LFCS

Laboratory for Foundations of Computer Science
Department of Computer Science - The University of Edinburgh

An Improved Systolic Array
for String Correction

by

Davide Sangiorgi
Christian Lengauer

uonoa1l0n Bulyg 1oy Aeuy 21j01sAg paaosdwl] uy

LFCS Report Series ECS-LFCS-91-153

LFCS May 1991
Department of Computer Science
University of Edinburgh

The King's Buildings - k

Copyright © 1991, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

To appear in Proc. Advanced Research Workshop on
Correct Hardware Design Methodologies, Turin, Italy, June 1991.

An Improved Systolic Array for String Correction
Davide Sangiorgi Christian ‘Lengauer

Laboratory for Foundations of Computer Science
Department of Computer Science
University of Edinburgh
The King’s Buildings
Edinburgh EH9 3JZ, U.K.

Abstract

The theory of systolic automata has served in the past for comparative as-
sessments of the computational power of different systolic arrays. Here, it is
used in the design of a systolic array. Theorems from the theory of systolic
automata guide the transformational improvement of a known systolic array
for string correction.

1 Introduction

Mechanical systolic design methods have now evolved into an effective tool for the design of
systolic arrays in hardware or software (e.g., [LBH91, RK88]). However, one shortcoming
of these methods is their restricted scope, as long as one insists on a fully automated
derivation. Efforts of extending the scope are under way [QvD89, Raj89]. At present and
for the foreseeable future, adjustments of the source description offered to the method or
the target description returned by the method are beneficial in many cases. (See [LX90]
for a large example.) Such adjustments should be carried out with formal rigour and

justification.
We improve a mechanically derived systolic array for string correction with transfor-

mation techniques from the theory of systolic automata.
The remainder of the paper is structured as follows:

Sect. 2 introduces machine models and theorems of the theory of systolic automata.

Sect. 3 reviews mechanical systolic design methods; one of them is being employed in the
improvement of the systolic array.

Sect. 4 presents a formal specification of the problem of string correction.

Sect. 5 presents the known systolic array for string correction that is going to be improved.

1

Sect. 6 is the main section of the paper. It derives the improved systolic array from a
different known systolic array in four transformation steps.

Sect. 7 evaluates the improved array and the use of systolic automata theory in its deriva-
tion.

2 Systolic Automata

The theorems presented here were introduced in the framework of systolic automata
[Gru84, Gru90]. Systolic automata represent language acceptors; the set of possible states
that a computing element may assume is divided into final states and not final states. For
our purpose, the notion of a final state is not important and only complicates matters.
Therefore, we shall work in the simpler framework of systolic machines. Systolic machines
are systolic automata without final states.

A systolic machine is a quadruple (S, A, g, f). S defines the underlying structure S,
A the input alphabet, g the input function and f the transition function.

The underlying structure of a systolic machine is typically an array or tree of memory-
less identical processors. The processors are connected by unidirectional links in a regular
pattern. We.call the links that supply information to (from) the processor in-links (out-
links). A processor may also have an extra link that supplies it with external data. The
model does not provide for the return of data to the external environment; instead the
data on the out-links determine the outcome of a computation.

The alphabet A and the domains and codomains of f and g must be finite. If n is
the number of out-links of a processor in S, then we will assume that the possible values
returned by g or f are n-tuples whose i-th component (0 < ¢ <n) represents the output
on the i-th out-link. The special symbol § represents non-significant information.

The computational power of this model does not change if we require that all out-
links carry the same output. This requirement is usually made in the theory of systolic
automata. Our weaker requirement leads to simpler transformations, especially in the
proof of the Thm. 3.

Let w = wy...w,, where (V¢ :0<i<n:w; € A), be an input word. Each letter
of w is input to a processor in the input row — one of the rows of processors in S whose
length does not exceed the length of the input. The order of the letters in w must be
maintained; i.e. if w; enters processor P, then w;,, enters some processor to the left of
P. The processors in the input row that receive no letter of w are supplied with §.

Processors in the input row modify their data by applying the input function g; all
other processors modify it by applying the transition function f. A processor that receives
nothing else but § sends nothing else but f.

2.1 A Classification of Systolic Machines
There are several types of systolic machines [CC84, CGS84a, CGS84b, CGS86]:

Cellular Machine (CM). The underlying structure is an infinite linear array of identical
processors with unit propagation delay on all interconnections. Each processor is
two-way connected with both neighbours and one-way connected with itself. We do
not need to distinguish an input row; there is only one row of processors.

One-Way Cellular Machine (OCM). A CM with one-way instead of two-way processor
connections. '

Trellis Grid Machine (TGM). The connection structure is a trellis grid (Fig. 1(b)). The .
rows are counted bottom-up starting with 1; the input row is always row 1. Diagonal
links have unit delay, vertical links have a delay of 2. The computation proceeds
bottom-up and row-wise in parallel. That is, at step ¢, only the processors in row ¢
are computing. Border processors may have in-links missing. Then the assumption
is that they take § for any missing in-link.

There are different ways of introducing the notion of output in CMs, OCMs and TGMs.
For TGMs, one of the most studied notions is diagonal acceptance [Gru84]. A TGM with
diagonal acceptance is called a trellis.

Trellis Machine (TM). A trellis is an infinite triangularly shaped trellis grid (Fig. 7 de-
picts an example that we shall deal with later in the paper). A trellis has the same
connection pattern as a trellis grid. The input row for input w is one of the rows
with a number of processors greater than or equal to the length of w. The compu-
tation proceeds bottom-up and row-wise in parallel. The output of the processors
in the top row is the output of the computation. The same border convention as in
the case of the TGM applies.

Various modifications of the basic TM model (and its derivatives) help to understand
better the computational power of, e.g., different ways of supplying the input or different
ways of connecting the processors.

Normalized Trellis Machine (nTM). The vertical connections of the trellis are removed.

Superstable Trellis Machine. The output of the TM does not depend on the way in which
the input is provided, as long as the ordering of the letters in the input is maintained.
We add the usually not required condition that the left-most letter of the input must
be supplied to the left-most processor of the input row; this simplifies one of our
theorems (Thm. 3).

Real-time Trellis Machine. The letters of the input word are supplied to consecutive pro-
cessors of the the single row whose length equals the length of the input.

2.2 Simulation

We say that the systolic machine M; simulates the systolic machine M, iff there exists a
transformation which maps each computation in M; into an (in some sense) equivalent
computation in M,. For our purposes, this quite informal notion of simulation will suffice.
The proofs of the following theorems are based on a more formal notion [Gru84, Gru90].

Theorem 1 [Gru84] Any CM can be simulated by a TGM.

Proof Sketch. Unfolding the computation of a CM yields the network shown in Fig. 1(a),
where t represents time. This network can be simulated by the network of Fig. 1(b),
which is obtained from the former by replacing all intersections by new processors. O

Theorem 2 (Normalization of Trellises) [CGS84a] Any TM can be simulated by an nTM.

Proof Sketch. The information that is sent in a TM along a vertical link is transmitted in
an n'TM (which does not have that link) along the two diagonal links instead. See Fig. 2.
The dotted links represent the links involved in the communication; on the left is the TM,
on the right the n'TM. i

Since the simulation of an nTM by a TM is straight-forward, we can conclude that TMs
and nTMs are computationally equivalent. The following theorem states that real-time
nTMs and superstable n'TM are also computationally equivalent.

Theorem 3 (Superstability of Trellises) [CGS86] Let M; be a real-time nTM with tran-
sition function hy and M, a nTM with transition function hy defined by the table below
(for two inputs v,z#4). Then

1. M, is superstable; ha v |
. z || b(v,2) | (§,2)
2. M, simulates M,. ; 8 | &1

Proof Sketch. We show (2); (1) is similar. The proof of (2) relies on the following property.
Let w be an input, and let w; be the i-th letter of w, 0 <7 <|w|. If w; is another letter
(i#7) and P (P') is the processor at the cross between the two diagonals passing from
the processors in M, (M,) that receive w; and w;, then P and P' perform the same
computation step. See Fig. 3. P (P') is the black node. :

This property can be proved by induction on the distance between the processors that
receive w; and w;. Then the definition of function h, and the condition in the definition
of superstability (that the first letter of the input enters the first processor of the input
row) forces the outputs of M, and M; to be the identical. O

Theorem 4 [CGS84a] Any nTM can be simulated by an OCM.

Proof Sketch. Take an n'TM (Fig. 4(a)). We obtain the diagonal unrolling of an OCM by
shifting the ¢-th row from the bottom (:>0) ¢/2 places to the right (Fig. 4(b)). o

3 Systolic Design Methods

The starting point of mechanical systolic design methods is, essentially, either an imper-
ative program [HL87, LBH91] or a functional program [Qui84, RK88] without parallel
commands or communication directives. We concentrate on the imperative viewpoint.

3.1 The Source Description

Our source specification is of the following form:

for z, from lb, by st, to rb, do
for z, from (b, by st; to rb; do

for z,_, from [b,_; by st._; to rb._; do
:1:0::61:- . ':.fv.,.__l

We call zg:z4:- - -:x,_; the basic statement of the program. It is, in our case, imperative but
could also be functional. It may not contain non-local references other than to variables
subscripted by the z;. The bounds [b; and rb; are linear expressions in the loop indices z,
to z;_; (0<i¢<r) and in additional variables that specify the problem size. The steps st;
are constants. Certain other restrictions apply [LBH91, RK88]; for an imperative source:

1. each non-local variable is subscripted by exactly r—1 linear expressions in the loop
indices; their coefficient matrix has rank r—1;

2. non-local variables that agree in name must agree in subscripts (in order to ensure
the well-definedness of flow; see Sect. 3.2).

3.2 The Target Description

Both for a functional and an imperative source, the resulting systolic array is described
by two functions. Let Z denote the integers, Q the rationals and OpCZ" the indez space
over which the basic operations range:

step : Op — Z specifies a temporal distribution of the program’s operations. Operations
that are mapped to the same step number are performed in parallel.

place : Op — Z"™! specifies a spatial distribution of the program’s operations. The di-
mension of the layout space is one less than the number of arguments of the opera-
tions.

After the mechanical derivation of a shortest distribution in time, one chooses a compatible
distribution in space by a search [HL87, Mol83]. With this choice, one can optimize other
aspects of the array, e.g., its throughput, number of processors or channels or storage

registers per processor, and so on. If step and place are linear, they determine the direction
and distance at which data travel through the array. Let V be the set of variables of the
program:

flow : V — Q"1 specifies the direction and distance that variables travel at each step.
It is defined as follows: if variable v is accessed by distinct basic operations sy and
8, then ‘ '

flow(v) = (place(s,) — place(so))/(step(sy) —step(so))

The restrictions on the source guarantee that flow is well-defined, i.e., independent of the
choice of sq and s; [HL87, LBH91, Qui84, RK88].

4 The Problem: String Correction

The problem is to compare two strings of characters by computing a distance, the so-
called edit distance, which represents the minimal cost of modifying one of the strings to
match the other, one character at a time [WF76]. Modifications are substitution, deletion
and insertion. With these three operations, any string may be modified into any other
string. We need to identify the shortest sequence of such modifications.

Let a string be a finite sequence of characters. If the length of string X is n, denote
the prefix of X of length 7 (0 <¢<n) by X;. Denote the cost of substituting character y
for character z by ed(z,y); a possible example is:

ed(z,y) = ife=y—->0[] z#y — 11

Denote the null character by L, i.e., ed(z, L) is the cost of the deletion of character z
and ed(.L,y) the cost of the insertion of character y. Let X = (seq 1 : 0<i<n : z;)
and Y = (seq j : 0<j <m :y;) be strings. The edit distance of X and Y, denoted
D(X,,Y,,), is described by the following recurrence relation on the length of X and Y:

D(Xo,Yp) =0, (Vi:0<i<n:D(X;,Yy) =+00), (Vj:0<j<m:D(X,,Y;)=+00),

(D(Xi—lij—l) + ed(mh y]))
min)

(Ve:0<i<n:(Vj:0<j<m:D(X,,Y;) = D(X;.1,Y;) +ed(z;, L)

D(X;,Y;y) +ed(L,y;)
5 A Known Systolic Array

The following imperative program satisfies the specification; it can be derived with me-
chanical systolic design methods. X = (seqi: 0<i<n:z;) and Y = (seq j : 0<j<m:
y;) are represented as vectors z and y of characters. With the following initializations:

(Vi,7:0<i<nAB<j<m:aq;:=+o0; b_;:= ifi=j =0 i#j — +oofi; d;:=+400)

6

and with a given function ed, the following program computes the edit distance of the
two strings — D(X,,,Y,,) in the specification — and returns it in a,, b,_,, and d,,:

for : from 1 to n do
for 7 from 1 to m do

29

Z] o ag, bi—j7 dj = h(a,-, bi—j7 d]) Z;, y])
argl + ed(arg4,argb)
h(argl,arg2,arg3,argd,arg5) = min| arg2 + ed(arg4, L)
arg3 + ed(L,argd)

The multiple assignment assigns all three target variables the same value [Gri78]. There
are two subtleties in the derivation of this program:

1. The introduction of variables that are not in the specification. This is necessary to
keep flow well-defined (Sect. 3.2). It can be automated with available systolic design
technology [QvD89, Raj89].

2. The switch from double indexing in the specification to single indexing in the source
program. This is advisable for an imperative source, in order to comply with the
syntactic restrictions laid down in Sect. 3.1. It is possible, since value D(X,,,Y,,)
is the only output of interest.

We derive the optimal step function and choose a compatible place function:
step(4,7) =i+j—1 place(z,j) = ¢
These definitions of step and place lead to the following data flows:
flow(a) =0 flow(d) = +1/2 flow(d)=+1 flow(z)=0 flow(y) = +1

This array has been proposed before and built [FL88]. The derivation in [F1.88] is based
on a doubly-indexed functional source program that reflects the specification directly but,
when switching to imperative target code, similar modifications are made as we made in
the source here.

Fig. 5 depicts the array for input size n=3 and m =2 at the first step. Circles represent
processors, filled-in circles represent active processors. That is, the left processor is active
in the first step. Arrows represent data movement. As indicated by flow, streams a and
z are stationary and streams b, d and y move to the right. The array is an OCM: all
moving data travel in the same direction. Its shortcoming is that stream b travels to
slowly to encounter a processor at each step; one delay cell is required between each two
neighbouring processors.

6 The New Systolic Array

Our goal is to eliminate the delays in the previous OCM at no cost of execution time.
For reasons to be explained later (Sect. 6.5), we shall do so by starting with a mechan-
ically derived CM (that has also been proposed before [LL87]) and applying a series of
transformations that leads to an OCM without delays. _

Each transformation is justified by one of the simulation theorems. However, we shall
recast the transformations in terms of the imperative method. We apply four transfor-
mations. Each modifies step, place or the basic operation. 7T, is the machine, S; the
operation, step; the parallel execution and place; the processor layout of transformation
¢. In illustrating figures, we always depict the input size n=3 and m=2.

To is the initial CM. In the imperative method, it is represented by the following basic
statement and distribution functions:

Soliy) st isj stepo(i,j) =i+j-1 place(i,) =i—j
with the same initializations as in the previous section. That is, it can be derived me-

chanically from the source program of the previous section by choosing a different place
function. Fig. 6 depicts the array at the first step. The flows are:

flowg(a) = —1 flowg(d) =0 flowg(d) = +1 flowg(z) = —1 flowg(y) = +1

Processors compute only at every other step in this array; at the rest of the steps they only
propagate data without using or modifying them. (One of our transformations exploits
this fact.)

6.1 Transformation 1

By applying Thm. 1, we first transform the CM T into a TGM T'; the two-dimensional
layout simplifies the successive transformations. The sequences of computations that are
performed by one processor of T}, are unrolled into space. (This yields the index space
of the problem [Qui84, RK88].) Then extra rows are added to obtain T'. Each processor
of T, corresponds to a column of processors of 7. Note that the data flows of Ty and T
differ. Stream b, stationary in Ty, moves vertically in T'. Streams a and z (d and y) move
along the south-east to north-west (south-west to north-east) diagonal in 7'.

Since we are interested in a final value, we need only be concerned with a finite part
of the infinite trellis grid. The result is the TM T;. It is depicted in Fig. 7. The dark
processors are the ones that do the computing.

Let us port this transformation to the target end of the imperative method. Because
new rows of processors have been introduced in the transformation, an operation which
is executed at step t by T is executed at step 2-t—1 by T;. Of the processor layout of
T}, the column coordinate is the place function of T}, and the row coordinate is (always
in TMs) the step function of T itself. This packs processors more tightly than in Ty: the
rows added in the transformation have a fractional column coordinate: 1/2. (In Fig. 7, a
unit in columns is half as wide as a unit in rows.)

8

Sl(iuj) = 50(27.7) Stepl(ivj) = 2-step0(i,j)-—1 placel(iaj) = (Placeo(i7j)’5tep1(i7j))

6.2 Transformation 2

We eliminate the vertical links following Thm. 2. Remember that a processor computes
only at every other step. At the remaining steps, it only passes on variables. In Tj,
this is reflected by the fact that, per column, only every other processor computes. The
processors inbetween pass but do not otherwise use variables. See Fig. 8. Consider
the two adjacent computing processors labelled P and). We can redirect their vertical
communications diagonally, applying the proof of Thm. 2 in a geometry scaled by a factor
of 2. This yields simpler successive transformations than applying the theorem directly.
The dotted lines represent the links involved in the communication. To depict T, remove
the vertical links in Fig. 7.

In the imperative method, this transformation is represented by the introduction of
new variables ¢; (0 <j <m) moving left to right, and e; (0 <i<n) moving right to left.
Consider Fig. 8. The information that is sent by T} from P to) is sent by T, first from
P to R, applying c;, and then from R to (), applying e;,,. The basic statement changes
to:

(aia cjvdj = h(ai,ehdj)mh yj))

€; = CJ‘

Again, all assignments are unordered, but the two right-hand sides must be evaluated
before any assignment is made [Gri78].

The flow of ¢; (e;) is as the flow of d; (a;). Moreover, the initial value of c; is useless;
therefore, we can make it the initial value of d;. Then d; and c; must also be assigned the
same final value by the basic statement. Hence, we can eliminate one of the two variables
~ say c;. To preserve the naming conventions in the OCM that we are trying to improve,
we rename e to b.

82(Z,j) . (a;, Cll)J z Z'-(ai) bi) dj7) yj))
Step2(i7j) = Stepl(iaj) placeZ(i7j) = placel(iaj)

The initialization of bis: (V ¢,7:0<i<n:b;:= if i=0—-0[¢:#£0 — +oo fi).

6.3 Transformation 3

We improve the bad utilization of processors in T, by applying Thm. 3 with transition
function hy =(S;(v, 2), Se(v, 2)). The transition function of T, matches the requirements
of hy: a processor performs a basic operation iff both its inputs are not §; if one of the
inputs is §, the processor sends the other input unchanged along the diagonal along which
it was received. From Thm. 3, we can conclude that T, represents a superstable trellis;

therefore, we do not modify the output produced if we feed the input into consecutive
processors. The result is depicted in Fig. 9. Again, the dark processors do the computing.

We can rephrase this transformation in terms of the imperative method by directly
following the proof of the Thm. 3. Let P, (P,,;) be the processor that receives z; (y;) from
the external environment. In T, the processor at the intersection of the diagonals along
which z; and y; travel executes S,(¢,j). T3 must have the same property; this determines
the placement of S3(7,7). The time at which Ss(¢,j) is executed is determined by the
distance between P, and P,:

S3(1,5) == S2(4,9) stepy(z,7) = i+j—1 places(i, j) = ((7—2)/2,1+5-1)

6.4 Transformation 4

Applying Thm. 4, we interpret TM T3 as the diagonal unrolling of an OCM. In terms
of the imperative method, this changes only the place function; an operation which T}
places at processor ((j—¢)/2,i+j—1), for any j, is in T, at processor . We have arrived
at our target OCM:

Ss(2,7) = Ss(2,7) - stepy(2,5) =i+5—1 place,(s,5) =1
Fig. 10 depicts the array at the first step. The flows are:
flows(a) =0 flowy(d) =0 flowy(d) =+1 flowy(z) =0 flowy(y) = +1

6.5 Summary

Let us briefly review our transformations:

e Transformation 1 obtains a two-dimensional structure, resembling the index space of
the problem. We made this structure a trellis so that we could use the normalization
theorem for trellises to eliminate the links of the troublesome stream b. For that, it
was easiest to choose as our starting point a CM in which b is stationary.

¢ Transformation 2 exploits the normalization of trellises and leads to a modification
of the basic statement.

e Transformation 3 compresses the resulting trellis to optimize the distributions in
space and time.

e Transformation 4 rolls the compressed trellis up into our target OCM.

Transformation 2 is the key; it alters the semantics of the systolic array. The other
transformations correspond to manipulations of the index space.

10

7 Conclusions

Our goals in this work were two-fold.

On the one hand, we were looking for a more efficient linear array for the string
correction problem. We consider the OCM T, an improvement over the OCM presented
initially (Sect. 5). There are no delay cells and the length of stream b has been halved.
Both have the same execution time, number of processors and complexity of the basic
operation: one minimization and three unordered assignments. The fact that stream b
has become stationary, is not detrimental: since it holds intermediate values only, it need
neither be loaded into nor recovered from the array. Indexing stream ¢ with ¢ and stream
e with j in Transformation 2 (ditto for d and a) gives stream b a flow of 41 instead,
should that be preferred.

On the other hand, we wanted to explore whether the theory of systolic automata
can support mechanical systolic design methods. One of the benefits of using systolic
automata theory is its formal basis. The transformations that we apply might have been
obtained with a different methodology; but we would insist on an equal level of formality,
especially in semantic modifications like Transformation 2. The future will have to reveal
whether systolic automata theory can make practical contributions to the development of
systolic arrays, in general. At present, no automatic tools for the kind of manipulations
that we performed exists — neither based on the theory of systolic automata nor based on
any other theory.

Our improved array happens to be derivable with the imperative method alone, but
the source has to be chosen cleverly. We discovered this choice with the use of systolic
automata theory. We are not aware that our improvement has been noted before.

8 Acknowledgement

We are grateful to Jingling Xue for insightful comments.

9 References

[CC84] K. Culik II and C. Choffrut. On real-time cellular automata and trellis au-
tomata. Acta Informatica, 21:393-407, 1984.

[CGS84a] K. Culik II, J. Gruska, and A. Salomaa. Systolic trellis automata, Part I. Int.
J. Computer Math., 15:195-212, 1984.

[CGS84b] K. Culik II, J. Gruska, and A. Salomaa. Systolic trellis automata, Part II. Int.
J. Computer Math., 16:3-22, 1984.

[CGS86] K. Culik II, J. Gruska, and A. Salomaa. Systolic trellis automata: Stability,
decidability and complexity. Information and Control, 71:218-230, 1986.

11

[FL8S]

[Gri78)

[Gru84]

[Gru90]
[HL87]
[LBHO1]

[LL87]
[LX90]

[Mol83]

[Qui84]

[QvD89]
[Raj89]
[RK88]

[WE76]

P. Frison and D. Lavenier. A VLSI systolic machine for string correction. In
L. P. and S. I. Kartashev, editors, Proc. Third Int. Conf. on Supercomputing

(ICS 88), Vol. III: Supercomputer Design: Hardware & Software, pages 19-24.
Int. Supercomputing Institute, Inc., 1988.

D. Gries. The multiple assignment statement. IEEE Trans. on Software En-
gineering, SE-4(2):89-93, Mar. 1978. ‘

J. Gruska. Systolic automata: Power, characterization, nonhomogeneity. In_
M. P. Chytil and V. Koubek, editors, Proc. Mathematical Foundations of Com-
puter Science (MFCS ’84), Lecture Notes in Computer Science 176, pages
32-49. Springer-Verlag, 1984.

J. Gruska. Synthesis, structure and power of systolic computations. Theoretical
Computer Science, 71:47-77, 1990.

C.-H. Huang and C. Lengauer. The derivation of systolic implementations of
programs. Acta Informatica, 24(6):595-632, Nov. 1987.

C. Lengauer, M. Barnett, and D. G. Hudson. Towards systolizing compilation.
Distributed Computing, 5(1), 1991. To appear.

R. Lipton and D. Lopresti. Comparing long strings on a short systolic array.
In W. Moore, A. McCabe, and R. Urquart, editors, Systolic Arrays, pages
181-190. Adam Hilger, 1987.

C. Lengauer and J. Xue. A systolic array for pyramidal algorithms. Techni-
cal Report ECS-LFCS-90-114, Department of Computer Science, University of
Edinburgh, June 1990. To appear in J. VLSI Signal Processing.

D. I. Moldovan. On the design of algorithms for VLSI systolic arrays. Proc.
IEEF, 71(1):113-120, Jan. 1983.

P. Quinton. Automatic synthesis of systolic arrays from uniform recurrent
equations. In Proc. 11th Ann. Int. Symp. on Computer Architecture, pages
208-214. IEEE Computer Society Press, 1984.

P. Quinton and V. van Dongen. The mapping of linear recurrence equations
on regular arrays. J. VLSI Signal Processing, 1(2):95-113, Oct. 1989.

S. V. Rajopadhye. Synthesizing systolic arrays with control signals from recur-
rence equations. Distributed Computing, 3:88-105, 1989.

S. K. Rao and T. Kailath. Regular iterative algorithms and their implementa-
tions on processor arrays. Proc. IEEE, 76(3):259-282, Mar. 1988.

R. A. Wagner and M. J. Fischer. The string-to-string correction problem.
J. ACM, 21(1):168-173, Jan. 1976.

12

A Figures

1=4
t=3
t=2
t=1

t t } 4
w

1 Wy wy - Wy

(a) A CM, Vertically Unfolded (b) A Trellis Grid
Figure 1: From a CM to a TGM

T Yy

Figure 2: From a TM to an nTM Figure 3: On the Superstability of Trellises

13

L S S S

wy Wy Wy w, w; w, W, w3 w, W
(a) An nTM shifted right is... (b) The Space-Time Diagram of an OCM

Figure 4: From an nTM to an OCM

. . g % %3
o d- k! 2
2 1

> b, b ->@® b, > b >0 @)

Figure 5: A Known OCM for String Correction

b b b b
-1 0 x 1 2 % <

% 1 2 3
d - Odl —>.<—-a1 O O<—a2 < 2

Figure 6: A Known CM for String Correction

14

Ve VAN AN AN
Y2 (5 Ty) T3

Figure 7: The Result of Transformation 1

P

-

e

//\x\\

\‘/

Y2 y 1 Ty T3
Figure 8: Transformation 2 Figure 9: The Result of Transformation 3
: : :
1 2 >3
Y , 1 2 %
2 1
d, > d ->@ O @)

Figure 10: The New OCM for String Correction

15

