
A

A Classification and Survey of Analysis Strategies
for Software Product Lines

THOMAS THÜM, University of Magdeburg, Germany
SVEN APEL, University of Passau, Germany
CHRISTIAN KÄSTNER, Carnegie Mellon University, USA
INA SCHAEFER, University of Braunschweig, Germany
GUNTER SAAKE, University of Magdeburg, Germany

Software-product-line engineering has gained considerable momentum in the recent years, both in indus-
try and in academia. A software product line is a family of software products that share a common set of
features. Software product lines challenge traditional analysis techniques, such as type checking, model
checking, and theorem proving, in their quest of ensuring correctness and reliability of software. Simply cre-
ating and analyzing all products of a product line is usually not feasible, due to the potentially exponential
number of valid feature combinations. Recently, researchers began to develop analysis techniques that take
the distinguishing properties of software product lines into account, for example, by checking feature-related
code in isolation or by exploiting variability information during analysis. The emerging field of product-line
analyses is both broad and diverse, so it is difficult for researchers and practitioners to understand their sim-
ilarities and differences. We propose a classification of product-line analyses to enable systematic research
and application. Based on our insights with classifying and comparing a corpus of 123 research articles, we
develop a research agenda to guide future research on product-line analyses.

Categories and Subject Descriptors: A.1 [General]: Introductory and Survey; D.2.2 [Software Engineer-
ing]: Design Tools and Techniques—Modules and interfaces; D.2.4 [Software Engineering]: Software/Pro-
gram Verification—Correctness proofs, formal methods, model checking; D.2.9 [Software Engineering]:
Management—Software configuration management; D.2.13 [Software Engineering]: Reusable Software—
Domain engineering; D.3.4 [Software Engineering]: Processors—Code generation, compilers, incremental
compilers, parsing; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs—Mechanical verification, specification techniques

General Terms: Design; Experimentation; Reliability; Theory; Verification

Additional Key Words and Phrases: Product-line analysis, software product line, program family, software
analysis, type checking, static analysis, model checking, theorem proving

1. INTRODUCTION
Software-product-line engineering aims at providing techniques for efficient devel-
opment of software product lines [Czarnecki and Eisenecker 2000; Clements and
Northrop 2001; Pohl et al. 2005; Apel et al. 2013a]. A software product line (or pro-
gram family [Parnas 1976]) consists of a set of similar software products that rely on a
common code base. The software products of a product line are distinguished in terms
of the features they provide. A feature is a prominent or distinctive user-visible behav-

Apel’s work is supported by the German Research Foundation (DFG – AP 206/2, AP 206/4, AP 206/5, AP
206/6, and AP 206/7). Kästner’s work is supported by ERC grant #203099. Schaefer’s work is supported
by the German Research Foundation (DFG – SCHA 1635/2). Saake’s work is supported by the German
Research Foundation (DFG – SA 465/34).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0360-0300/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

cKaestner
Text Box
© ACM, 2014. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.

A:2 Thomas Thüm et al.

ior, aspect, quality, or characteristic of a software system [Kang et al. 1990]. Ideally,
products can be generated automatically based on a selection of features [Czarnecki
and Eisenecker 2000; Batory et al. 2004; Apel et al. 2013a].

Software-product-line engineering has gained considerable momentum in the recent
years, both in industry and in academia. Companies such as Boeing, Bosch, General
Motors, Hewlett Packard, Philips, Siemens, and Toshiba apply product-line technol-
ogy to broaden their software portfolio, increase return on investment, shorten time to
market, and improve software quality [van der Linden et al. 2007; Weiss 2008; Lutz
2007]. Software product lines have been used successfully to build automotive gasoline
systems, televisions, medical devices, and even power plants [Weiss 2008]. A promi-
nent example from the open-source community that can be considered as a software
product line is the Linux kernel with more than 11.000 features [Tartler et al. 2012].

Software-product-line engineering is increasingly used in safety- and mission-
critical systems, including embedded, medical, automotive, and avionic systems [Weiss
2008]. Hence, proper quality assurance that provides correctness and reliability guar-
antees is imperative for success. The underlying assumption of this survey is that
every software analysis known from single-system engineering, such as type check-
ing, static analysis, model checking, and theorem proving, can and needs to be applied
to software product lines to obtain reliable software products. A simple strategy is to
generate all software products of a product line and to apply the analysis method or
tool to each product individually. Unfortunately, this strategy often involves highly
redundant computations and may even require repeated user assistance (e.g., for in-
teractive theorem proving), since the products of a software product line typically have
similarities. This inefficiency is especially a problem if products can be generated au-
tomatically from a common code base, because such product lines often contain a large
set of products. Already for a product line with 33 independent, optional features, we
can generate more products than people on earth; even if the analysis runs automati-
cally and takes only one second for each product, the sequential analysis of the whole
product line would take more than 272 years. Fisler and Krishnamurthi [2005] argue
that the analysis effort should be proportional to the implementation effort. Even if
this goal may not be reachable in general, analyses of software product lines need to
scale better than exhaustively analyzing every single product.

Recently, researchers began developing analysis techniques that take the distin-
guishing properties of software product lines into account. In particular, they adapted
existing standard methods, such as type checking and model checking, to make them
aware of the variability and the features of a product line. The emerging field of
product-line analysis is both broad and diverse. Hence, it is difficult for researchers and
practitioners to understand the similarities and differences of available techniques.
For example, some approaches reduce the set of products to analyze, others apply a
divide-and-conquer strategy to reduce analysis effort, while still others analyze the
product line’s code base as a whole. This breadth and diversity hinders systematic
research and application.

We classify existing and ongoing work in the field of product-line analyses, compare
techniques based on our classification, and infer a research agenda to guide further
research in this direction. Our long-term vision is to empower developers to assess
and predict the analysis effort based on static characteristics of a software product line,
such as the number of features, the number of products, or the complexity of feature
implementations. Our short-term goals are (a) making research more systematic and
efficient, (b) enabling tool developers to create new tools based on existing research
results and combine them on demand for more powerful analyses, and (c) empowering
product-line developers to choose the right analysis technique for their needs out of a
pool of techniques with different strengths and weaknesses.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:3

While we are faithful that our classification applies to a wide variety of software
analyses, we focus on particular analyses in our survey for clarity: We concentrate on
development techniques, with which products are generated automatically based on
a feature selection. In contrast to the typically low number of products when manual
assembly is required, automatic generation often leads to a huge number of products
and thus is especially challenging for product-line analyses. Furthermore, we survey
analysis approaches that operate statically, such as type checking, model checking, and
theorem proving. Analyses that focus exclusively on requirements engineering and do-
main analysis (e.g., feature-model analysis) or that focus only on testing are outside
the scope of this article – we refer the reader to dedicated surveys on feature-model
analysis [Janota et al. 2008; Benavides et al. 2010] and on product-line testing [Tevan-
linna et al. 2004; Engström and Runeson 2011; Da Mota Silveira Neto et al. 2011;
Oster et al. 2011; Lee et al. 2012].

In summary, we make the following contributions.

— We propose a classification of product-line analyses.
— We survey and classify 123 existing approaches for the analysis of product lines.
— We infer a research agenda based on our insights with classification and survey.
— We offer and maintain a website to support the continuous community effort of clas-

sifying new approaches.1

2. PRELIMINARIES
In this section, we briefly introduce the necessary background for the following dis-
cussions. In Section 2.1, we present basic concepts of software product lines. In Sec-
tion 2.2, we review software analyses that are crucial to build reliable software and
that have been applied to product lines, as identified in our survey. In Section 2.3,
we briefly discuss how specifications can be defined for software product lines as a
basis for product-line analyses. Finally, we discuss the methodology of our survey in
Section 2.4.

2.1. Software Product Lines
The products of a software product line differ in the features they provide, but typ-
ically some features are shared among multiple products. For example, features of
a product line of database management systems are multi-user support, transaction
management, and recovery; features of a product line of operating systems are multi-
threading, interrupt handling, and paging.

There is a broad variety of implementation mechanisms used in product-line engi-
neering. For example, the developers of the Linux kernel combine build scripts with
conditional compilation [Tartler et al. 2011]. In addition, a multitude of sophisticated
composition and generation mechanisms have been developed [Czarnecki and Eise-
necker 2000; Svahnberg et al. 2005; Apel et al. 2013a]; all establish and maintain a
mapping between features and implementation artifacts (such as models, code, test
cases, and documentation). Apel et al. [2013a] distinguish between annotation-based
implementation approaches, such as preprocessors, and composition-based implemen-
tation approaches, such as black-box frameworks with plug-ins. In our running exam-
ple, we use feature-oriented programming as a composition-based generation mecha-
nism. However, the analysis strategies presented in this article are largely indepen-
dent of the implementation approach.

A Running Example. We use the running example of a simple object store consisting
of three features. Feature SingleStore implements a simple object store that can hold a

1Project website: http://fosd.net/spl-strategies/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Thomas Thüm et al.

Feature module SingleStore

class Store {
private Object value;
Object read() { return value; }
void set(Object nvalue) { value = nvalue; }

}

Feature module MultiStore

class Store {
private LinkedList values = new LinkedList();
Object read() { return values.getFirst(); }
Object[] readAll() { return values.toArray(); }
void set(Object nvalue) { values.addFirst(nvalue); }

}

Feature module AccessControl

refines class Store {
private boolean sealed = false;
Object read() {

if (!sealed) { return Super.read(); }
else { throw new RuntimeException(”Access denied!”); }

}
void set(Object nvalue) {

if (!sealed) { Super.set(nvalue); }
else { throw new RuntimeException(”Access denied!”); }

}
}

Fig. 1. A feature-oriented implementation of an object store: the implementation is separated into multiple
composition units.

single object, including functions for read and write access. Feature MultiStore imple-
ments a more sophisticated object store that can hold multiple objects, again including
corresponding functions for read and write access. Feature AccessControl provides a
basic access-control mechanism that allows a client to seal and unseal the store and
thus to control access to stored objects.

In Figure 1, we show the implementation of the three features of the object store us-
ing feature-oriented programming. In feature-oriented programming, each feature is
implemented in a separate module called feature module [Prehofer 1997; Batory et al.
2004]. A feature module is a set of classes and class refinements implementing a cer-
tain feature. Feature module SingleStore introduces a class Store that implements the
simple object store. Analogously, feature module MultiStore introduces an alternative
class Store that implements a more sophisticated object store. Feature module Access-
Control refines class Store by introducing a field sealed, which represents the accessi-
bility status of a store, and by overriding the methods read and set to control access
(Super is used to refer from the overriding method to the overridden method).

Once a user has selected a list of desired features, a composer generates the final
product. In our example, we use the AHEAD tool suite [Batory et al. 2004] for the com-
position of the feature modules that correspond to the selected features. Essentially,
the composer assembles all classes and all class refinements of the features modules
being composed. The semantics of class refinement (denoted with refines class) is that
a given class is extended with new methods and fields. Similar to subclassing, class
refinement allows the programmer to override or extend existing methods. While the

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:5

Product {MultiStore, AccessControl}

class Store {
private LinkedList values = new LinkedList();
private boolean sealed = false;
Object read() {

if (!sealed) { return values.getFirst(); }
else { throw new RuntimeException(”Access denied!”); }

}
Object[] readAll() { return values.toArray(); }
void set(Object nvalue) {

if (!sealed) { values.addFirst(nvalue); }
else { throw new RuntimeException(”Access denied!”); }

}
}

Fig. 2. An object store composed from the feature modules MultiStore and AccessControl.

features SingleStore and MultiStore introduce only regular Java classes, feature Ac-
cessControl refines an existing class by adding new members. The result of the compo-
sition of the feature modules MultiStore and AccessControl is shown in Figure 2.

Variability Models. Decomposing the object store along its features gives rise to com-
positional flexibility; features can be composed in any combination. However, often
not all feature combinations are desired; in our example, we must not select Sin-
gleStore and MultiStore in the same product. Product-line engineers typically spec-
ify constraints on feature combinations (a.k.a., configurations) in a variability model.
In Figure 3a, we specify the valid combinations of our object store in a feature dia-
gram. A feature diagram is a graphical representation of a variability model defining
a hierarchy between features, in which each child feature depends on its parent fea-
ture [Kang et al. 1990]. We distinguish between concrete features, which are mapped
to implementation artifacts, such as feature modules, and abstract features, which are
only used to group other features [Thüm et al. 2011a]. In our example, each object
store either stores a single object (feature SingleStore) or several (feature MultiStore).
Furthermore, an object store may have the optional feature AccessControl. Valid fea-
ture combinations can alternatively be specified using propositional formulas [Batory
2005], as shown in Figure 3b; each variable encodes the absence or presence of a par-
ticular feature in the final product, and the overall formula yields true for all valid
configurations. In our example, there are four configurations that are valid according

Store

Type

SingleStore MultiStore

AccessControl

Legend:

Mandatory
Optional
Alternative
Abstract
Concrete

(a) Feature diagram

Store ∧
(Store ⇒ Type) ∧
(Type ∨AccessControl ⇒ Type) ∧
(Type ⇔ SingleStore ∨MultiStore) ∧
(¬SingleStore ∨ ¬MultiStore)

(b) Propositional formula

P1 = {SingleStore}
P2 = {SingleStore,AccessControl}
P3 = {MultiStore}
P4 = {MultiStore,AccessControl}

(c) Enumeration of all valid combinations

Fig. 3. The variability model of the object store in three alternative representations.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Thomas Thüm et al.

D
om

ai
n

E
ng

in
ee

ri
ng

A
pp

lic
at

io
n

E
ng

in
ee

ri
ng

GraphLibrary

Edges

Directed Undirected

Algorithms

Number Cycle

Cycle ⇒ Directed

Variability Model Domain Artifacts

Configurations Software Generator Software Products

Fig. 4. In domain engineering, variability models and domain artifacts are created, which are used in ap-
plication engineering to automatically generate software products based on feature selections.

to the variability model; they are enumerated in Figure 3c – yet another representa-
tion of a variability model, in which abstract features are usually omitted, as they have
no influence on generated products [Thüm et al. 2011a].

Automatic Product Generation from Domain Artifacts. In Figure 4, we illustrate the
processes of domain engineering and application engineering (in a simplified form),
both central to the development of software product lines. In domain engineering, a
developer creates a variability model describing the valid combinations of features.
Furthermore, a developer creates reusable software artifacts (i.e., domain artifacts)
that implement each feature. For example, the feature modules of the object store are
domain artifacts. In application engineering, the developer determines a selection of
features that serves the needs of the user best and that is valid according to the vari-
ability model. Based on this selection and the domain artifacts created during domain
engineering, the software product containing the selected features is generated auto-
matically. For example, composing the feature modules SingleStore and AccessControl
results in a store tailored for a particular user.

In our survey, we focus on implementation techniques for software product lines that
support the automatic generation of products based on a selection of features. Once a
user selects a valid subset of features, a generator derives the corresponding prod-
uct, without further user assistance, such as manual assembly or providing glue code.
Examples of such implementation techniques are preprocessors [Liebig et al. 2010],
generative programming [Czarnecki and Eisenecker 2000], feature-oriented program-
ming [Prehofer 1997; Batory et al. 2004], and aspect-oriented programming [Kiczales
et al. 1997]. The overall goal is to minimize the effort to tailor software products to the
needs of the user.

Correctness of Software Product Lines. An interesting issue in our running example
(introduced deliberately) is that one of the four valid products misbehaves. The pur-
pose of feature AccessControl is to prohibit access to sealed stores. We could specify
this intended behavior formally, for example, using temporal logic:

|= G AccessControl ⇒ (state access(Store s) ⇒ ¬ s.sealed)

The formula states, given that feature AccessControl is selected, whenever the object
store s is accessed, the object store is not sealed. If we select feature AccessControl

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:7

in combination with MultiStore as illustrated in Figure 2, the specification of feature
AccessControl is violated; a client can access a store using method readAll even though
the store is sealed.

There are several solutions to solve this misbehavior. We could modify the variabil-
ity model to forbid the critical feature combination P4, we could change the specifica-
tion, or we could resolve the problem with alternative implementation patterns. For
instance, we can alter the implementation of feature AccessControl by refining method
readAll in analogy to methods read and set. While this change resolves the misbe-
havior when combining MultiStore and AccessControl, it introduces a new problem:
The changed implementation of AccessControl no longer composes with SingleStore,
because it attempts to override method readAll, which is not present in this configu-
ration. The illustrated problem is called the optional feature problem [Liu et al. 2006;
Kästner et al. 2009]: The implementation of a certain feature may rely on the imple-
mentation of another feature (e.g., caused by method references), and thus the former
feature cannot be selected independently, even if it is desired by the user.

The point of our example is to illustrate how products can misbehave or cause type
errors even though they are valid according to the variability model. Even worse, such
problems may occur only in specific feature combinations (e.g., only in P4), out of poten-
tially millions of combinations that are valid according to the variability model; hence,
they are hard to find and may show up only late in the software life cycle. Inconsis-
tencies between the variability model and the implementation have repeatedly been
observed in real product lines and are certainly not an exception [Thaker et al. 2007;
Kästner et al. 2012a; Tartler et al. 2011; Kolesnikov et al. 2013; Medeiros et al. 2013].
Ideally, analysis strategies for software product lines are applied in domain engineer-
ing rather than application engineering, to detect faults as early as possible.

2.2. Software Analyses
We briefly introduce important software analyses that have been applied and adapted
to software product lines (from light-weight to heavy-weight). We focus on analyses
that operate statically; that is, we exclude runtime analyses and testing, because they
are discussed in dedicated surveys [Tevanlinna et al. 2004; Engström and Runeson
2011; Da Mota Silveira Neto et al. 2011; Oster et al. 2011; Lee et al. 2012]. Each of
the discussed analyses has its strengths and weaknesses. We argue that a wide vari-
ety of analyses is needed to increase the quality of software, in general, and software
product lines, in particular. We discuss type checking, static analysis, model checking,
and theorem proving. There are no clear distinctions between these analyses and gray
zones between them, depending on individual definitions. For example, arguably they
can all be defined as some form of abstract interpretation [Cousot and Cousot 1977].
We make a simple distinction based on commonly used terms.

Type Checking. A type system is a syntactic method for proving the absence of cer-
tain program behaviors by classifying phrases according to the kinds of values they
compute [Pierce 2002]. Type systems can be used to syntactically classify programs
into well-typed and ill-typed programs, based on a set of inference rules. Type checking
refers to the process of analyzing whether a program is well-typed according to a cer-
tain type system defined for a particular programming language. A type checker is the
actual tool analyzing programs written in a certain language, usually part of a com-
piler or linker [Pierce 2002]. In model-driven development, type checking is essentially
the analysis of well-formedness of a model with respect to its meta-model [Atkinson
and Kühne 2003].

By means of type checking, we can detect type errors such as incompatible type
casts, dangling method references, and duplicate class names. For instance, a dangling

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Thomas Thüm et al.

method reference occurs if a method with a certain signature is called that has not
been declared. For our object store, we discussed that if we would call method readAll
in feature AccessControl, then a dangling method reference would occur in product P2.
Other examples are that a programmer may have misspelled the name of a method, or
the number of arguments is not correct.

A type system can be seen as a formal specification that all programs written in a
certain language must conform to. Pierce [2002] argues that, in principle, types can be
created to check arbitrary specifications. However, in practice, type systems are limited
to properties that are efficiently statically decidable and checkable. Type checkers are
typically included in compilers and scale to large programs, and then require no user
input and can be fully automated.

Static Analysis. The term static analysis (a.k.a. program analysis) refers to analyses
that operate at compile-time and approximate the set of values or behaviors arising
dynamically at runtime when executing a program [Nielson et al. 2010]. Examples for
static analyses are traditional data-flow and control-flow analyses, but also alias anal-
yses, program slicing, and constraint-based analyses [Weiser 1981; Muchnick 1997;
Nielson et al. 2010]. A key technique in static analysis is that the undecidability of
program termination due to loops or recursion is handled using approximation [Niel-
son et al. 2010].

Originally, static analyses have been used for compiler optimizations [Muchnick
1997; Nielson et al. 2010] and debugging [Weiser 1981]; a more recent application is
program verification [Nielson et al. 2010]. For example, a static analyses is able to find
accesses to uninitialized memory regions or variables. Some static-analysis tools oper-
ate on source code (e.g., LINT for C [Darwin 1986]), others on byte code (e.g., FINDBUGS
for Java byte code [Hovemeyer and Pugh 2004]). Static analyses are either integrated
into compilers such as CLANG or implemented in the form of dedicated tools such as
FINDBUGS [Hovemeyer and Pugh 2004].

The difference to type checking is that not every behavioral property of interest
has to be encoded with types; the difference to other verification techniques, such as
model checking or theorem proving, is that branches in programs are typically not
interpreted and values are approximated. Similar to type checking, static analyses run
automatically and often do not require user input such as providing a specification.

Model Checking. Model checking is an automatic technique for formal verification.
Essentially, it verifies that a given formal model of a system satisfies its specifica-
tion [Clarke et al. 1999]. While early work concentrated on abstract system models or
models of hardware, recently, software systems, such as C or Java programs, came into
focus in software model checking [Visser et al. 2000; Beyer and Keremoglu 2011]. Of-
ten, specifications are concerned with safety or liveness properties, such as the absence
of deadlocks and race conditions, but also application-specific requirements can be for-
mulated. To solve a model-checking problem algorithmically, both the system model
and the specification must be formulated in a precise formal language.

A model checker is a tool that performs a model-checking task given a system to
verify and its specification. Some model checkers require models with dedicated in-
put languages for this task (e.g., Promela in SPIN [Holzmann 1997], CMU SMV in
NUSMV [Cimatti et al. 1999]), others extract models directly from source code (e.g.,
C in BLAST [Beyer et al. 2007] or CPACHECKER [Beyer and Keremoglu 2011], Java
in JPF [Visser et al. 2000]). After encoding a model-checking problem into the model
checker’s input language, the model-checking task is fully automated; each property
is either stated valid, or a counterexample is provided. The counterexample helps the
user to identify the source of invalidity. The most severe practical limitation of model

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:9

checkers is the limited size of the state space they can handle [Schumann 2001] (e.g.,
they may run out of time or main memory).

Model checking usually requires a model of the program input, which is not needed
for type checking and static analyses. In addition, model checking usually scales only
to much smaller programs than type checking and static analyses. Avoiding the state-
space explosion requires manual effort for system abstraction or to configure heuristics
of model checkers. Nevertheless, model checking can uncover faults that type checking
and static analyses can not.

Theorem Proving. Theorem proving is a deductive approach to prove the validity of
logical formulas. A theorem prover is a tool processing logical formulas by applying
inference rules upon them [Schumann 2001]; it assists the programmer in verifying
the correctness of formulas, which can be achieved interactively or automatically. In-
teractive theorem provers, such as COQ [Bertot and Castéran 2004], PVS [Owre et al.
1992], and ISABELLE/HOL [Nipkow et al. 2002], require the user to write commands
applying inference rules. Instead, automated theorem provers, such as PROVER9,2
SPASS [Weidenbach et al. 2009], and SIMPLIFY [Detlefs et al. 2005], try to evaluate
the validity of theorems without further assistance by the user. Theorem provers usu-
ally provide a language to express logical formulas (theorems). Additionally, interac-
tive theorem provers also need to provide a language for proof commands. Automated
theorem provers are often limited to first-order logic or subsets thereof, whereas inter-
active theorem provers are available for higher-order logic and typed logic. Theorem
provers are able to generate proof scripts containing deductive reasoning that can be
inspected by humans.

Theorem provers are used in many applications, because of their high expressive-
ness and generality. In the analysis of software products, theorem provers are used to
formally prove that a program fulfills its specification. Given a specification in some
formal language and an implementation, a verification tool generates theorems, which
are the input for the theorem prover. If a theorem cannot be proved, theorem provers
point to the part of the theorem that could not be proved.

Compared to other verification techniques, the main disadvantage of theorem prov-
ing is that experts with an education in logical reasoning and considerable experience
are needed [Clarke et al. 1999]. Even if the verification procedure can be fully auto-
mated in some cases, users still need experience to define formal specifications. Con-
trary to type checking and static analysis, model checking and theorem proving often
do not scale to large programs.

2.3. Product-Line Specification
Many software analyses, such as model checking and theorem proving, require spec-
ifications defining the expected behavior of the programs to analyze. These analyses
check the conformance of the actual behavior of a given program with the expected
behavior. While surveying the literature, we identified different strategies to define
specifications for product-line analyses. We briefly present each specification strategy
and will use them to classify approaches for product-line analyses in later sections.

Domain-Independent Specification. For some analyses, it is sufficient to define a
specification independent of the analyzed product line – referred to as domain-
independent specification. A prominent example for a domain-independent specifica-
tion is a type system, which is assumed to hold for every software product line written
using a particular product-line implementation technique and programming language.

2http://www.cs.unm.edu/∼mccune/prover9/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Thomas Thüm et al.

Further examples for domain-independent specifications are parsers (i.e., syntax con-
formance) [Kästner et al. 2011], the absence of runtime exceptions [Post and Sinz 2008;
Rubanov and Shatokhin 2011], path coverage [Shi et al. 2012], or that every program
statement in a software product line appears in, at least, one product [Tartler et al.
2011]. However, a domain-independent specification can only describe properties that
are common across product lines.

Family-Wide Specification. If a domain-independent specification is insufficient, we
can define a specification for a particular product line that is assumed to hold for all
products – called family-wide specification. For example, in a product line of pacemak-
ers, all products have to adhere to the same specification, stating that a heart beat is
generated whenever the heart stops beating [Liu et al. 2007]. A limitation of family-
wide specifications is that we cannot express varying behavior that is common to some
but not all products of the product line.

Product-Based Specification. In principle, we could define a specification for every
software product individually – referred to as product-based specification. We can
use any specification technique from single-system engineering without adoption for
product-based specification. However, specifying the behavior for every product scales
only for software product lines with few products. Furthermore, it involves redundant
effort to define behavior that is common for two or more products.

Feature-Based Specification. In order to achieve reuse for specifications, we can
specify the behavior of features instead of products – called feature-based specifica-
tion [Apel et al. 2013b]. Every feature is specified without any explicit reference to
other features. Nevertheless, they may be used to verify properties across features
(e.g., for feature-interaction detection) [Apel et al. 2013b]. For example, in our object
store, we could define a specification for feature AccessControl that objects cannot be
accessed, if the store is sealed. This specification would apply to all products that con-
tain feature AccessControl.

Family-Based Specification. Finally, it is also possible to define specifications that
particular subsets of all products have in common – referred to as family-based spec-
ification. In a family-based specification, we can specify properties of individual fea-
tures or feature combinations. Basically, we can provide specifications together with
a presence condition, which describes a subset of all valid configurations (e.g., by a
propositional formula). Alternatively, features can be referenced directly in the speci-
fication. For example, in our object store we might want to specify that objects cannot
be accessed using method readAll, if the store is sealed and the product contains the
features MultiStore and AccessControl. In fact, family-based specification generalizes
family-wide, product-based, and feature-based specifications, in a sense that such spec-
ifications can be expressed as special family-based specifications. With a family-based
specification, we can automatically generate specifications of individual products, sim-
ilar to product generation. Several family-based specifications require extensions to
existing specification techniques [Asirelli et al. 2012; Classen et al. 2013], as features
are referenced explicitly to model variability in properties.

2.4. Classification and Survey Methodology
Based on the introduction of software product lines, software analyses, and strategies
for product-line specification, we present an overview of our classification of product-
line analyses. Then, we explain the methodology used to perform our literature survey.

In the last decade, researchers have proposed a number of analysis approaches tai-
lored to software product lines. The key idea is to exploit knowledge about features
and the commonality and variability of a product line to systematically reduce anal-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:11

ysis effort. Existing product-line analyses are typically based on standard analysis
methods, in particular, type checking, static analysis, model checking, and theorem
proving. All these methods have been used successfully for analyzing single software
products. They have complementary strengths and weaknesses, for instance, with re-
gard to practicality, correctness guarantees, and complexity; so, all of them appear
useful for product-line analysis. However, in most cases, it is hard to compare these
analysis techniques regarding scalability or even to find the approach that fits a given
product-line scenario best. The reason is that the approaches are often presented using
varying nomenclatures, especially if multiple software analyses are involved.

In our survey, we classify existing product-line analyses based on how they attempt
to reduce analysis effort – the analysis strategy. We distinguish three basic strategies,
indicating whether the analysis is applied to products, features, or the whole product
line: product-based, feature-based, and family-based analyses. We explain the basic
strategies and discuss existing approaches implementing each strategy. While survey-
ing the literature, we found approaches that actually combine some of the basic strate-
gies. Hence, we discuss possible combinations, as well. For each strategy, we provide
a definition and an example, we discuss advantages and disadvantages, and we clas-
sify existing approaches. Our main classification identifying the underlying analysis
strategy is presented in Sections 3–6. Besides the main classification, we distinguish
approaches also based on implementation strategies (see Section 2.1), the applied soft-
ware analysis (see Section 2.2), and specification strategies (see Section 2.3).

We reached our classification in an iterative process, in which we repeatedly drafted
a classification and classified articles accordingly. We collected relevant articles from
research literature guided by our knowledge and experience – we have all actively
worked in the field of product-line analyses for several years. In addition, we discussed
analyses for software product lines at the Dagstuhl meetings 11021 and 13091, and
we asked for contributions – several researchers tagged relevant articles in the online
repository of researchr.org.3 In our survey, we include articles independent of the
time being published and the kind of publication (e.g., article in journal, conference, or
technical report). The oldest articles we found have been published in 2001 [Klaeren
et al. 2001; Fisler and Krishnamurthi 2001; Plath and Ryan 2001; Nelson et al. 2001].
We assigned each article to, at least, two of the authors, who summarized the approach
and analysis strategy; each time we sought interpersonal consensus to ensure validity.
In case of doubt, we discussed the article with all authors of this survey or contacted
the original authors of the article and refined the classification. We repeated the pro-
cess until we reached consensus.

For clarity, we decided to remove articles subsumed by newer articles. An article is
considered as subsumed if a follow-up article by the same authors is classified iden-
tically and the presented analyses are similar. As a consequence, while we classified
123 articles in total, we discuss only 90 articles in our survey. We set up a website
presenting our results including subsumed papers, and we invite other researchers to
contribute to the ongoing process of classifying research on product-line analyses.4

3. PRODUCT-BASED ANALYSES
Pursuing a product-based analysis, the products of a product line are generated and
analyzed individually, each using a standard analysis technique. The simplest ap-
proach is to generate and analyze all products in a brute-force fashion, but this is
feasible only for product lines with few products. A typical strategy is to sample a
smaller number of products, usually based on some coverage criteria, such that still

3http://researchr.org/tag/variability-aware-analysis/
4http://fosd.net/spl-strategies/

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Thomas Thüm et al.

reasonable statements on the correctness or other properties of the entire product line
are possible [Oster et al. 2010; Perrouin et al. 2010; Nie and Leung 2011].

Definition 3.1 (Product-based analysis). An analysis of a software product line is
product-based, if it operates only on generated products or models thereof, whereas the
variability model may be used to generate all products or to implement optimizations.
A product-based analysis is called optimized, if it operates on a subset of all products
(a.k.a. sample-based analysis) or if intermediate analysis results of some products are
reused for other products; it is called unoptimized otherwise (a.k.a. exhaustive, com-
prehensive, brute-force, and feature-oblivious analysis).

3.1. Example
In our object-store example, we can generate and compile every product to detect type
errors. However, we could save analysis effort when checking whether the specification
of feature AccessControl is satisfied: First, all products that do not contain AccessCon-
trol do not need to be checked. Second, if two products differ only in features that do
not concern class Store (not shown in our example; e.g., features that are concerned
with other data structures), only one of these products needs to be checked.

3.2. Advantages and Disadvantages
The main advantage of product-based analyses is that every existing software analysis
can easily be applied in the context of software product lines. In particular, existing
off-the-shelf tools can be reused to analyze individual products. Furthermore, product-
based analyses can easily deal with changes to software product lines that alter only a
small set of products, because only changed products need to be re-analyzed.

A specific advantage of an unoptimized product-based analysis is the soundness and
completeness with respect to the analysis that is scaled from single-system engineer-
ing (i.e., the base analysis). First, every fault detected using this strategy, is a fault of a
software product that can be detected by the base analysis (soundness). Second, every
fault that can be detected using the base analysis, is also detected using an unopti-
mized product-based analysis (completeness). Note that, while the base analysis itself
might be unsound or incomplete with regard to some specification and analysis goal,
this strategy is still sound and complete with regard to the base analysis (i.e., it will
detect the same faults).

However, there are serious disadvantages of product-based analyses. Already gen-
erating all products of a software product line is often infeasible, because the number
of products is up-to exponential in the number of features. Even if the generation of
all products is possible, separate analyses of individual products perform inefficient,
redundant computations, due to similarities between the products.

The analysis results of product-based analyses refer necessarily to generated arti-
facts of products, and not to domain artifacts implemented in domain engineering,
which gives rise to two difficulties. First, a programmer may need to read and under-
stand the generated code in order to understand the analysis results (e.g., the com-
posed class Store in Figure 2 contains all members introduced by the features of the
analyzed product). Second, if a change to the code is necessary, it must be applied to
the domain artifacts instead of generated artifacts, and automatic mappings are not
always possible [Kuhlemann and Sturm 2010].

While an unoptimized product-based strategy is often not feasible in practice, it
serves as a baseline for other strategies in terms of soundness, completeness, and ef-
ficiency. Ideally, an analysis strategy is sound and complete with respect to the base
analysis, and, at the same time, it is more efficient than the unoptimized product-based

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:13

strategy. However, we will also discuss strategies that are incomplete or unsound to in-
crease the efficiency of the overall analysis.

3.3. Unoptimized Product-Based Analyses
Product-based strategies are widely used in practice, because they are simple and can
be applied without creating and using new concepts and tools. For example, when
generating and compiling individual software products, type checking is usually done
internally by the compiler (e.g., the Java compiler). Type checking is redundant when
different products share implementation artifacts, and sharing artifacts between prod-
ucts is the common case and goal in product-lines engineering [Czarnecki and Eise-
necker 2000; Apel et al. 2013a].

In general, we found no proposal in the literature explicitly suggesting an unop-
timized product-based analysis. However, we found some approaches that actually
use product-based analyses for specific implementation mechanisms and do not dis-
cuss how to deal with many products; these approaches apply type checking [Apel
et al. 2008a; Buchmann and Schwägerl 2012; Istoan 2013], static analyses [Klaeren
et al. 2001; Scholz et al. 2011], model checking [Ubayashi and Tamai 2002; Kishi and
Noda 2006; Fantechi and Gnesi 2008; Apel et al. 2010b; Istoan 2013; Bessling and
Huhn 2014], and theorem proving [Harhurin and Hartmann 2008] to software product
lines. The unoptimized product-based analysis strategy has been used with domain-
independent specifications [Apel et al. 2008a; Buchmann and Schwägerl 2012; Istoan
2013], family-wide specifications [Ubayashi and Tamai 2002; Kishi and Noda 2006;
Fantechi and Gnesi 2008; Istoan 2013], and feature-based specifications [Klaeren et al.
2001; Harhurin and Hartmann 2008; Apel et al. 2010b; Scholz et al. 2011; Istoan 2013;
Bessling and Huhn 2014]. These approaches considered composition-based implemen-
tation [Klaeren et al. 2001; Ubayashi and Tamai 2002; Apel et al. 2008a; Scholz et al.
2011], composition-based design [Harhurin and Hartmann 2008; Apel et al. 2010b; Is-
toan 2013; Bessling and Huhn 2014], and annotation-based design [Kishi and Noda
2006; Fantechi and Gnesi 2008; Buchmann and Schwägerl 2012] as domain artifacts.

3.4. Optimized Product-Based Analyses
One reason for the success of software product lines is that new combinations of fea-
tures can often be derived automatically. The effort for the development of new prod-
ucts is smaller than developing them from scratch. However, unoptimized product-
based strategies hinder an efficient analysis of software product lines, and thus an
efficient development. The overall goal of product-line engineering is to scale product-
line analyses to a similar degree of efficiency as implementation techniques, as the
development of software product lines requires both efficient implementation strate-
gies and efficient analysis strategies. Several optimized product-based strategies have
been proposed to improve scalability and reduce redundant computations. Optimiza-
tions proposed in the literature focus either on detecting redundant parts in analyses
or on eliminating products that are already covered by other analysis steps, according
to certain coverage criteria.

Optimized Product-Based Model Checking. Katz [2006] introduces aspect categories
to optimize model checking of aspect-oriented programs. According to our classifica-
tion, they discuss model checking for composition-based implementation and feature-
based specification. In the first phase, a static analysis classifies aspects into spec-
tative, regulative, and invasive aspects.5 It is applied to individual products; Katz

5Aspects can be used to implement features; the difference to feature modules is discussed elsewhere [Apel
et al. 2008b].

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Thomas Thüm et al.

[2006] does not discuss how to handle many products. However, the static analysis
in the first phase can save effort when model checking products in the second phase.
He discusses which temporal properties can be influenced by spectative and regula-
tive aspects. When analyzing certain properties using model checking, one can omit
products that contain spectative and regulative aspects. Hence, we classify the two
phases of this approach as unoptimized product-based static analysis and optimized
product-based model checking. Similarly, Cordy et al. [2012d] discuss the notion of
conservative features, which are features that do not remove behavior. They discuss
which properties are preserved when adding conservative features to a product line.
In their approach, they do not need to verify some properties for some products.

Optimized Product-Based Theorem Proving. Bruns et al. [2011] present a product-
based analysis strategy for formal verification of delta-oriented software product lines.
Their approach is based on contracts defined in delta modules, which we classify as
feature-based specification and composition-based implementation. Delta modules are
similar to feature modules, but can also remove program elements. Bruns et al. [2011]
generate all derivable software products and verify them incrementally using inter-
active theorem proving. To this end, a base product needs to be chosen and verified
completely. For all other products, they choose the base product as a starting point,
copy all proofs to the current product, and mark those as invalid that do not hold due
to the differences to the base product. Only invalidated proofs need to be redone and
some new proof obligations need to be proved. However, in the end, still all products
need to be generated and analyzed.

Sample-Based Analyses. Other approaches improve the efficiency of the product-
based strategy by eliminating products from the set of products to analyze, because
some products may already be covered by the analysis of other products. A frequently
stated assumption is that most faults are caused by an interaction of only few fea-
tures [Nie and Leung 2011; Kuhn et al. 2013]. Hence, those approaches retrieve a
minimal set of products fulfilling a given coverage criterion and only those products
are analyzed. While sampling is sound with respect to the base analysis, it is inher-
ently incomplete (i.e., it may miss defects of not covered products). While most coverage
criteria such as pair-wise or t-wise coverage are often proposed for testing of single sys-
tems [Nie and Leung 2011] and product lines [Oster et al. 2010; Perrouin et al. 2010],
they have also been applied to scale type checking [Jayaraman et al. 2007; Liebig et al.
2013], static analysis [Liebig et al. 2013], and model checking [Plath and Ryan 2001;
Apel et al. 2013c] to software product lines.

In pair-wise coverage, for every pair of features (F,G), products must exist in the cal-
culated set containing F but not G, G but not F , and both features F and G, whereas
only combinations of features are considered that are valid according to the variabil-
ity model. While pair-wise coverage can only detect all pair-wise interactions, t-wise
coverage is a generalization of pair-wise coverage to detect higher-order interactions
for up-to t features. Sample-based analyses have been discussed for composition-based
implementation [Apel et al. 2013c], composition-based design [Plath and Ryan 2001;
Jayaraman et al. 2007], and annotation-based implementations [Liebig et al. 2013]. We
classify their used specification strategies as domain-independent specification [Plath
and Ryan 2001; Jayaraman et al. 2007; Liebig et al. 2013], family-wide specifica-
tion [Liebig et al. 2013], and feature-based specification [Apel et al. 2013c]. Recent
evaluations for type checking, static analysis, and model checking have shown that
there are more efficient strategies for product-line analysis [Liebig et al. 2013; Apel
et al. 2013c], which we discuss in the following sections.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:15

4. FAMILY-BASED ANALYSES
The main problem with product-based analyses are redundant computations, because
the products of a software product line share code [Czarnecki and Eisenecker 2000;
Apel et al. 2013a]. Besides an optimized product-based strategy, another option to
achieve a more efficient analysis is to consider domain artifacts such as feature mod-
ules instead of generated artifacts (i.e., products).

Family-based analyses operate on domain artifacts and valid combinations thereof,
as specified by a variability model. The variability model is usually converted into a
logic formula to allow analysis tools to reason about all valid combinations of features
(e.g., a satisfiability solver can be used to check whether a method is defined in all
valid feature combinations, in which it is referenced). The overall idea is to analyze
domain artifacts and variability model in concert from which we can conclude that
some intended properties hold for all products. Often, all implementation artifacts of
all features are merged into a single virtual product (a.k.a. metaproduct or product
simulator). The virtual product is not necessarily a valid product due to optional and
mutually exclusive features [Thüm et al. 2012].

Definition 4.1 (Family-based analysis). An analysis of a software product line is
family-based, if it (a) operates only on domain artifacts and (b) incorporates the knowl-
edge about valid feature combinations.

4.1. Example
A family-based type checker, for instance, can analyze the code base of the object store
example (i.e., all feature modules) in a single pass, although the features are combined
differently in the individual products. To this end, it takes variability into account, in
the sense that individual feature modules may be present or absent in certain prod-
ucts. Regarding method invocations, it checks whether a corresponding target method
is declared in every valid product in which it is invoked. In Figure 5, we illustrate how a
family-based type system checks whether the references of a slightly modified feature
module AccessControl to the methods read and readAll are well-typed in every valid
product. For method read, the type system infers that the method is introduced by the
feature modules SingleStore and MultiStore, and that one of them is always present
(checked using a satisfiability solver; green, solid arrows).6 For method readAll, it in-
fers that the method is introduced only by feature module MultiStore, which may be
absent when feature module AccessControl is present (red, dotted arrow). Hence, the
type system reports a fault and produces a counter example in terms of a valid feature
selection that contains a dangling method invocation: {SingleStore, AccessControl}.

4.2. Advantages and Disadvantages
Family-based strategies have advantages and disadvantages compared to product-
based strategies; we begin with the advantages. First of all, not every individual prod-
uct must be generated and analyzed, because family-based analyses operate on domain
artifacts. Thus, family-based strategies avoid redundant computations across multiple
products, in which reasoning about variability and commonality prevents these dupli-
cate analyses.

Second, the analysis effort is not proportional to the number of valid feature com-
binations. While the satisfiability problem is in NP-complete, in practice, satisfiability
solvers perform well when reasoning about variability models [Mendonça et al. 2009;
Thüm et al. 2009]. Intuitively, the performance of family-based analyses is mainly in-

6A satisfiability solver can be used to check whether a propositional formula is a tautology by checking
whether the negation of the whole formula is unsatisfiable.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Thomas Thüm et al.

Feature module SingleStore

class Store {
private Object value;
Object read() { return value; }
void set(Object nvalue) { value = nvalue; }

}

Feature module MultiStore

class Store {
private LinkedList values = new LinkedList();
Object read() { return values.getFirst(); }
Object[] readAll() { return values.toArray(); }
void set(Object nvalue) { values.addFirst(nvalue); }

}

Feature module AccessControl

refines class Store {
private boolean sealed = false;
Object read() {

if (!sealed) { return Super.read(); }
else { throw new RuntimeException(”Access denied!”); }

}
Object[] readAll() {

if (!sealed) { return Super.readAll(); }
else { throw new RuntimeException(”Access denied!”); }

}
void set(Object nvalue) {

if (!sealed) { Super.set(nvalue); }
else { throw new RuntimeException(”Access denied!”); }

}
}

Fig. 5. Checking whether references to the methods read and readAll are well-typed in all products. VM
denotes the variability model of Figure 3 as propositional formula; a satisfiability solver determines whether
the formulas in the boxes are tautologies (the upper formula is, but the lower is not).

VM ⇒ (AccessControl ⇒ MultiStore)

VM ⇒ (AccessControl ⇒ SingleStore ∨ MultiStore)

fluenced by the number and size of feature implementations and the amount of shar-
ing during analysis [Brabrand et al. 2013], but largely independent to the number of
valid feature combinations. For comparison, the effort for product-based approaches
increases with every new product.

However, family-based strategies also have disadvantages. Often, known analysis
methods for single products cannot be used as they are. The reason is that the analy-
sis method must be aware of features and variability. Existing analysis methods and
off-the-shelf tools need to be extended, if possible, or new analysis methods need to
be developed. For some software analyses, such as model checking and theorem prov-
ing, there exist techniques to encode the analysis problem in an existing formalism
or language (e.g., using a metaproduct simulating all products) and reuse off-the-shelf
tools [Post and Sinz 2008; Apel et al. 2011; Thüm et al. 2012], but it is not clear whether
these techniques can be used for all kinds of software analyses.

Second, changing the domain artifacts of one feature or a small set of features,
usually requires to analyze the whole product line again from scratch [Cordy et al.
2012b]. Hence, the effort for very large product lines with many features is much
higher than actually necessary, while the product line evolves over time. However, it is

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:17

possible to cache certain parts of the analysis, which may reduce the overall analysis
effort [Kästner et al. 2012a].

Third, changing the variability model usually requires to analyze the whole product
line again. For instance, if we add a new product or a small set of new products, we may
be faster analyzing these new products with a product-based strategy than analyzing
the product line again using a family-based strategy. But similar to domain-artifact
changes, this depends on the analysis approach and available caching strategies. When
the variability model was specialized or refactored (i.e., no new products are added),
reanalyzing the product line cannot reveal new faults [Thüm et al. 2011a].

Fourth, as family-based analyses consider all domain artifacts as a whole, the size
of the analysis problem can easily exceed physical boundaries such as the available
memory [Apel et al. 2013c]. Thus, family-based analysis may be infeasible for large
software product lines and expensive analyses.

Finally, family-based analyses assume a closed world – all features have to be known
during the analysis process (e.g., to look up all potential targets of method invocations).
In practice, this may be infeasible, for example, in multi-team development or software
ecosystems such as Eclipse. Note, whenever we want to analyze the whole software
product line, a closed world is required – independent of the chosen strategy.

4.3. Family-Based Syntax Checking
Although parsing detects only certain defects in source code (i.e., syntax conformance
with respect to a domain-independent specification), it is a necessary step for many
analyses such as type checking. While parsing is straightforward for modular product-
line implementation approaches such as feature-oriented programming or aspect-
oriented programming, it is complicated for product lines implemented with condi-
tional compilation. There are several approaches for family-based parsing of C code
with preprocessor directives that avoid to preprocess the code for each product sep-
arately by generating a variability-aware abstract syntax tree. Kästner et al. [2011]
implemented their approach in TYPECHEF, and Gazzillo and Grimm [2012] presented
SUPERC for parsing. Gazzillo and Grimm [2012] compare the efficiency of both tools.
Based on TYPECHEF, Medeiros et al. [2013] studied releases and commits of several
open-source product lines, such as BASH, CVS, and VIM. They found defects that have
remained unnoticed for years.

4.4. Family-Based Type Checking
Family-based strategies have been proposed by several authors for type checking of
software product lines. The majority of work on family-based type checking is about
creating variability-aware type systems (i.e., a domain-independent specification) and
proving that, whenever a product line is type safe according to the type system, all
derivable products are also well-typed. The rules of these type systems contain reach-
ability checks (basically implications) making sure, among others, that every program
element is defined in all products where it is referenced. Variability-aware type sys-
tems have been developed for composition-based implementation [Thaker et al. 2007;
Huang et al. 2007; Kim et al. 2008; Kuhlemann et al. 2009; Delaware et al. 2009;
Apel et al. 2010a; Apel et al. 2010c; Kolesnikov et al. 2013], composition-based de-
sign [Alférez et al. 2011], annotation-based implementation [Aversano et al. 2002; Kim
et al. 2008; Kenner et al. 2010; Teixeira et al. 2011; Kästner et al. 2012a; Kästner
et al. 2012b; Liebig et al. 2013; Le et al. 2013; Chen et al. 2014], and annotation-based
design [Czarnecki and Pietroszek 2006; Metzger et al. 2007; Heidenreich 2009]. For
composition-based product lines, type checking ensures safe composition [Thaker et al.
2007; Kim et al. 2008]. Post and Sinz [2008] and Liebig et al. [2013] applied family-
based type checking to parts of the Linux kernel.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Thomas Thüm et al.

Actually, there are two approaches of family-based type checking [Apel et al. 2010c;
Huang et al. 2011]. Local approaches perform distinct reachability checks for every
program element [Kim et al. 2008; Apel et al. 2010a; Kenner et al. 2010; Huang et al.
2011; Kästner et al. 2012a; Kästner et al. 2012b; Liebig et al. 2013; Kolesnikov et al.
2013]. This results in many small satisfiability problems to solve, which, however, can
be cached efficiently [Kolesnikov et al. 2013]. Global approaches generate, based on
all inferred dependencies between program elements, a single large propositional for-
mula that is checked for satisfiability at the end of type checking [Thaker et al. 2007;
Delaware et al. 2009; Teixeira et al. 2011; Alférez et al. 2011; Le et al. 2013]. This
results in one large satisfiability problem to solve. Apel et al. [2010c] and Huang et al.
[2011] discuss strengths and weaknesses of local and global approaches.

Type systems for product lines are often designed for explicitly-typed languages,
in which the expected types are given explicitly in the product line’s implementa-
tion. However, when dealing with implicitly-typed languages, instead of only checking
whether a term is of a given type, we also need to infer types for given terms. A type
system that performs type inference for an extension of the lambda calculus has been
presented by Chen et al. [2014].

4.5. Family-Based Static Analysis
Recently, researchers have proposed family-based static analyses for software product
lines, in particular, intra-procedural [Brabrand et al. 2013; Liebig et al. 2013; Midt-
gaard et al. 2014] and inter-procedural [Bodden et al. 2013] data-flow analyses. Fur-
thermore, static analyses have been proposed [Ribeiro et al. 2010; Tartler et al. 2011;
Adelsberger et al. 2014; Sabouri and Khosravi 2014] that do not scale an existing static
analysis known from single-system engineering, but rather focus on an analysis that is
specific to product lines – to which we refer to as family-specific analyses. Interestingly,
most approaches for family-based static analysis are designed for annotation-based im-
plementations and domain-independent specifications. As an exception, Adelsberger
et al. [2014] focus on composition-based implementations with feature-oriented pro-
gramming, and Sabouri and Khosravi [2014] propose a family-wide specification. Over-
all, these analyses support product lines implemented in C [Tartler et al. 2011; Liebig
et al. 2013] and Java [Ribeiro et al. 2010; Brabrand et al. 2013; Bodden et al. 2013;
Adelsberger et al. 2014]. For some of these approaches, existing tools have been ex-
tended such as SOOT [Ribeiro et al. 2010; Brabrand et al. 2013; Bodden et al. 2013]
and IFDS [Bodden et al. 2013].

Ribeiro et al. [2010] proposed the first family-based static analysis. Their goal was
not product-line verification, but rather to support product-line development and pre-
vent errors up-front. They show how to infer interfaces for preprocessor-based product
lines using family-based dataflow analysis. Tartler et al. [2011] propose a family-based
static analysis for defect detection in the Linux kernel. They analyze whether code
blocks surrounded by #ifdef directives are dead (i.e., not contained in any product) or
undead (i.e., contained in all products that contain the parent block). Adelsberger et al.
[2014] propose a static analysis for dynamic software product lines implemented with
feature-oriented programming. The goal of their analysis is to assess the complexity of
a reconfiguration at run-time. All these approaches are family-specific analyses.

In contrast, family-based analyses have also been proposed to scale existing static
analyses from single-system engineering to product lines. Brabrand et al. [2013]
demonstrate how to transform any standard intra-procedural data-flow analysis into
a family-based data-flow analysis. They discuss three family-based approaches for this
task, which differ in how they introduce variability into the underlying analysis ab-
stractions (control-flow graph, the lattice storing the intermediate results, and the cor-
responding transfer function). Bodden et al. [2013] propose a similar data-flow analy-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:19

sis, which is, however, inter-procedural and requires less intrusive changes to the in-
ternal analysis abstractions (i.e., only the control-flow graph is enriched with feature
constraints). This way, one can reuse an information-flow analysis that was designed
for regular programs also for software product lines, without having to change a single
line of analysis code. Liebig et al. [2013] report experiences with scaling family-based
data-flow analyses to real C product lines with thousands of features and millions of
lines of code. Midtgaard et al. [2014] show how to systematically lift static analyses
from single-system engineering to product lines. They propose variational abstract in-
terpretation to develop family-based static analyses that are correct-by-construction.
They exemplify their approach by means of constant propagation analysis. Sabouri and
Khosravi [2014] propose a static analysis to identify features that are irrelevant for a
given temporal property. These irrelevant features are then ignored during family-
based model checking to reduce the state space.

Family-based static analyses show significant performance speed-ups compare to
product-based static analyses. Brabrand et al. [2013] found that the family-based
strategy is, on average, three times faster than the unoptimized product-based ap-
proach, without product generation and compilation, and almost eight times faster
when including product generation and compilation. While their approach is intra-
procedural, a comparison with an unoptimized product-based strategy is impractical
for most other approaches. With a huge number of products such an experiment would
take years [Bodden et al. 2013; Liebig et al. 2013]. Nevertheless, Tartler et al. [2011]
report that they found 1,776 defects in the Linux kernel in 15 minutes, which sum
up to 5,129 lines of dead code and superfluous #ifdef statements. Liebig et al. [2013]
compare the family-based strategy with several optimized product-based strategies,
such as a single configuration containing as many features as possible (i.e., allyescon-
fig), configuration coverage [Tartler et al. 2012], and pair-wise sampling. They found
that the family-based strategy was slower than checking the single configuration, but
faster than all other sampling strategies.

A further criteria to distinguish family-based analyses is when they consider the
variability model. A family-based analysis may use the dependencies of the variability
model already during the analysis—to which we refer to as early variability-model con-
sideration. In contrast, a family-based analysis may incorporate the knowledge about
valid feature combinations only at the end of the analysis to rule out false positives—
to which we refer to as late variability-model consideration. Most family-based static
analyses rely on early variability-model consideration [Ribeiro et al. 2010; Brabrand
et al. 2013; Bodden et al. 2013; Tartler et al. 2011; Adelsberger et al. 2014], whereas
family-based static analyses with late variability-model consideration have been pro-
posed recently [Bodden et al. 2013; Liebig et al. 2013]. Interestingly, Bodden et al.
[2013] measured that late variability-modeling consideration was slightly faster than
early consideration (i.e., ignoring the variability model during analysis is faster). How-
ever, it is not clear whether this applies to static analyses in general.

4.6. Family-Based Model Checking
Several approaches have been proposed for family-based model checking. The over-
all idea is that a model of the product-line implementation is analyzed with respect
to the variability model and one or more properties. For a given property, the model
checker analyzes whether the property is fulfilled by all products. If not, the model
checker usually returns a propositional formula specifying those products that violate
the property [Gruler et al. 2008].

One distinguishing characteristic of approaches for family-based model checking is
whether they operate directly on source code or on an abstraction of a system. The
former is known as software model checking and we refer to the latter as abstract

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Thomas Thüm et al.

model checking. The majority of approaches for family-based model checking apply ab-
stract model checking. Abstract models have been defined using I/O automata [Lauen-
roth et al. 2010], labeled transition systems [Gruler et al. 2008; Sabouri and Khosravi
2012; ter Beek et al. 2013; Sabouri and Khosravi 2014], modal transition systems [Fis-
chbein et al. 2006; Asirelli et al. 2012], featured transition systems [Classen et al.
2010; Cordy et al. 2012a; Cordy et al. 2012b; Classen et al. 2013; Sabouri and Khos-
ravi 2013a; Cordy et al. 2013b; Cordy et al. 2013a; Classen et al. 2014], featured timed
automata [Cordy et al. 2012c], modal sequence diagrams [Greenyer et al. 2013], and
actor models [Sabouri and Khosravi 2013b]. In contrast, several authors proposed ap-
proaches for family-based software model checking. These approaches analyze prod-
uct lines written in C [Post and Sinz 2008; Apel et al. 2011; Apel et al. 2013c] and
Java [Schaefer et al. 2010; Kästner et al. 2012c; Apel et al. 2013c]. Family-based model
checking has been applied to composition-based [Apel et al. 2011; Greenyer et al. 2013;
Apel et al. 2013c; Classen et al. 2013; Sabouri and Khosravi 2013a; Classen et al.
2014] and annotation-based [Fischbein et al. 2006; Gruler et al. 2008; Post and Sinz
2008; Lauenroth et al. 2010; Classen et al. 2010; Schaefer et al. 2010; Asirelli et al.
2012; Cordy et al. 2012a; Cordy et al. 2012c; Sabouri and Khosravi 2012; Cordy et al.
2012b; Classen et al. 2013; ter Beek et al. 2013; Cordy et al. 2013b; Cordy et al. 2013a;
Sabouri and Khosravi 2013b; 2014] product lines. Tool support for family-based model
checking is often build on existing tools such as CBMC [Post and Sinz 2008], PRO-
MOVER [Schaefer et al. 2010], CPACHECKER [Apel et al. 2011; Apel et al. 2013c],
NUSMV [Greenyer et al. 2013; Classen et al. 2013; Classen et al. 2014], SPIN [Sabouri
and Khosravi 2012; Classen et al. 2013; Cordy et al. 2013b], UPPAAL [Cordy et al.
2012c], JPF [Apel et al. 2013c], AFRA [Sabouri and Khosravi 2013a; 2014], MAUDE [ter
Beek et al. 2013], and MODERE [Sabouri and Khosravi 2013b].

Besides the product line’s source code or an abstraction thereof, family-based model
checking requires a formalism to encode properties (i.e., specifications) to be checked.
Most approaches are based on computation tree logic (CTL) [Lauenroth et al. 2010;
Greenyer et al. 2013; Classen et al. 2013; Cordy et al. 2013a; Classen et al. 2014]
or linear temporal logic (LTL) [Classen et al. 2010; Schaefer et al. 2010; Cordy et al.
2012b; ter Beek et al. 2013; Sabouri and Khosravi 2013b; 2014]. Gruler et al. [2008]
and Sabouri and Khosravi [2012] use the µ-calculus as a generalization of CTL and
LTL. Cordy et al. [2012c] rely on timed CTL, an extension of CTL with support for mod-
eling real-time properties. Asirelli et al. [2012] propose the branching-time temporal
logic MHML to express common dependencies of variability models in the product-
line specification. Apel et al. [2011] and Apel et al. [2013c] model temporal safety
properties using aspect-oriented programming and assertions. In contrast to all other
approaches, Cordy et al. [2012a] propose to model the product-line implementation
and properties each as featured transition systems, and they verify the properties by
checking whether both featured transition systems are in a simulation relation. These
specification techniques have been lifted to product lines using different strategies.
The surveyed approaches use domain-independent [Post and Sinz 2008; Sabouri and
Khosravi 2013a], family-wide [Fischbein et al. 2006; Gruler et al. 2008; Schaefer et al.
2010; Sabouri and Khosravi 2012; Cordy et al. 2012c; Greenyer et al. 2013; ter Beek
et al. 2013; Sabouri and Khosravi 2013b; 2014], feature-based [Lauenroth et al. 2010;
Classen et al. 2010; Apel et al. 2011; Apel et al. 2013c], and family-based specifica-
tions [Asirelli et al. 2012; Cordy et al. 2012a; Cordy et al. 2012b; Classen et al. 2013;
Cordy et al. 2013a; Cordy et al. 2013b; Classen et al. 2014].

Most approaches for family-based model checking rely on early variability-model
consideration. That is, the variability model is used during analysis to ignore paths for
invalid feature combinations. In contrast, Classen et al. [2013] discuss family-based
model checking with late variability-model consideration. The variability model is ig-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:21

nored during model checking, and the output of model checking is then combined with
the variability model to prevent false positives. False positives can occur if a property is
violated only by invalid configurations. By means of an empirical evaluation, Classen
et al. [2013] found that family-based model checking with early variability-model con-
sideration is about 7 percent faster than with late consideration. This is in contrast
to results for static analyses, where some experiments revealed the opposite (see Sec-
tion 4.5). It is up to future work, to find the fundamental reasons for this difference
between family-based model checking and static analysis.

4.7. Family-Based Theorem Proving
When we started working on this survey, there was no approach applying the family-
based strategy to theorem proving. Based on this insight, some of the authors (Thüm,
Schaefer, and Apel) proposed family-based theorem proving for product lines imple-
mented with feature-oriented programming [Thüm et al. 2012]. Similar to approaches
for family-based model checking, all feature modules are translated into a single
metaproduct that can be passed to the off-the-shelf verification tool KeY. Addition-
ally to the translation of feature modules, also feature-based specifications given in an
extension of the Java Modeling Language are translated into a metaspecification (i.e.,
a family-based specification). Instead of checking that each product fulfills its specifi-
cation, it is sufficient to check that the metaproduct conforms to the metaspecification,
which saves 85 percent of the calculation time for automatic verification for product
line of bank accounts.

5. FEATURE-BASED ANALYSES
Software product lines may also be analyzed using a feature-based strategy. That is, all
domain artifacts implementing a certain feature are analyzed in isolation (in bundles
assigned to individual features) without considering other features or the variabil-
ity model. The idea of feature-based analyses is to reduce the potentially exponential
number of analysis tasks (i.e., for every valid feature combination) to a linear number
of analysis tasks (i.e., for every feature) by accepting that the analysis might be incom-
plete. The assumption of feature-based analysis is that certain properties of a feature
can be analyzed modularly, without reasoning about other features and their relation-
ships. Similar to family-based strategies, feature-based strategies operate on domain
artifacts instead of generated products. Contrary to family-based strategies, no vari-
ability model is needed as every feature is analyzed only in isolation. Feature-based
analyses are sound and complete with respect to the base analysis, if the properties
and the analyses are compositional with respect to the features (i.e., the analysis re-
sults cannot be invalidated by interactions of features).

Definition 5.1 (Feature-based analysis). An analysis of a software product line is
feature-based, if it (a) operates only on domain artifacts and (b) software artifacts
belonging to a feature are analyzed in isolation (i.e., knowledge about valid feature
combinations is not used), and feature interactions are not considered.

5.1. Example
In the object-store example, we can analyze each of the three feature modules in iso-
lation to some extent. First, we can parse each feature module in isolation to make
sure that it conforms to the syntax and to create an abstract syntax tree for each fea-
ture module. For syntax checking, it is sufficient to consider each feature module in
isolation, as syntactic correctness is independent of other features, and thus a com-
positional property. Second, the type checker uses the abstract syntax tree to infer
which types and references can be resolved by a feature itself and which have to be

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Thomas Thüm et al.

Feature module AccessControl

refines class Store {
private boolean sealed = false;
Object read() {

if (!sealed) { return Super.read(); }
else { throw new RuntimeException(”Access denied!”); }

}
Object[] readAll() {

if (!sealed) { return Super.readAll(); }
else { throw new RuntimeException(”Access denied!”); }

}
void set(Object nvalue) {

if (!sealed) { Super.set(nvalue); }
else { throw new RuntimeException(”Access denied!”); }

}
}

Fig. 6. Feature-based type checking reasons about features in isolation. For example, references to sealed
can be checked entirely within feature AccessControl. But, references to read and readAll cut across feature
boundaries and cannot be analyzed with feature-based type checking.

provided by other features. As an example, all references to field sealed are internal
and can be checked within the implementation of feature AccessControl, as illustrated
in Figure 6. That is, there is no need to check this reference for every product. How-
ever, some of the references cut across feature boundaries and cannot be checked in
a feature-based fashion. Well-typedness is not a compositional property. For example,
references to the methods read and readAll of feature AccessControl cannot be resolved
within the feature.

5.2. Advantages and Disadvantages
Feature-based analyses have a strong disadvantage that we want to discuss first. A
feature-based analysis can only detect issues within a certain feature and cannot rea-
son about issues across features, because features are only analyzed in isolation. A
well-known problem in this context are feature interactions [Calder et al. 2003]: sev-
eral features work as expected in isolation, but lead to unexpected behavior in combi-
nation. A prominent example from telecommunication systems is that of the features
CallForwarding and CallWaiting [Bowen et al. 1989]. While both features may work
well in isolation, it is not clear what should happen if both features are selected and
an incoming call arrives at a busy line: forwarding the incoming call or waiting for the
other call to be finished. Hence, feature-based strategies must usually be combined
with product-based or family-based strategies to cover feature interactions and to deal
with non-compositional properties.

Nevertheless, feature-based strategies have advantages compared to product-based
and family-based strategies. First, they analyze domain artifacts (similar to family-
based strategies) instead of operating on generated software artifacts, and thus there
are no redundant computations across products.

Second, the feature-based strategy supports open-world scenarios: It is not required
that all features are known at analysis time. Furthermore, it is not required to have
a variability model, which is typically not available in an open-world scenario. Never-
theless, a feature-based strategy can also be applied for closed-world scenarios, where
all features and their valid combinations are known at analysis time.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:23

Third, the effort to analyze a product line is minimal, when one or a small set of
features are changed. In such cases, only changed features need to be re-analyzed in
isolation, whereas with family-based and product-based strategies, we would need to
re-analyze the whole product line or all affected products.

Fourth, the analysis of a software product line using a feature-based strategy is
divided into smaller analysis tasks. Thus, a feature-based strategy is especially useful
for software analysis with extensive resource consumption (e.g., memory) and for large
software product lines, for which some family-based analyses are not feasible.

Finally, changing only the variability model does not affect feature-based analysis at
all. Hence, when the variability model evolves, we do not need to perform any feature-
based analysis again, since features are only analyzed in isolation.

5.3. Feature-Based Approaches
As indicated previously, there are only few strict feature-based approaches. For ex-
ample, parsing and syntax checking of software product lines with modular imple-
mentations for each feature (such as feature-oriented programs, aspect-oriented pro-
grams, delta-oriented programs, and frameworks) are compositional analyses. While
parsing is a necessary task for any static analysis, it is only discussed for non-modular
feature implementations, such as conditional compilation [Kästner et al. 2011], for
which feature-based parsing is impossible. A further example for a simple feature-
based analysis is to compute code metrics. For most software analyses, we need to
combine feature-based analyses with other strategies.

It may seem odd that we defined a strategy which is not present in literature it-
self. Indeed, previous drafts of our classification were less restrictive for the feature-
based strategy. In particular, we also included approaches that do parts of the analysis
feature-based. However, it turned out that many approaches with very different char-
acteristics were classified as feature-based, and it was difficult to assess their concep-
tual differences. Whereas many approaches claim to be modular or compositional, it is
unclear what happens to those parts of the analysis which concern feature interactions
(i.e., non-compositional properties). With our more strict classification, we identify how
those approaches resolve feature interactions – which we discuss in the next section.

6. COMBINED ANALYSIS STRATEGIES
We have discussed product-based, family-based, and feature-based analyses as differ-
ent strategies to scale software analyses from single-system engineering to software
product lines. These three strategies form the basis of our classification, but they can
also be combined resulting in four additional strategies. In this section, we discuss
possible combinations even if some of them are not yet implemented.

6.1. Feature-Product-Based Analyses
A commonly proposed combined strategy, which we identified in the literature, is the
feature-product-based strategy that consists of two phases. First, features are ana-
lyzed in isolation and, second, all properties not checked feature-based are analyzed
for each product. The feature-based part can only analyze features locally and the
product-based part checks that features work properly in combination. The key idea is
to reduce analysis effort by checking as much as possible feature-locally.

Definition 6.1 (Feature-product-based analysis). An analysis of a software product
line is feature-product-based, if (a) it consists of a feature-based analysis followed by a
product-based analysis, and (b) the analysis results of the feature-based analysis are
used in the product-based analysis.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Thomas Thüm et al.

Example. In our object store, we could start to type-check all features in isolation. As
shown in Figure 6, we can check that all intra-feature references are valid and create
an interface for every feature. The interface contains all methods, fields, and classes
that the feature provides and also those that are required. In the second step, we
take these interfaces and iterate over every valid combination of features and check
whether the interfaces are compatible for every valid configuration (i.e., everything
that is required in some interface is provided by another interface). This way, we can
save redundant checks for intra-feature references. Especially, if some features evolve,
we can omit re-analyzing unchanged features in the feature-based analysis step.

Advantages and Disadvantages. Feature-product-based strategies reduce redun-
dant computations, compared to strict product-based strategies, but redundancies still
occur for all analyses applied at the product level. For example, when some features
evolve, other features need not to be re-analyzed, but all products containing any of the
affected features need to be analyzed again whenever the feature interface changes.
Considering that strict feature-based strategies are usually not sufficient for non-
compositional properties, feature-product-based strategies seem to be a good compro-
mise. Whether feature-product-based strategies are better than family-based strate-
gies depends on the actual analysis, the number of products, how much can be checked
feature-based, and whether evolution of the product line is an issue.

Feature-Product-Based Type Checking. Feature-product-based type checking has
been proposed for composition-based implementation approaches such as logic meta-
programming [Klose and Ostermann 2010], feature modules [Apel and Hutchins 2010;
Kolesnikov et al. 2013], delta modules [Bettini et al. 2013], and traits [Bettini et al.
2014]. As explained for our running example, feature implementations (i.e., modules,
feature modules, delta modules, traits) are type checked as far as possible in isolation
in the first phase. Additionally, interfaces or constraints are generated for each feature
implementation, which are used in an unoptimized product-based linking step. For
each approach, a type system for a core calculus has been presented; Featherweight
Record-Trait Java [Bettini et al. 2014] and Imperative Featherweight Delta Java [Bet-
tini et al. 2013] formalize product lines in Java, whereas gDeep [Apel and Hutchins
2010] has been discussed for being used in the context of different languages such as
Java, Haskell, Bali, and XML. Kolesnikov et al. [2013] evaluated this strategy against
family-based type checking and found that feature-product-based type checking was
significantly slower.

Feature-Product-Based Model Checking. In feature-product-based model checking,
each feature implementation is model-checked in isolation and an interface is gener-
ated specifying provided and assumed behavior of other features. Then, these inter-
faces are checked for every product to make sure that features are compatible with
each other. Compared to the family-based strategy, the feature-product-based strat-
egy was only proposed a few times, even if most approaches for feature-product-based
model checking are older than first approaches for family-based model checking. In ad-
dition, the field of feature-product-based model checking is less diverse: All surveyed
approaches [Fisler and Krishnamurthi 2001; Nelson et al. 2001; Li et al. 2002; Blundell
et al. 2004; Li et al. 2005; Liu et al. 2011] (a) apply abstract model checking (i.e., we
have not found a single approach for feature-product-based software model checking),
(b) are based on finite state machines, (c) consider only product lines that are decom-
posed into modules (i.e., no annotation-based product lines), and (d) verify properties
defined in CTL. However, some approaches rely on family-wide specifications [Fisler
and Krishnamurthi 2001; Nelson et al. 2001; Blundell et al. 2004; Liu et al. 2011] and
others on feature-based specifications [Li et al. 2002; 2005]. Fisler and Krishnamurthi

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:25

[2001] extended the existing tool VIS, and others built new tools from scratch [Li et al.
2005; Liu et al. 2011]. We found only one empirical evaluation of feature-product-based
model checking: Liu et al. [2011] measured that this strategy is 6.7 times faster than
unoptimized product-based model checking for a product line with four products.

Feature-Product-Based Theorem Proving. Approaches classified as feature-product-
based theorem proving are diverse. They have been used for product-line verifica-
tion [Thüm et al. 2011b; Damiani et al. 2012], but also to prove type soundness for
product lines of programming languages [Batory and Börger 2008; Delaware et al.
2011; Delaware et al. 2013].

Thüm et al. [2011b] propose feature-product-based theorem proving for verification
of feature modules. Features are implemented in feature modules based on Java and
specified using the Java Modeling Language (JML). The verification step is based on
the verification framework Why and the proof assistant COQ. A human has to pro-
vide partial proofs in COQ along with every feature. These proofs are then automati-
cally checked for each product. The verification time mainly depends on writing proof
scripts in the feature-based part. For a product line with 12 products, the number of
hand-written proof commands was reduced by 88 percent compared to an unoptimized
product-based strategy.

Damiani et al. [2012] propose a similar approach for feature-product-based theorem
proving. They introduce a calculus representing a kind of feature modules. A syntax
is presented to define method contracts with uninterpreted assertions to refer to con-
tracts of other methods. In their approach, deductive verification is achieved in two
steps. First, contracts of each implementation unit are verified as far as possible lo-
cally, by only considering the uninterpreted assertions and guarantees of other meth-
ods. Second, all remaining proof obligations are proved for each generated product.
This approach has not yet been evaluated empirically.

Besides the verification of product-line implementations, the strategy has also been
applied in the general context of theorem proving for product lines. Batory and Börger
[2008] propose feature-product-based theorem proving to prove that a given Java in-
terpreter is equivalent to the JVM interpreter for Java 1.0. They modularize the Java
grammar, theorems about correctness, and natural language proofs into feature mod-
ules. Nevertheless, a human still needs to check that every product has a valid gram-
mar, correctness theorems, and natural language proof.

Similarly, Delaware et al. [2011] and Delaware et al. [2013] propose feature-product-
based theorem proving for a product line of type-soundness proofs. They focus on a
product line of languages based on Featherweight Java, for which language features,
such as generics, interfaces, or casting, can be selected independently. All eight Feath-
erweight Java variants are proved to be type safe in a feature-product-based man-
ner. First, theorems are created and proved for each feature. Second, these theorems
are used to prove progress and preservation for each Featherweight Java variant.
Delaware et al. [2011] measured the time the proof assistant COQ needed to verify
theorems; prove checking for all features took about four minutes, whereas checking
all products based on these proofs for each feature took only about one minute (i.e.,
COQ spent most of the time on compositional properties).

6.2. Feature-Family-Based Analyses
A strategy similar to feature-product-based analysis is to combine feature-based and
family-based analyses. The idea of feature-family-based analysis is to analyze features
separately, and to analyzing everything that could not be analyzed in isolation based
on properties inferred from the feature-based analysis.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Thomas Thüm et al.

Interface of SingleStore

provides class Store {
provides Object Store.read();
provides void Store.set(Object);

}

Interface of MultiStore

provides class Store {
provides Object Store.read();
provides Object[] Store.readAll();
provides void Store.set(Object);

}

Interface of AccessControl

requires class Store {
requires Object Store.read();
requires Object[] Store.readAll();
requires void Store.set(Object);

}

VM ⇒ (AccessControl ⇒ MultiStore)

VM ⇒ (AccessControl ⇒ SingleStore ∨ MultiStore)

Fig. 7. Feature-family-based type checking analyzes features in isolation and applies family-based type
checking on the deduced feature interfaces afterward. The references to read and readAll cut across feature
boundaries and are checked at composition time based on the features’ interfaces and the variability model.

Definition 6.2 (Feature-family-based analysis). An analysis of a software product
line is feature-family-based, if (a) it consists of a feature-based analysis followed by a
family-based analysis and (b) the analysis effort of the feature-based analysis is used
in the family-based analysis.

Example. In our object store, we can infer interfaces for each feature using feature-
based type checking and check these interfaces for compatibility using family-based
type checking. The interface of each feature defines the program elements it provides
and the program elements it requires (see Figure 7). For example, feature AccessCon-
trol requires a method read, which is provided either by feature SingleStore or feature
MultiStore. However, method readAll required by feature AccessControl is not available
in all products with feature AccessControl. Basically, we can create a propositional for-
mula for each reference, which can be checked using a satisfiability solver, as described
in Section 4.

Advantages and Disadvantages. Feature-family-based analysis can be seen as an
improvement of feature-product-based analysis, as redundant computations are elim-
inated entirely (i.e., redundancies are not only eliminated for feature-local analyses,
but also for analyses across features). Furthermore, compared to a pure family-based
analysis, it better supports the evolution of software product lines, in which usually
only a small set of features evolves. Finally, a feature-family-based analysis combines
open-world and closed-world scenarios. That is, while the feature-based analysis does
not require to know all features and their valid combinations, we can post-pone all
parts of the analysis requiring a closed world to the family-based analysis.

Feature-Family-Based Type Checking. The feature-family-based strategy has been
proposed for type checking of composition-based product lines implemented with
feature-oriented programming [Delaware et al. 2009] and delta-oriented program-
ming [Damiani and Schaefer 2012]. Both approaches rely on a constraint-based type

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:27

system that generates constraints for each module in isolation. The constraints de-
scribe type references and dependencies that must be fulfilled by other modules.
Delaware et al. [2009] use these constraints to create a propositional formula describ-
ing the set of well-typed feature combinations, which is then compared to the vari-
ability model to retrieve whether all valid feature combinations according variability
model are well-typed (i.e., in a global approach, cp. Section 4.4). In contrast, Damiani
and Schaefer [2012] construct a product family generation trie (PFGT) representing
all possible generation orders of products. The constraints of the single deltas are then
checked by traversing the PFGT in a single pass constituting a family-based analysis
step. There are no empirical comparisons of this strategy to other strategies. However,
Delaware et al. [2009] report that their approach was even faster than generating and
compiling a single product.

Feature-Family-Based Theorem Proving. Hähnle and Schaefer [2012] present a
feature-family-based approach for deductively verifying delta-oriented product lines.
They restate the Liskov principle known from object-oriented programming to delta-
oriented product lines, which requires that method contracts introduced by deltas oc-
curring later in the application ordering may only be more specific than the contracts
introduced by previous deltas. The presented compositional verification principle al-
lows verifying the specification of each delta in isolation. Called methods not defined
in the delta itself are approximated by the specification of the first introduction of this
method, either in the core product or in the first delta in the application ordering. Still,
we consider this step as feature-based, because only specifications of other features are
incorporated and no implementation artifacts of other features. In the second step, all
deltas are checked for conformance in a family-based fashion.

6.3. Family-Product-Based Analyses
A combination of family-based and product-based analyses may not seem useful at the
first thought, because everything that can be analyzed product-based could already be
analyzed family-based. Nevertheless, family-product-based analyses can be useful (a)
if a product-based analysis is faster for particular parts of the analysis, (b) if there is
a part of the analysis (e.g., certain safety properties) that is relevant for one product
or a small set of products only, (c) if several software analyses are combined, and (d)
if the analysis problem for a family-based analysis is too large to be solved with given
resource limitations.

Definition 6.3 (Family-product-based analysis). An analysis of a software product
line is family-product-based, if (a) it consists of a (partial) family-based analysis fol-
lowed by a product-based analysis and (b) the analysis effort of the family-based anal-
ysis is reused in the product-based analysis.

Family-Product-Based Analyses. We have not found pure static approaches for this
strategy. However, we discuss some approaches that combine static and dynamic anal-
yses of product lines, because similar approaches could also be created that operate
only statically.

Tartler et al. [2012] propose a heuristic for sampling that incorporates the variability
model and the preprocessor-based code base to achieve a special code coverage. This is
in contrast to approaches for sampling discussed in Section 3.4, which incorporate only
the variability model. The idea is that an analysis touches each domain artifact and
individual piece of code, at least, once. Hence, for each given preprocessor directive,
they ensure that it is activated in, at least, one product in the resulting set of sample
products. In the second step, a arbitrary software analysis can be reused in a product-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Thomas Thüm et al.

based fashion. Their approach implies rather weak guarantees towards correctness
and mainly targets bug finding.

Kim et al. [2010] propose a family-product-based analysis for feature-oriented pro-
gramming. They apply a family-based static analysis to reduce the set of products, for
which safety properties need to be monitored during runtime. Safety properties are
defined in AspectJ. In the first step, the family-based static analysis rules out config-
urations that cannot violate the safety property. The result of the static analysis is a
specialized variability model representing the products that are monitored in the sec-
ond step. Kim et al. [2011] generalized this work from safety properties in AspectJ to
general test cases. For each test case, a set of products is calculated that is sufficient
to test. They extend control-flow and data-flow analyses with variability information
to trace the effect of features.

Similarly, Shi et al. [2012] propose a family-product-based analysis to analyze fea-
ture interactions. A family-based static analysis is used to calculate test cases, which
are then used to test products individually. They create a dependency graph for the
whole software product line, while considering only valid feature combinations as spec-
ified in the variability model. Then, they use symbolic execution to compute method
summaries and test cases. The number of test cases can be influenced using a cover-
age criterion as known from t-wise testing [Perrouin et al. 2010]. Finally, resulting test
cases are executed for products individually.

6.4. Feature-Family-Product-Based Analyses
It is also possible to combine all three analysis strategies. We can first analyze the
features in isolation, then check whether the features are compatible in all valid com-
binations, and finally analyze products that have specific requirements.

Definition 6.4 (Feature-family-product-based analysis). An analysis of a software
product line is feature-family-product-based, if (a) it consists of a feature-based anal-
ysis followed by a family-product-based analysis, and (b) the analysis effort of the
feature-based analysis is used during family-product-based analysis.

We have not found any feature-family-product-based strategy in the literature, but it
might be useful to separate product-based from feature-based and family-based anal-
yses, especially, if different software-analysis techniques are combined. It is future
work, to analyze and discuss the feasibility of this strategy in more detail.

7. RESEARCH AGENDA
Our aim is to bring the issue of systematic research on and application of product-line
analysis to the attention of a broad community of researchers and practitioners. Our
classification is intended to serve as an agenda for research on product-line analysis:

— What are the strengths and weaknesses of the individual strategies in practice?
— Is it meaningful to combine each strategy with each software analysis, and which

combinations are useful and superior in what circumstances?
— What can we learn from strategies applied to one analysis when applying them to

other analyses?
— Are there further novel analysis strategies?
— What characteristics of a given product line affect the efficiency of the individual

analysis strategies?
— Is there a principle and possibly automated way to lift a given specification and anal-

ysis technique to product lines?

Based on the classification of existing approaches in the previous sections, we dis-
cuss underrepresented research areas and specific research questions that we uncov-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:29

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
0

5

10

15

20

25

Year of Publication

N
um

be
r

of
A

rt
ic

le
s

Product-based
Family-based
Feature-product-based
Feature-family-based
Family-product-based

Fig. 8. Overview on the frequency of analysis strategies addressed in the research literature (before 2014).
We found no approaches pursuing a feature-based or feature-family-product-based strategy.

ered in our survey: In Section 7.1, we summarize advantages and drawbacks of each
strategy, and identify underrepresented analysis strategies. We discuss how strategies
have been evaluated quantitatively and report weaknesses of existing evaluations in
Section 7.2. In Section 7.3, we discuss which analysis strategies have been combined
with which specification and implementation strategies. Finally, we describe future
challenges for type checking, static analysis, model checking, and theorem proving of
software product lines in Section 7.4–7.5.

7.1. Comparison of Analysis Strategies
In the previous sections, we have discussed three basic strategies and four combined
strategies to scale software analysis to product lines. In Figure 8, we give an overview
of how often each strategy was applied in the surveyed approaches and when. More
than half of the approaches apply a family-based strategy, suggesting that this strategy
to cope with software variability is well-known. However, we also found approaches for
analysis in a product-line context that do not discuss how to cope with many, similar
products. Almost a third of all approaches relies on the generation of all products (i.e.,
unoptimized product-based and feature-product-based strategy), which is infeasible
for large product lines. None of the surveyed analysis approaches is solely feature-
based, because analyzing features only in isolation is usually not sufficient (i.e., the
properties of interest are not compositional). All combined strategies except for the
feature-product-based strategy are underrepresented.

In Table I, we summarize the main advantages and disadvantages of all strategies.
Each strategy enables the analysis of compositional properties. However, the feature-
based strategy is the only strategy that does not support non-compositional properties.
A further interesting characteristic is whether analysis results refer to domain arti-
facts or generated artifacts, because, for the latter, the developer needs to understand
generated artifacts. For example, each strategy incorporating a product-based part in-
herently refers to generated artifacts. As feature-based and family-based strategies

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Thomas Thüm et al.

Table I. Summary of advantages and disadvantages of analysis strategies. A perfect strategy would
have a “yes” in every column, but there is a trade-off between avoiding redundancies in computations
and the size of analysis problems.

Analysis Strategy A
na

ly
si

s
of

no
n-

co
m

po
si

ti
on

al
pr

op
er

ti
es

A
na

ly
si

s
re

su
lt

s
re

fe
r

to
do

m
ai

n
ar

ti
fa

ct
s

N
on

-r
ed

un
da

nt
co

m
pu

ta
ti

on
s

fo
r

co
m

po
si

ti
on

al
pr

op
er

ti
es

N
on

-r
ed

un
da

nt
co

m
pu

ta
ti

on
s

fo
r

no
n-

co
m

po
si

ti
on

al
pr

op
er

ti
es

N
on

-r
ed

un
da

nt
co

m
pu

ta
ti

on
s

fo
r

ev
ol

vi
ng

pr
od

uc
t

lin
es

Sm
al

le
r

an
al

ys
is

pr
ob

le
m

s
fo

r
co

m
po

si
ti

on
al

pr
op

er
ti

es

Sm
al

le
r

an
al

ys
is

pr
ob

le
m

s
fo

r
no

n-
co

m
po

si
ti

on
al

pr
op

er
ti

es

Product-based yes no no no no — —
Family-based yes yes yes yes no no no
Feature-based no yes yes — yes yes —
Feature-product-based yes yes/no1 yes no maybe2 yes yes
Feature-family-based yes yes yes yes maybe2 yes maybe3
Family-product-based yes yes/no1 yes yes no no no
Feature-family-product-based yes yes/no1 yes yes maybe2 yes maybe3

1 Analysis results of product-based analysis step refers to products
2 Avoids redundant computations when changed domain artifacts can be verified feature-based
3 The family-based analysis problem may be larger or smaller than verifying a single product
depending on how much feature-based part reduces the analysis problem

operate on domain artifacts, their results also refer to them. Nevertheless, with some
additional effort it is possible to aggregate analysis results from products.

A key characteristic of each strategy is to which extent redundant computations
are avoided [Kolesnikov et al. 2013]. In the product-based strategy, we have redun-
dant computations due to the similarities between products. In contrast, when ana-
lyzing a product line with the feature-based strategy, we avoid redundancies by con-
sidering domain artifacts in isolation, but we can only analyze compositional proper-
ties. The family-based strategy avoids redundancies for both, compositional and non-
compositional properties. However, if some domain artifacts evolve in a product line
that has been analyzed before, the family-based strategy usually requires redundant
analyses. The redundant effort can be reduced by combining it with the feature-based
strategy, because we can omit the analysis of domain artifacts for unchanged features.

The size of the analysis problem for a given product line is influenced by the analy-
sis strategy. A particular strategy may conflict with resource limitations, while another
does not. For example, even if we can model check each product in isolation on a given
machine, it is possible that family-based model checking requires more main memory
than actually available and is thus infeasible. In Table I, we compare the expected
problem size for each strategy with that of the product-based strategy. In general, we
expect smaller problems for strategies incorporating a feature-based analysis step, be-
cause the analysis problem is split into an analysis of compositional properties for each
feature and an analysis of non-compositional properties. However, as Table I indicates,
avoiding redundant computations (e.g., with the family-based strategy) and minimiz-
ing the analysis problem (e.g., with the feature-product-based strategy) are conflicting
goals. It seems that the feature-family-based strategy is a good trade-off, but empirical
evaluations are needed to find the best strategy based on product-line characteristics.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:31

7.2. Quantitative Evaluation of Analysis Strategies
Ideally, we would like to recommend the best strategy for a given software analysis
based on static characteristics of a product line, such as the number of features, the
number of products, or the size and cohesion of feature implementations. However, for
such recommendations, we need reliable empirical evaluations assessing quantitative
characteristics for each strategy and analysis. Whereas there are some evaluations,
they are often not comparable to each other.

First, we found that, in almost all studies, a particular strategy is compared to an un-
optimized product-based analysis [Classen et al. 2010; Schaefer et al. 2010; Cordy et al.
2012a; Cordy et al. 2012c; Sabouri and Khosravi 2012; Thüm et al. 2012; Greenyer
et al. 2013; Apel et al. 2013c; Classen et al. 2013; Sabouri and Khosravi 2013a; Classen
et al. 2013; Sabouri and Khosravi 2013b; Classen et al. 2014; Chen et al. 2014] or to the
analysis of a single product [Post and Sinz 2008; Delaware et al. 2009; Kenner et al.
2010; Kästner et al. 2011; Kästner et al. 2012a; Gazzillo and Grimm 2012]. The advan-
tage of such a standard evaluation is that we can compare different approaches more
easily; even if evaluations strongly depend on the size and kind of product line being
analyzed. However, the unoptimized product-based strategy is often not an option in
practice (e.g., for large product lines). Recently, researchers started comparing family-
based with optimized product-based [Apel et al. 2013c; Liebig et al. 2013] and feature-
product-based strategies [Kolesnikov et al. 2013]. However, there are still strategies
that have not been compared with any other strategy. For example, researchers pro-
posed feature-family-based analyses [Delaware et al. 2009; Hähnle and Schaefer 2012;
Damiani and Schaefer 2012], but there is no empirical comparison with a family-based
or feature-product-based strategy that assesses the potential of such a strategy.

Second, most studies only focus on time efficiency. However, memory consumption is
especially important for product lines, because analyzing all products simultaneously
may require significantly more resources than analyzing each product separately. Fur-
thermore, there are different characteristics of product lines (e.g., number of faults)
that influence time and memory efficiency of the analysis (e.g., model checking could
be faster when the product line contains more faults). Hence, when comparing strate-
gies, we should also incorporate product lines containing no faults, some faults, and
many faults in source code and specification.

Finally, there is no consensus on how to compare strategies empirically. The overall
time for product-line analysis may include several analysis steps, but it is question-
able what to compare if one strategy includes steps that the other does not include.
For example, product-based type checking requires to retrieve all or a subset of all
valid configurations from the variability model, to generate products, and the actual
type checking of each product. In contrast, family-based type checking does not require
to retrieve all valid configurations nor to generate products. Brabrand et al. [2013]
and Kolesnikov et al. [2013] document the performance of each analysis step, while
all other empirical comparisons ignore variability-model analysis and product genera-
tion [Post and Sinz 2008; Classen et al. 2010; Schaefer et al. 2010; Delaware et al. 2011;
Kästner et al. 2011; Apel et al. 2011; Kästner et al. 2012a; Thüm et al. 2012; Gazzillo
and Grimm 2012; Cordy et al. 2012a; Cordy et al. 2012c; Sabouri and Khosravi 2012;
Apel et al. 2013c; Liebig et al. 2013; Classen et al. 2013; Sabouri and Khosravi 2013b;
Chen et al. 2014; Classen et al. 2014]. Especially, sampling may require a consider-
able amount of time [Liebig et al. 2013]. In summary, for empricial evaluations, the
performance of each step should be documented improve comparability.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Thomas Thüm et al.

Table II. Number of surveyed approaches for each combination of analysis strategy and
specification strategy as well as analysis strategy and implementation strategy.

Analysis strategy Im
pl

em
en

ta
ti

on

C
om

po
si

ti
on

-b
as

ed

A
nn

ot
at

io
n-

ba
se

d

Sp
ec

ifi
ca

ti
on

D
om

ai
n-

in
de

pe
nd

en
t

Fa
m

ily
-w

id
e

P
ro

du
ct

-b
as

ed

Fe
at

ur
e-

ba
se

d

Fa
m

ily
-b

as
ed

Product-based (unoptimized) 7 3 2 3 0 5 0
Product-based (optimized) 6 2 3 2 0 4 0
Family-based 16 37 28 12 0 5 7
Feature-based 0 0 0 0 0 0 0
Feature-product-based 17 0 8 5 0 6 0
Feature-family-based 3 0 2 0 0 1 0
Family-product-based 2 2 1 2 0 0 0
Feature-family-product-based 0 0 0 0 0 0 0
Total* 49 43 42 23 0 20 7

* The bottom row is not necessarily the sum of all above rows, because some specifi-
cation approaches are used with several analysis strategies. Furthermore, some
analysis approaches are available for both, annotation-based and composition-
based implementations.

7.3. Product-Line Implementation and Specification
In addition to the analysis strategy, we classified product-line analyses with respect
to the underlying implementation and specification strategy. We distinguish between
composition-based and annotation-based implementations, and between domain-
independent, family-wide, product-based, feature-based, and family-based specifica-
tions (see Section 2). In Table II, we give an overview of which analysis strategies have
been applied to which kind of implementation and specification strategy, respectively.

The majority of implementation and specification strategies discussed in our sur-
vey have actually been applied. Both composition-based and annotation-based imple-
mentations have been used with similar frequency in the literature. In contrast, most
approaches built on domain-independent specifications. This is natural, as many ap-
proaches consider type checking or static analysis, for which specifications are often
defined independently of a particular system. In addition, many other specifications
are family-wide, which means that, while the implementation contains variability,
the specification does not. About the same number of approaches rely on feature-
based specifications, which support variability similar as with composition-based im-
plementation. However, we found only seven approaches using family-based specifi-
cation [Asirelli et al. 2012; Cordy et al. 2012a; Cordy et al. 2012b; Classen et al.
2013; Cordy et al. 2013a; Cordy et al. 2013b; Classen et al. 2014], and none with
product-based specification. An open research question is how much variability is
required in product-line specifications (e.g., whether feature-based specifications are
sufficient [Apel et al. 2013b]) and whether there are differences in the variability
of specifications depending on the underlying software analysis. Model checking is
the only software analysis to which all specification strategies (except product-based
specification) have already been applied (see Section 4.6). For type checking, domain-
independent specification are sufficient, but other specification strategies shall be ex-
plored for static analysis and theorem proving.

While the strategies for implementation, specification, and analysis seem to be
largely independent of each other, we discuss some findings based on our classifica-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:33

Table III. Classification of product-line type checking.

Composition-based Annotation-based

Product-based
(unoptimized) Apel et al. [2008a] Buchmann and Schwägerl [2012]

Product-based
(optimized) Jayaraman et al. [2007] Liebig et al. [2013]

Family-based

Thaker et al. [2007], Kim et al. [2008],
Kuhlemann et al. [2009], Apel et al.
[2010a], Apel et al. [2010c], Alférez
et al. [2011], Kolesnikov et al. [2013]

Aversano et al. [2002], Czarnecki and
Pietroszek [2006], Huang et al. [2007],
Metzger et al. [2007], Kim et al. [2008],
Post and Sinz [2008], Heidenreich
[2009], Kenner et al. [2010], Teixeira
et al. [2011], Kästner et al. [2012a],
Kästner et al. [2012b], Le et al. [2013],
Liebig et al. [2013], Chen et al. [2014]

Feature-
product-based

Apel and Hutchins [2010], Klose and
Ostermann [2010], Bettini et al. [2013],
Istoan [2013], Kolesnikov et al. [2013],
Bettini et al. [2014]

Feature-
family-based

Delaware et al. [2009], Damiani and
Schaefer [2012]

tion. First, product-based specifications are problematic not only from a reuse perspec-
tive, but also for analysis efficiency, because we can hardly reuse verification effort
if specifications are not reused at all. Hence, product-based specifications should be
avoided whenever possible. Second, for annotation-based implementations or family-
based specifications there is not a single approach including a feature-based analysis.
Clearly, we cannot analyze a feature in isolation if its implementation or specification
scattered in the product line. However, future research should investigate how to ex-
tract feature implementation and specification from an annotation-based implementa-
tion to enable modular analysis, for which emergent interfaces [Ribeiro et al. 2010] are
a first step. Finally, product-line specifications are used in several approaches not cov-
ered in our survey (e.g., [Thüm et al. 2012; Johnsen et al. 2012; Kim et al. 2013]). The
reason is that such specification approaches have not been proposed in the context of
an analysis that operates statically. Consequently, to better understand the strategies
for product-line specification, a survey dedicated to specification rather than analysis
should be performed.

7.4. Product-Line Type Checking
In Table III, we summarize the strategies that have been applied to type checking.
We identified product-based, family-based, feature-product-based, and feature-family-
based approaches, whereas the majority of work is on family-based type checking.
While it is unclear whether any useful properties can be analyzed with feature-based
type checking, future research should propose and evaluate approaches pursuing a
family-product-based and feature-family-product-based strategy.

For type checking, there are no empirical evaluations for feature-family-based type
checking. This strategy should be compared to existing approaches for family-based
type checking to assess its potential. In particular, it is not clear how much time
is needed to analyze features in isolation compared to the overall analysis time. An
open research questions is whether the feature-family-based strategy is faster than
the family-based strategy for evolving product lines. Similarly, it is to be assessed em-
pirically whether the feature-family-based strategy requires more or less memory.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 Thomas Thüm et al.

Table IV. Classification of product-line static analysis.

Composition-
based

Annotation-
based

Domain-
independent Family-wide Feature-

based

Product-based
(unoptimized)

Klaeren
et al. [2001],
Scholz et al.
[2011]

Klaeren
et al. [2001],
Scholz et al.
[2011]

Product-based
(optimized) Katz [2006] Liebig et al.

[2013]
Liebig et al.
[2013]

Liebig et al.
[2013] Katz [2006]

Family-based Adelsberger
et al. [2014]

Ribeiro et al.
[2010], Bod-
den et al.
[2013],
Brabrand
et al. [2013],
Liebig et al.
[2013],
Midtgaard
et al. [2014],
Sabouri and
Khosravi
[2014]

Ribeiro et al.
[2010], Liebig
et al. [2013],
Midtgaard
et al. [2014]

Bodden
et al. [2013],
Brabrand
et al. [2013],
Liebig et al.
[2013],
Sabouri and
Khosravi
[2014]

Family-
product-based

Kim et al.
[2010], Kim
et al. [2011]

Kim et al.
[2011], Shi
et al. [2012]

Shi et al.
[2012]

Kim et al.
[2010], Kim
et al. [2011]

Furthermore, there are two competing approaches for family-based type checking,
namely local and global approaches (see Section 4.4). The main difference is whether
the whole product line is encoded as a single or a large number of satisfiability prob-
lems. However, empirical evaluations are missing that compare time and space effi-
ciency of both approaches.

7.5. Product-Line Static Analysis
In Table IV, we give an overview of static analyses for software product lines. The
majority of approaches has been published in the last three years. So far, only product-
based, family-based, and family-product-based strategies have been considered, which
naturally raises the question of whether other strategies can be applied to static anal-
ysis. Interestingly, the family-product-based strategy has been applied exclusively to
static analysis. In particular, feature-product-based and feature-family-based strate-
gies, as known from other analyses, have not yet been applied. It is an open research
question whether static analyses can handle compositional properties.

All approaches for family-based static analysis are based on implementations using
preprocessors and domain-independent specifications. Thus, future research should
evaluate whether it is possible to create family-based static analysis for composition-
based implementations and how to define family-wide, feature-based, and family-
based specifications for static analysis.

Family-based static analyses have been compared empirically with optimized [Liebig
et al. 2013] and unoptimized [Brabrand et al. 2013; Bodden et al. 2013] product-
based analyses. Comparisons include time efficiency [Brabrand et al. 2013; Bodden
et al. 2013; Liebig et al. 2013], memory efficiency [Brabrand et al. 2013], and sound-
ness [Bodden et al. 2013]. In particular, Bodden et al. [2013] measured that it is faster
to ignore than to incorporate the variability model during static analysis. Further stud-
ies shall evaluate whether this is the case for all kinds of static analysis and explore

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:35

the fundamental reasons. This is especially interesting, as opposite experience has
been made with model checking (see Section 4.6).

7.6. Product-Line Model Checking
In Table V, we present strategies applied to scale model checking to product lines. In
2001, the first approach for model checking has been proposed pursuing a feature-
product-based strategy. However, since then, mainly family-based approaches have
been developed and several unoptimized product-based approaches. Compared to type
checking, there is not a single approach for feature-family-based model checking.
Hence, the research question arises whether this strategy can be applied to model
checking, and, if so, what are the benefits of such an approach. Similar research ques-
tions can be formulated for all other “missing” strategies.

As for type checking, most empirical evaluations compare family-based model check-
ing with product-based model checking. For feature-product-based model checking
there is only one evaluation using a product line with four products [Liu et al. 2011].
Further empirical evaluations are needed with larger product lines that also compare
feature-product-based with family-based model checking.

7.7. Product-Line Theorem Proving
In Table VI, we summarize the strategies used for theorem proving. Compared to
type checking and model checking, there are fewer approaches for theorem proving,
suggesting that this research field is underrepresented. In particular, it is surprising
that there is only one family-based approach for theorem proving [Thüm et al. 2012],
whereas this strategy has been applied often to type checking and model checking.

For theorem proving, there is a lack of reliable evaluations comparing the strate-
gies to each other. Optimized product-based and feature-family-based theorem prov-
ing have not been compared so far. Thüm et al. [2012] compare the time efficiency
of family-based strategy with that of unoptimized product-based theorem proving.
Feature-product-based theorem proving has been evaluated against an unoptimized
product-based strategy, in terms of the size of hand-written proof scripts [Thüm et al.
2011b]. Delaware et al. [2011] measured the time needed for the feature-based and the
product-based part in feature-product-based theorem proving. However, there is not a
single evaluation of memory consumption, and many strategies have not yet been com-
pared to each other.

8. RELATED WORK
Classifications for Quality Assurance in Software Product Lines. Pohl et al. [2005]

discuss four strategies for product-line testing. In contrast to our classification, they
discuss strategies incorporating tests at different levels including unit tests, integra-
tion tests, and system tests. The brute force strategy is similar to unoptimized product-
based analysis, but tests are performed at all levels for all products. In contrast, for
the pure application strategy only delivered products are tested in application engi-
neering. The sample application strategy is equivalent to the sample-based strategy in
our classification. Finally, with the commonality and reuse strategy artifacts common
to all products are tested in domain engineering and then all products are tested sepa-
rately. These strategies have been defined for product-line testing and do not represent
all strategies that we identified in our survey.

Similarly, Metzger [2007] and Lauenroth et al. [2010] discuss three strategies for
quality assurance (e.g., model checking) of product lines, namely commonality strat-
egy, sample strategy (similar to sample-based analysis), and comprehensive strategy
(similar to unoptimized product-based analysis). The idea of the commonality strategy
is to check artifacts that are common to all products. Similar to the family-based strat-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 Thomas Thüm et al.

Table V. Classification of product-line model checking.

C
om

po
si

ti
on

-
ba

se
d

A
nn

ot
at

io
n-

ba
se

d
D

om
ai

n-
in

de
pe

nd
en

t
Fa

m
ily

-w
id

e
Fe

at
ur

e-
ba

se
d

Fa
m

ily
-b

as
ed

P
ro

du
ct

-
ba

se
d

(u
no

pt
i-

m
iz

ed
)

U
ba

ya
sh

ia
nd

Ta
m

ai
[2

00
2]

,
A

pe
le

t
al

.
[2

01
0b

],
B

es
sl

in
g

an
d

H
uh

n
[2

01
4]

K
is

hi
an

d
N

od
a

[2
00

6]
,F

an
te

ch
ia

nd
G

ne
si

[2
00

8]

U
ba

ya
sh

ia
nd

Ta
m

ai
[2

00
2]

,
K

is
hi

an
d

N
od

a
[2

00
6]

,F
an

te
ch

i
an

d
G

ne
si

[2
00

8]

A
pe

le
t

al
.

[2
01

0b
],

B
es

sl
in

g
an

d
H

uh
n

[2
01

4]

P
ro

du
ct

-
ba

se
d

(o
p-

ti
m

iz
ed

)

P
la

th
an

d
R

ya
n

[2
00

1]
,K

at
z

[2
00

6]
,C

or
dy

et
al

.[
20

12
d]

,
A

pe
le

t
al

.[
20

13
c]

C
or

dy
et

al
.

[2
01

2d
]

P
la

th
an

d
R

ya
n

[2
00

1]
,K

at
z

[2
00

6]
,A

pe
le

t
al

.
[2

01
3c

]

Fa
m

ily
-

ba
se

d

A
pe

le
t

al
.

[2
01

1]
,S

ab
ou

ri
an

d
K

ho
sr

av
i

[2
01

2]
,A

pe
le

t
al

.
[2

01
3c

],
C

la
ss

en
et

al
.[

20
13

],
G

re
en

ye
r

et
al

.
[2

01
3]

,S
ab

ou
ri

an
d

K
ho

sr
av

i
[2

01
3a

],
C

la
ss

en
et

al
.[

20
14

]

F
is

ch
be

in
et

al
.[

20
06

],
G

ru
le

r
et

al
.[

20
08

],
Po

st
an

d
Si

nz
[2

00
8]

,
C

la
ss

en
et

al
.[

20
10

],
L

au
en

ro
th

et
al

.
[2

01
0]

,S
ch

ae
fe

r
et

al
.

[2
01

0]
,A

si
re

lli
et

al
.

[2
01

2]
,C

or
dy

et
al

.
[2

01
2a

],
C

or
dy

et
al

.
[2

01
2b

],
C

or
dy

et
al

.
[2

01
2c

],
C

la
ss

en
et

al
.

[2
01

3]
,C

or
dy

et
al

.
[2

01
3a

],
C

or
dy

et
al

.
[2

01
3b

],
Sa

bo
ur

ia
nd

K
ho

sr
av

i[
20

13
b]

,t
er

B
ee

k
et

al
.[

20
13

],
Sa

bo
ur

ia
nd

K
ho

sr
av

i
[2

01
4]

Po
st

an
d

Si
nz

[2
00

8]
,S

ab
ou

ri
an

d
K

ho
sr

av
i

[2
01

3a
]

F
is

ch
be

in
et

al
.

[2
00

6]
,G

ru
le

r
et

al
.[

20
08

],
Sc

ha
ef

er
et

al
.

[2
01

0]
,C

or
dy

et
al

.[
20

12
c]

,
Sa

bo
ur

ia
nd

K
ho

sr
av

i[
20

12
],

G
re

en
ye

r
et

al
.

[2
01

3]
,S

ab
ou

ri
an

d
K

ho
sr

av
i

[2
01

3b
],

te
r

B
ee

k
et

al
.[

20
13

],
Sa

bo
ur

ia
nd

K
ho

sr
av

i[
20

14
]

C
la

ss
en

et
al

.
[2

01
0]

,L
au

en
ro

th
et

al
.[

20
10

],
A

pe
l

et
al

.[
20

11
],

A
pe

l
et

al
.[

20
13

c]

A
si

re
lli

et
al

.
[2

01
2]

,C
or

dy
et

al
.[

20
12

a]
,

C
or

dy
et

al
.

[2
01

2b
],

C
la

ss
en

et
al

.[
20

13
],

C
or

dy
et

al
.

[2
01

3a
],

C
or

dy
et

al
.[

20
13

b]
,

C
la

ss
en

et
al

.
[2

01
4]

Fe
at

ur
e-

pr
od

uc
t-

ba
se

d

F
is

le
r

an
d

K
ri

sh
-

na
m

ur
th

i[
20

01
],

N
el

so
n

et
al

.
[2

00
1]

,L
ie

t
al

.
[2

00
2]

,B
lu

nd
el

l
et

al
.[

20
04

],
L

i
et

al
.[

20
05

],
L

iu
et

al
.[

20
11

],
Is

-
to

an
[2

01
3]

Is
to

an
[2

01
3]

F
is

le
r

an
d

K
ri

sh
-

na
m

ur
th

i[
20

01
],

N
el

so
n

et
al

.
[2

00
1]

,B
lu

n-
de

ll
et

al
.[

20
04

],
L

iu
et

al
.[

20
11

],
Is

to
an

[2
01

3]

L
ie

t
al

.[
20

02
],

L
ie

t
al

.[
20

05
],

Is
to

an
[2

01
3]

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:37

Table VI. Classification of product-line theorem proving.

Composition-based Domain-independent Feature-based

Product-based
(unoptimized)

Harhurin and Hartmann
[2008]

Harhurin and Hartmann
[2008]

Product-based
(optimized) Bruns et al. [2011] Bruns et al. [2011]

Family-based Thüm et al. [2012] Thüm et al. [2012]

Feature-
product-based

Batory and Börger
[2008], Delaware et al.
[2011], Thüm et al.
[2011b], Damiani et al.
[2012], Delaware et al.
[2013]

Delaware et al. [2011],
Delaware et al. [2013]

Batory and Börger
[2008], Thüm et al.
[2011b], Damiani et al.
[2012]

Feature-
family-based

Hähnle and Schaefer
[2012]

Hähnle and Schaefer
[2012]

egy, the commonality strategy uses the variability model and domain artifacts to re-
trieve the common artifacts. Similar to the feature-based strategy, it can only uncover
certain faults for a given product line. The commonality strategy is not represented in
our classification. However, we have not found any approaches applying this strategy.

Lutz [2007] classifies approaches for product-line verification and validation with
respect to the software development life-cycle. In particular, he distinguishes require-
ments, safety requirements, architecture, design, and implementation. We made the
experience that many approaches cannot uniquely be assigned to one of these classes.
For example, most approaches for model checking are applicable to architecture, de-
sign, and implementation.

In previous work, we have proposed first ideas on a classification into product-based
and feature-based verification techniques [Thüm et al. 2011b]. In this survey, we ex-
tend the classification to family-based and combined strategies, generalize it from ver-
ification to software analyses in general, and actually classify existing approaches.
Furthermore, we give definitions, examples, and discuss advantages and disadvan-
tages of each strategy in detail. In contrast to our early ideas, we strengthened the
notion of a feature-based analysis to make researchers and practitioners aware of that
most analyses do not solely operate on features in isolation and that combinations with
product-based or family-based analyses are usually necessary. It is worthwhile to note
that von Rhein et al. [2013] already use our classification to model combinations of
product-line analyses, but they do not survey the literature on product-line analyses.

Surveys on Quality Assurance in Software Product Lines. Benavides et al. [2010]
survey automated analyses for variability models. These analyses consider only the
variability model and can detect anomalies such as dead features or compute statistics
such as the number of products. In contrast, our focus is on approaches that operate
on source code or models thereof. However, many of the approaches in our survey rely
on techniques from this line of research to reason about variability (e.g., for the family-
based strategy).

Furthermore, several surveys on product-line testing have been conducted [Tevan-
linna et al. 2004; Engström and Runeson 2011; Da Mota Silveira Neto et al. 2011; Oster
et al. 2011; Lee et al. 2012; Carmo Machado et al. 2014]. These surveys are comple-
mentary to ours, because we focus on approaches that operate statically and they focus
on dynamic analysis and test execution. Nevertheless, our classification could also be
applied to testing. While we started to apply our classification to testing approaches, it
seems that most approaches for product-line testing are sample-based analyses. How-

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 Thomas Thüm et al.

ever, researchers recently proposed approaches for family-based testing [Kim et al.
2012; Kästner et al. 2012c; Kim et al. 2013; Nguyen et al. 2014].

Montagud and Abrahão [2009] performed a systematic literature review on quality
assessment of software product lines. They distinguish between quality assessment
applied in domain engineering and application engineering. Etxeberria et al. [2008]
presented a survey that additionally incorporates variability modeling, design, archi-
tecture, implementation, and testing. In contrast to both reviews, we focus only on
product-line analysis that operate statically, our classification is more fine-grained,
and we survey more approaches. Furthermore, we derived a research agenda based on
our insights.

9. CONCLUSION
In software-product-line engineering, similar software products are built in an efficient
and coordinated manner based on reusable artifacts. While there are efficient tech-
niques to implement software product lines, current research seeks to scale software
analyses, such as type checking, static analyses, model checking, or theorem proving,
from single software products to entire software product lines. The field of product-line
analysis is broad and diverse, and different approaches are often hard to compare.

We propose a classification of product-line analyses into three main analysis strate-
gies: product-based, feature-based, and family-based analyses. These strategies in-
dicate how the analysis handles software variability, and can be even combined, re-
sulting in four further strategies: feature-product-based, feature-family-based, family-
product-based, and feature-family-product-based analyses. Besides the analysis strat-
egy, we classify approaches with respect to the implementation and specification strat-
egy. We identified four specification strategies that have been applied in the literature:
domain-independent, family-wide, feature-based, and family-based specifications.

Overall, we classified 123 existing analysis and specification approaches, gaining in-
sights into the field of product-line analyses. First, whereas many approaches claim
to be compositional, we distinguish feature-product-based and feature-family-based
strategies to reveal how inherently non-compositional properties such as feature inter-
actions are analyzed. Second, not all strategies have been applied to all software anal-
yses. For example, we have not found feature-product-based static analyses, feature-
family-based static analyses, and feature-family-based model checking. Third, we iden-
tified well-represented (e.g., family-based type checking, static analysis, and model
checking) and underrepresented research areas (e.g., optimized product-based anal-
yses, family-based theorem proving, and feature-family-based theorem proving). Fi-
nally, there is no compositional analysis for annotation-based product lines or family-
based specifications. Based on these insights, we formulated research questions to be
addressed in future work. Most notably, is there a principle and possibly automated
way to lift a given specification and analysis technique to product lines for a particular
analysis strategy?

We hope this article can raise awareness of the importance and challenges of
product-line analyses, initiate a discussion on the future of product-line analyses, mo-
tivate researchers to explore and practitioners to use product-line analysis methods,
and help to form a community of researchers, tool builders, and users interested in
product-line analyses. We refer interested readers to our website to follow the progress
of our ongoing classification effort.

ACKNOWLEDGMENTS

We thank Martin Kuhlemann for interesting discussions and help with the classification of product-line
analyses. Furthermore, we gratefully acknowledge Eric Bodden, Márcio Ribeiro, Vander Alves, Stefania

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:39

Gnesi, Maurice H. ter Beek, and Martin Erwig for their input regarding our classification. Finally, we thank
Alexander von Rhein, Seyed Hossein Haeri, David Broneske, Reimar Schröter, Wolfram Fenske, and Martin
Schäler for helpful comments on prior drafts of this article.

REFERENCES
ADELSBERGER, S., SOBERNIG, S., AND NEUMANN, G. 2014. Towards Assessing the Complexity of Object

Migration in Dynamic, Feature-oriented Software Product Lines. In Proc. Int’l Workshop Variability
Modelling of Software-intensive Systems (VaMoS). ACM, New York, NY, USA, 17:1–17:8.

ALFÉREZ, M., LOPEZ-HERREJON, R. E., MOREIRA, A., AMARAL, V., AND EGYED, A. 2011. Supporting
Consistency Checking Between Features and Software Product Line Use Scenarios. In Proc. Int’l Conf.
Software Reuse (ICSR). Springer, Berlin, Heidelberg, 20–35.

APEL, S., BATORY, D., KÄSTNER, C., AND SAAKE, G. 2013a. Feature-Oriented Software Product Lines:
Concepts and Implementation. Springer, Berlin, Heidelberg.

APEL, S. AND HUTCHINS, D. 2010. A Calculus for Uniform Feature Composition. ACM Trans. Programming
Languages and Systems (TOPLAS) 32, 5, 19:1–19:33.

APEL, S., KÄSTNER, C., GRÖSSLINGER, A., AND LENGAUER, C. 2010a. Type Safety for Feature-Oriented
Product Lines. Automated Software Engineering 17, 3, 251–300.

APEL, S., KÄSTNER, C., AND LENGAUER, C. 2008a. Feature Featherweight Java: A Calculus for Feature-
Oriented Programming and Stepwise Refinement. In Proc. Int’l Conf. Generative Programming and
Component Engineering (GPCE). ACM, New York, NY, USA, 101–112.

APEL, S., LEICH, T., AND SAAKE, G. 2008b. Aspectual Feature Modules. IEEE Trans. Software Engineering
(TSE) 34, 2, 162–180.

APEL, S., SCHOLZ, W., LENGAUER, C., AND KÄSTNER, C. 2010b. Detecting Dependences and Interactions
in Feature-Oriented Design. In Proc. Int’l Symposium Software Reliability Engineering (ISSRE). IEEE,
Washington, DC, USA, 161–170.

APEL, S., SCHOLZ, W., LENGAUER, C., AND KÄSTNER, C. 2010c. Language-Independent Reference Check-
ing in Software Product Lines. In Proc. Int’l Workshop Feature-Oriented Software Development (FOSD).
ACM, New York, NY, USA, 65–71.

APEL, S., SPEIDEL, H., WENDLER, P., VON RHEIN, A., AND BEYER, D. 2011. Detection of Feature Inter-
actions using Feature-Aware Verification. In Proc. Int’l Conf. Automated Software Engineering (ASE).
IEEE, Washington, DC, USA, 372–375.

APEL, S., VON RHEIN, A., THÜM, T., AND KÄSTNER, C. 2013b. Feature-Interaction Detection based on
Feature-Based Specifications. Computer Networks 57, 12, 2399–2409.

APEL, S., VON RHEIN, A., WENDLER, P., GRÖSSLINGER, A., AND BEYER, D. 2013c. Strategies for Product-
Line Verification: Case Studies and Experiments. In Proc. Int’l Conf. Software Engineering (ICSE).
IEEE, Piscataway, NJ, USA, 482–491.

ASIRELLI, P., TER BEEK, M. H., FANTECHI, A., AND GNESI, S. 2012. A Compositional Framework to Derive
Product Line Behavioural Descriptions. In Proc. Int’l Symposium Leveraging Applications of Formal
Methods, Verification and Validation (ISoLA). Springer, Berlin, Heidelberg, 146–161.

ATKINSON, C. AND KÜHNE, T. 2003. Model-Driven Development: A Metamodeling Foundation. IEEE Soft-
ware 20, 5, 36–41.

AVERSANO, L., PENTA, M. D., AND BAXTER, I. D. 2002. Handling Preprocessor-Conditioned Declarations.
In Proc. Int’l Workshop Source Code Analysis and Manipulation (SCAM). IEEE, Washington, DC, USA,
83–92.

BATORY, D. 2005. Feature Models, Grammars, and Propositional Formulas. In Proc. Int’l Software Product
Line Conf. (SPLC). Springer, Berlin, Heidelberg, 7–20.

BATORY, D. AND BÖRGER, E. 2008. Modularizing Theorems for Software Product Lines: The Jbook Case
Study. J. Universal Computer Science (J.UCS) 14, 12, 2059–2082.

BATORY, D., SARVELA, J. N., AND RAUSCHMAYER, A. 2004. Scaling Step-Wise Refinement. IEEE Trans.
Software Engineering (TSE) 30, 6, 355–371.

BENAVIDES, D., SEGURA, S., AND RUIZ-CORTÉS, A. 2010. Automated Analysis of Feature Models 20 Years
Later: A Literature Review. Information Systems 35, 6, 615–708.

BERTOT, Y. AND CASTÉRAN, P. 2004. Interactive Theorem Proving and Program Development - Coq’Art: The
Calculus of Inductive Constructions. Springer, Berlin, Heidelberg.

BESSLING, S. AND HUHN, M. 2014. Towards Formal Safety Analysis in Feature-Oriented Product Line
Development. In Proc. Int’l Symposium Foundations of Health Information Engineering and Systems
(FHIES). Springer, Berlin, Heidelberg, 217–235.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:40 Thomas Thüm et al.

BETTINI, L., DAMIANI, F., AND SCHAEFER, I. 2013. Compositional Type Checking of Delta-Oriented Soft-
ware Product Lines. Acta Informatica 50, 2, 77–122.

BETTINI, L., DAMIANI, F., AND SCHAEFER, I. 2014. Implementing Type-Safe Software Product Lines Using
Parametric Traits. Science of Computer Programming (SCP). To appear.

BEYER, D., HENZINGER, T. A., JHALA, R., AND MAJUMDAR, R. 2007. The Software Model Checker Blast:
Applications to Software Engineering. Int’l J. Software Tools for Technology Transfer (STTT) 9, 5, 505–
525.

BEYER, D. AND KEREMOGLU, M. E. 2011. CPAchecker: A Tool for Configurable Software Verification. In
Proc. Int’l Conf. Computer Aided Verification (CAV). Springer, Berlin, Heidelberg, 184–190.

BLUNDELL, C., FISLER, K., KRISHNAMURTHI, S., AND HENTENRYCK, P. V. 2004. Parameterized Interfaces
for Open System Verification of Product Lines. In Proc. Int’l Conf. Automated Software Engineering
(ASE). IEEE, Washington, DC, USA, 258–267.

BODDEN, E., TOLÊDO, T., RIBEIRO, M., BRABRAND, C., BORBA, P., AND MEZINI, M. 2013. SPLLIFT:
Statically Analyzing Software Product Lines in Minutes Instead of Years. In Proc. ACM SIGPLAN Conf.
Programming Language Design and Implementation (PLDI). ACM, New York, NY, USA, 355–364.

BOWEN, T. F., DWORACK, F. S., CHOW, C.-H., GRIFFETH, N., HERMAN, G. E., AND LIN, Y.-J. 1989. The
Feature Interaction Problem in Telecommunications Systems. In Proc. Int’l Conf. Software Engineering
for Telecommunication Switching Systems (SETSS). IEEE, Washington, DC, USA, 59–62.

BRABRAND, C., RIBEIRO, M., TOLÊDO, T., WINTHER, J., AND BORBA, P. 2013. Intraprocedural Dataflow
Analysis for Software Product Lines. Trans. Aspect-Oriented Software Development 10, 73–108.

BRUNS, D., KLEBANOV, V., AND SCHAEFER, I. 2011. Verification of Software Product Lines with Delta-
Oriented Slicing. In Proc. Int’l Conf. Formal Verification of Object-Oriented Software (FoVeOOS).
Springer, Berlin, Heidelberg, 61–75.

BUCHMANN, T. AND SCHWÄGERL, F. 2012. Ensuring Well-Formedness of Configured Domain Models in
Model-Driven Product Lines Based on Negative Variability. In Proc. Int’l Workshop Feature-Oriented
Software Development (FOSD). ACM, New York, NY, USA, 37–44.

CALDER, M., KOLBERG, M., MAGILL, E. H., AND REIFF-MARGANIEC, S. 2003. Feature Interaction: A
Critical Review and Considered Forecast. Computer Networks 41, 1, 115–141.

CARMO MACHADO, I. D., MCGREGOR, J. D., CAVALCANTI, Y. A. C., AND DE ALMEIDA, E. S. 2014. On
Strategies for Testing Software Product Lines: A Systematic Literature Review. J. Information and
Software Technology (IST). To appear.

CHEN, S., ERWIG, M., AND WALKINGSHAW, E. 2014. Extending Type Inference to Variational Programs.
ACM Trans. Programming Languages and Systems (TOPLAS) 36, 1, 1:1–1:54.

CIMATTI, A., CLARKE, E. M., GIUNCHIGLIA, F., AND ROVERI, M. 1999. NuSMV: A New Symbolic Model
Verifier. In Proc. Int’l Conf. Computer Aided Verification (CAV). Springer, London, UK, 495–499.

CLARKE, E. M., GRUMBERG, O., AND PELED, D. A. 1999. Model Checking. MIT Press, Cambridge, Mas-
sachussetts.

CLASSEN, A., CORDY, M., HEYMANS, P., LEGAY, A., AND SCHOBBENS, P.-Y. 2014. Formal Semantics, Mod-
ular Specification, and Symbolic Verification of Product-Line Behaviour. Science of Computer Program-
ming (SCP) 80, Part B, 0, 416–439.

CLASSEN, A., CORDY, M., SCHOBBENS, P.-Y., HEYMANS, P., LEGAY, A., AND RASKIN, J.-F. 2013. Featured
Transition Systems: Foundations for Verifying Variability-Intensive Systems and their Application to
LTL Model Checking. IEEE Trans. Software Engineering (TSE) 39, 8, 1069–1089.

CLASSEN, A., HEYMANS, P., SCHOBBENS, P.-Y., LEGAY, A., AND RASKIN, J.-F. 2010. Model Checking Lots
of Systems: Efficient Verification of Temporal Properties in Software Product Lines. In Proc. Int’l Conf.
Software Engineering (ICSE). ACM, New York, NY, USA, 335–344.

CLEMENTS, P. AND NORTHROP, L. 2001. Software Product Lines: Practices and Patterns. Addison-Wesley,
Boston, MA, USA.

CORDY, M., CLASSEN, A., HEYMANS, P., LEGAY, A., AND SCHOBBENS, P.-Y. 2013a. Model Checking Adap-
tive Software with Featured Transition Systems. In Proc. Workshop Assurances for Self-Adaptive Sys-
tems (ASAS). Springer, Berlin, Heidelberg, 1–29.

CORDY, M., CLASSEN, A., PERROUIN, G., SCHOBBENS, P.-Y., HEYMANS, P., AND LEGAY, A. 2012a.
Simulation-Based Abstractions for Software Product-Line Model Checking. In Proc. Int’l Conf. Software
Engineering (ICSE). IEEE, Piscataway, NJ, USA, 672–682.

CORDY, M., CLASSEN, A., SCHOBBENS, P.-Y., HEYMANS, P., AND LEGAY, A. 2012b. Managing Evolution in
Software Product Lines: A Model-checking Perspective. In Proc. Int’l Workshop Variability Modelling of
Software-intensive Systems (VaMoS). ACM, New York, NY, USA, 183–191.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:41

CORDY, M., SCHOBBENS, P.-Y., HEYMANS, P., AND LEGAY, A. 2012c. Behavioural Modelling and Verifica-
tion of Real-Time Software Product Lines. In Proc. Int’l Software Product Line Conf. (SPLC). ACM, New
York, NY, USA, 66–75.

CORDY, M., SCHOBBENS, P.-Y., HEYMANS, P., AND LEGAY, A. 2012d. Towards an Incremental Automata-
Based Approach for Software Product-Line Model Checking. In Proc. Int’l Workshop Formal Methods
and Analysis in Software Product Line Engineering (FMSPLE). ACM, New York, NY, USA, 74–81.

CORDY, M., SCHOBBENS, P.-Y., HEYMANS, P., AND LEGAY, A. 2013b. Beyond Boolean Product-Line Model
Checking: Dealing with Feature Attributes and Multi-Features. In Proc. Int’l Conf. Software Engineer-
ing (ICSE). IEEE, Piscataway, NJ, USA, 472–481.

COUSOT, P. AND COUSOT, R. 1977. Abstract Interpretation: A Unified Lattice Model for Static Analysis of
Programs by Construction or Approximation of Fixpoints. In Proc. Symposium Principles of Program-
ming Languages (POPL). ACM, New York, NY, USA, 238–252.

CZARNECKI, K. AND EISENECKER, U. 2000. Generative Programming: Methods, Tools, and Applications.
ACM/Addison-Wesley, New York, NY, USA.

CZARNECKI, K. AND PIETROSZEK, K. 2006. Verifying Feature-Based Model Templates Against Well-
Formedness OCL Constraints. In Proc. Int’l Conf. Generative Programming and Component Engineering
(GPCE). ACM, New York, NY, USA, 211–220.

DA MOTA SILVEIRA NETO, P. A., CARMO MACHADO, I. D., MCGREGOR, J. D., DE ALMEIDA, E. S., AND
DE LEMOS MEIRA, S. R. 2011. A Systematic Mapping Study of Software Product Lines Testing. J.
Information and Software Technology (IST) 53, 5, 407–423.

DAMIANI, F., OWE, O., DOVLAND, J., SCHAEFER, I., JOHNSEN, E. B., AND YU, I. C. 2012. A Transfor-
mational Proof System for Delta-Oriented Programming. In Proc. Int’l Workshop Formal Methods and
Analysis in Software Product Line Engineering (FMSPLE). ACM, New York, NY, USA, 53–60.

DAMIANI, F. AND SCHAEFER, I. 2012. Family-Based Analysis of Type Safety for Delta-Oriented Software
Product Lines. In Proc. Int’l Symposium Leveraging Applications of Formal Methods, Verification and
Validation (ISoLA). Springer, Berlin, Heidelberg, 193–207.

DARWIN, I. F. 1986. Checking C Programs with Lint. O’Reilly & Associates, Inc., Sebastopol, CA, USA.
DELAWARE, B., COOK, W., AND BATORY, D. 2009. Fitting the Pieces Together: A Machine-Checked Model

of Safe Composition. In Proc. Europ. Software Engineering Conf./Foundations of Software Engineering
(ESEC/FSE). ACM, New York, NY, USA, 243–252.

DELAWARE, B., COOK, W., AND BATORY, D. 2011. Product Lines of Theorems. In Proc. Conf. Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA). ACM, New York, NY, USA, 595–608.

DELAWARE, B., D. S. OLIVEIRA, B. C., AND SCHRIJVERS, T. 2013. Meta-Theory à la Carte. In Proc. Sympo-
sium Principles of Programming Languages (POPL). ACM, New York, NY, USA, 207–218.

DETLEFS, D., NELSON, G., AND SAXE, J. B. 2005. Simplify: A Theorem Prover for Program Checking. J.
ACM 52, 3, 365–473.

ENGSTRÖM, E. AND RUNESON, P. 2011. Software Product Line Testing - A Systematic Mapping Study. J.
Information and Software Technology (IST) 53, 2–13.

ETXEBERRIA, L., SAGARDUI, G., AND BELATEGI, L. 2008. Quality Aware Software Product Line Engineer-
ing. J. Brazilian Computer Society (JBCS) 14, 1, 57–69.

FANTECHI, A. AND GNESI, S. 2008. Formal Modeling for Product Families Engineering. In Proc. Int’l Soft-
ware Product Line Conf. (SPLC). IEEE, Washington, DC, USA, 193–202.

FISCHBEIN, D., UCHITEL, S., AND BRABERMAN, V. 2006. A Foundation for Behavioural Conformance in
Software Product Line Architectures. In Proc. Int’l Workshop Role of Software Architecture for Testing
and Analysis (ROSATEA). ACM, New York, NY, USA, 39–48.

FISLER, K. AND KRISHNAMURTHI, S. 2001. Modular Verification of Collaboration-based Software Designs.
In Proc. Europ. Software Engineering Conf./Foundations of Software Engineering (ESEC/FSE). ACM,
New York, NY, USA, 152–163.

FISLER, K. AND KRISHNAMURTHI, S. 2005. Decomposing Verification Around End-User Features. In Proc.
IFIP Working Conf. Verified Software: Theories, Tools, Experiments (VSTTE). Springer, Berlin, Heidel-
berg, 74–81.

GAZZILLO, P. AND GRIMM, R. 2012. SuperC: Parsing All of C by Taming the Preprocessor. In Proc. ACM
SIGPLAN Conf. Programming Language Design and Implementation (PLDI). ACM, New York, NY,
USA, 323–334.

GREENYER, J., SHARIFLOO, A. M., CORDY, M., AND HEYMANS, P. 2013. Features Meet Scenarios: Mod-
eling and Consistency-Checking Scenario-Based Product Line Specifications. Requirements Engineer-
ing 18, 2, 175–198.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:42 Thomas Thüm et al.

GRULER, A., LEUCKER, M., AND SCHEIDEMANN, K. 2008. Modeling and Model Checking Software Product
Lines. In Proc. IFIP Int’l Conf. Formal Methods for Open Object-based Distributed Systems (FMOODS).
Springer, Berlin, Heidelberg, 113–131.

HÄHNLE, R. AND SCHAEFER, I. 2012. A Liskov Principle for Delta-Oriented Programming. In Proc. Int’l
Symposium Leveraging Applications of Formal Methods, Verification and Validation (ISoLA). Springer,
Berlin, Heidelberg, 32–46.

HARHURIN, A. AND HARTMANN, J. 2008. Towards Consistent Specifications of Product Families. In Proc.
Int’l Symposium Formal Methods (FM). Springer, Berlin, Heidelberg, 390–405.

HEIDENREICH, F. 2009. Towards Systematic Ensuring Well-Formedness of Software Product Lines. In Proc.
Int’l Workshop Feature-Oriented Software Development (FOSD). ACM, New York, NY, USA, 69–74.

HOLZMANN, G. J. 1997. The Model Checker SPIN. IEEE Trans. Software Engineering (TSE) 23, 5, 279–295.
HOVEMEYER, D. AND PUGH, W. 2004. Finding Bugs is Easy. SIGPLAN Not. 39, 12, 92–106.
HUANG, S. S., ZOOK, D., AND SMARAGDAKIS, Y. 2007. cJ: Enhancing Java with Safe Type Conditions. In

Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD). ACM, New York, NY, USA, 185–198.
HUANG, S. S., ZOOK, D., AND SMARAGDAKIS, Y. 2011. Statically Safe Program Generation with SafeGen.

Science of Computer Programming (SCP) 76, 5, 376–391.
ISTOAN, P. 2013. Methodology for the Derivation of Product Behaviour in a Software Product Line. Ph.D.

thesis, Université Rennes 1, Luxembourg.
JANOTA, M., KINIRY, J., AND BOTTERWECK, G. 2008. Formal Methods in Software Product Lines: Concepts,

Survey, and Guidelines. Tech. Rep. Lero-TR-SPL-2008-02, Lero, University of Limerick. May.
JAYARAMAN, P., WHITTLE, J., ELKHODARY, A. M., AND GOMAA, H. 2007. Model Composition in Product

Lines and Feature Interaction Detection Using Critical Pair Analysis. In Proc. Int’l Conf. Model Driven
Engineering Languages and Systems (MODELS). Springer, Berlin, Heidelberg, 151–165.

JOHNSEN, E. B., HÄHNLE, R., SCHÄFER, J., SCHLATTE, R., AND STEFFEN, M. 2012. ABS: A Core Language
for Abstract Behavioral Specification. In Proc. Int’l Symposium Formal Methods for Components and
Objects (FMCO). Springer, Berlin, Heidelberg, 142–164.

KANG, K. C., COHEN, S. G., HESS, J. A., NOVAK, W. E., AND PETERSON, A. S. 1990. Feature-Oriented
Domain Analysis (FODA) Feasibility Study. Tech. Rep. CMU/SEI-90-TR-21, Software Engineering In-
stitute.

KÄSTNER, C., APEL, S., THÜM, T., AND SAAKE, G. 2012a. Type Checking Annotation-Based Product Lines.
Trans. Software Engineering and Methodology (TOSEM) 21, 3, 14:1–14:39.

KÄSTNER, C., APEL, S., UR RAHMAN, S. S., ROSENMÜLLER, M., BATORY, D., AND SAAKE, G. 2009. On
the Impact of the Optional Feature Problem: Analysis and Case Studies. In Proc. Int’l Software Product
Line Conf. (SPLC). Software Engineering Institute, Pittsburgh, PA, USA, 181–190.

KÄSTNER, C., GIARRUSSO, P. G., RENDEL, T., ERDWEG, S., OSTERMANN, K., AND BERGER, T. 2011.
Variability-Aware Parsing in the Presence of Lexical Macros and Conditional Compilation. In Proc. Conf.
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA). ACM, New York, NY,
USA, 805–824.

KÄSTNER, C., OSTERMANN, K., AND ERDWEG, S. 2012b. A Variability-Aware Module System. In Proc. Conf.
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA). ACM, New York, NY,
USA, 773–792.

KÄSTNER, C., VON RHEIN, A., ERDWEG, S., PUSCH, J., APEL, S., RENDEL, T., AND OSTERMANN, K.
2012c. Toward Variability-Aware Testing. In Proc. Int’l Workshop Feature-Oriented Software Develop-
ment (FOSD). ACM, New York, NY, USA, 1–8.

KATZ, S. 2006. Aspect Categories and Classes of Temporal Properties. Trans. Aspect-Oriented Software
Development 1, 106–134.

KENNER, A., KÄSTNER, C., HAASE, S., AND LEICH, T. 2010. TypeChef: Toward Type Checking #Ifdef Vari-
ability in C. In Proc. Int’l Workshop Feature-Oriented Software Development (FOSD). ACM, New York,
NY, USA, 25–32.

KICZALES, G., LAMPING, J., MENDHEKAR, A., MAEDA, C., LOPES, C., LOINGTIER, J.-M., AND IRWIN,
J. 1997. Aspect-Oriented Programming. In Proc. Europ. Conf. Object-Oriented Programming (ECOOP).
Springer, Berlin, Heidelberg, 220–242.

KIM, C. H. P., BATORY, D., AND KHURSHID, S. 2011. Reducing Combinatorics in Testing Product Lines. In
Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD). ACM, New York, NY, USA, 57—68.

KIM, C. H. P., BODDEN, E., BATORY, D., AND KHURSHID, S. 2010. Reducing Configurations to Monitor in
a Software Product Line. In Proc. Int’l Conf. Runtime Verification (RV). Springer, Berlin, Heidelberg,
285–299.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:43

KIM, C. H. P., KÄSTNER, C., AND BATORY, D. 2008. On the Modularity of Feature Interactions. In Proc.
Int’l Conf. Generative Programming and Component Engineering (GPCE). ACM, New York, NY, USA,
23–34.

KIM, C. H. P., KHURSHID, S., AND BATORY, D. 2012. Shared Execution for Efficiently Testing Product
Lines. In Proc. Int’l Symposium Software Reliability Engineering (ISSRE). IEEE, Washington, DC,
USA, 221–230.

KIM, C. H. P., MARINOV, D., KHURSHID, S., BATORY, D., SOUTO, S., BARROS, P., AND D'AMORIM,
M. 2013. SPLat: Lightweight Dynamic Analysis for Reducing Combinatorics in Testing Configurable
Systems. In Proc. Europ. Software Engineering Conf./Foundations of Software Engineering (ES-
EC/FSE). ACM, New York, NY, USA, 257–267.

KISHI, T. AND NODA, N. 2006. Formal Verification and Software Product Lines. Comm. ACM 49, 73–77.
KLAEREN, H., PULVERMUELLER, E., RASHID, A., AND SPECK, A. 2001. Aspect Composition Applying the

Design by Contract Principle. In Proc. Int’l Symposium Generative and Component-Based Software En-
gineering (GCSE). Springer, Berlin, Heidelberg, 57–69.

KLOSE, K. AND OSTERMANN, K. 2010. Modular Logic Metaprogramming. In Proc. Conf. Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA). ACM, New York, NY, USA, 484–503.

KOLESNIKOV, S., VON RHEIN, A., HUNSEN, C., AND APEL, S. 2013. A Comparison of Product-based,
Feature-based, and Family-based Type Checking. In Proc. Int’l Conf. Generative Programming: Con-
cepts & Experiences (GPCE). ACM, New York, NY, USA, 115–124.

KUHLEMANN, M., BATORY, D., AND KÄSTNER, C. 2009. Safe Composition of Non-Monotonic Features. In
Proc. Int’l Conf. Generative Programming and Component Engineering (GPCE). ACM, New York, NY,
USA, 177–186.

KUHLEMANN, M. AND STURM, M. 2010. Patching Product Line Programs. In Proc. Int’l Workshop Feature-
Oriented Software Development (FOSD). ACM, New York, NY, USA, 33–40.

KUHN, D. R., KACKER, R. N., AND LEI, Y. 2013. Introduction to Combinatorial Testing 1st Ed. Chapman
& Hall/CRC, London, UK.

LAUENROTH, K., METZGER, A., AND POHL, K. 2010. Quality Assurance in the Presence of Variability. In
Intentional Perspectives on Information Systems Engineering. Springer, Berlin, Heidelberg, 319–333.

LE, D. M., LEE, H., KANG, K. C., AND KEUN, L. 2013. Validating Consistency between a Feature Model
and Its Implementation. In Proc. Int’l Conf. Software Reuse (ICSR). Springer, Berlin, Heidelberg, 1–16.

LEE, J., KANG, S., AND LEE, D. 2012. A Survey on Software Product Line Testing. In Proc. Int’l Software
Product Line Conf. (SPLC). ACM, New York, NY, USA, 31–40.

LI, H., KRISHNAMURTHI, S., AND FISLER, K. 2002. Verifying Cross-Cutting Features as Open Systems. In
Proc. Int’l Symposium Foundations of Software Engineering (FSE). ACM, New York, NY, USA, 89–98.

LI, H., KRISHNAMURTHI, S., AND FISLER, K. 2005. Modular Verification of Open Features Using Three-
Valued Model Checking. Automated Software Engineering 12, 3, 349–382.

LIEBIG, J., APEL, S., LENGAUER, C., KÄSTNER, C., AND SCHULZE, M. 2010. An Analysis of the Variability
in Forty Preprocessor-Based Software Product Lines. In Proc. Int’l Conf. Software Engineering (ICSE).
IEEE, Washington, DC, USA, 105–114.

LIEBIG, J., VON RHEIN, A., KÄSTNER, C., APEL, S., DÖRRE, J., AND LENGAUER, C. 2013. Scalable Analysis
of Variable Software. In Proc. Europ. Software Engineering Conf./Foundations of Software Engineering
(ESEC/FSE). ACM, New York, NY, USA, 81–91.

LIU, J., BASU, S., AND LUTZ, R. 2011. Compositional Model Checking of Software Product Lines using
Variation Point Obligations. Automated Software Engineering 18, 1, 39–76.

LIU, J., BATORY, D., AND LENGAUER, C. 2006. Feature Oriented Refactoring of Legacy Applications. In
Proc. Int’l Conf. Software Engineering (ICSE). ACM, New York, NY, USA, 112–121.

LIU, J., DEHLINGER, J., AND LUTZ, R. 2007. Safety Analysis of Software Product Lines using State-based
Modeling. Journal of Systems and Software (JSS) 80, 11, 1879–1892.

LUTZ, R. 2007. Survey of Product-line Verification and Validation Techniques. Tech. Rep. 2014/41221,
NASA, Jet Propulsion Laboratory, La Canada Flintridge, CA, USA. May.

MEDEIROS, F., RIBEIRO, M., AND GHEYI, R. 2013. Investigating Preprocessor-based Syntax Errors. In Proc.
Int’l Conf. Generative Programming: Concepts & Experiences (GPCE). ACM, New York, NY, USA, 75–84.

MENDONÇA, M., WASOWSKI, A., AND CZARNECKI, K. 2009. SAT-based Analysis of Feature Models is Easy.
In Proc. Int’l Software Product Line Conf. (SPLC). Software Engineering Institute, Pittsburgh, PA, USA,
231–240.

METZGER, A. 2007. Quality Issues in Software Product Lines: Feature Interactions and Beyond. In Proc.
Int’l Conf. Feature Interactions in Software and Communication Systems (ICFI). IOS Press, Amsterdam,
The Netherlands, 1–12.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 Thomas Thüm et al.

METZGER, A., POHL, K., HEYMANS, P., SCHOBBENS, P.-Y., AND SAVAL, G. 2007. Disambiguating the Doc-
umentation of Variability in Software Product Lines: A Separation of Concerns, Formalization and Au-
tomated Analysis. In Proc. Int’l Conf. Requirements Engineering (RE). IEEE, Washington, DC, USA,
243–253.

MIDTGAARD, J., BRABRAND, C., AND WASOWSKI, A. 2014. Systematic Derivation of Static Analyses for
Software Product Lines. In Proc. Int’l Conf. Aspect-Oriented Software Development (AOSD). ACM, New
York, NY, USA, 181–192.

MONTAGUD, S. AND ABRAHÃO, S. 2009. Gathering Current Knowledge About Quality Evaluation in Soft-
ware Product Lines. In Proc. Int’l Software Product Line Conf. (SPLC). Software Engineering Institute,
Pittsburgh, PA, USA, 91–100.

MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

NELSON, T., COWAN, D. D., AND ALENCAR, P. S. C. 2001. Supporting Formal Verification of Crosscutting
Concerns. In Proc. Int’l Conf. Metalevel Architectures and Separation of Crosscutting Concerns. Springer,
London, UK, 153–169.

NGUYEN, H. V., KÄSTNER, C., AND NGUYEN, T. N. 2014. Exploring Variability-Aware Execution for Testing
Plugin-Based Web Applications. In Proc. Int’l Conf. Software Engineering (ICSE). ACM, New York, NY,
USA. To appear.

NIE, C. AND LEUNG, H. 2011. A Survey of Combinatorial Testing. ACM Computing Surveys 43, 2, 11:1–
11:29.

NIELSON, F., NIELSON, H. R., AND HANKIN, C. 2010. Principles of Program Analysis. Springer, Secaucus,
NJ, USA.

NIPKOW, T., WENZEL, M., AND PAULSON, L. C. 2002. Isabelle/HOL: A Proof Assistant for Higher-Order
Logic. Springer, Berlin, Heidelberg.

OSTER, S., MARKERT, F., AND RITTER, P. 2010. Automated Incremental Pairwise Testing of Software Prod-
uct Lines. In Proc. Int’l Software Product Line Conf. (SPLC). Springer, Berlin, Heidelberg, 196–210.

OSTER, S., WÜBBEKE, A., ENGELS, G., AND SCHÜRR, A. 2011. A Survey of Model-Based Software Product
Lines Testing. In Model-based Testing for Embedded System. CRC Press, Boca Raton, FL, USA, 339–
381.

OWRE, S., RUSHBY, J. M., AND SHANKAR, N. 1992. PVS: A Prototype Verification System. In Proc. Int’l
Conf. Automated Deduction (CADE). Springer, London, UK, 748–752.

PARNAS, D. L. 1976. On the Design and Development of Program Families. IEEE Trans. Software Engineer-
ing (TSE) SE-2, 1, 1–9.

PERROUIN, G., SEN, S., KLEIN, J., BAUDRY, B., AND LE TRAON, Y. 2010. Automated and Scalable T-
wise Test Case Generation Strategies for Software Product Lines. In Proc. Int’l Conf. Software Testing,
Verification and Validation (ICST). IEEE, Washington, DC, USA, 459–468.

PIERCE, B. C. 2002. Types and Programming Languages. MIT Press, Cambridge, Massachusetts, USA.
PLATH, M. AND RYAN, M. 2001. Feature Integration Using a Feature Construct. Science of Computer Pro-

gramming (SCP) 41, 1, 53–84.
POHL, K., BÖCKLE, G., AND VAN DER LINDEN, F. J. 2005. Software Product Line Engineering : Foundations,

Principles and Techniques. Springer, Berlin, Heidelberg.
POST, H. AND SINZ, C. 2008. Configuration Lifting: Software Verification meets Software Configuration. In

Proc. Int’l Conf. Automated Software Engineering (ASE). IEEE, Washington, DC, USA, 347–350.
PREHOFER, C. 1997. Feature-Oriented Programming: A Fresh Look at Objects. In Proc. Europ. Conf. Object-

Oriented Programming (ECOOP). Springer, Berlin, Heidelberg, 419–443.
RIBEIRO, M., PACHECO, H., TEIXEIRA, L., AND BORBA, P. 2010. Emergent Feature Modularization. In Proc.

Int’l Conf. Object-Oriented Programming Systems Languages and Applications Companion (SPLASH).
ACM, New York, NY, USA, 11–18.

RUBANOV, V. V. AND SHATOKHIN, E. A. 2011. Runtime Verification of Linux Kernel Modules Based on Call
Interception. In Proc. Int’l Conf. Software Testing, Verification and Validation (ICST). IEEE, Washing-
ton, DC, USA, 180–189.

SABOURI, H. AND KHOSRAVI, R. 2012. Efficient Verification of Evolving Software Product Lines. In Proc.
Int’l Conf. Fundamentals of Software Engineering (FSEN). Springer, Berlin, Heidelberg, 351–358.

SABOURI, H. AND KHOSRAVI, R. 2013a. Delta Modeling and Model Checking of Product Families. In Proc.
Int’l Conf. Fundamentals of Software Engineering (FSEN). Springer, Berlin, Heidelberg, 51–65.

SABOURI, H. AND KHOSRAVI, R. 2013b. Modeling and Verification of Reconfigurable Actor Families. J.
Universal Computer Science (J.UCS) 19, 2, 207–232.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

A Classification and Survey of Analysis Strategies for Software Product Lines A:45

SABOURI, H. AND KHOSRAVI, R. 2014. Reducing the Verification Cost of Evolving Product Families Using
Static Analysis Techniques. Science of Computer Programming (SCP) 83, 0, 35–55.

SCHAEFER, I., GUROV, D., AND SOLEIMANIFARD, S. 2010. Compositional Algorithmic Verification of Soft-
ware Product Lines. In Proc. Int’l Symposium Formal Methods for Components and Objects (FMCO).
Springer, Berlin, Heidelberg, 184–203.

SCHOLZ, W., THÜM, T., APEL, S., AND LENGAUER, C. 2011. Automatic Detection of Feature Interactions
using the Java Modeling Language: An Experience Report. In Proc. Int’l Workshop Feature-Oriented
Software Development (FOSD). ACM, New York, NY, USA, 7:1–7:8.

SCHUMANN, J. 2001. Automated Theorem Proving in Software Engineering. Springer, Berlin, Heidelberg.
SHI, J., COHEN, M. B., AND DWYER, M. B. 2012. Integration Testing of Software Product Lines Using

Compositional Symbolic Execution. In Proc. Int’l Conf. Fundamental Approaches to Software Engineer-
ing (FASE). Springer, Berlin, Heidelberg, 270–284.

SVAHNBERG, M., VAN GURP, J., AND BOSCH, J. 2005. A Taxonomy of Variability Realization Techniques:
Research Articles. Software: Practice and Experience 35, 8, 705–754.

TARTLER, R., LOHMANN, D., DIETRICH, C., EGGER, C., AND SINCERO, J. 2012. Configuration Coverage in
the Analysis of Large-Scale System Software. ACM SIGOPS Operating Systems Review 45, 3, 10–14.

TARTLER, R., LOHMANN, D., SINCERO, J., AND SCHRÖDER-PREIKSCHAT, W. 2011. Feature Consistency
in Compile-Time-Configurable System Software: Facing the Linux 10,000 Feature Problem. In Proc.
Europ. Conf. Computer Systems (EuroSys). ACM, New York, NY, USA, 47–60.

TEIXEIRA, L., BORBA, P., AND GHEYI, R. 2011. Safe Composition of Configuration Knowledge-Based Soft-
ware Product Lines. In Proc. Brazilian Symposium Software Engineering (SBES). IEEE, Washington,
DC, USA, 263–272.

TER BEEK, M. H., LAFUENTE, A. L., AND PETROCCHI, M. 2013. Combining Declarative and Procedural
Views in the Specification and Analysis of Product Families. In Proc. Int’l Workshop Formal Methods
and Analysis in Software Product Line Engineering (FMSPLE). ACM, New York, NY, USA, 10–17.

TEVANLINNA, A., TAINA, J., AND KAUPPINEN, R. 2004. Product Family Testing: A Survey. SIGSOFT Soft-
ware Engineering Notes 29, 12–17.

THAKER, S., BATORY, D., KITCHIN, D., AND COOK, W. 2007. Safe Composition of Product Lines. In Proc.
Int’l Conf. Generative Programming and Component Engineering (GPCE). ACM, New York, NY, USA,
95–104.

THÜM, T., BATORY, D., AND KÄSTNER, C. 2009. Reasoning about Edits to Feature Models. In Proc. Int’l
Conf. Software Engineering (ICSE). IEEE, Washington, DC, USA, 254–264.

THÜM, T., KÄSTNER, C., ERDWEG, S., AND SIEGMUND, N. 2011a. Abstract Features in Feature Modeling.
In Proc. Int’l Software Product Line Conf. (SPLC). IEEE, Washington, DC, USA, 191–200.

THÜM, T., SCHAEFER, I., APEL, S., AND HENTSCHEL, M. 2012. Family-Based Deductive Verification of Soft-
ware Product Lines. In Proc. Int’l Conf. Generative Programming and Component Engineering (GPCE).
ACM, New York, NY, USA, 11–20.

THÜM, T., SCHAEFER, I., KUHLEMANN, M., AND APEL, S. 2011b. Proof Composition for Deductive Verifica-
tion of Software Product Lines. In Proc. Int’l Workshop Variability-intensive Systems Testing, Validation
and Verification (VAST). IEEE, Washington, DC, USA, 270–277.

THÜM, T., SCHAEFER, I., KUHLEMANN, M., APEL, S., AND SAAKE, G. 2012. Applying Design by Contract to
Feature-Oriented Programming. In Proc. Int’l Conf. Fundamental Approaches to Software Engineering
(FASE). Springer, Berlin, Heidelberg, 255–269.

UBAYASHI, N. AND TAMAI, T. 2002. Aspect-Oriented Programming with Model Checking. In Proc. Int’l Conf.
Aspect-Oriented Software Development (AOSD). ACM, New York, NY, USA, 148–154.

VAN DER LINDEN, F. J., SCHMID, K., AND ROMMES, E. 2007. Software Product Lines in Action: The Best
Industrial Practice in Product Line Engineering. Springer, Berlin, Heidelberg.

VISSER, W., HAVELUND, K., BRAT, G. P., AND PARK, S. 2000. Model Checking Programs. In Proc. Int’l Conf.
Automated Software Engineering (ASE). Springer, Berlin, Heidelberg, 3–12.

VON RHEIN, A., APEL, S., KÄSTNER, C., THÜM, T., AND SCHAEFER, I. 2013. The PLA Model: On the Com-
bination of Product-Line Analyses. In Proc. Int’l Workshop Variability Modelling of Software-intensive
Systems (VaMoS). ACM, New York, NY, USA, 14:1–14:8.

WEIDENBACH, C., DIMOVA, D., FIETZKE, A., KUMAR, R., SUDA, M., AND WISCHNEWSKI, P. 2009. SPASS
Version 3.5. In Proc. Int’l Conf. Automated Deduction (CADE). Springer, Berlin, Heidelberg, 140–145.

WEISER, M. 1981. Program Slicing. In Proc. Int’l Conf. Software Engineering (ICSE). IEEE, Piscataway, NJ,
USA, 439–449.

WEISS, D. M. 2008. The Product Line Hall of Fame. In Proc. Int’l Software Product Line Conf. (SPLC).
IEEE, Washington, DC, USA, 395.

ACM Computing Surveys, Vol. V, No. N, Article A, Publication date: January YYYY.

