run time, so we can optimize SCoPs that give rise to aliasing
behavior unknown at compile time.

3 PolyJIT

This section introduces our polyhedral loop parallelizer and JIT compiler
PolyJIT. PolyJIT is implemented on top of the LLVM compiler infrastruc-
ture [22] and its compile-time polyhedral optimizer Polly [16].

3.1 Goals

The focus of PolyJIT is on the automatic loop parallelization of general-
purpose programs—general-purpose, because they need not necessarily belong
to the classic application domains of the polyhedron model, such as linear
algebra kernels, which spend most of their execution time in a single code
region. Such a region is called hot.

Since the workload of general-purpose programs may possess a considerable
number of distinct hot regions, PolyJIT needs to be able to provide efficient
dynamic coverage of SCoPs that contribute comparitively little to the total
execution time.

Traditional JIT compilers (e.g., the Java Hotspot VM or the DalvikVM [1])
use an interpreter for the whole program to provide quick startup and an itera-
tive optimization of the code that is deemed hot. Polyhedral transformations
incur a considerably higher compilation overhead at run time. Therefore, when
we trigger JIT compilation, we want to provide the optimized performance at
once, without the intermediate stage provided by an interpreter. To avoid that
the potential speedup is eaten up by the effort of its generation, PolyJIT must
be able to (1) minimize its run-time overhead and (2) maximize its effective
code coverage.

3.2 PolyJIT Phases

PolyJIT’s two-phase design is similar to that of other frameworks that optimize
kernel functions at run time (e.g., OpenCL [30] or CUDA [8]). The following
algorithms are not restricted to LLVM but, in their explanation, we follow
LLVM terminology.

The compilation phase detects all loops that are amenable to run-time
optimization and prepares the binary for JIT support. The execution phase
picks up the information collected in the compilation phase and invokes the
JIT compilation of the optimized dynamic SCoPs during program execution.
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3.3 Compilation Phase

The compilation phase prepares the binary for a JIT execution with PolyJIT.
The steps performed are listed in Algorithm 1.

Input: a module M
Output: a set of modules, each of which carries an extracted SCoP function.
Variables: a set params ∈ uses(scops(M )),

a set candidates ∈ scops(M )× uses(scops(M )),
a set worklist ⊆ regions(M )

1: modules ← ∅
2: for each func ∈ M do
3: candidates ← ∅
4: worklist ← {topLevelRegion(func)}
5: while worklist 6= ∅ do
6: region ← pop(worklist)
7: if ¬isValid(region) then
8: worklist ← worklist ∪ children(region)
9: else

10: candidates ← candidates ∪ {(region, uses(region))}
11: for each (region, params) ∈ candidates do
12: newFunc ← ExtractFunc(region, params)
13: newModule ← GeneratePrototype(newFunc)
14: prototype ← SerializePrototype(newModule)
15: modules ← modules ∪ InjectPolyJIT(M , prototype, func)

16: return modules

Algorithm 1: PrepareDynamicSCoPs(Module)

The preparation of dynamic SCoPs is divided into two parts. First, we
identify all suitable code regions via a dynamic SCoP detection. Second, each de-
tected region is encapsulated as a separate module, which serves as a prototype
for multi-versioning, and stored in the final binary in serialized form.

Dynamic SCoP detection The detection of dynamic SCoPs is performed on
each function of the program. Each function may contain an arbitrary number
of SCoP candidates. A SCoP represents a region of LLVM IR code. A (simple)
region is a group of basic blocks that share a single-entry edge and a single-exit
edge in the function’s control-flow graph [35]. The detection of dynamic SCoPs
performs a recursive-descent traversal of LLVM’s region tree, similarly to
Polly’s detection procedure. Algorithm 1 shows an iterative version of the re-
gion tree walk (Lines 3–10). However, the requirement of linear affinity of array
access functions, conditions, and loop bounds must be relaxed to admit expres-
sions of the form n · i+c, where n and c are structure parameters and i is a loop
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variable (cf. Section 2). Accesses to multi-dimensional arrays are represented
as linearized pointer accesses in LLVM IR (e.g., int A[n][m]; A[i][j]; be-
comes the non-affine access int *A; *(A + n*i + j)). All information about
the multi-dimensional properties of array A is lost. Therefore, PolyJIT ignores
Polly’s optimistic delinearization of multi-dimensional accesses and subjects
them instead to a dedicated treatment at run time.

Structure parameters that appear as a factor in a non-affine expression must
be replaced with their run-time values later on. The dynamic SCoP detection
collects all of these parameters and returns them together with a valid dynamic
SCoP candidate.

Input: a region R, a set params ∈ uses(R)
Output: a function that contains R
Variables: a set usedInside ∈ uses(R), a set usedOutside ∈ uses(R)

1: (usedInside, usedOutside)← inouts(R)
2: funcArguments ← usedInside ∪ usedOutside
3: for each argument ∈ funcArguments do
4: for each p ∈ params do
5: if p ∈ exprTree(argument) then mark(argument)

6: func ← emptyFunction(funcArguments)
7: return extract(R, func)

Algorithm 2: ExtractFunction(R, params)

SCoP-to-function extraction. A successfully detected dynamic SCoP candidate
must be encapsulated as a separate function, as specified by Algorithm 2, before
it can be optimized by PolyJIT at run time. The dynamic SCoP detection
provides a Region and a set of params (Algorithm 1, Line 11). The result of
the ExtractFunction is the newly encapsulated function that contains the
dynamic SCoP.

The code region of a dynamic SCoP candidate can make use of values
that are defined or used outside. The extraction collects these values and
makes them arguments of the new function. All values are passed by reference
to the function to preserve the semantics of the original code region. The
function arguments are annotated as to whether or not they are suitable for
multi-versioning at run time (Algorithm 2, Line 5). This includes all structural
parameters, not only those that are required for a dynamic SCoP to become a
standard affine one.

It is possible that structural parameters are used inside the SCoP in different
contexts (e.g., as 64-bit or 32-bit integer). In such cases, cast instructions
convert between the representations. These can be hoisted out of the SCoP
and, therefore, would appear as two separate structural parameters in the
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extracted function signature. PolyJIT tries to avoid this and enlarges the
code region to the original definition of the structural parameter.

Input: a function F ,
Output: a prototype module that contains a clone of F

1: module ← getModule(F )
2: newModule ← copyEmpty(module(F ))
3: newFunc ← createEmpty(newModule, type(F ))
4: for each globalValue ∈ globals(module) ∩ uses(F ) do
5: globals(newModule)← weakLinkage(copy(globalValue))

6: return cloneFunctionInto(F ,newFunc)

Algorithm 3: GeneratePrototype(F )

Prototype extraction. The extraction of functions for the main module is
specified by Algorithm 3. During the execution of the main program, PolyJIT
reconstructs the function from its serialized image and uses it as prototype for
new function variants. To this end, the extracted function must be converted
to a separate LLVM IR module, which can be read from memory later during
the main program’s execution. The function-to-module conversion requires the
extracted function to be cloned into an empty LLVM IR module. However,
in the presence of accesses to global values (i.e., global variable uses and calls
of other functions), we must clone the global variable definitions, as well, and
change the linkage type, such that the linker guarantees that there is only one
copy of the symbol at run time (Line 4–5). After successful extraction, we can
serialize the new module and store it as a global variable in the final binary.

PolyJIT callback injection. The final step of PolyJIT’s compilation phase
provides a stub that redirects calls of the extracted function to PolyJIT’s
run-time library. The prototype extraction generates a call of the extracted
function in place of the original dynamic SCoP.

This function call must be changed to a call to PolyJIT’s run-time library.
Our generated stub has the same function signature as the extracted function.
Listing 3 shows a code example of a function stub. The original ScopFunction
takes five parameters and has the parameters n and k marked for multi-
versioning with __polyjit. We store references to all parameter values in an
array (params) on the stub function’s stack and invoke PolyJIT’s run-time
environment. Other than the original function’s parameter values, function
stub redirection enables passing context information (e.g., call frequencies
or execution times into PolyJIT’s run-time environment without additional
overhead).
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void ScopFunction(int __polyjit n, int A[2048],

int __polyjit k, float alpha,

int B[2048]) {

void *params[5];

params[0] = &n;

params[1] = A;

params[2] = &k;

params[3] = &alpha;

params[4] = B;

pjit_main(&ScopFunctionPrototype, 5, params);

}

Listing 3: Example of a function stub for PolyJIT in C-like syntax.

3.4 Execution Phase

During the execution phase, PolyJIT will be activated as soon as one of the JIT
callbacks (injected in the compilation phase by Algorithm 3) gets issued. Once
activated, PolyJIT will execute its run-time phase as specified by Algorithm 4.
First, it deserializes the appropriate dynamic SCoP into memory (Lines 1–2).
From there, the input parameters of the SCoP will be analyzed. Since the
LLVM IR representation of the requested dynamic SCoP is available at run
time, the given input parameter values can be matched with the corresponding
formal parameters in LLVM IR, as specified by Algorithm 1.

The input parameter values are used for multi-versioning of the prototype
functions. Each input parameter value is matched with a function parameter
marked by PolyJIT at compile time (cf. Algorithm 2). PolyJIT holds a
cache of all generated function variants. A hash calculated from the pointer to
the prototype and the input parameter values used for multi-versioning serves
as key for each variant.

Next, PolyJIT generates a new version of the prototype and substitutes
all uses of the marked function arguments with a constant for each parameter
value (Lines 4–5). This effectively transforms all non-affine expressions detected
as strong parametrization by PolyJIT to affine ones. The new version is
then optimized using the default compile-time polyhedral optimization pipeline
provided by Polly. However, as an extension, Polly can be controlled by
PolyJIT for each variant generated (i.e., Polly’s configuration parameters
can be tuned by PolyJIT). For example, we added a simple heuristics that is
able to derive an appropriate tile size for the outermost parallel loop dimension,
if any, in the variant generation step. After optimization, the variant is stored
with its associated hash value in PolyJIT’s function cache, such that a simple
hash calculation and cache lookup will find it when it is called repeatedly.

Multi-versioning. The process of variant generation that is described in the
following paragraph is an instance of function multi-versioning, a technique
used by compiler optimizations and sample-based profilers [21]. Arbitrary pieces
of code are cloned and modified to match different objectives (e.g., additional
measurement instrumentation or different version for each accelerator card on
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Input: a key ID , a list Args of arguments
Output: a function to be executed on Args
Variables: a relation prototypes ⊆ IDs ×Modules, a relation

variants ⊆ IDs ×Modules

1: K ← key(ID ,Args)
2: protoypeFunc ← select(ID , prototypes)
3: variantFunc ← copy(key , prototypeFunc)
4: for each p ∈ marked(params(prototypeFunc)) do
5: uses(p, variantFunc)← select(p,Args)

6: variants ← variants ∪ (K , variantFunc)
7: if useable(prototypeFunc) then
8: apply(variantFunc,Args)
9: else

10: apply(prototypeFunc,Args)

Algorithm 4: EnterPolyJIT(ID ,Args,Stats)

Prototype n *A k α *B

Values 2048 0x42 8 1.5 0x23

Figure 1: Select parameters for multi-versioning at run time.

the host). Different versions are meant to be activated conditionally. In general,
multiple versions are generated at compile time and one is selected at run time
or ahead of run time. Beside PolyJIT, a further example is Polly, which
performs multi-versioning inside its code generation. In front of the original
code region, Polly forms a new branch in the control flow and generates the
code for the fully optimized SCoP into it, while the original code remains on
the second branch. While Polly analyzes a SCoP, it may be required to make
assumptions under which the optimized version of the SCoP may be run (e.g.,
assumptions about the bounds of structure parameters). These assumptions
require a run-time check that forms the branch condition for the generated
versions.

Variant generation. PolyJIT uses multi-versioning to spawn a new variant
from a single prototype function. Function arguments that are suitable for multi-
versioning have been marked by the detection process before (cf. Algorithm 1).
Uses of these marked function arguments are replaced with the actual parameter
values, as shown in Figure 1.

The new version of the prototype function, with all parameter values
substituted, is then handed over to the polyhedral optimization pipeline driven
by Polly. This pipeline includes all transformations available at compile time,
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including the generation of alias checks that might be necessary to prove alias
freedom at run time. Multi-versioning of all required parameters often leads
to constant loop bounds in the outermost dimension of all transformed SCoP
candidates. Therefore, we can determine the number of iterations of each loop
dimension as a single scalar value and use it to guide Polly’s first-level tiling.
In PolyJIT’s case, tiling serves to introduce task parallelism with OpenMP at
the outermost dimension wherever suitable. The number of threads available for
a task-parallel execution is known at run time. PolyJIT uses this knowledge
to drive the tiling with simple heuristics that generate one tile for each thread
available to the run-time environment. Inside each tile, a second round of
tiling serves to increase data locality. Wherever suitable, SIMD vectorization is
applied at the innermost level, driven by Polly’s own cost model.

4 Evaluation

Typically, JIT compilers work with an intermediate representation of the input
program, which is being profiled at run time to identify hot paths in the
control-flow graph for further optimization. In contrast, PolyJIT avoids most
costly run-time profiling because it can preselect all potentially hot code regions
at compile time. In addition, the JIT approach permits PolyJIT to consider
more liberal code formats than the polyhedron model can handle, such that
the exploitation of later run-time knowledge will reduce the SCoPs back to a
treatable format. Hence, we evaluate PolyJIT’s capabilities on the execution
of both the entire program and its individual SCoPs.

4.1 Research Questions

As a first research question, we would like to learn about PolyJIT’s influence
on the execution times of individual SCoPs:

RQ1 Is PolyJIT able to reduce the execution time of individual SCoPs
significantly compared to the best optimization that a traditional compiler
can provide with or without polyhedral optimization enabled?

The ability to reduce the execution time of individual SCoPs is only half the
story, though. A local speedup might be annihilated by the overhead incurred
by the optimization necessary to achieve that speedup. Therefore, our second
research question is:

RQ2 Is PolyJIT able to reduce the overall execution time of entire programs
significantly?

PolyJIT performs multi-versioning of structural parameters at run time.
This empowers it to handle all array accesses covered by Polly’s optimistic
delinearization (Section 5)—and even some more. However, it requires run-time
code generation. Thus, our third research question is:
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RQ3 Is multi-versioning at run time able to overcome the overhead introduced
by run-time code generation and polyhedral optimization?

As noted before, PolyJIT can cover more memory accesses than optimistic
delinearization at the price of run-time code generation. In cases that are
covered by both approaches, we are interested in the differences in achievable
performance. Therefore, our fourth research question is:

RQ4 Does run-time value specialization result in more efficient code compared
to using only delinearization of multi-dimensional array accesses?

4.2 Operationalization

Our four research questions require different measures. All configurations except
the baseline ones are able to extract the following measures.

4.2.1 Measures

Definition 1 (Speedup & Slowdown) The speedup Sc of a program is the
execution time T0 of the program running in the baseline configuration, divided
by the execution time Tc of the program running in configuration c. For values
of Tc greater than T0, we use its negative reciprocal, called slowdown:

Sc :=

{
T0/Tc : T0 ≥ Tc
−Tc/T0 : otherwise

Note that, with our definition, we generate negative speedup values in the case
of a slowdown (e.g., TA = 2, T0 = 1 → SA = −2). In addition to the classic
speedup, we determine the fraction of the sequential run time that we can
obtain with a polyhedral transformation [26]:

Definition 2 (Execution SCoP coverage) Let S be the set of SCoPs of
a program. Let t : S → R be a function that returns the accumulated run
time of a SCoP in the run(s) of the program. Let T be the accumulated run
time of the program for arbitrary sets of input values. The execution SCoP
coverage (EC) of the program is:

EC :=
1

T
·
∑
s∈S

t(s)

The execution SCoP coverage allows us to estimate the potential benefit of an
optimization by determining the fraction of the sequential program’s run time
that is spent inside SCoPs. It reveals whether our transformations are able to
hit the hot spot(s) of the program. The higher the SCoP coverage, the larger
the potential effect of polyhedral optimization on a specific program run.

For an analysis of PolyJIT’s run-time overhead, we use a third measure:
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Definition 3 (Overhead Coverage) The overhead coverage (OC) of a
program running in configuration c is the time Oc spent inside the JIT’s
internal execution phase in relation to the total execution time Tc:

OCc :=
Oc

Tc

Furthermore, we count the number of variants (V) of versions that we were
able to generate, the number of cache hits (C) that we were able to achieve,
and the number of blocked (B) prototypes. A prototype is blocked from further
optimization by PolyJIT if Polly is not able to generate optimized code at
run time after run-time optimizations applied by PolyJIT.

For the presentation of descriptive statistics we list n as the number of
observations, Min as the minimum, x̃ as the median, x̄trim as the trimmed
average with a trim factor of 5%, Max as the maximum, IQR as the interquar-
tile range (i.e., the delta between the 1st and the 3rd quartile), and s as the
standard deviation.

4.2.2 Configurations

The following configurations yield sets of measures that we employ to answer
our research questions. The numbers and types of available measures depend on
the configuration. All projects are compiled with the default options, supplied
by the individual project. Deviations are documented in the source code of
Benchbuild, a tool for large-scale empirical evaluation [28]. Benchbuild
covers a wide range of different application domains including compression,
databases, multimedia and verification.

We encode the properties and enabled features of all available configura-
tions in their names. The two static (stat) configurations do not perform any
optimization at run time and serve mainly as a baseline for our measurements.
All other configurations are considered to be dynamic (dyn). Furthermore, we
distinguish the configurations by their use of the following features.
– Polly (polly) enables optimization and code generation by Polly. All

dynamic configurations have Polly enabled.
– Delinearization (delin) enables the recovery of multi-dimensional array

accesses from their linearized representation in LLVM-IR.
– Specialization (spec) enables the run-time multi-versioning that replaces

parameters with their known values.
– Adaptation (+) enables run-time tuning of Polly’s tiling configuration

based on knowledge about the input program and the target machine.
This feature uses a simple heuristic to optimize tile sizes of the outermost
dimensions to adjust the workload size parallel threads and serves as a
proof-of-concept that we can perform adaptive optimization of SCoPs.
Table 1 shows a feature matrix of all available configurations. All compile

statically with the optimization level –O3 using clang. In all cases but one,
Polly’s parallel code generation is enabled and all other options remain on
their default values.
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PolyJIT Polly Delinearization Specialization Adaptation

stat

stat polly X(1) X
dyn spec delin X X(2) X X
dyn delin X X(2) X
dyn X X(2)

dyn spec X X(2) X
dyn spec delin+ X X(2) X X X

Table 1: All available configurations and their enabled features used for the
evaluation of PolyJIT. Feature Polly is enabled at compile time when marked
with (1) and enabled at run time when marked with (2). Polly’s configuration
options are left on their defaults, except for parallel code generation and
dyn spec delin+.

4.2.3 Measurement Strategies

The answers to our four research questions require different configurations of
PolyJIT. Next, we introduce the configurations necessary and the measure-
ment strategies applied to answer each question.

RQ1 We are interested in the local speedup of each region, so we compare
the execution time of each region in the following two configurations: the total
execution time Tdyn delin of configuration dyn delin and the execution time
Tdyn spec delin of dyn spec delin. SCoPs are optimized with the default –O3
pipeline of LLVM after the polyhedral code generation has been completed.

RQ2 We are also interested in the overall effect of PolyJIT. To this end,
we compare the total execution time of stat , stat polly , and dyn delin to
dyn spec delin. The comparison of PolyJIT with two versions of Polly,
the compile-time version and the run-time version, exposes the effects of the
overhead and changes due to a slightly different optimization pipeline and
code structure. For example, in the run-time version of Polly, we cannot
rely on the positive effects of inlining when working with extracted function
prototypes.

RQ3 While the previous two questions are directly related to the overall
performance of PolyJIT, we are also interested in the costs incurred when
applying run-time optimization to individual SCoPs. Beside execution times
for regions and entire programs, we also collect detailed information about the
execution SCoP coverage, the number of variants, the number of cache hits, and
the number of blocked function prototypes. These measures influence directly
the positive impact PolyJIT can have on a given program. All measures
for this research question are taken from PolyJIT’s default configuration
dyn spec delin.
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RQ4 One source of non-affine expressions in a SCoP candidate is the lin-
earization of multi-dimensional array accesses caused by LLVM’s internal
representation of arrays with pointers. It is possible to reclaim a suitable—but,
in general, not identical—multi-dimensional representation for this kind of
array access [27]. This reconstruction is often called “optimistic”, because it is
still necessary to verify the correctness of the reconstruction at run time. We
claim that run-time value specialization subsumes optimistic delinearization.
In general, we can compare the execution times of dyn spec to dyn spec delin.
Since PolyJIT hands off all optimized SCoPs to Polly at run time, there
should be no difference in the code observed after run-time value specialization
and, therefore, no difference in the total execution time of the program, because
all memory accesses are represented in linear form to Polly. Deviations can
occur when not all parameters are selected for specialization at compile time.
However, these should not occur in dyn spec delin, because Polly can attempt
to delinearize the missing parametrized accesses. Additionally, we compare
the execution times of dyn spec delin, dyn spec, and dyn spec delin+ to dyn.
This gives an indication of how the run-time specialization influences the total
execution time when isolated from the efffects of delinearization. While both
features can coexist, as in dyn spec delin, the absence of structural parameters
in the polyhedral representation opens up more opportunities for run-time
adaptive optimization, as in dyn spec delin+.

4.3 Subject Systems and Benchmarks

We base our evaluation on a large variety of 334 real-world programs and
community benchmarks, some of which have been used in previous work on
polyhedral optimization [26]. The configurations for PolyJIT’s evaluation are
implemented as parts of a reusable experiment inside Benchbuild, which
facilitates reproducability. We selected 334 programs included in Benchbuild
that contained, at least, one SCoP.

Table 2 (page 32) lists all programs in our collection on which PolyJIT
was able to act, that is, that contain at least one dynamic SCoP.

The column “Domain” of Table 2 lists the program groups, each of which
is an application domain or benchmark. Below, we list all available application
domains available for testing in Benchbuild. Note that Table 2 only lists
the first six of these groups, because (1) for some, the filters applied to the
dataset remove all candidates from the other three, (2) for some, PolyJIT is
not triggered at run time, and (3) for some, PolyJIT and/or Polly fail to
complete the run-time test successfully.
– Benchbuild : Applications that belong to Benchbuild’s initial set of pro-

grams used in [26]. This includes programs from the (sub-)domains Compi-
lation, Encryption, and Scientific (e.g., bzip2, SevenZ, xz, x264, FFmpeg,
lapack, and lulesh)

– BOTS : The Barcelona OpenMP Task Suite, a set of benchmarks prepared
to be executed with OpenMP enabled [11].
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– LNT (MSB): A set of multi-source benchmark programs included in LNT.
– Polybench: Benchmark codes found in the Polybench benchmark suite.

These benchmarks are specifically crafted to benefit from a polyhedral
optimization. In the context of PolyJIT, they are especially useful for
tests of changes to tuning parameters of the polyhedral optimizer Polly.

– SPEC : Benchmark codes found in the SPEC CPU2006 benchmark suite
(e.g., mcf, milc, perlbench). Typically, these are larger applications with
exhaustive program inputs for each benchmark.

– LNT (SSB): A set of single-source benchmark programs included in the
LLVM nightly test suite (LNT).

– LNT (MSA): A set of single-source application programs included in LNT.
– Rodinia: A set of work-intensive programs intended for benchmarking of

heterogeneous compute clusters [7].
– Scimark : A set of benchmark programs with scientific background [25].

The rows of Table 2 are sorted by domain and, in each domain, by execution
SCoP coverage (EC) in descending order. Elements closer to the top of their
respective section in the table indicate that a successful polyhedral optimization
has a higher impact on the total execution time of the program. Note that
not all domains available in Benchbuild are displayed in Table 2, because of
the filters applied to the measurement results. Most commonly, we were able
to identify SCoPs that require PolyJIT at compile time, but the available
run-time tests for these programs failed to activate PolyJIT at least once.

4.4 Measurement Setup

We conducted all experiments on a dual socket system with 2x Intel Xeon
E5-2650v2 (8 physical cores, 2.60 GHz, 16 threads) and 128 Gb RAM (64 Gb
RAM per socket). During all measurements, we were the exclusive user of the
machine, and each test was restricted to 8 cores. The system’s capability to
boost processor speed, depending on system load (Intel Turbo Boost) has been
turned off.

We ran each configuration as a separate experiment. All configurations
that require PolyJIT’s run-time library to be enabled collect all timing
information as part of the integrated regionwise instrumentation interface. The
configurations stat and stat polly are not able to provide regionwise information
and, therefore, only measure the total execution time of each project.

Due to space limitations, we present only a selection of evaluation results
here. A comprehensive collection can be found at the PolyJIT Web site.

4.5 Results

Before we answer our research questions in detail, we want to provide a
descriptive view on our subject programs. We are interested in the number of
SCoPs that PolyJIT’s detection algorithm can detect and if it can find more
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Figure 2: Number of SCoPs detected by Polly compared to number of SCoPs
detected by PolyJIT for 206 of 334 programs.

SCoPs than Polly’s implementation, which can indicate that we have more
opportunities for polyhedral optimization at run time.

The experiment ran on 334 software systems of Benchbuild and returned
valid results for 206. Figure 2 shows a scatter plot that compares the number of
SCoPs detected by PolyJIT to those detected by Polly. Despite differences
in the detection algorithm, we can clearly see that there is a significant increase
in the number of detectable SCoPs for PolyJIT.

PolyJIT’s SCoP detection algorithm is a modified version of Polly’s that,
in addition to the recognition of strongly parametrized non-affine expressions,
does not take delinearizable multi-dimensional array accesses into account.
Therefore we cannot decide, wheter some SCoPs that are detected by PolyJIT
may also be detected by Polly as part of delinearization. However, both
algorithms share the decision logic of profitable SCoPs and the expansion logic
to find a SCoP of maximal size. Additionally, we need to consider that the raw
number of SCoPs is not a sufficient metric for quantifying the effectiveness of
the detection process in general. A lower number in detected SCoPs can be the
result of a larger one being detected instead multiple smaller ones. We always
prefer the larger SCoP, because of a greater chance for uncovering parallelism.
However, the two detection algorithms for Polly and PolyJIT are similar
enough to compare the raw numbers. Especially on larger programs, such as
SevenZ, or FFmpeg, we found a substantial increase in the number of SCoPs
detected by PolyJIT.

Let us now answer the research questions in the order in which Section 4.1
states them.
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Figure 3: Histogram of all regionwise measurements, excluding the band between
speedup values of –1.1 and 1.1. We used a binwidth of 0.5.

Variable n Min x̃ x̄trim Max IQR s

Tdyn spec delin [µs] 704 1.0 5.0·104 6.2·105 2.5·108 3.6·105 2.9·107

Tstat polly [µs] 704 1.0 5.0·104 3.2·105 1.6·108 3.6·105 1.1·107

SP 704 −2.4·101 1.0 3 ·10−1 5.8·101 2.1 6.5

Table 3: Descriptive statistics for all regionwise measurements.

RQ1 Figure 3 shows the descriptive statistics of all regionwise measurements
for each variable that compare dyn delin to dyn spec delin.

We did not filter the regionwise measurements in any way, because all
require PolyJIT to engage at least once. This leaves 135 programs with 704
regions in total. We provide the complete table of regionwise results on the
project’s Web site.

At first glance, Table 3 suggests that the code generated by PolyJIT does
not provide any significant speedup over Polly across all regions. We achieve
a trimmed mean of 0.29, over Polly with an inter-quartile range (IQR) of
2.06, indicating that the majority of measurement results is packed tightly
around the median. Furthermore, the standard deviation of 6.54 also indicates
that the data spread is relatively high. Excluding all measurements between
speedup values of –1.1 and 1.1, we found 69 regions that show speedup values
below –1.1 and 122 regions that show speedup values above 1.1.

Figure 3 shows the distribution of speedup values of dyn spec delin over
the baseline dyn delin. While a few regions achieve speedup factors of up to
57.69, most SCoPs do not get beyond a speedup of 1 over Polly. 67 regions
show speedup values between 1.1 and 2, indicating that the benefit over Polly
is caused by data locality optimizations or the ability to generate simpler
code due to parameter value substitution. The regions that achieve a positive
speedup are typically found in domains that are considered optimal candidates
for polyhedral optimization (Scientific, Polybench, and Multimedia).
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Note, though, that across all SCoPs that exhibit a slowdown, the majority
(45 out of 69) show only a slowdown of less than –2. The occurrence of
slowdowns suggests that there is potential for improvement in the selection
and postprocessing of polyhedral optimizations applied to SCoPs.

In summary, we have shown that PolyJIT is able to improve the perfor-
mance of individual SCoPs at run time albeit, in classic applications domains,
more than in others.

Var. Levels n Min x̃ x̄trim Max IQR s
SO3 dyn spec delin 53 0.2 0.9 2.1 13.0 2.3 2.8

dyn spec 53 0.2 1.0 1.6 8.7 0.7 2.0
dyn delin 53 0.1 0.9 1.7 12.2 1.4 2.4
dyn 53 0.1 0.9 1.0 6.7 0.2 1.1
dyn spec delin+ 53 0.2 1.0 2.1 13.0 2.5 2.7
stat polly 53 0.8 1.0 1.6 8.4 0.7 1.7
stat 53 1.0 1.0 1.0 1.0 0.0 0.0
all 371 0.1 1.0 1.5 13.0 0.6 2.1

SP dyn spec delin 53 0.1 0.9 1.2 6.7 0.4 1.4
dyn spec 53 0.1 0.9 1.0 6.7 0.5 1.4
dyn delin 53 0.1 0.9 1.0 6.7 0.5 1.4
dyn 53 0.1 0.8 0.8 6.7 0.6 1.2
dyn spec delin+ 53 0.1 0.9 1.2 6.8 0.4 1.4
stat polly 53 1.0 1.0 1.0 1.0 0.0 0.0
stat 53 0.1 1.0 0.8 1.2 0.4 0.3
all 371 0.1 1.0 0.9 6.8 0.4 1.2

Table 4: Descriptive statistics for all measurement configurations.

RQ2 From 334 projects in our test corpus, we excluded all that did not trigger
PolyJIT at least once. This results in the 53 programs listed in Table 2.
Table 4 provides descriptive statistics for speedup values over the baselines
stat and stat polly for all these programs. In contrast to Table 2, the speedup
values are calculated using the standard formula T1/Tp, because we need a
continuous value range for descriptive statistics calculation.

Figures 4 and 5 show the speedup values over baseline stat and stat polly of
all projects included in Table 2 in the form of violin plots [18] per configuration.
The violins between configurations share the same maximum width. The dif-
ference between dynamic configurations is quite small, which is caused by the
two complementary ways of dealing with non-affinity. Notice the clear distinc-
tion when we compare dyn with baseline stat to dyn spec delin: here, neither
multi-versioning nor Polly’s own delinearization are enabled. Additionally,
while Polly achieves speedups without projects causing a high slowdown, it
does not achieve as many and high speedups as the dynamic configurations
using PolyJIT.

We filtered out all programs with an execution time lower than 1s in
configuration stat (e.g., small benchmark programs or programs with small
problem sizes as input that lead to short execution times). The remaining set
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Figure 4: Violin plots of the speedup density of all projects for each configura-
tion available. The baseline for this set of plots is stat .

of programs contains 53 elements. At first glance, Table 4 shows median values
between 0.9 and 1.0, which suggests that none of the configurations are able
to improve the overall performance of the complete set on average over stat
or stat polly . This indicates that we have a large number of projects in the test
corpus that are not amenable for polyhedral optimization at all, even though
the SCoP selection suggests a profitable optimization. However, we are still able
to discuss the benefits of polyhedral optimization on single programs instead
of considering the general applicability. A closer look shows that stat polly
achieves the highest minimum speedup over stat (0.8). The worst performance
is delivered by dyn, which is expected because, in terms of optimization op-
portunities, it is the most constrained configuration of PolyJIT. However,
the trimmed mean suggests that dyn spec delin performs better, on average,
achieving a maximum speedup of 0.19 over stat and 0.15 over stat polly . This
higher average speedup comes at the cost of a higher spread in speedup values
across the complete set of test programs, with a standard deviation of 2.06 for
dyn spec delin compared to the standard deviation of 1.67 for stat polly .

A performance slightly worse than Polly on a large test suite is not sur-
prising because our test suite includes projects in which we cannot beneficially
improve all SCoPs, but we still pay for the added overhead of JIT compilation.
This is evidenced by Table 2, which contains a more detailed view on the 53
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Figure 5: Violin plots of the speedup density of all projects for each configura-
tion available. The baseline for this set of plots is stat polly .

programs that were optimizable by PolyJIT. Projects in which the number
of variants is equal or almost equal to the number of blocked functions are not
filtered from the results because, at compile time, we assumed these functions to
be profitable for PolyJIT. Either our generated code after multi-versioning is
still not suitable for polyhedral optimization or Polly deemed the optimization
opportunities not profitable and rejected optimization of the SCoP.

It is remarkable that we observe positive effects when the number of variants
is equal to the number of blocked functions (e.g., 473.astar, fft, flops,
IndirectAddressing, Reductions). These cannot be caused directly by
the optimization pipeline of PolyJIT, because all variants use the compiled
version of the prototype function. In these cases, we would expect a slowdown
caused by the added overhead for one-time compilation inside PolyJIT, which
is the case for other projects, e.g., bullet, chomp, or floorplan. Overall,
we achieve speedup values between –9.49 and 13.03 for stat and values between
–9.44 and 6.75 for stat polly .

In summary, we have shown that PolyJIT is able to translate the speedup
achieved on SCoPs to a speedup of complete programs in many cases. However,
many programs remain on whose performance PolyJIT has a negative impact.
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Var. n Min x̃ x̄trim Max IQR s
variants 53 1.0 2.0 5.9 301.0 7.0 41.2
blocked 53 0.0 2.0 4.4 98.0 6.0 14.3
cache hits 53 0.0 1.0 8489.1 920944.0 2.0 144394.0
execution SCoP coverage 53 8.6 53.7 53.7 99.2 55.7 30.7
overhead coverage 53 0.2 4.9 7.4 30.5 11.0 8.1

Table 5: Descriptive statistics for all measurement variables.

RQ3 Table 4 shows descriptive statistics for the experiment variables V, B, C,
EC and OC for the configuration dyn spec delin. Our measurements reveal that,
accross 53 projects, we have to generate 5.88 variants, on average, with a median
of 2. As the number of variants required determines the amount of compilation
we have to perform during run time, it is beneficial for PolyJIT if the number
of variants does not become too large. This is the case for our dataset with a
variant count of 1 to 301. At the same time, the number of blocked variants
needs to be significantly lower than the number of variants, because a blocked
variant means that we spent compilation time without obtaining an optimized
function. On our dataset, we find that we block between 0 and 98 functions
with an average of 4. This number is close to the average number of variants.
We evaluate this more thoroughly in Section 4.6. While PolyJIT spends time
compiling function variants during the program’s execution (synchronously as
well as asynchronously), it can profit from function variant requests to already
compiled ones. On average, we can resolve 8489 function variant requests from
the cache, with a range from 0 to 920 944 cache hits. Given the low median
of 1, we have to assume that one half of our input programs only require 0
to 1 cache hits, as is confirmed by Table 2. This suggests that we frequently
generate functions that are called only once.

The compilation overhead generated by PolyJIT is quantified by variable
OC. For OC, we achieve values between 0.24% and 30.48%, with an average
of 7% of the program’s execution time spent compiling new function variants.
This overhead in compilation time must be compensated for in terms of
optimizable execution time, captured by variable EC. Ranging from 8.64 to
99.19, with an average EC value of 54, our data suggests that PolyJIT’s SCoP
detection provides enough opportunities to compensate for the compilation
overhead. More precisely, a quick T-Test of the hypothesis H0: µEC ≥ µOC
reveals that the overhead is significantly smaller than the execution coverage
(p=1.89 · 10−15).

In summary, we have shown that PolyJIT’s execution time overhead can
be considered negligible, given a sufficiently large value of EC.

RQ4 Table 4 shows how run-time multi-versioning performs when compared
to classic delinearization. As a first step, we compare dyn spec to stat polly ,
that is, we perform full run-time multi-versioning but no delinearization of
memory accesses inside Polly, and compare it to Polly at compile time. Both
configurations behave similarly in terms of speedup over stat , on average, with
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an average speedup of 1.58 (median: 0.96) for dyn spec and 1.64 (median: 1) for
stat polly . This is expected because disallowing delinearization for Polly should
be irrelevant in the presence of run-time value specialization by PolyJIT.
All other statistics point in the same direction, except the lower minimum
speedup of 0.19 compared to 0.8. We suspect that this accounts for compilation
overhead caused by PolyJIT, which results in a slower possible speedup as
discussed in the previous paragraph.

Figure 6 (page 33) shows a comparison of speedup values for the two baseline
configurations stat (horizontal axis) and stat polly (vertical axis). The white
area marks zones in which the introduced speedup measure is not continuous.
Ideally, all values should reside in the first quadrant for dyn spec delin, because
then we would achieve higher speedups over both baseline configurations.
The second quadrant means that we are slower than stat but faster than
stat polly . This can be the case if polyhedral transformations found by Polly
cause a slowdown and the optimizations of PolyJIT cannot compensate fully
for it. The third quadrant collects cases in which PolyJIT fails to improve
the program and causes slowdown compared to both baseline configurations.
The fourth quadrant houses all measurements in which PolyJIT manages
to improve over stat , but to the same or a lesser degree than stat polly . At
first glance, Figure 6 shows that dyn spec delin behaves similarly to dyn spec,
except for a few programs in the third quadrant for the latter configuration.
dyn performs worst, which is expected because there is nothing that removes
non-affine accesses in the SCoP candidates that are presented to Polly. As
an aside, dyn delin also looks similar to dyn spec delin because, on our test
set, there are many programs that belong to the classic polyhedral domain, for
example, Polybench. This leads to delinearization behaving almost identically
to run-time value specialization on these benchmark programs.

In summary, we have shown that parameter value specialization behaves
similarly but not identically to optimistic delinearization. Additionally, in many
cases, parameter value specialization is able to improve the execution time even
further, because it is able to simplify the generated code after optimization.

4.6 Discussion

Our experiments have demonstrated that PolyJIT is able to handle a large
number of SCoPs (704), distributed over a wide variety of programs from
different domains. 122 out of 704 can be optimized at run time and achieve a
reduction in execution time of up to 57.69. Especially larger speedups can be
gained in programming domains that are known to be amenable for polyhedral
optimization, such as Polybench or the domain “Scientific”. However, over
all 69 cases, we found that the slowdown stays mostly below −2. Here, future
advances in polyhedral scheduling or postprocessing have a chance of generating
new opportunities. Additionally, it is necessary to impose a cost model on
PolyJIT since short-running regions (e.g., below 1ms) cause more overhead
than possible speedup, even if invoked multiple times.
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<...>

create_matrix(float **mp, int size) {

float *m;

float coe[2*size-1];

<...>

m = (float*) malloc(sizeof(float)*size*size);

<...>

for (int i=0; i < size; i++) {

for (int j=0; j < size; j++) {

m[i*size+j] = coe[size-1-i+j];

}

}

}

(a) Source code taken from the OpenMP version of the lud benchmark included in Rodinia
version 3.1, file name: common/common.c
#pragma omp parallel for

for (int c0 = 0; c0 <= 249; c0 += 1) {

for (int c1 = 0; c1 <= 249; c1 += 1) {

// 1st level tiling - Points

for (int c2 = 0; c2 <= 31; c2 += 1) {

#pragma simd

for (int c3 = 0; c3 <= 31; c3 += 1) {

Stmt6(32 * c0 + c2, 32 * c1 + c3);

}

}

}

}

Stmt10();

(b) AST generated by Polly after PolyJIT’s parameter value substitution for size = 32

Listing 4: Small real-world example SCoP found by PolyJIT that required
run-time support to be detected by Polly. While Polly should be able to
find a multi-dimensional representation of array m in the form m[size][size],
it rejects the candidate with the diagnostic message: “The array subscript of
”UNKNOWN” is not affine”.

A small example SCoP found in our set of subject programs and optimized
by PolyJIT is shown in Listing 4. Here, the source code contains a multi-
dimensional array implemented by means of linearized memory accesses, which
result in non-affine expressions in the array subscripts (shown in Listing 4a).
Polly fails to delinearize the memory access in this case and rejects the
SCoP because of the non-affine memory accesses occuring inside the loop body.
PolyJIT performs multi-versioning based on the parameter size at run time
and generates the tiled and vectorized code shown in Listing 4b. More examples
can be found on the project’s Web site.

An inspection of PolyJIT’s effect on the overall execution time yields
mixed results. While we gain overall performance for Polybench and LNT,
we often pay for the added compilation overhead in cases that cannot achieve a
speedup over existing performance of either stat or stat polly . On average, we
achieve a speedup of 2.07 and 1.16, respectively. Results from other domains
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are included on the project’s Web site, but are excluded here due to our filter
rules for measurement results. Typically, the EC values of the projects need
to be high enough for a polyhedral transformation to have an effect on the
generated code, which is not the case for many programs from other domains.

Since a program of Polybench typically contains a single loop kernel that
produces a large number of iterations, the decrease in execution time is able to
outweigh the overhead of code generation completely. Outside Polybench, we
experience a much higher frequency of SCoP invocations (8489.1, on average)
with a moderate number of different parameter values (5.88, on average). In this
setting, PolyJIT needs to hide the overhead caused by code generation as much
as possible. We have achieved this by means of asynchronous function-variant
generation, which makes us benefit from the optimized code every time the
program requests a variant after code generation is completed. Our experiments
also established that the overhead of PolyJIT’s parameter redirection in
addition to its run-time compilation is negligible (OC 7%). In its default
configuration, PolyJIT strives to hide this overhead partly by asynchronous
code generation in combination with a function variant cache. When considering
the large numbers of cache hits (8489.1, on average), this proves to be a good
way to reduce the perceived overhead for the end user.

When we compare PolyJIT’s parameter-value specialization at run time
to delinearization at compile time, we find that they both behave similarly
when applied in isolation. This follows naturally, because all non-affine memory
accesses that were created by linearization are becoming affine as soon as
we specialize for all loop-invariant structural parameter values. However, our
results show that the speedup improves, on average, from 1.71 and 1.58 to 2.07.
This shows that parameter value specialization offers a potential for further
optimization on top of the elimination of non-affine access functions.

So, overall, we conclude that it is beneficial to apply polyhedral optimization
at run time on programs of both the domain of polyhedral applications as well
as real-world applications. We showed that the SCoPs encountered outside of
the classic polyhedral programs require more effort on the part of the JIT code
generation, because SCoP candidates tend to be called with a higher frequency
and a higher number of different parameter values. For use in practice, our
research prototype PolyJIT still has to cope with a large amount of overhead
during code generation, which limits it to SCoPs with a sufficient execution time.
We discuss possible solutions that reduce the overhead further in Section 6.

4.7 Deviations & Threats to Validity

We experienced measurement bias in a few cases, caused by interference of the
host system with the execution of the binaries, which resulted in fluctuating
execution times between different configurations. While this does not affect
our conclusions, as we discuss in Section 4.6, we tried to counter this effect by
pinning each thread to its own core on the host system.
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Construct validity We measure execution time per dynamic SCoP. This requires
the placement of timing calls around each SCoP, which has an influence on the
overhead generated by PolyJIT and, therefore, reduces its perceived benefit
the more frequently its run-time environment is re-entered. We calibrated the
time necessary for a single timing measurement and counted the number of
timing events generated. The overhead introduced was linear in the number of
timing calls. All measurements were conducted on hardware with a running
operating system. Even though we control the affinity mask and processor
frequency settings, there is still a chance to suffer from interference by tasks
that run on the same system. Therefore, for a SCoP to be considered a good
region, we require it to be at least 10% faster than the baseline.

Internal validity Our experiments rely on the quality of our input data for
run-time measurements. We addressed this threat to validity by choosing the
developers’ own benchmark sets or by using the known default benchmark
of the corresponding domain, such as FATE [10] for audio-video codecs. We
assume that the developers’ own test cases cover the important code paths and
that the default benchmarks of a domain cover the most common use cases.

External validity As with any other comparable empirical study, the selection
of subject programs threatens the generalizability of our results. We controlled
this threat sufficiently by selecting a large and diverse number of subject
systems from different areas.

5 Related Work

Grosser et al.’s work on optimistic delinearization of linearized memory access
functions [15] provides a compile-time alternative to multi-versioning at run
time. It recovers the multi-dimensional nature of linearized memory accesses
with a possible representation of them. Parametric terms that occur in a lin-
earized access can encode the size information for each original array dimension.
Since this reconstruction is optimistic, it must be guarded by a run-time check
that verifies any assumptions on array sizes taken to avoid illegal memory ac-
cesses. Multi-versioning at run time in the form used by PolyJIT can deal with
the same cases as the delinearization without the need for a run-time check.

Sambamba [31] is a JIT compiler like PolyJIT that performs run-time
adaptive parallelization based on program dependence graphs. In contrast to
PolyJIT’s focus on polyhedral optimization, it exposes general task parallelism
via speculative execution and privatization, with special attention paid to the
computational pattern of reduction. Both PolyJIT and Sambamba share the
preparation of serialized micro-kernels at compile time for use at run time.

In contrast to PolyJIT’s approach to detecting dynamic regions, the
speculative loop parallelizing framework Apollo [6] uses statement-based
parameterized code snippets, so-called code bones, to prepare dynamic SCoPs for
speculative parallelization at run time. Apollo’s run-time system orchestrates
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the execution of all code bones. At compile time, multiple versions are generated
for each code bone. One assumes the role of a verification code snippet, whereas
the others provide different templated optimizations. At run time, each loop
nest is executed in a rolling-window fashion, which offers the opportunity to
monitor the running code bone and employ adaptations, if necessary.

VMAD [20] is the predecessor of the Apollo framework. It relies on an
earlier variant of Apollo’s code bones, the code skeletons. These are selected,
templated skeletons that support only a limited set of polyhedral transforma-
tions that already have to be known at compile time. Furthermore, no transfor-
mations that alter the number of statements (e.g., loop fission) are supported.

Alenov et al.’s work on enabling SIMD intrinsics for managed run-time
systems [29] proposes a more manual approach by unlocking the performance
of SIMD instructions on high-level languages such as Java for the developer.
While PolyJIT focusses on uncovering the potential to generate parallel code
fully automatically at run time, their work enables the developer to make
semi-automatic use of a high-level language in combination with the low-level
capabilities of the processor’s vector instructions using Scala’s lightweight
modular staging (LMS) framework.

As PolyJIT strives to optimize the run-time performance of programs, we
also depend on capabilities for post-processing SCoPs that have been optimized
according to the model’s objective function. This typically involves tiling to
improve data-locality of the transformed SCoPs. There is a large body of work
on a variety of tiling strategies for a variety of architectures, including diamond
tiling [32], hexagonal tiling [13], and traditional rectangular tiling [19], [36].
However, these typically focus on properties such as minimization of inter-tile
communication, or maximal distribution of tiles on the available processors.
The target-dependent part of optimal sizes is not considered. Commonly, one
resorts to manual tuning by an expert or auto-tuning, neither of which is
suitable for the low-latency environments that PolyJIT targets. However,
there are more promising approaches that try to dynamically select corrrect tile
sizes [33], or even propose model based tile-size selection [37,23]. A prototype
implementation of [23] inside PolyJIT did not yield stable results yet.

6 Conclusions

The polyhedron model is a well-studied approach to automatic program opti-
mization, typically, used in the domains of highly regular high-performance
and linear-algebra programs. With its inclusion in modern compiler frame-
works, such as LLVM and GCC, there is the desire for applying polyhedral
optimization techniques to—more complex—general-purpose programs. The ir-
regularity of general-purpose programs often impairs a polyhedral optimization
at compile time, though. We propose PolyJIT, a light-weight JIT compiler
that moves classic polyhedral optimization techniques from compile time to
run time. In a diverse corpus of 53 real-world programs and community bench-
marks, we achieved speedups of up to 13.03. More precisely, with the use of
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multi-versioning and run-time knowledge, we were able to improve the perfor-
mance of 122 SCoPs with speedups between –23.67 and 57.69. Not surprisingly,
classic polyhedral programs showed large speedups in our experiments, even
in the presence of PolyJIT’s run-time overhead. This is mainly due to task
parallelism and data-locality optimization, in conjunction with sufficient execu-
tion time spent inside SCoPs. While programs beyond the polyhedral domain
scaled less well for task parallelism, data-locality optimization still yielded
considerable speedups.

Overall, PolyJIT’s results demonstrate that automatic program optimiza-
tion based on the polyhedral model can yield promising results when applied
to general-purpose programs.
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Benchbuild (Compilation, Encryption, Scientific)

scimark −1 −1.0 1.0 43.3 8 4 4 0 31.5 31.4 31.6
libressl −3.0 −2.9 1 24.1 26.0 10 10 0 5.2 5.4 15.4
lua −2.0 −2.0 −1.0 11.9 13.1 4 4 0 19.9 20.0 40.5

BOTS

fft 1.5 1.5 1.0 80.8 4.0 1 1 0 10.3 10.3 7.1
sparselu −5.2 −6.8 1.3 69.5 26.5 301 98 921 000 12.5 9.6 65.2
alignment −1.1 −1.1 1 36.4 3.7 4 2 2 23.2 23.2 26.0
floorplan −2.0 −2.1 1.0 12.5 13.4 6 6 0 21.5 21.2 43.6

MSB (ASC Sequoia, Bullet, CoyoteBench, TSVC)

IRSmk −1.0 −1.0 −1 98.2 1.5 1 1 0 3.8 3.8 3.8
Recurrences −1.0 −1.0 1 96.9 1.6 6 6 0 8.3 8.3 8.6
StatementReordering −1.1 −1.1 1 94.7 2.6 6 6 0 6.5 6.5 7.0
NodeSplitting −1.1 −1.1 1 94.2 3.2 12 12 0 7.0 7.0 7.6
IndirectAddressing 6.7 6.7 1 90.7 5.3 2 2 0 6.9 6.9 1.0
Expansion −1.1 −1.2 1 88.8 7.5 24 20 640 5.9 5.8 6.6
Equivalencing −1.2 −1.2 1 85.1 8.3 20 20 0 3.3 3.4 4.1
LoopRestructuring 1.3 −1.3 1.1 80.0 18.8 18 6 22 400 8.5 5.1 6.8
LinearDependence −1.3 −1.2 1.1 76.3 18.6 28 16 49 400 6.1 6.7 8.0
InductionVariable −1.1 −1.2 −1.1 74.1 7.0 14 10 7 700 7.3 7.0 8.4
ControlFlow −1.1 −1.2 −1.0 63.3 11.0 34 18 27 372 7.4 6.9 8.2
CrossingThresholds −1.2 −1.1 −1 57.1 6.1 12 8 4 402 6.1 6.4 7.2
ControlLoops −1.1 −1.1 −1.0 53.7 4.3 20 20 0 6.6 6.5 7.3
Symbolics −1.3 −1.2 1.0 47.6 4.9 6 6 0 4.2 4.4 5.3
lpbench −4.0 −4.0 −1.0 43.9 20.1 4 3 1 2.3 2.3 9.1
Reductions 6.3 6.3 1 42.4 3.2 4 4 0 10.9 10.9 1.7
GlobalDataFlow −2.1 −2.1 −1.0 32.3 14.3 12 12 0 8.8 8.8 18.6
bullet −2.0 −2.0 −1.0 13.8 14.6 22 22 0 5.7 5.7 11.4

Polybench

ludcmp 4.0 −1.1 1 99.2 0.8 2 0 2 306.0 67.8 76.2
nussinov −1.3 −1.3 1 92.0 0.2 1 0 1 68.4 68.4 88.7
floyd-warshall −1.1 −1.0 6.7 91.9 0.3 1 0 1 168.2 175.6 179.2
symm −1.0 1.0 1 89.3 0.6 1 0 1 30.1 31.2 30.3
cholesky 6.0 −1.4 1.1 87.5 0.8 2 0 4 000 260.4 31.2 43.1
jacobi-2d −1.1 −2.9 −1.2 81.1 0.6 1 0 1 35.6 13.7 40.2
heat-3d 1.7 1.7 −1.0 81.0 2.1 1 0 1 67.3 67.4 39.6
seidel-2d 4.1 4.1 1.9 74.2 0.6 1 0 1 248.3 249.0 61.0
lu 12.9 3.4 1.1 56.4 2.4 2 0 2 319.2 83.0 24.6
gemm 2.0 −1.1 2.4 32.5 2.8 1 0 1 13.2 6.0 6.5
gramschmidt 4.2 1.2 1.3 31.9 2.4 1 0 1 48.6 13.2 11.5
syr2k 6.0 −1.0 1.0 28.1 2.8 1 0 1 47.6 7.6 7.9
correlation 8.8 1.5 1.1 26.0 6.5 2 0 2 55.4 9.3 6.3
3mm 8.8 1.6 4.4 25.4 8.2 1 0 1 52.0 9.4 5.9
2mm 7.0 1.6 3.3 20.2 5.6 1 0 1 40.8 9.4 5.8
trmm 3.1 −1.1 −1.2 18.6 1.7 1 0 1 23.0 6.6 7.4
doitgen 1.1 1.1 −1.2 18.1 0.9 1 0 1 17.2 17.7 16.3
covariance 6.1 6.2 1.1 17.7 4.4 1 0 1 58.2 59.0 9.5
syrk 3.3 1.1 1.1 17.0 3.3 1 0 1 21.9 6.9 6.6

SPEC CPU2006

470.lbm −1.2 1.1 1.0 80.0 18.2 3 1 22 2.7 3.4 3.2
473.astar 1.5 1.5 1 28.4 0.4 1 1 0 9.0 9.0 6.2

SSB (McGill, Shootout, Misc)

flops-2 −1.1 −1.1 −1 93.6 6.3 1 0 1 1.0 1.0 1.1
ary3 −1.4 −2.7 −1 57.7 5.9 2 1 1 1.2 0.6 1.6
oourafft −4.8 −4.8 2.0 36 30.5 8 6 300 000 3.4 3.4 16.5
gramschmidt 3.1 2.3 1.2 20.0 20.9 1 0 1 3.1 2.4 1.0
flops 1.8 1.8 1 12.5 0.6 2 2 0 6.3 6.1 3.5
chomp −2.1 −2.1 1.0 12.4 15.0 3 3 0 1.8 1.8 3.7
ReedSolomon −2.3 −2.2 1.0 8.6 27.7 6 3 450 000 4.7 4.9 10.8

Table 2: Subject programs and benchmarks used in the evaluation of PolyJIT.
A comprehensive introduction to all measures used in the table can be found
in Section 4.2. SO3, SP , and SJns denote the speedup over the baseline con-
figurations stat , stat polly , and dyn delin. EC describes the fraction of the
total execution time spent inside SCoPs in %. overhead coverage (OC) de-
scribes the fraction of the total execution time spent compiling at run time
in %. C count the number of times PolyJIT was able to serve a function
request from its internal cache. Furthermore, we list the total execution times
Tstat, and Tstat polly of the two baseline configurations, and Tdyn spec delin of the
configuration dyn spec delin in seconds.
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Figure 6: Faceted two-dimensional speedup plot. The horizontal axis shows
the speedup of the given configuration over stat . The vertical axis shows the
speedup of the given configuration over stat polly . The dark grey area marks
a zone of invalid values, because the speedup metric is not continuous in the
range between –1 and 1.
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