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ABSTRACT

Not only in the field of high-performance computing (HPC), field programmable gate
arrays (FPGAs) are a soaringly popular accelerator technology. However, they use a
completely different programming paradigm and tool set compared to central processing
units (CPUs) or even graphics processing units (GPUs), adding extra development steps
and requiring special knowledge, hindering widespread use in scientific computing. To
bridge this programmability gap, domain-specific languages (DSLs) are a popular choice
to generate low-level implementations from an abstract algorithm description. In this
work, we demonstrate our approach for the generation of numerical solver implementations
based on the multigrid method for FPGAs from the same code base that is also used to
generate code for CPUs using a hybrid parallelization of MPI and OpenMP. Our approach
yields in a hardware design that can compute up to 11 V-cycles per second with an input
grid size of 4096 × 4096 and solution on the coarsest using the conjugate gradient (CG)
method on a mid-range FPGA, beating vectorized, multi-threaded execution on an Intel
Xeon processor.
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1. Introduction

Already today, a large percentage of clusters and supercomputers is equipped with

accelerators and we expect that, in order to achieve exascale performance, the use

of accelerator technologies will not only intensify, but will lead to a variety of new

and different technologies, resulting in systems that are equipped with numerous

accelerator technologies at the same time. However, the implementation of numerical

solvers that unleash such a machine’s full potential poses a great challenge, even

for programming experts. They would not only require excellent knowledge of the

different technologies but also of the mathematical and algorithmic implementation

details.

A common solution to this challenge are domain-specific languages (DSLs). They

decouple the algorithm from its implementation and allow domain experts, who

not necessarily are programming experts, to formulate a description of the problem

using concepts and terms native to them. This description then is transformed into

a (binary) program by a DSL compiler. To add new optimizations, e.g., support for

upcoming accelerator technologies, only the compiler has to be extended. Then, it
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merely takes a recompilation step of the original DSL program to benefit from the

compiler’s improvements, where in traditional approaches the program has to be

extended or often even re-written from scratch in order to be efficiently parallelized

and optimized towards the specifics of a novel architecture.

This approach is used by project ExaStencils [1], which researches the feasibility

of generating highly scalable numerical solvers based on the multigrid method

[2, 3]. Multigrid methods are known to be one of the most efficient ways to solve

systems of equations that arise from the discretization of elliptic partial differential

equations (PDEs), which occur constantly in many application domains, such as

physics, chemistry or materials science. ExaStencils proposes a multi-layered DSL

with each layer tailored towards a certain user group. Furthermore, this approach—

in combination with a description of the target platform and profound built-in

domain knowledge—enables a great variety of possible optimizations that can be

done automatically by the DSL compiler.

FPGAs have been a popular choice for the implementation of signal processing

for a long time. Due to their high computational power in combination with ex-

cellent energy efficiency, they are increasingly drawing interest from users of other

domains. Furthermore, newer approaches to supersede traditional hand-coding of

register transfer level (RTL) designs have been matured: high-level synthesis (HLS)

frameworks often provide an equal quality of results while achieving significant

productivity gains through generating synthesizable hardware descriptions from

behavioral algorithm descriptions on a higher abstraction level, e.g., C code. However,

describing algorithms using such HLS-specific C code is still very specific towards a

certain implementation, whereas DSLs allow to formulate algorithms in a much more

abstract manner and thus enable even higher productivity improvements. Regardless

of its development, the end product of such a hardware development is synthesized

into a so-called intellectual property (IP) core, which then can be loaded onto a

FPGA or integrated as part of an application specific integrated circuit (ASIC).

In this work, we demonstrate the feasibility of generating geometric multigrid

solvers with solution at the coarsest grid via the conjugate gradient (CG) method

from a domain-specific language. We substantiate our claims by providing results

of generated solvers for the steady-state heat equation using constant and variable

coefficients on an FPGA board. For our case study, a fine-grid size of 4096×4096 and

a recursion depth of 8 was used. We compare the achieved performance to results

from an Intel Xeon processor. Regardless of the fact that code for the reconfigurable

systems has been processed by Vivado HLS, the presented approach is applicable to

any C-based high-level synthesis in general.

The rest of this work is structured as follows: In Section 2, related work is

reviewed. In Section 3, a brief introduction to multigrid methods is given. We

provide a brief overview of our DSL and present its programming model in Section 4.

In Section 5, the challenges and solutions arising from the shift towards code

generation for FPGAs are expounded, whereas in Section 6 evaluation results of the

actual hardware implementation are presented. Lastly, conclusions of the presented

research are drawn in Section 7.
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2. Related Work

Regarding the utilization of reconfigurable hardware in scientific computing, a number

of different approaches have been evaluated. One example is Gu [4], who researched

the acceleration of molecular dynamics simulations on FPGAs. Another example is

Hu [5], who examined, among other numerical algorithms, the conjugate gradient

(CG) method on reconfigurable hardware. The solution of Poisson’s equation on a

hybrid reconfigurable system consisting of a CPU and an FPGA is described by

Gomes et al. [6].

For the development of applications on FPGAs, HLS is a popular choice and

thus, numerous solutions have been developed. A popular approach is to start from

a simple imperative programming language, e.g., a subset of C, and then translate

it by stepwise refinement into a synthesizable hardware description language (HDL).

Commercial examples include, besides the aforementioned Vivado HLS by Xilinx

which is an advancement of the acquired HLS tool AutoPilot [7], Catapulta from

Mentor Graphics, Cynthesizer [8] from Cadence (before Forte), NEC’s CyberWork-

bench [9], and Synopsys’ Synphony C Compiler (formerly PICO Express [10] by

Synfora).

For specific application fields, programming aids in the form of libraries are

available and often are shipped with HLS frameworks. For the domain of image

processing, a partial port of the computer vision library OpenCV is shipped with

Vivado HLSb.

However, extending such a library can become quite a burden and poses prob-

lems when porting to new hardware. In contrast, DSL-based approaches separate

algorithms from their implementation and provide greater flexibility by allowing

easier extension to new platforms. PARO [11], for instance, is a HLS environment

for the domain of image processing and provides domain-specific augmentations

for border treatment and reductions such as median filtering. It is also capable of

adaptive multiresolution filtering in medical imaging [12].

In previous work, the benefits of domain-specific optimization have been shown

in various domains. SPIRAL [13], for example, is a widely recognized framework for

the generation of hard- and software implementations of digital signal processing

algorithms (linear transformations, such as FIR filtering, FFT, and DCT). In case

of hardware generation, soft IP cores in synthesizable RTL Verilog are emitted.

ATLAS [14] and FFTW [15] are examples for the generation of mathematical code

from abstract descriptions for specific applications such as FFTs, where further

optimizations are selected via auto-tuning.

In the field of scientific computing and especially for stencil computations, nu-

merous approaches building upon domain-specific languages and code generation

exist. Examples include Liszt [16], which adds abstractions to Java to ease sten-

cil computations for unstructured problems, and Pochoir [17], which employs a

ahttps://www.mentor.com/hls-lp/catapult-high-level-synthesis/
bhttp:
//www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
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divide-and-conquer skeleton on top of the parallel C extension Cilk to make stencil

computations cache-oblivious. PATUS [18] uses auto-tuning techniques to improve

performance. However, none of the aforementioned approaches support code genera-

tion for FPGAs.

Computations in image processing often are similar to stencil computations and

also another popular area for DSLs. Halide [19] generates, among others, CUDA

and OpenCL code from a DSL embedded into C++. The same description can be

transformed to Verilog by Darkroom [20].

HIPAcc [21] provides native support for multigrid methods by offering appropriate

language elements [22]. It generates low-level accelerator such as CUDA, OpenCL

and Renderscript code from a DSL embedded into C++ and was recently extended

to emit code that can be processed to IP cores using Vivado HLS [23].

3. Multigrid Methods

In scientific computing, multigrid methods are a popular choice for the solution of

large systems of linear equations that may stem from the discretization of partial

differential equations (PDEs). The fundamental idea behind multigrid algorithms

is to use a hierarchy of discretizations to accelerate the convergence of a basic

iterative method by correcting the solution approximation on the fine grid globally,

produced by the solution on the coarse grid. Since the iterative method reduces

high-frequency errors, it is also called smoother or relaxer. The coarse problem is

similar to the one on the finer grid, but consists of a smaller number of unknowns

and thus is cheaper to solve. Furthermore, previously low-frequency errors are

now high-frequency errors that are relaxed by the iterative method. The solution

approximation can be improved by again going to a coarser grid, exhibiting the

recursive nature of the multigrid algorithm.

One instance of a multigrid method to solve a simple equation such as −∆u = f

is shown in Figure 1, where u is the unknown to be solved for and f is the equation’s

right-hand side. The first step is to discretize the continuous computational domain

and the continuous equation using, for example, the finite differences method. We

obtain a grid with physical coordinates corresponding to the computational domain’s

coordinates and a discretized version of our equation, such as −Ahuh = fh. Here,

index h represents the finer grid, whereas H denotes the coarser grid. Ah and AH are

used to describe the discretized mathematical operator, e.g., the Laplace operator.

On the top-most multigrid level, i.e., the finest grid, uh denotes the unknown function.

Respectively, on the other multigrid levels, it denotes the current approximation.

The right-hand side f is described by fh. The parameter γ determines the number

of recursive steps. γ = 1 results in a so-called V-cycle, i.e., approximation on the

coarser grid is calculated only once. By setting γ = 2, a W-cycle is implemented,

resulting in a better convergence albeit at a higher computational cost. In the pre-

and post-smoothing steps, high-frequency components of the error are damped by

smoothers such as the Jacobi or the Gauss-Seidel methods. In the algorithm, ν1 and

ν2 denote the number of smoothing steps that are applied.
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On the coarsest level, solving the remaining linear system of equations approxi-

mately by a specialized solver—or even directly—is more efficient than employing

further levels of recursion due to its low number of unknowns. A widely used al-

gorithm for this purpose is the CG method. However, it is also possible to apply

a number of smoother iterations. In the case of a single unknown, one smoother

iteration corresponds to solving directly.

if coarsest level then

solve Ahuh = fh exactly or by many smoothing iterations

else

ū
(k)
h ← Sν1h

(
u
(k)
h , Ah, fh

)
. pre-smoothing

rh ← fh −Ahū(k)h . compute residual

rH ← Rrh . restrict residual

e
(0)
H = 0

for j = 1 to γ do

e
(j)
H ← MGH

(
e
(j−1)
H , AH , rH , γ, ν1, ν2

)
. recursion

end for

eh ← Pe(γ)H . interpolate error

ũ
(k)
h ← ū

(k)
h + eh . coarse grid correction

u
(k+1)
h ← Sν2h

(
ũ
(k)
h , Ah, fh

)
. post-smoothing

end if

Fig. 1. Recursive Multigrid algorithm to compute u
(k+1)
h = MGh

(
u
(k)
h , Ah, fh, γ, ν1, ν2

)
.

4. Programming Model

ExaStencils is a project researching the generation of efficient and scalable numerical

solvers based on multigrid methods from a description of the problem formulated

in a domain-specific language. During the translation process, domain-specific and

hardware-specific optimizations are applied to generate high-performance, scalable

C++ code.

ExaSlang, short for ExaStencils language, is a domain-specific language consisting

of four layers of abstraction, geared towards different classes of users from diverse

domains. ExaSlang 4 constitutes the most concrete layer and allows to specify

standard and custom multigrid cycles. It is a procedural and statically typed

programming language, featuring control structures such as functions, loops and

conditions. Furthermore, this layer is explicitly parallel by providing very simple

communication statements to specify data to be communicated. A more thorough

description of the language and its code generation and transformation framework

can be found in [24, 25] and in [26].
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4.1. Language Elements

As ExaSlang targets the description of multigrid-based numerical solvers, it combines

elements of procedural languages, such as functions and loops, with domain-specific

elements, e.g., stencils and communication-enabled memory arrays.

A key element and language feature directly stemming from the focus on multigrid

methods are level specifications. Essentially, they are a suffix to identifiers such as

function and variable names, tying that entity to one or more specific multigrid levels.

A common usage pattern is to exit the multigrid recursion, as depicted in Figure 2.

Here, the identifier @all in line 1 defines the VCyle function on every multigrid

level, while the more precise specification using @coarsest in line 14 overwrites

that function definition on the bottom multigrid level. The recursive call for the

V-cycle on the next grid level is represented by the function call VCycle@coarser

() in line 8. Ultimately, in case of the penultimate multigrid level, this @coarser

specification will resolve to the coarsest level, calling the specialized function that

ends the recursion. Similarly, the @current specifications in lines 3 and 11 resolve

to the specific multigrid level, calling the smoother functions for the appropriate

multigrid level, and thus, grid sizes.

1 Function VCycle@all () : Unit {
2 repeat 3 times {
3 Smoother@current ()
4 }
5 UpResidual@current ()
6 Restriction@current ()
7 SetSolution@coarser (0)
8 VCycle@coarser () // recursive call
9 Correction@current ()
10 repeat 3 times {
11 Smoother@current ()
12 }
13 }
14 Function VCycle@coarsest () : Unit {
15 /* apply specialized solve, no recursion */
16 }

Fig. 2. Implementation of a V(3,3)-cycle in ExaSlang 4.

ExaSlang 4 features special data types such as Stencil and Field. We call this

group algorithmic data types, as they can only be used in numerical calculations. In

the next paragraph, we will introduce the two major data types.

Stencils are defined by listing the weights around the center using relative

addressing. Weights can be represented by any type of expression, including binary

expressions and function calls, but, naturally, constant values are possible as well. An

example can be seen in Figure 3, where a weighted two-dimensional Jacobi smoother

with constant coefficients is described. As the weight expressions include calls to the
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built-in functions meshWidth_x and meshWidth_y (compare lines 2 to 7) to access

distance between two grid points, suffixed with the level specification @current, in

fact the stencil has different weights on every level, although it has been defined

only once. In line 14, a built-in function named diag is called to extract the stencil’s

center weight. As a stencil represents a matrix, the matrix’ diagonal corresponds to

the central weights of every stencil, hence the function name.

1 Stencil Laplace@all {
2 [ 0, 0] => (( 2.0 / ( meshWidth_x@current() ** 2 )
3 + 2.0 / ( meshWidth_y@current() ** 2 )))
4 [ 1, 0] => (( -1.0 / ( meshWidth_x@current() ** 2 )))
5 [-1, 0] => (( -1.0 / ( meshWidth_x@current() ** 2 )))
6 [ 0, 1] => (( -1.0 / ( meshWidth_y@current() ** 2 )))
7 [ 0, -1] => (( -1.0 / ( meshWidth_y@current() ** 2 )))
8 }
9

10 Function Smoother@all() : Unit {
11 loop over Solution@current {
12 Solution[next]@current = (1.0 - omega)
13 * Solution[active]@current
14 + ((( omega / diag(Laplace@current)))
15 * (RHS@current
16 - Laplace@current * Solution[active]@current))
17 }
18 advance Solution@current
19 }

Fig. 3. ExaSlang 4 example of a 2D stencil definition and its use as part of a weighted Jacobi
smoother.

Fields represent data, e.g., the unknown to be solved for or the right-hand side.

To define a field, first a layout is needed which essentially specifies all options for

parallelization efforts, such as the size of ghost (halo) layers, the location (e.g.,

cell-based or node-based), or the data type. Fields then apply the given layout to the

computational domain which is also specified in ExaSlang 4. Additionally, boundary

conditions need to be specified. Both layouts and fields can be defined using level

specifications, allowing for different options on different levels. A common use-case is

the definition of different communication patterns and different boundary conditions

on certain levels.

Slots are another feature of fields, allowing to define multiple copies of the same

field. This is often used when implementing Jacobi solvers, where iterations alternate

between two data grids. In Figure 3, their use can be seen in line 13 and following,

where accesses to Solution have a suffix of [active] or [next]. The currently

used slot may be shifted, similar to a ring-buffer, by using the advance statement,

as depicted in line 18.
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A language element crucial to this domain is the loop over statement, as used in

Figure 3 in line 11. It is used to instantiate an iteration over the computational domain

(or a part of it) by specifying a field that is used to determine the computational

bounds.

4.2. Code Generation

Multigrid algorithms described in ExaSlang 4 are transformed into C++ code by a

transformation framework written in Scala. The input file is parsed and transformed

into an abstract syntax tree (AST), to which target platform specific alterations and

optimizations are applied. We call this stage, where most of the transformations

take place, the intermediate representation (IR), since it is only available in the

compiler instance. After numerous alterations, the IR is emitted as C++ code that

can be compiled with standard compilers such as gcc, Clang, IBM XL and MSVC.

5. Mapping to Hardware

To generate C++ code that can be mapped and synthesized efficiently to a hardware

architecture for FPGAs, the transformation chain has to respect a number of specifics.

5.1. Computational Model

The conventional way to stencil computations is based on the temporal computing

paradigm, i.e., to allocate a continuous chunk of memory and apply the stencils

by iterating sequentially over the memory, i.e., a multigrid algorithm is realized as

a sequence of smoother, residual calculation, restriction and prolongation stencils.

Usually, these kernels are executed linearly, where application of a new kernel starts

only after completion of the previous one. As a consequence, to improve the overall

performance, kernel execution times have to be reduced.

In contrast, FPGAs offer a massively parallel hardware architecture which can

achieve the best results in combination with data streaming. The concept of imple-

menting the multigrid algorithm as a sequence of stencils can be carried over to the

FPGA architecture by converting the computational kernels into hardware modules

and laying them out in parallel on the chip. The modules are then interconnected by

data streams to form a pipeline, through which data is streamed from one entity to

another. Once the pipeline is completely filled, all of the computations are carried

out in parallel, providing a continuous output flow of results from a continuous

delivery of input data. Therefore, this paradigm is called spatial computing.

A key concept in hardware development is to design a component once and

replicate it as often as necessary. For multigrid algorithms, we can make use of this

principle by designing one stage of the algorithm and replicate it to implement the

recursion levels. An important fact to consider is that the lower stages always only

have to process a fraction of the data of the next higher stage, e.g., a quarter in

the case of 2D. Although this could be exploited in hardware by lowering the clock

frequency of the lower stages, a much more sophisticated approach is to increase the
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8 STAGE MULTIGRID SOLVER
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B

Fig. 4. Structural representation of the multigrid algorithm implementation.

pipeline interval, also often called Iteration Interval (II), which describes the amount

of clock cycles between the arrival of new data elements. To obtain high performance,

the topmost level uses a pipeline interval of one, which means the architecture can

accept new input data in every clock cycle. In consequence, it also produces results

in every clock cycle, after a certain latency. To achieve this, however, each operation

such as addition or multiplication of the algorithm must be mapped to a dedicated

operator in hardware, and therefore the implementation requires a large amount of

hardware resources. If the pipeline interval is increased on the lower levels, hardware

operators can be shared among the operations, which leads to significantly lower

resource requirements. An overview of the structure for a multigrid solver is shown

in Figure 4.

In addition to the actual implementation of each stage, the figure also shows the

II for the stages, data streams, and indicates which connections require buffering

(depicted as B). Although it is possible to instantiate buffers on every stream, there

are actually only three cases where the interconnection requires buffering. These are

(1) after down samplers (part of restrict),

(2) before up samplers (part of prolong),

(3) before nodes that combine data streams and have different path lengths.

The necessity for buffering after downsampling and before up sampling is due to

different iteration intervals between the stages. The buffer requirement for combining

nodes, such as the correction step of the prolongation, becomes evident from the

structure of the accelerator. For example, the connection between restriction and

prolongation requires a very large buffer, since prolongation must wait until data

arrives after having traversed all of the lower stages. Other interconnections in

the architecture can be set to simple registered handshake connections, which will
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lower the total amount of hardware resources required for buffer implementation. A

limitation of the current HLS approach is that the re-use of streams is problematic.

In case a data stream is needed as input for multiple kernels, e.g., the result of

the residual computation is used for downsampling and for correction, it has to

be duplicated accordingly by inserting kernels that copy, or split, the stream into

the required number of output streams. Currently, HLS tools do not automatically

duplicate such streams or insert appropriate copy operations. Thus, the required split

kernels need to be identified and placed into the pipeline at the correct positions.

Proceeding in this section, we will explain how code generation must be altered to

achieve efficient hardware accelerators by HLS.

5.2. Stencils and Kernels

As already explained, computations are implemented by kernels and connected

via streams that represent input and output elements. In previous work, we have

introduced a library of standard components to facilitate code generation for C-based

HLS [27]. In addition to support point and local operators with an arbitrary number

of input and output ports, the library also provides operations to handle data streams

in complex pipelines. Stencils can be expressed by local operators, where the center

corresponds to the output element being calculated and neighboring points are

addressed in a relative manner, similar to the way stencils are defined in ExaSlang 4.

As a consequence of the shift towards the stream processing model, iterations

over the computational domain need to be transformed into separate kernels. As an

iteration is declared by the loop over statement and all computational domain sizes

are known at compile time, a corresponding kernel function with the correct number

of stream elements can be derived directly and transformed into a computational

kernel. The original loop statement is replaced with an instantiation and call of the

kernel. Vivado HLS synthesizes each instantiated kernel into a dedicated hardware

module and generates the data streaming interconnect fabric.

However, Vivado HLS currently is unable to connect the separate kernels to build

up the data flow necessary for algorithm implementation. Therefore, the kernels need

to be connected by the code generator by the memory streams. As per Vivado HLS’

philosophy, a memory stream is consumed as soon as it used as input for a kernel

and cannot be used multiple times. Consequently, to enable stream re-use, so-called

copy kernels (also split kernels) have to be introduced. They multiply one stream

into multiple identical output streams which then can be used as input into the

corresponding kernels. This approach is used in numerous places throughout the

multigrid solver implementation, e.g., to feed the right-hand-side stream into the

six smoother kernels per multigrid level. To add these copy kernels automatically, a

corresponding dependency analysis has been developed as part of our code generator.

For the implementation of the CG method used for coarse-grid solving, on-chip

block RAM (BRAM) is used, which easily can hold the coarsest grid size of 32× 32

values also in double precision. However, the implemented CG method for coarse-grid

solution comes with its own drawbacks: executing a high number of iterations would
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Fig. 5. Schematic illustration of overlapping multiple V-cycle iterations.

result in an an enormous increase in latency, as the first half of the pipeline must

be fully executed in order to obtain all of the input data for the CG solver and

the second part of the pipeline can only start once the CG has finished all of its

iterations. As the key advantage of FPGAs for multigrid is that once the pipeline

is filled, all of the kernels can run in parallel, involving an iterative solver at the

coarsest level will effectively more than double the execution time. Furthermore, all

of the data computed in the first half of the pipeline must be retained while the CG

is running until it can be consumed. Since the second part of the pipeline is idle

while the first part is computed and vice versa, it is possible to overlap successive

V-cycle iterations, as shown in Figure 5. Here, the first part of the pipeline can be

overlapped with the second part as soon as the second part starts producing output

data which is fed straight back into the input of the first part.

In contrast, when applying a number of smoothing steps to solve on the coarsest

level, the fully pipelined execution model can continue and it is possible to start the

second half of the pipeline before the first part has finished its computations. Yet,

this approach usually results in a worse overall convergence rate, as most often the

number of smoother iterations applied is smaller than the number needed to reach

the same accuracy as the CG method. Consequently, this increases the number of

V-cycles needed to solve the system of equations to the same precision by multiple

orders of magnitude. Actually applying the smoother as often as needed for direct

solution is impossible, as there simply are not enough resources available to do so

on FPGAs, thus a specialized coarse-grid solver must be used.

During transformation of the DSL stencil calculations, stencil weights are resolved

directly into the calculations, and thus, mathematical expressions can be statically

evaluated and simplified. For CPU code, this reduces memory accesses and enables

further optimizations. The same approach is used for the HLS code generation,

where placing the coefficients directly into the code yields a lower number of memory

streams that need to be processed, i.e., streams that only provide constants are not

generated.

5.3. Loops and Recursion

To enable pipelining and parallel execution of the kernels, the loop and recursion

constructs of ExaSlang 4 must be unrolled and flattened. The principle can be easily

applied to the repeat N times loop, as N is a constant integer. An example for

this is the repeated application of the smoother. Since the number of applications
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is known at compile time, we can simply unroll the loop and generate appropriate

kernels.

A control structure that requires more attention is recursion. For example, it

is used to define the V-cycle (see Figure 1). However, due to ExaSlang’s static

approach, also this information is available at compile time which enables us to

unroll the recursion and instantiate appropriate kernels. In addition, we must adjust

the iteration interval and the loop bounds of the individual kernels, instantiate

restriction and prolongation operators, as well as duplicate data streams where

necessary.

Moreover, ExaSlang contains repeat until loops, which are executed until

a certain criteria is fulfilled. A common use case for this language construct is

the repeated application of the V-cycle until desired precision has been reached.

Supporting this use case is difficult, since it would require the repeated sequential

execution of the complete process, which would interrupt the streaming pipeline

and require extensive buffering of the results at the end of one V-cycle. Of course,

this dilemma might be solved if convergence rates were known a priori to starting

the V-cycle execution. As local Fourier analysis (LFA), a technique to approximate

convergence rates for given equations and solvers, is a crucial part of ExaStencils’

approach, we hope to predict the number of V-cycles necessary for solving and, thus,

replace the original loop with a fixed number of iterations. Consequently, this loop

can be unrolled again. For other use cases, it might be viable to do a dependency

analysis to check if the condition can be statically evaluated, in order to again

replace the loop with a fixed number of executions to be finally unrolled. In the

case that no evaluation can be done, the compilation process currently is aborted,

prompting the user to re-write that portion of the program.

6. Case Study

To evaluate our approach, we consider the steady-state heat equation with Dirichlet

boundary conditions on the two-dimensional unit square, which is given by

−∇ · (a∇u) = f in Ω , (1)

u = g on ∂Ω ,

Ω = (0, 1)2

Here, a : R2 → R (a ≥ 0) describes the material’s thermal conductivity in the

region. Furthermore, ∇ · w is the divergence of w and ∇u is the gradient of u.

For our numerical experiments, we discretize the heat equation using finite

differences and choose f and a from Figure 6. Furthermore, we choose k = 10

and g = 0 to represent a constant or smoothly changing thermal conductivity. For

these examples, an analytic solution can be found which is beneficial for verifying

the correctness of an implementation. The analytical solution u is also depicted in

Figure 6.

We implemented suitable solvers in ExaSlang 4 using the V-cycle scheme for

constant and variable coefficients, both with a recursion depth of 8 and starting
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Constant coefficients (2D)

f(x, y) = 2k
(
(x− x2) + (y − y2)

)

a(x, y) = 1

u(x, y) = k(x− x2)(y − y2)

Variable coefficients (2D)

f(x, y) = 2k
(
(x− x2) + (y − y2)

)

a(x, y) = ek(x−x
2)(y−y2)

u(x, y) = 1− e−k(x−x2)(y−y2)

Fig. 6. Family of solutions of Equation (1) for g = 0.

on grid sizes of 4096× 4096. For smoothing, a weighted Jacobi (JOR) with a pre-

calculated optimal relaxation factor ω is used. The solution on the coarsest grid

of size 32× 32 is done by a CG solver, also implemented in ExaSlang 4. Because

of buffer and memory size constraints on the FPGA, we had to restrict the case

study to 2D and to a V(2,2)-cycle for variable coefficients. For constant coefficients,

a V(3,3)-cycle was used.

The code generated by ExaSlang 4 was used to infer a hardware description of

the multigrid solver using Xilinx Vivado HLS v14.2. As evaluation hardware, we have

chosen a Xilinx Virtex 7 (xc7vx485t) FPGA. Although interconnecting individual

modules using FIFO streams and executing these concurrently is supported through

the data flow directive, the tool currently does not determine the buffer sizes

automatically, but requires them to be set manually. Since we need to execute the

full first part of the pipeline before we can start the CG solver at the coarsest grid,

all intermediate values must be retained for the second part of the V-cycle. For

the chosen grid size of 4096× 4096 floating point values and 8 recursion levels, the

buffers on the top four levels become very large and would overwhelm the amount

of available resources, even on very large FPGAs. A solution to allow the fastest

possible execution and keep within the maximum amount of available resources

is to offload the most challenging buffers to external DDR3 memory. A drawback

is that HLS tools, such as the here used Vivado HLS, do not support this from

within the tool, but require an FPGA support design to facilitate this. We add

input and output arguments for the streams to be externalized to the function

definition and specify their type as AXI4-Streaming (AXI4S). In this way, we obtain

a high-performance interface to the FPGA fabric for each data connection and do

not need to make extensive modifications to the actual accelerator source code. The

FPGA support design uses an AXI4S interconnect (IC) built on top of a virtual

FIFO as an abstraction to an off-chip DDR3 memory. A structural overview of

the design is shown in Figure 7. The virtual FIFO is an IP core from Xilinx and

can be configured to support up to eight full duplex AXI4S data channels using

word widths of up to 128 bytes. The core uses round robin arbitration between the

channels which can be weighted in terms of how many data bursts are executed in

sequence before arbitrating to the next channel. The size of the data burst defines the
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AXI4 Interconnect

AXI_IC_OUT

AXI_IC_IN

AXI4S Data Out Coupler 1

AXI4S Data Out Coupler 8

AXI4S Data In Coupler 1

AXI4S Data In Coupler 8

AXI4S
Switch

8:1
—

64B
@

200MHz

HLS_Out 1
(4B @ 200 MHz)

AXI4S
Switch

1:8
—

64B
@

200MHz

AXI4S
Virtual 
FIFO

AXI4 MIG DDR3

AXI4S
DataWidthConv

AXI4S
DataFIFO

AXI4S
DataWidthConv

AXI4S
DataFIFO

AXI4S
DataWidthConv

AXI4S
DataFIFO

AXI4S
DataWidthConv

AXI4S
DataFIFO

HLS_Out 8
(4B @ 200 MHz)

HLS_In 8
(4B @ 200MHz)

HLS_In 1
(4B @ 200MHz)

. . .

. . .

. . .

. . .

Fig. 7. Structural representation of the FPGA support design. HLS Out and HLS In denote
directions coming from respectively routed towards the IP core generated by HLS.

maximum amount of memory space that can be allocated to each channel. For our

application, we use a 64 byte word width, as this is also the word width supported

by the underlying DDR3 memory and select the smallest available burst size of

128 bytes. As the individual channels have different data production rates, we assign

different weights for appropriate bandwidth allocation.

To allow uninterrupted data exchange between the DDR3 and the accelerator,

the AXI IC aggregates data to a very large word width of 64 bytes before passing it

to the Virtual FIFO. To adjust the data from the accelerator to the requirements for

buffering on the off-chip memory, we have designed an AXI4-Streaming interconnect,

as shown in Figure 7. It uses an internal 64 byte data bus and is situated in the same

clock domain as the memory interface. Incoming data streams are first adjusted to

the internal data width before they are transferred to the internal clock domain

using asynchronous FIFO buffers. An AXI4S switch merges the data stream onto

the interface of the virtual FIFO, which stores the data in the channel’s memory

region according to the destination identifier of the data stream. An equal path is

used in reverse order to transfer data from the external memory back to the output

ports of the interconnect and from there to the accelerator.

Figure 8 shows evaluation results of the hardware synthesis from Vivado HLS,

which give a rough approximation of the amount of on-chip resources required for
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Single Precision Double Precision

Resource On-Chip External On-Chip External Available

LUTs 2 153 613 235 054 3 000 651 314 729 303 600

FFs 593 187 247 469 613 870 306 251 607 200

DSPs 1 369 1 369 1 597 1 597 2 800

BRAMs 58 550 982 117 100 1 964 2 060

Fig. 8. HLS resource estimates for the V(3,3)-cycle multigrid solver design using constant coeffi-
cients, comparing on-chip and external buffering.

the design. Indeed, after externalizing the top four largest buffers for results and

RHS, the design can be fit onto the chip. Note that even though the approximated

amount of required LUTs for the double precision version with externalized buffers

still exceeds the amount of available resources slightly, the actual implementation

process can reduce the resource requirements. Figure 9 lists the post place and route

(PPnR) results for single and double precision floating point arithmetic.

Resource Single Precision Double Precision

Constant coefficients

LUTs 171 274 (56.4 %) 225 095 (74.1 %)

FFs 217 448 (35.8 %) 260 641 (42.9 %)

DSPs 1 369 (48.9 %) 1 597 (57.3 %)

BRAMs 985 (47.8 %) 1 936 (94.0 %)

Slices 66 046 (87.0 %) 69 766 (91.9 %)

Fmax[MHz] 197.2 140.8

Variable coefficients

LUTs 212 774 (70.1 %) 523 105∗ (172.3 %)

FFs 225 727 (37.2 %) 479 857∗ (79.0 %)

DSPs 1 349 (48.2 %) 4 068∗ (145.3 %)

BRAMs 841 (40.9 %) 1 676∗ (81.4 %)

Slices 66 790 (87.9 %) NA NA

Fmax[MHz] 193.4 NA

Fig. 9. PPnR resource requirements of the complete multigrid solver design on the Virtex 7.
Values marked with ∗ are estimates by Vivado HLS and could not be synthesized onto the FPGA,

as they exceeded the available resources.

Moreover, we have evaluated hardware designs for variable coefficients. Due to

the very high resource requirements, however, we were only able to fit a V(2,2)-cycle

design using single precision floating point arithmetic on the Virtex 7 FPGA. Figure 9

therefore only lists PPnR results for the single precision version, whereas we can

only provide synthesis estimates for the double precision version. Also here, we must
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externalize the buffers on the top four levels of the V-cycle to be able to fit the design

onto the FPGA. The large difference between both implementations is due to the

exponential function required to compute the variable coefficients, which consumes a

substantial amount of resources. Another factor that makes the difference in resource

usage appear much higher is that the double precision implementation did also

not undergo the optimization steps of the actual hardware implementation process,

which can deliver noticeable reductions only if the design can also fit on the chosen

FPGA.

We have evaluated the PPnR hardware results on the Virtex 7 FPGA to measure

the performance in terms of how many clock cycles it takes to process a 4096× 4096

grid of floating point values in single and double precision arithmetic. In combination

with the clock frequency of the design, this yields an accurate measurement of the

performance. Contrasting to a software solution, the pipelining principle also applies

here, thus, it is not necessary to wait until the result is ready, but we can start

processing a new grid, as soon as all of the input values of the previous grid have

been consumed. In addition to waiting until both parts of the pipeline, before and

after the CG solver have traversed the V-cycle, it is possible to overlap successive

iterations and start a new V-cycle as soon as the second half starts producing output

data.

In order to compare the hardware accelerator to state-of-the-art approaches, we

have used the specification of the multigrid solver in ExaSlang to generate C++ code

for a single machine.

For the CPU tests, an Intel Xeon E5-1620 v3, featuring 4 physical cores resulting

in a total of 8 logical cores including Intel’s hyperthreading, each clocked at 3.50 GHz,

was used. It features 64 KB of L1 and 256 KB of L2 cache per core, and 10 MB

of shared L3 cache. The system is equipped with 32 GB of DDR3 RAM. The

evaluated code was generated with support for OpenMP parallelization and included

vectorization, based on AVX-2. Compilation of the generated C++ code was done

using the default gcc 4.7 shipped by openSUSE. For all benchmark runs, the processes

were pinned to the CPU cores. Our parallelization concepts on single nodes currently

favor numbers of cores that are a power of two, therefore only a single core, two,

four and eight cores have been benchmarked.

Figure 10 lists the performance results in terms of latency in milliseconds for

processing a single iteration of the V-cycle and the throughput in terms of how many

iterations of the V-cycle can be processed per second ([Vps]), on average. It is also

worth mentioning that the performance difference between running the V-cycle in

single or double precision on the accelerator is not nearly as large as on the CPU.

Unfortunately, the Kintex 7 FPGA used in the previous work [28] which is extended

in this manuscript was unable to provide the necessary amount of logic and memory

resources for the chosen multigrid configuration for the variable coefficients as well as

for constant coefficients problem. Even the larger Virtex 7 was unable to provide the

necessary amount of resources required for the calculation of the variable coefficients

problem in double precision.
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Single Precision Double Precision

Target Runtime Through- Runtime Throug-

[ms] put [Vps] [ms] put [Vps]

Constant coefficients

E5-1620 v3, 1 thread 235.67 4.24 361.34 2.77

E5-1620 v3, 2 thread 121.71 8.21 217.11 4.61

E5-1620 v3, 4 threads 93.61 10.68 176.21 5.68

E5-1620 v3, 8 threads 94.62 10.57 182.54 5.48

Virtex 7, sequential 173.59 5.76 242.69 4.12

Virtex 7, overlapped 91.01 10.99 124.82 8.01

Variable coefficients

E5-1620 v3, 1 thread 405.72 2.46 590.65 1.69

E5-1620 v3, 2 thread 206.52 4.84 330.61 3.02

E5-1620 v3, 4 threads 151.06 6.62 286.18 3.49

E5-1620 v3, 8 threads 148.81 6.72 287.00 3.48

Virtex 7, sequential 177.04 5.65 NA NA

Virtex 7, overlapped 90.76 11.02 NA NA

Fig. 10. Comparison of the performance of the multigrid solvers, i.e., constant and variable

coefficients in single and double precision, on different hardware targets.
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Fig. 11. Comparison of the speedup of the multigrid solvers, i.e., constant and variable coefficients
in single precision, on different hardware targets.

7. Conclusions

In this work, we have presented an approach to map descriptions of multigrid

algorithms in a domain-specific language to hardware designs for execution on

FPGA by generating C++ code that can be used with C-based high-level synthesis
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Fig. 12. Comparison of the performance of the multigrid solvers, i.e., constant and variable
coefficients in double precision, on different hardware targets.

tools. Furthermore, we have outlined the specifics of implementing stencil-based

calculations on FPGAs via HLS tools and highlighted differences from the process

of code generation for traditional CPU-based programs. We verified our approach by

synthesizing a multigrid-based solver for Poisson’s equation including a CG solver

for solution on the coarsest grid onto two different hardware targets, a Virtex 7

FPGA and an Intel CPU. Both implementations were generated from the same code

base in ExaSlang 4. Additionally, evaluation numbers show that employing FPGAs

in scientific computing is a promising approach to increase computing power. Since

they are known to be much more energy efficient than CPUs or GPUs, this will also

reduce energy footprints.

8. Future Work

While ExaSlang can be used to describe multigrid-based solvers for three and

more dimensions and generation of code for HLS for FPGAs works, the underlying

concept of streaming and buffering needs some refinement. Already for 2D and

single-precision floating point numbers, buffers grow very large, up to the point

where all available resources are used. While switching to double precision would

consume twice the memory but leave buffer sizes—in terms of elements—intact,

adding another dimension would result in enormous buffers. For large datasets in

higher dimensions than 2D, current generation FPGAs boards lack sufficient large

memories. Instead, data will have to be stored in the host’s memory, utilizing the

PCI express bus and drawing a huge performance penalty. Nevertheless, we will

re-evaluate our case study with newer generations of FPGAs boards.

Additionally, to improve dataset sizes by incorporating on-board DDR3 RAM,

memory bandwidths could be improved by employing multiple memory controllers

into the design.
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Partitioning of data for multiple FPGAs—similar to the way data is partitioned

across cluster nodes—is another area worth looking into, especially in the light

of HPC, where large datasets are common and different techniques for optimal

distribution of data have been developed.
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