WIRTSCHAFTS
UNIVERSITAT
WIEN VIENNA
UNIVERSITY OF
ECONOMICS
AND BUSINESS

EQUIS

CCREDITED

ePub"V Institutional Repository

Stefan Sobernig and Sven Apel and Sergiy Kolesnikov and Norbert
Siegmund

Quantifying Structural Attributes of System Decompositions in 28 Feature-
oriented Software Product Lines: An Exploratory Study

Paper

Original Citation:

Sobernig, Stefan and Apel, Sven and Kolesnikov, Sergiy and Siegmund, Norbert (2014) Quantifying
Structural Attributes of System Decompositions in 28 Feature-oriented Software Product Lines: An
Exploratory Study. Technical Reports / Institute for Information Systems and New Media, 2014/01.
WU Vienna University of Economics and Business, Vienna.

This version is available at: http://epub.wu.ac.at/4272/
Available in ePubWU: July 2014

ePub™Y| the institutional repository of the WU Vienna University of Economics and Business, is
provided by the University Library and the IT-Services. The aim is to enable open access to the
scholarly output of the WU.

http://epub.wu.ac.at/

http://epub.wu.ac.at/4272/
http://epub.wu.ac.at/

Quantifying Structural Attributes of System Decompositions
in 28 Feature-oriented Software Product Lines
An Exploratory Study

(Technical Report)

STEFAN SOBERNIG"
SVEN APEL™

SERGIY KOLESNIKOV™
NORBERT SIEGMUND™

“WU VIENNA
“UNIVERSITY OF PASSAU

Background. A key idea of feature orientation is to decompose a software product line along the fea-
tures it provides. Feature decomposition is orthogonal to object-oriented decomposition—it crosscuts the
underlying package and class structure. It has been argued often that feature decomposition improves
system structure (reduced coupling, increased cohesion). However, recent empirical findings suggest
that this is not necessarily the case, which is the motivation for our empirical investigation.

Aim. In fact, there is little empirical evidence on how the alternative decompositions of feature ori-
entation and object orientation compare to each other in terms of their association with observable
properties of system structure (coupling, cohesion). This motivated us to empirically investigate and
compare the properties of three decompositions (object-oriented, feature-oriented, and their intersec-
tion) of 28 feature-oriented software product lines.

Method. In an exploratory, observational study, we quantify internal attributes, such as import coupling
and cohesion, to describe and analyze the different decompositions of a feature-oriented product line in
a systematic, reproducible, and comparable manner. For this purpose, we use three established software
measures (CBU, IUD, EUD) as well as standard distribution statistics (e.g., Gini coefficient).

Results. First, feature decomposition is associated with higher levels of structural coupling in a product
line than a decomposition into classes. Second, although coupling is concentrated in feature decomposi-
tions, there are not necessarily hot-spot features. Third, the cohesion of feature modules is not necessar-
ily higher than class cohesion, whereas feature modules serve more dependencies internally than classes.
Fourth, coupling and cohesion measurement show potential for sampling optimization in complex static
and dynamic product-line analyses (product-line type checking, feature-interaction detection).
Conclusions. Our empirical study raises critical questions about alleged advantages of feature decom-
position. At the same time, we demonstrate how the measurement of structural attributes can facilitate

static and dynamic analyses of software product lines.

Keywords. Software product lines; feature-oriented programming; Fuji; structural coupling; structural

cohesion; software measurement

1. Introduction

A software product line is a family of software products derived from a shared code base, ide-
ally in a widely automated manner. Each product is described in terms of a valid configuration
of the product line’s variability model (e.g., a feature model [[Czarnecki and Eisenecker, [2000]).
In a feature-oriented software product line, the implementation assets implement features as
cohesive units of functionality [Apel and Kastner, 2009]]. A feature addresses a specific func-
tional domain requirement, represents a design decision in the domain implementation, and
often establishes a configuration option when deriving a product. Feature-oriented program-
ming using AHEAD [Batory et al., |2004], Fujﬂ [Apel et al., 2012], and FeatureHouse [Apel
et al.|2013[] aims at decomposing the code base into dedicated and tractable feature units that
include all feature-specific code. Compared to alternative feature-implementation techniques
(e.g., plug-ins, pattern-based designs, and code preprocessing), feature-oriented programming
establishes an explicit and clean mapping (ideally, one to one) between the features in the
domain model and the corresponding code.

In feature-oriented software product lines, several structural decompositions co-exist, typ-
ically an object-oriented decomposition into classes and a feature-oriented decomposition into
feature units. The extent to which a software product line and its decompositions are acces-
sible to developers (e.g., as chunks of cognitive processing [Lilienthal, |2009]) is affected by
the level of mutual, functional dependencies between decomposition units (coupling) as well
as their internal dependency structure (cohesion). Coupling and cohesion determine whether
software developers can study decomposition units (features, classes) one at a time, for ex-
ample, to make design and implementation decisions local to a decomposition unit [Kiczales
and Mezini, 2005} [Lilienthal, [2009; [Kastner et al., [2011]. The attributes of coupling and co-
hesion, in turn, reflect a number of intentions towards the structuring of a decomposition:
First, decomposition units should have separated and unique (non-duplicated) functional re-
sponsibilities. Second, potential error-propagation paths between and within decomposition
units should be reduced to a minimum and locatable unambiguously [Taube-Schock et al.,
2011]]. Third, the level of structural fragmentation of a decomposition should be controlled.
Fragmentation denotes the total number of decomposition units in relation to the sizes of de-
composition units. Micro-modularization [Kéastner et al., [2011] may yield a large number of
decomposition units, each too small to facilitate any useful reasoning.

Earlier, and in a convenience view, feature decomposition was thought of as leading to more

Thttp://fosd.net/fuji/, last accessed: 12.05.2013.

http://fosd.net/fuji/

modularly structured—that is, highly cohesive and loosely coupled—units [Kistner et al.|
2011]]. However, more recent empirical findings suggest that feature decomposition does not
necessarily achieve this objective [Apel and Beyer, 2011; Kastner et al.| [2011]]. Nevertheless,
each alternative decomposition can be critical for different developer roles (e.g., the domain or
the application developers) and for different engineering tasks, such as code reviews, feature
promotion, and feature-specific refactorings. This adds to the conjectures about developers re-
quiring tailorable and aggregating views on crosscutting object-oriented and feature-oriented
decompositions [Kistner et al., [2011]. Unfortunately, to this date, there is little empirical
evidence on how alternative decompositions compare to each other in terms of their inter-
nal attributes (fragmentation, coupling, cohesion). Addressing this issue will influence the
development of language-based and tool-based approaches for feature-oriented product lines.

So far, research on component-oriented architectures [Bouwers et al., [2011], as well as
on object-oriented [Sarkar et al., [2008] and feature-oriented programming [Apel and Beyer,
2011]] has investigated only one decomposition dimension in isolation (e.g., the decomposi-
tion into feature units) and only certain internal attributes. Bouwers et al.| [2011] set out
to quantify fragmentation while ignoring cohesion and coupling. |Apel and Beyer|[2011] in-
vestigated feature cohesion without incorporating coupling and fragmentation. Furthermore,
earlier data sets [[Apel and Beyer, |2011]] extracted from product-line code bases were based
on the context-free syntax of feature implementations (introductions; e.g., method and field
declarations), rather than incorporating also context-sensitive data (references; e.g., method
calls, field accesses).

This motivated us to empirically investigate and compare the structural attributes of dif-
ferent decompositions of 28 feature-oriented software product lines implemented using Fuji.
While feature orientation is still in its infancy, it is a promising line of research [Apel et al.,
2013]—the time is ripe to back foundational research in this area with empirical data.

In particular, we aim at quantifying internal attributes, such as decomposition size, import
coupling, cohesion, and unit sizes, using software measures to describe the different decom-
positions of a product line in a systematic, reproducible, and comparable manner [Montagud
et al.,[2012]. This report makes the following contributions:

e We review and apply established software measures to characterize and compare struc-
tural coupling, structural cohesion, and fragmentation of three different decompositions
of feature-oriented software product lines.

e We derive quantitative observations using established statistical techniques from a data
set of 28 feature-oriented product lines, available from the Fuji repository. The selected
product lines differ in size and by their target domains.

e Based on the quantitative observations, we answer a number of research questions,
posed in the literature, on coupling, cohesion, and fragmentation in feature-oriented

product lines.
e We also look at the possible impact of coupling and cohesion measurement on optimizing
static and dynamic analysis techniques for product lines.

In a nutshell, we found that (1) feature decomposition can result in more densely coupled code
structures than object-oriented decomposition. In addition, (2) feature decomposition is more
heterogeneous regarding the distribution of coupling over the individual feature implementa-
tions than object-oriented decomposition. Throughout the 28 product lines, both highly and
loosely coupled feature implementations can take dominant shares in the overall coupling. At
the same time, (3) feature decomposition can result in more self-contained units of function-
ality than object-oriented decomposition. However, this does not imply that syntax elements
of feature implementations are internally more inter-connected than in object-oriented de-
composition. Finally, (4) we demonstrate how the adopted indicator measures for coupling
and cohesion can be used to devise sampling techniques for product-line type checking and
feature-interaction detection.

Based on our study, we discuss the implications and perspectives of our measurement
methodology and experimental findings for future work on static and dynamic analysis of
product lines. We back our discussion by two feasibility studies on type-checking product
lines and feature interaction detection.

All experimental data as well as the statistical tooling for reproducing our results are avail-

able at: http://www.infosun.fim.uni-passau.de/spl/projects/decomposition/data.zip.

2. Three Decompositions, Many Differences?

Typically, the code base of a feature-oriented product line is decomposed along two major
dimensions. In Figure|ll we exemplify this for the canonical graph product line (GPL) [[Lopez-
Herrejon and Batory, |2001]]. On the one hand, the code base is structured into code units ac-
cording to the decomposition mechanisms offered by the programming language. Consider, for
example, a hierarchical object-oriented decomposition using Java, involving packages, nested
classes, methods, and the containment relationships between them. GPL has a number of
classes according to this decomposition, for example, Graph, Edge, and Strength. On the other
hand, feature units, which embody the feature implementations in the code base, give rise to
a second decomposition which is orthogonal to the object-oriented one. The feature decompo-
sition can be hierarchical as well. GPL consists of three feature units: Base provides means to
represent basic graphs, Weighted adds weights to edges, and Measures enables the computa-
tion of numeric graph characteristics (e.g., the strength measure sums the weights of the edges
incident to a node). A third decomposition results from the intersection of the first two decom-
positions: code units (e.g., classes in the GPL) are divided into code-unit fragments (a.k.a.

http://www.infosun.fim.uni-passau.de/spl/projects/decomposition/data.zip

roles [Smaragdakis and Batory, 2002]) defining the structure and behavior of code units spe-
cific to single features. The set of code-unit fragments that belong to a single feature and that
are scattered over multiple code units form a feature unit (a.k.a. collaborations [Smaragdakis
and Batory, 2002]]).

Graph Edge Node Weight Strength
8\~\~\C%:_\~O
i

L Q]

Base

Weighted

Measures

ooag
o O
O

code-unit view feature-unit view code-unit-fragment view

code-unit

o Program
fragment

element — dependency

code unit feature unit

Figure 1: The three decompositions of the graph product line into code units, feature units, and
code-unit fragments. Each decomposition provides an alternative view on the product line to
the developer. Code units, feature units, and code-unit fragments contain program elements
(e.g., fields and methods) that may depend on other program elements.

Different roles and tasks in product-line engineering benefit from different or all decom-
positions. A domain developer who maintains a given reusable product-line asset must fre-
quently locate feature units on which the feature unit under review depends. In code reviews,
domain architects and domain developers frequently evaluate the mapping between features
and feature implementations by navigating through the code base, following feature traces
provided by code annotations, declaration cues, and feature-aware code editors [Késtner et al.,
2012]]. From the viewpoint of an application developer, a view on the object-oriented decom-
position representing the derived product is eligible to facilitate object-oriented development
tasks (e.g., framework integration of the product into a final object-oriented system). To pro-
mote features from products to the product line (as done in the extractive approach [Clements
and Krueger,|[2002]), domain architects and application developers must locate feature-specific
code in the object-oriented decomposition of the code base to refactor them into existing and
new feature units [Apel et al., 2013]]. Finally, application developers use all decompositions
for reporting problems or defects experienced with a reused asset to the responsible domain

developer. A feature decomposition is helpful to establish whether the defect is located in a
particular feature unit or its neighbor units.

The different decompositions of a feature-oriented product line can completely overlap or
crosscut each other [Apel et al.,|2008]. Consider two different decomposition alignments of the
GPL in Figure[l| Feature unit Measures and code unit Strength contain the exact same set
of program elements and their dependencies. These elements form the code-unit fragment of
Strength which is specific to feature Measures. There is a complete structural overlap of the
three decomposition units, while each unit is part of a distinct decomposition. Consequently,
the structural attributes, such as unit coupling and cohesion of the code-unit fragment, the
code unit, and the feature unit, are strongly associated or even the same. In contrast, feature
unit Weighted and code unit Edge crosscut each other. While code unit Edge, in total, comprises
two code-unit fragments, feature unit Weighted only contains the one fragment specific to this
feature. As a result, the feature unit and the code unit have distinct coupling and cohesion
properties. This structural heterogeneity of decompositions cannot only arise for coupling
and cohesion, but for any structural attributes, such as the fragmentation. Regarding unit
sizes, one decomposition might show a relatively small number of decomposition units with
imbalanced unit sizes (Figure), while the other counts a medium number of units of more
balanced sizes (Figure [2f).

e |
e L
sils' i
e B

(a) (b) (c)

Figure 2: Different fragmentations of product-line decompositions: (a) large decomposition
size, non-uniform unit sizes; (b) small decomposition size, non-uniform and concentrated unit
sizes; (c) medium decomposition size, balanced unit sizes.

3. Comparative Research Design

By means of an exploratory study, we want to gain insights into how unit sizes, fragmenta-
tion, coupling, and cohesion of the three different decompositions compare to each other. In
particular, we want to answer the following two research questions:

How do coupling structures of a feature-oriented software product line differ
between its decompositions into code units, feature units, and code-unit fragments?
Several studies hint at unequal distributions of coupling over the decomposition units in
object-oriented designs [Taube-Schock et al., 2011]. They suggest that object-oriented de-
compositions are dominated by a comparatively large number of lowly coupled decomposition
units, with only a few highly coupled decompositions units. These latter, however, appear
coupled over-proportionally, at extremes.

Similar observations have been reported for feature decompositions, though at the level of
single features rather than entire product lines and for different notions of coupling (export
vs. import coupling). |Apel and Beyer| [2011] introduce the notion of provider and customer
features to discuss different roles in the dependency structure of a product line. Provider
features offer data and behavior to customer features (export coupling). Customer features
attach to provider features as part of the feature implementation (import coupling), but do
not provide anything to other features. Likewise, [Siegmund et al.|[2012] report on Aot-spot
features, which are export-coupled with a comparatively large number of features.

Establishing whether all or some alternative decompositions of feature-oriented product
lines show a characteristic tendency towards the presence of provider and hot-spot units would
have several benefits. For example, product-line testing strategies could prioritize such de-
composition units, for example, by running test cases on configurations guaranteed to include
them, or by defining coverage criteria accordingly. Or, when building sampling-based predic-
tion systems for non-functional properties [Siegmund et al.,[2012], a confirmed assumption of
highly coupled feature units could be used to stratify the sampling of configurations, based on
sub-populations that either include or exclude these decomposition units.

Do features as decomposition units form cohesive units of functionality? How
do they compare with classes and class fragments in terms of cohesion? Cohesion
is the degree to which program elements of a decomposition unit (class, class fragment, and
feature) depend on each other, for example, to operate on a shared set of data structures (e.g.,
communicational binding) or to perform a single function (functional binding). |Apel and Beyer
[2011]] found that features predominantly depend on elements internal rather than external to
them, and that features appear to be less cohesive than other, possibly smaller decomposition
units. According to |Apel and Beyer| [2011]], this follows from smaller features to be more
cohesive than larger features. In addition, the feature units measured in their study depend
only on comparatively few elements of the same features. Therefore, the authors concluded
that a refactoring into smaller, allegedly more cohesive units (e.g., code-unit fragments) should
be considered. Still, it remains to be investigated whether there is a systematic relation
between unit sizes and unit cohesion, and whether decompositions of smaller unit sizes turn
out to be more cohesive, to establish such and similar guidelines.

0N O WN -

Base (excerpt) Weighted (excerpt)

/**¥* File: Base/Graph.java **x/ 1 /#** File: Weighted/Edge.java ***/
// (Base, type, Graph) 2 // (Weighted, type, Edge)
public class Graph { 3 public class Edge {
// (Base, field, Graph.edges) 4 // (Weighted, field, Edge.weight)
private java.util.List<Edge> edges; 5 private Weight weight;
} 6 // (Weighted, ctor, Edge.Edge)
/**% File: Base/Edge.java **x/ 7 public Edge (int weight) {
// (Base, type, Edge) 8 this.weight = new Weight (weight);
public class Edge { 9 3
// (Base, field, Edge.head) 10 /*#** File: Weighted/Weight.java ***/
private Node head; 11 // (Weighted, type, Weight)
// (Base, field, Edge.tail) 12 public class Weight {
private Node tailj 13 // (Weighted, field, Weight.value)
} 14 private int value;
15 // (Weighted, ctor, Weight.Weight)
/*%% File: Base/Node.java **x/ 16 public Weight(int v) { this.value = v; }
// (Base, type, Node) 17 ¥
public class Node {
/* ... %/
}

Figure 3: Excerpts of the implementations of the features Base and Weighted

3.1. Representing Decompositions

We model each of the three product-line decompositions as a dependency graph: DG = (U, D).
The nodes U denote decomposition units (viz., classes, class fragments, and features). The
edges D represent usage dependencies between these decomposition units (e.g., one feature
uses a method introduced by another feature).

We use two code excerpts taken from GPL (Figure [3) to illustrate the models for differ-
ent decompositions. Features Base and Weighted contain 12 uniquely identifiable program
elements, such as type, method, and field definitions. In Figure |3, every such element is de-
scribed by a comment line indicating an element’s identifier. The identifier consists of the
containing feature, the element kind, and the fully qualified element name. For example, the
field in Line 5 of feature Base is identified as (Base, field, Graph.edges).

We call such uniquely identifiable program element an introduction, because it is incorpo-
rated by the corresponding feature into the code base of a product line at feature-composition
time. Introductions are basic building blocks for decomposition units. Usage dependencies
between introductions define dependencies between decomposition units built of these intro-
ductions. Hereafter, we refer to such a usage dependency between two introductions as a
reference. Note that there can be multiple distinct references running between two introduc-
tions.

The dependency graph resulting from the introductions and their references found in the
two code excerpts in Figure [3]is illustrated in Figure 4p. The twelve introductions are rep-
resented as the graph’s nodes. The introductions are grouped according to the owning Java

(a) introductions;

(b) code units (classes);
U=1,|U =12, |D| =11

U=CU, U =4, D] =3

Base | i Graph
(Graph) Edge

g P

d Weighted (Base) .,
(Edge)

Weight

(c) feature units;
U=FU, |U =2,|D] =2

o introduction

(type, field, ctor)

(d) code-unit (class) fragments;
U=CUF, |U=5,|Dl=5

[] decomposition unit ~ —» reference

Figure 4: Dependency graphs resulting from different decompositions of GPL; U: set of de-

composition units in graph; D: set of dependencies; CU: set of code units (classes); CUF: set of
code-unit (class) fragments; FU: set of feature units (feature modules).

type, depicted as dashed rectangles (e.g., Graph). The references between the introductions
are shown as edges. For example, the edge pointing from the field declaration (Base, field,
Graph.edges) to the type declaration (Base, type, Edge) in Figure [4p is recorded because
this field is typed by Edge (we say the field uses the type; see Line 5 of Base in Figure [3).

This dependency graph at the introduction level is the starting point to model the three
decompositions we are interested in. Depending on the decomposition criterion, the intro-
ductions are grouped into distinct decomposition units: code units (Figure [4p), feature units
(Figure [4k), and code-unit fragments (Figure [44d).

In Figure [dp, the grouping criterion is the Java type ownership of introductions. All in-
troductions defined by a given Java type (e.g., an interface or a class) are grouped into one
decomposition unit (Graph, Node, Edge, and Weight). This results in the code-unit or class
decomposition. Note that nested classes and nested interfaces are considered decomposition
units separate from their parent classes. As for the second decomposition, the grouping cri-
terion applied to obtain the dependency graph in Figure [4f is feature ownership of introduc-
tions. Hence, all introductions belonging to one feature are grouped into a feature unit. This
results in the feature-unit or, for brevity, feature decomposition. The third decomposition com-
bines the previous two decomposition criteria and builds groups of introductions according
to both their type and their feature ownership. This is the code-unit fragment or, simply,
class-fragment decomposition (Figure[dd). When moving up between two decomposition levels
(e.g., from single introductions to class fragments or from class to feature groupings), multiple
equally directed references between two decomposition units (e.g., introductions, classes) are
recorded as one reference between the corresponding units at the upper decomposition level
(class fragments, features).

3.2. Subject Product Lines

For our exploratory study, we extracted data from the 28 feature-oriented product lines avail-
able in the Fuji repositoryE] Our selection criterion was to collect all feature-oriented product
lines that we were able to locate and for which we have technical means to calculate the
measures of interest. The Fuji repository has been set up exactly for this purpose.

The product-line code bases differ in terms of source lines of code (SLOCP). While the
smaller-sized code bases contain a few hundred to less than 2000 SLOC, the medium- to
larger-sized ones account for more than 6 000 to about 20 000 SLOC. The most extensive code
base (BerkeleyDB) is of 45 000 SLOC.

Although the product lines are mostly of medium size and used in academic contexts, they

have been developed for different purposes and differ in various aspects, such as the target

thtp://www.dwheeler.com/sloccount/, last accessed: June 26, 2014.

10

http://www.dwheeler.com/sloccount/

3 = 5 =)

A = — ~ (&) O E
— wn — — — i —_
1 AHEAD 24316 6175 38556 517 1055 59
2 BCJak2Java 17521 4466 17562 502 611 15
3 Jak2Java 18035 4590 18847 505 643 16
4 Jampack 19299 4974 21216 501 733 21
5 JREName 16595 4315 15971 498 576 17
6 Mixin 17765 4576 18626 500 632 17
7 MMatrix 17639 4484 16620 504 608 13
8 UnMixin 17049 4347 15822 500 582 12
9 AJStats 13226 1232 5895 13 49 20
10 Bali2Jak 7539 1369 3972 135 158 11
11 Bali2JavaCC 8082 1420 4151 138 164 11
12 Bali2Layer 7835 1420 3912 137 159 12
13 Bali 9939 1600 5321 141 183 18
14 BaliComposer 6791 1253 3594 128 152 10
15 BerkeleyDB* 45000 9379 53035 408 892 929
16 EPL* 111 46 83 5 15 12
17 GameOfLife* 1461 267 624 37 55 15
18 GPL* 1930 461 2892 16 57 20
19 GUIDSL 10084 2144 7556 144 287 26
20 MobileMedia8* 4189 982 3026 60 170 47
21 Notepad 891 153 369 8 22 10
22 PKJab* 3373 689 1738 51 68 8
23 Prevayler* 5268 1275 2398 158 170 6
24 Raroscope 316 79 125 3 12 5
25 Sudoku 1422 281 1001 26 51 7
26 TankWar* 4845 757 3208 22 88 30
27 Violet* 7151 1033 2535 67 157 88
28 ZipMe 3446 717 1711 32 46 13

Table 1: Overview of the data sets extracted for each product line. SLOC: # source lines of
code; |I|: # introductions; |R|: # references; |CU]|: # classes/interfaces; |CUF|: # class fragments;
|FU|: # Fuji feature modules; *: product-line model available.

11

domain. For a relatively young paradigm, such as feature orientation, this is the best one can
hope for.

By instrumenting Fuji’s internal syntax representations, we collected the introductions
and the references for each product line. We obtained sets between 9379 (BerkeleyDB) and
46 introductions (EPL) as well as sets between 53 035 (BerkeleyDB) and 83 references (EPL).
From the introduction sets, we computed the populations of code units (3 to 517 classes),
of code-unit fragments (12 to 1055 class fragments), and feature units (5 to 59 Fuji feature
modules). The descriptive data are summarized in Table

For our study, we selected specific subsets of the total references to construct the depen-
dency graphs depending on the internal attribute measured. As for structural coupling, we
included method-call and constructor-call references, which reflect the common strategy of
developers to find dependent decomposition units and program elements by navigating the
control flow of a program [Bouwers et al.| [2011]. Coupling measurement also included field
accesses as critical kinds of coupling [Briand et al., [1999]]. For measuring structural cohesion,
we excluded any references (method calls and field accesses) originating from within construc-
tor bodies, because they risk introducing a systematic bias (e.g., through initializing most or
all fields; [Briand et al.,(1998]).

Furthermore, we include variability information when building the dependency graphs.
The Fuji repository[]| provides feature models for nine product lines (marked by ** in Table [1).
From these models, we extracted presence conditions. A presence condition indicates whether,
for all valid configurations, two features are always, sometimes, or never present together.
Then, we excluded all references running between two feature units which are not (never)
included in any valid configuration.

[Class decomposition
[Class-fragment decomposition
Feature decomposition
Decom_posmon Structgral Structgral Un|t size
size coupling cohesion
A

Units per Coupling External-ratio Internal-ratio Introductlons
roductpline between Units||Unit Dependency||Unit Dependenc or unlt
P (CBU) (EUD) (IUD) p

Internal
attributes

%]
o
g
3
[92]
©
9]
1S

Inequality/
Concentration
(Gini, Asymmetry)

measures

Figure 5: Relationships between internal attributes of a product-line decomposition, the indi-
cator measures, and the derived measures.

12

3.3. Internal Attributes and Per-unit Indicator Measures

As motivated in Section [2] we want to compare three decompositions of the 28 product lines
regarding their decomposition sizes, the sizes of their decomposition units (class fragments,
classes, feature modules), their structural coupling, and their structural cohesion (see Fig-
ure [5). For these four internal attributes, we use five indicator measures: units per product
line, coupling between units (CBU), external-ratio unit dependency (EUD), internal-ratio unit
dependency (IUD), and introductions (program elements) per unit. The measure constructs
are defined in terms of the underlying dependency graphs of the decompositions (see Section
[3.1). These direct measure instantiations are then aggregated for each product line using
derived measures (see Figure[5).

Structural coupling [Briand et al., |1999; Stevens et al., [1999]. Coupling between de-
composition units means the strength of association induced by structural references between
two or more units. By taking design and implementation decisions that reduce (minimize)
or increase the number of inter-unit references, coupling is said to be lowered or heightened,
respectively. Structural coupling is measured by establishing the coupling between units in
the dependency graph of a decomposition (see also Section [3.I): The coupling between units
(CBU) measure collects the number of decomposition units that have direct dependencies to
a given decomposition unit. This construct is defined as the number of decomposition units
(a.k.a. couple) used by a given decomposition unit v € U in terms of structural references
provided by these couple units to u (i.e., import coupling). In the dependency graph, CBU (u)
corresponds to the absolute out-degree of u.

Structural cohesion [Briand et al., [1998; Stevens et al., [1999]]. Cohesion of decomposi-
tion units denotes the association strength between the program elements of a decomposition
unit, established by intra-unit references. Assuming that a unit binds the program elements
needed to fulfill a given function (code unit) or to implement a given feature (feature unit),
an increasing (decreasing) number of intra-unit references indicates an improving (deterio-
rating) cohesion. We measure structural cohesion using internal-ratio unit dependency (IUD;
[[Apel and Beyer} 2011]) which quantifies how interconnected the program elements of a de-
composition unit in terms of mutual import dependencies. This measure stands for the ratio of
established (actual) references of a decomposition unit to the number of references that could
potentially occur between all program elements of a decomposition unit. Self-references of an
element are included.

To directly relate structural coupling and cohesion of a decomposition to each other in
terms of references, we additionally compute the external-ratio unit dependency (EUD; [Apel
and Beyer, |2011]). The EUD measure captures to what extent a decomposition unit is self-
contained in terms of two values: On the one hand, the number of import dependencies estab-

13

lished internally between program elements contained by the decomposition is calculated. On
the other hand, the external import dependencies between program elements of the decom-
position unit and program elements of coupled decomposition units are counted. From these,
the ratio of the number of actual references internal to a decomposition unit to the total (i.e.,
internal and external) number of actual references is computed.

Sizes. To measure the decomposition size, we count the number of decomposition units ob-
served in a given decomposition, that is, the number of class fragments, classes, and feature
modules. The unit size of a decomposition unit is quantified by the number of introductions
(program elements) of a decomposition unit. These two indicator measures allow us to analyze
the fragmentation of a product-line decomposition in terms of its scatteredness over decompo-
sition units and its distinctiveness of the individual decomposition units. These two internal
attributes and measurement points relate to the question of the chunking effectiveness of a
decomposition, and provide the analysis context for the two motivating coupling and cohesion
issues (see Section [2).

3.4. Aggregating Measures

From applying the five per-unit measures defined in Section [3.3|for each of the three decompo-
sitions, we obtain 15 direct measurements per decomposition unit and per product line. Given
the number of decomposition units per product line (e.g., 1051 class fragments for AHEAD),
there are too many data points to permit a comparison of 28 product lines. Therefore, we
apply data aggregation [Vasilescu et al., [2011]] using concentration statistics. Concentration
denotes how equal or how unequal values of a given measure (e.g., CBU) are distributed over
the units of a decomposition [Vasilescu et al., [2011; [Bouwers et al.,|2011]. This allows us to
make statements such as “40% of the import coupling of a product line is due to the bottom
60% of decomposition units”. This way, we can also address some of our motivating questions,
for example, on the relative importance of certain decomposition units for coupling.

As a concentration statistic, we adopt the established Lorenz inequality [Kakwanil, [1980;
Vasilescu et al.,2011]]. It relates the cumulative proportion of decomposition units in a product
line ordered by ascending attribute value (e.g., from a low to a high CBU value) and the
cumulative attribute value (e.g., cumulative sum of CBU values) measured for fractions of
decomposition units. To summarize the Lorenz concentration between product lines, the Gini
statistic G indicates the concentration degree.

Visually, the Lorenz relationship can be depicted as a convex curve in a unit square ABCD,
as shown in Figure [6] On the x-axis, the cumulative proportion of decomposition units (or
percentile p) not exceeding a specific attribute value x is plotted. On the y-axis, the corre-
sponding cumulative share in the total sum of attribute values is printed. Each point of the

14

(1,1) —(1,1)
R "
1
1/
- 1
1
[
1
"l
3 075 /
=
7
3
U "
"
G 0.50-
2
ke Q .7 ’
3 o
© e
— A ’
g 025 Rl P
o Q,o‘ ~
Q/O‘\,_.f” 036},_/
a2
N 6522
e =Y
A ki , | B
(0,0) 0.25 0.50 0.75 (1,0)

cumulated % of attribute-ranked units, p

Figure 6: Concentration degree and concentration symmetry of the per-class coupling (CBU
per class, solid curve) and of the per-feature coupling (CBU per feature module, dashed curve)
in PKJab; G,G’: Gini coefficient

Lorenz curve depicts a concentration. In Figure [6] the Lorenz curve drawn using a solid line
represents the concentration of CBU values in the class decomposition of the PKJab product
line (as an example). At z =0.75, the curve indicates that the bottom 75% of classes are re-
sponsible for approx. 25% of the summed CBU values. The inverse statement is equally valid:
the top 25% of classes have 75% of the cumulative CBU sum.

The straight line of equality AC represents a reference at which each cumulative fraction
of decomposition units (e.g., 60% of classes in PKJab) is assigned a same-valued fraction in
the cumulative attribute value (e.g., 60% of the cumulative CBU values). In such a distribu-
tion, each decomposition unit has the same attribute value. A fully equal distribution would
coincide with this line of equality. Conversely, any unequal distribution forms a convex curve
under the line of equality. This is the case for both the per-class and per-feature CBU distri-
butions plotted in Figure[6]

Gini coefficient (G; [Vasilescu et al.| [2011]]). This ratio represents the degree of distribu-
tional inequality (concentration) of an attribute among the decomposition units of a product
line. The ratio takes a value between 0 and 1, with G = 0 denoting perfect equality: Each
unit fraction n% having a same-sized n% share in the cumulative attribute values, as found
on the line of equality. This extreme implies that each decomposition unit has the same at-

15

tribute value; for example, all classes having the same CBU value. Conversely, G =1 denotes
perfect inequality, with only one decomposition unit accounting for 100% of the cumulative
attribute value. This would signal a product line in which one class is responsible for all the
import coupling in the product line. With G =0.3618, coupling as measured by CBU is more
equally distributed among the feature units of the PKJab product line than among its classes
(G =0.6553; see Figure[6).

Lorenz Asymmetry Coefficient (S; [Kakwani,|1980; Damgaard and Weiner, [2000]]). This
summary statistic of the Lorenz relationship which describes how symmetric the concentra-
tion (inequality) is spread between the top and bottom decomposition units, at a given con-
centration degree. This addresses the issue of whether an observed concentration is more
accentuated between the lower-ranked (higher-ranked) units than the higher-ranked (lower-
ranked) decomposition units. The coefficient S ranges between values of 0 and 2. At S = 1, the
Lorenz relationship (the concentration) is fully symmetric (see Figure [7). The concentration
is equal within the bottom group and within the top group of decomposition units.

D C
-, (1)
Iy
2, /

~ -, 1
- ' \s\\ r
=) N J
[an] e
O %

- [’
S 0.50- S —1.3298‘,,
R
o "
() .
- Rl
© s
=] '¢'
£ 0.251
=t R ’
v} L

_______ $=0.8655
Al , | ~|B
(0,0) 0.25 0.50 0.75 (1,0)

cumulated % of attribute-ranked units, p

Figure 7: Concentration degree and concentration symmetry of the per-class coupling (CBU
per class, solid curve) and of the per-feature coupling (CBU per feature module, dashed curve)
in PKJab; S,S’: Lorenz Asymmetry coefficients

S > 1 indicates that the concentration is more drastic within the group of higher-ranked

units whereas lower-ranked decomposition units are more equally concentrated. Consider, for
example, the dashed Lorenz curve (AS’C) representing the CBU concentration of the PKJab

16

feature decomposition in Figure With S’ = 1.3298, it indicates that each percent of the
highest-coupled (top) feature units adds substantially more to the cumulative attribute value
(e.g., sum of CBU values) than the previous percent. Conversely, each percent of the lowest-
coupled feature units adds similar-sized increments to the cumulative CBU value. For PKJab,
these differences in increments can signal that the per-feature coupling is dominated by ex-
tremely high-coupled feature units (outliers) with large deltas between their CBU values.

Conversely, S < 1 represents that the bottom group of decomposition units is more un-
equal, internally, than the top group of higher-ranked units. We find this scenario for the
per-class CBU concentration (ASC in Figure[7), with the increments of each percent of lowest-
coupled (bottom) classes growing over-proportionally, while the increments of each percent of
the heaviest-coupled (top) classes are of less growing sizes. This concentration asymmetry
can reflect that, for PKJab, there are (few) classes of comparatively low and dissimilar CBU
coupling, while there is a (larger) group of similarly high-coupled units.

4. Study Results

For our analysis, two data sets are available. The first describes the underlying code bases
of the product lines (see Section [3.2). The second data set represents the measurements ob-
tained from applying the indicator and aggregation measures (see Sections and [3.4). In
Section we characterize the 28 product lines based on the first data set (see also Table [I).
This sets the context for a discussion of our observations based on the measurement data in
Section

4.1. Descriptive Analysis

The 28 product lines in our data set are comparatively small in terms of SLOC, references, and
introductions as well as decomposition units (classes, class fragments, and feature modules).
This is visually indicated by the characteristic shape of the density plots with peaks in the
lower value ranges for each variable (CU, FU etc.) on the diagonal of Figure[8] For classes (CU)
and class fragments (CUF), however, we see a second, lower peak in the respective density
plots, formed by the product lines 1-8 (see IDs in Table [1) having medium to large numbers
of units. From plotting and correlating the basic variables (e.g., references, introductions,
SLOC) against each other, we learn the following from the scatter plots in the lower segment

of Figure

e The SLOC and the number of introductions per product line are associated in a positive
and a quasi-linear manner (r=0.974).

17

Corr: Corr: Corr: Corr; Corr:
0.779 0.886 0.564 0.963 0.974
——
° Corr: Corr: Corr: Corr:
0.939 0.156 0.77 0.882
,' ¢ ®) Corr: Corr: Corr:
> 2% 0.409 0.921 0.958
e : il : il Corr: Corr:
e Y o de° o 0.585 0.484
° g o '. . A\-\\—__ Corr:
o ®
! ea e &, . 0.969
- e* s o ‘@ ° o ° /\,\
Vo »s ”° mee o &

SLOC CuU CUF FU R |

SLOC

M

CUF

FU
.

Figure 8: Pairwise scatter plots (lower segment), Pearson correlation coefficients (upper seg-
ment), and density distributions (diagonal) for the 28 product lines; SLOC: source lines of
code; CU: code units (classes); CUF': code-unit fragments (class fragments); FU: feature units;
R: references, I: introductions.

18

e The SLOC and the number of references per product line also follow a positive and quasi-
linear trend (r =0.963).

e Introductions and references are positively and quasi-linearly associated (»r=0.969). The
more introductions in a product-line code base, the more references are recorded. This
also reflects that there are only small shares of unreferenced (dead) introductions in
all product lines. In eight out of the 28 product lines we find approximately 10-11% of
the total introductions that do not participate in any reference (viz., usage dependency
between two introductions). The remaining 20 product lines exhibit much smaller shares
(see also Table |4]in the Appendix). Note that for measuring the internal attributes of
decomposition size and unit size, dead introductions are considered. The coupling and
cohesion measurement, however, explicitly excludes by them by building on the observed
references only.

e The different sets of decomposition units appear related differently. On the one hand, the
numbers of classes and class fragments are strongly and positively associated (r=0.939).
This results from the fact that class-fragment decompositions are directly dependent on
the class decomposition in terms of the class count. Hence, product lines decomposed into
a large (small) set of classes are also decomposed into a large (small) set of fragments.
Moreover, this is an indicator for most feature modules being scattered over a majority of
classes, resulting in an increase of per-feature class fragments depending on the number
of classes present in a product-line code base. In contract, the overall class counts and
feature-unit counts are not associated. There are both product lines with comparatively

many (few) feature modules and with few (many) classes (r=0.156).

e When contrasting the correlated variables of SLOC, introduction, and reference counts
to the numbers of different decomposition units, we find that an increasing number
of SLOC, introductions, and references aligns with a quasi-linear increase in classes
(r > 0.77) and class fragments (» > 0.88). This hints at a relatively balanced distribution
of SLOC over classes and class fragments. A comparable relation between SLOC, intro-
duction, and reference counts, on the one hand, and feature units, on the other hand,
cannot be observed. Feature units in different product lines take varying shares in the
total SLOC.

From the data sets on introductions and on references specific to each of the 28 product lines,
we construct three dependency graphs per product line. Each dependency graph represents
one decomposition of the product line: code units (CU), feature units (FU), and code-unit
fragments (CUF; see Section [3.1). The node sizes (viz., the order) of the resulting dependency
graphs correspond to the number of units in each of the decompositions (see Table [I). These

19

Cu CUF FU

1.00 4 1.00 - 1.00 -
[]
0.75 0.75 - 0.75 -
)
‘.
0.50-® 0.50 0.50 @
A o
0254 e 0.25 4 0.25 4 g.'O
o ” o0 . ®
0.004 ®° e * @ 0001 C® o o o o 0.00 s o
T T T T T T T T T T T T T T T
0 100 200 300 400 500 0 250 500 750 1000 25 50 75 100

Figure 9: Decomposition size (x-axis) and connectedness (y-axis) for the 28 product lines.

decomposition sizes are plotted for the 28 product lines, for every decomposition, along the
x-axes in Figure[9] The number of edges connecting the decomposition units varies depending
on the number of references between units and the aggregation of introductions (as source
and target points of a reference) into decomposition units (see Section [3.1).

The resulting dependency graphs exhibit different degrees of connectedness (density), that
is, the ratio of actually observed to the number of potential edges in the dependency graphs.
The scatterplots in Figure [9] contrast the connectedness (on the y-axes) to the decomposition
size (on the x-axes). Generally, one might suspect that the more (fewer) units a product line
is divided into, the more (fewer) units can become interconnected by references, potentially.
The above observation that introductions and references are positively associated therefore
suggests that larger decompositions (many introductions) are more interconnected (more ref-
erences between units) than smaller ones.

e Opposing to the above observation, we find that decompositions (CU, CUF, and FU) of
a comparatively small number of decomposition units are generally more densely con-
nected than larger decompositions. This is indicated by the left-to-right, downward-
sloping connectedness (y-axes) with increasing decomposition sizes (x-axes) in Figure[9]

e Despite being the smallest decompositions, feature decompositions are more densely con-
nected than decompositions based on classes and class fragments (see the rightmost
scatterplot in Figure[9). A major share in feature decompositions (17/28) have densities
above 0.25 (i.e., more than 25% of their potential references are realized). The majorities
of the class and class-fragment decompositions account for less than 0.1 (10%).

The following, in-depth look at the actual measurements on the dependency graphs (in partic-
ular, CBU, IUD, EUD) helps explain these two general observations.

20

4.2. Observations

Exploring the measurement data beyond the descriptive statistics on each structural at-
tribute, we made seven observations. We base these observations on boxplot and concentration
statistics, which are reported in full detail in a statistical annex (see Section[A). The measure-
ment data are given in Tables 5] and [9] of the Appendix. We elaborate on the implications of
these observations in Section

0O.1—Feature decompositions contain fewer uncoupled and fewer extremely high import-
coupled feature units than class- and class-fragment decompositions.

The coupling between units (CBU), expressed as the number of units that have a depen-
dency to a given unit, is distributed very differently between classes as well as between class
fragments, on the one hand, and features, on the other hand. In Figure we identify three
subsets of decomposition units per product line and the relative sizes of the three subsets
(in % of the total number of decomposition units): The first subset comprises entirely un-
coupled units (of CBU = 0; isolates). The third subset contains units that are coupled over-
proportionally{ﬂ within their decomposition and product lines. The second and intermediate
subset identifies those units which are import-coupled at medium level, falling between the
lower bound (CBU = 0) and the upper bound (i.e., the data outliers).

e In both the class and class-fragment decompositions, there is a considerable number of
uncoupled decomposition units. Approximately a median of 36%ﬁ:8.$ﬂ of the classes (see
Figure and a median of 34%+13.8 of the class fragments (see Figure are not
import-coupled at all.

e In the feature decompositions, we did not find a single uncoupled feature in 15 out of
the 28 product lines. In the remaining 13, there is only a minority share of uncoupled
features (on avg. 5%, with a maximum of 33.3%; see Figure [10c).

e The number of units having an overproportional import coupling settle at comparable
and low levels for the class decompositions (median 3.5+3.7 classes per product line)
and class-fragement decompositions (median 4+4.5 class fragments).

e The majority of feature decompositions (18/28) do not have any import-coupling (CBU)
outliers. The remainder of 10 product lines contain just one or up to a maximum of 9
over-proportionally coupled feature units (see Figure [10c).

The median 60%+14.7 of classes, the median 65%+16.2 of class fragments, and the median
95%+8.7 of the feature units have medium import-coupling levels. These CBU levels fall into

3We apply a standard technique of outlier identification: modified z-scores [Iglewicz and Hoaglin) [1993].
4We report the variance in terms of the median absolute deviation from the median (MADM) using the + notation
along with the median value.

21

CU CUF

N

-

v
1

-
j
f

= o
o
1
B W B R N O Ly
® o o =) [N

oy

COOHRNBPOWLHOONBRUUUOO L,y NWHUWEWL,,
=
= =
~ o
N L

HOOOONORMWRWR ,~NO

o
X

100%

o
X

100%

(a)

.uncoupled . medium-coupled over-proportionally coupled

(c)

Figure 10: Each stacked barplot relates the number of uncoupled units (CBU = 0, isolates), the
number of over-proportionally coupled units (upper z-score outliers > 3.5), and the medium-
coupled units as percentage shares (y-axes) per product line (x-axes). See Table (1| for the
product-line identifiers (1-28). The stacked bars are ordered by the decreasing absolute num-
ber of uncoupled units per product line. Right next to each stacked bar, the absolute number
of over-proportionally coupled units per product line is printed.

22

ranges of median CBU values of 2—4 for classes, 1-9 for class fragments, and 2—-18 for features.
Note, however, that the absolute CBU values—being dependent on the decomposition size—
must not be compared directly.

The differences in the number of isolates and the numbers of upper outliers help explain
the initial observation on the differences in terms of connectedness (see Section [4.1): With
feature decomposition having fewer uncoupled and fewer highly coupled feature units, their
dependency graphs are more complete in terms of edges (references) observed. As a result,
we found that more than 25% of their potential references are realized. The inverse holds for
class and class fragment decompositions.

This also reveals that, for feature decompositions, there are outliers of over-proportionally
high CBU values, more of them for classes and class fragments than for features. However,
the mere count of CBU outliers does not give us an insight on how critical these outliers
are for the overall import coupling (e.g., the overall connectedness) in a decomposition of a
product line. Consider the two examples of PKJab (ID: 22) and JREName (ID: 5) in their class
decompositions in Figure While PKJab has 14 CBU outliers, JREName contains just one
(at comparable numbers of uncoupled classes). This one JREName class outlier has a CBU of
348 (!) (with a maximum CBU possible of 497, i.e., one minus the decomposition size). The
14 PKJab outliers take CBU values in a range between 7 and 14 (with a maximum CBU of
50). Still, PKJab is more densely connected in its class-decomposition dependency graph (6%
of realized references as compared to 0.3% for JREName). To learn more about the relative
importance of such outliers in each decomposition, we conduct a concentration analysis next
(see 0.2).

0.2—The numbers of feature units providing a required reference target to a given feature
unit (i.e., import-coupling or CBU levels) are more equally distributed between feature units
than between classes and between class fragments.

The CBU measurement yields a range of CBU values per decomposition unit for the three
decompositions of a per product line. The way the unique CBU values (i.e., CBU levels) mea-
sured are distributed over the decomposition units (i.e., the number of occurrences of a given
CBU level) describes how individual units or groups of them contribute to the import-coupling
structure, overall. The concentration of CBU levels is summarized for the three decomposi-
tions (over the 28 product lines each) in Figure

e The class and class-fragment decompositions show a strong and similar concentration
pattern in their CBU distributions, as indicated by their co-running curves in Figure
All decompositions have concentrations of more than 0.4 (classes; median 0.69+0.06) and
0.5 (class fragments; median 0.7+0.08)

e In their feature decompositions, the product lines—having a median Gini coefficient of

23

CU vs. CUF vs. FU

1.00+

I

N

o
|

o

N

o
1

/
J H

i i Decompositions
!] —lcu

: -+~ CUF
! --|FU

o

o

S
|
1
1
L

0.25 0.50 0.75
Maximum CBU concentration (G) per product line

Cumulated % of product lines, ordered by Gini coeff. over CBU
o
I
o

(a) Three cumulative distribution curves (CDF), each rep-
resenting one decomposition (CU: solid curve, CUF: dot-
ted curve, FU: dashed curve). Each distribution curve re-
lates a cumulated share of the 28 product lines (per de-
composition, ordered by increasing CBU concentration)
and a maximum CBU concentration value (G, Gini coeff.)
observed for a given subset of product lines. See Table
for the corresponding data set.

CU CUF FU

Bottom 20% 0 0 10.53
20-40% 0.59 0 5.26
40-60% 7.69 1.35 21.05
60-80% 28.40 21.62 10.53
Top 20% 63.31 77.03 52.63

G 0.66 0.76 0.36

SE(G) 0.0464 0.0410 0.1420

S 0.8655 0.9023 1.3298

(b) PKJab: Aggregated CBU shares hold by same-sized
groups (quintiles) of decomposition units, ordered by in-
creasing CBU; see the corresponding Lorenz curves in
Figure [6] Section [3-4 G: Gini coefficient; SE(G): Jack-
knife estimate of Gini standard error; S: Lorenz Asym-
metry Coefficient

Figure 11

24

0.36+0.17—are less concentrated in their CBU distribution than in the other two decom-
positions. This is indicated by the FU curve in Figure clearly running left from the
two other curves. Starting from a minimum concentration (Gini) of 0.1, the concentra-
tion of the most concentrated feature decomposition (EPL; G = 0.57) falls into the range
of the lowest concentrated class and class-fragment decompositions.

This adds to the earlier observation of fewer uncoupled feature units and fewer outliers in
feature decompositions when compared to classes and class fragments (see O.1). At the same
time, the increased concentration coefficients of class and class-fragment decompositions pro-
vide a hint at higher CBU levels being concentrated in (small) subsets or even a few classes
and class fragments, respectively.

When comparing the three decompositions for each product line, we identify two differ-
ent alignments of CBU concentration, in support of the picture from Figure Given the
similarity of CU and CUF concentration, the comparison below is limited to CU vs. FU:

e Import-coupling (CBU) levels per unit are less concentrated (less equal) in the feature
decomposition than in the class decomposition of a product line (Gry < Gop): In 26
out of 28 product lines, the CBU levels per class are more unequally concentrated in the
class decomposition than the CBU levels per feature unit. PKJab (as one out of the 26
product lines) exemplifies this difference between its two decompositions (see Table [6).
In the class decomposition of PKJab, the top 20% group of most import-coupled units
accounts for approx. 63%, the bottom 40% for less than 1% of the total per-unit coupling
(approximated by summing the per-unit CBU values). In the feature decomposition,
however, the lower four fifths of (lowly import-coupled) features take a comparatively
greater share of 47%, similar to the top 20% features (53%).

e Import-coupling (CBU) levels per unit are similarly concentrated (similarly equal/unequal)
in the feature decomposition and in the class decomposition (Gry ~ Gey): This holds
only for 2 product lines (EPL and Raroscope).

0.3—Feature modules are internally less connected units than classes. Generally, the inter-
nal connectedness of all decomposition-unit kinds is limited.

The measurement of internal-unit dependencies (IUD) shifts emphasis to the level of con-
nectedness internal to a decomposition unit. The internal connectedness is computed as the
ratio of actual references running between introductions owned by a given decomposition and
the potential internal references. The latter is determined by the number of introductions that
form a decomposition unit (class, class fragment, or feature unit). In Figure we group the
decomposition units into three subsets (per product line and per decomposition): incohesive
units, over—proportionally{ﬂ cohesive units and units of medium cohesion.

5We apply a standard technique of outlier identification: modified z-scores [Iglewicz and Hoaglin) [1993].

25

<. I
]
O

¥ I

< R

< I

< N

< Y

. N
7 I 0
-2 I
002020200]
¥ I

- I S
-

N 2B

o

I e —
————

75% 100% 0% 25%

—~
o
=
—

b)

-
c

‘“
s

2z

O ENNNNNOOOOOWOOOONWNWONG®NO LN

elo 0000000000

% 25% 50% 75% 100%

cohesive[limedium-cohesive over-proportionally cohesive

(c)

Figure 12: Each stacked barplot relates the number of incohesive units (IUD = 0, incohe-
sives), the number of over-proportionally cohesive units (upper z-score outliers > 3.5), and the
medium-cohesive units as percentage shares (y-axes) per product line (x-axes). See Table
for the product-line identifiers (1-28). The stacked bars are ordered by the decreasing abso-
lute number of incohesive units per product line. Right next to each stacked bar, the absolute
number of over-proportionally cohesive units per product line is printed.

26

e Large numbers of classes (median 38%+6.6; see Figure [12a) and class fragments (me-
dian 43%+8.3; see Figure do not have a single internal reference realized (IUD =
0). To these decomposition units, all dependencies are provided externally.

e Feature decompositions give rise to fewer incohesive units (median 13%+20.2; see Fig-
ure [12c).

e There are only very few units of over-proportionally high IUD in class decompositions
(1 or 2 at most, with BerkeleyDB being an exception having 7 outliers) and feature
decompositions (median 7%+10.6).

e Class-fragment decompositions, conversely, feature a considerable partition of over-pro-
portionally high IUD values (see Figure [12b), with a median share of 13.1%+18.5.

As a result, medium CBU values are found for a median of 61%+6.2 of the classes, 40%+22.3
of the class fragments, and 80%+28.2 of the feature units. By medium IUD levels, we refer to
median IUDs of 0.03-0.07 for classes (maxima of up to 0.16), of 0.002—-0.06 for class fragments
(max. of 0.11), and of below the 1% mark to 0.06 for features (max. of 0.17). Note that, despite
class fragments being the comparatively smallest decomposition units (see O.1), they do not
necessarily form more cohesive units in terms of IUD than classes.

0.4—The per-unit cohesion in class and feature decompositions settles at medium levels of
concentration. In class-fragment decompositions, IUD levels are distributed most unequally.
The presence of comparatively high numbers of both incohesive class fragments and over-
proportionally cohesive class fragments leads to an unbalanced distribution of IUD levels
over the units in class-fragment decompositions. Therefore, the IUD concentration levels
found for class fragments are the most pronounced for all aggregations of decompositions,
having Gini coefficients of between 0.5 and 0.82 (see the right-hand CUF curve in Figure [13).
At a generally lower level of concentration, class and feature decompositions share similarly
concentrated IUD distributions (i.e., median Gini coefficients of 0.52+0.12 and 0.53+0.2, re-
spectively).

Comparing the three decomposition kinds for each and every product line reflects the pic-
ture drawn by Figure

e The IUD concentration among class fragments in 26 product lines exceeds the concen-
tration among their classes (by a median difference in Gini coefficients by 0.12+0.04), in

21 product lines the concentration among the features (median Gini delta of 0.16+0.11).

e A direct comparison of class and feature decompositions leaves a mixed picture: 10 prod-
uct lines have more concentrated IUD distributions over features than classes (median
Gini difference of 0.14+0.08), for 12 product lines it is the inverse (0.084+0.05). In the
remainder of 6 product lines, IUD concentrations among features and classes are similar.

27

CU vs. CUF vs. FU

1.00+

0.754

ordered by Gini coeff. over IUD

> 0.50 -

0.25 4

Decompositions
H —Cu
N : --- CUF

0004 —medt --FU

0.25 0.50 0.75
Maximum IUD concentration (G) per product line

Cumulated % of product lines

Figure 13: Three cumulative distribution curves (CDF), each representing one decomposition
(CU: solid curve, CUF: dotted curve, FU: dashed curve). Each distribution curve relates a
cumulated share of the 28 product lines (per decomposition, ordered by increasing IUD con-
centration) and a maximum IUD concentration value (G, Gini coeff.) observed for this subset
of product lines. See Table [5] for the corresponding data set on Gini coefficients.

28

To summarize: Feature units show lower levels of per-unit cohesion than classes and class
fragments. However, in feature (and class) decompositions as a whole, there are fewer in-
cohesive units, and the level of cohesion—as measured by IUD—is distributed more equally
between features (and classes) than between class fragments.

0.5—Features have comparatively higher shares in internal than external references. The
extent to which a feature unit is self-contained (the ratio of internal to total import-coupling
references; EUD) is more equally distributed among the feature units when compared to classes
or to class fragments.

The measurement of external-unit dependencies (EUD) integrates the otherwise isolated
views of CBU (coupling in terms of coupled units) and of IUD (cohesion in terms of the inter-
nal interconnectedness). An observation consistent with the prior CBU-based and ITUD-based
observations is that the feature decompositions have comparatively higher ratios of internal
references to their totally realized (internal plus external) references than class and class-
fragment decompositions. Figure illustrates that in 24 out of 28 feature decompositions
more than 50% of the references encountered run within feature units; more precisely a me-
dian share of 72%+6.2 in total references. Note that class decompositions also exhibit a con-
siderable share of internal references (median 57%=+9.4; see Figure[14a), though at a slightly
lower level. Class-fragment decompositions have more externally than internally running
references (median internal-reference share of 43%+11.4; see Figure [14b).

The way the external references in relation to all references are distributed among the
units of each decomposition is depicted in Figure For the lower-concentrated 75% of
decompositions, feature decompositions have a more equal distribution of EUD levels among
features (Gini coefficients ranging from 0.13 to 0.766; see the left-handed, dashed FU curve
in Figure[I1a). Class decomposition follow second (0.26 <= Gini <= 0.72) and class-fragment
decompositions are the most concentrated ones (0.37 <= Gini <= 0.82). For the upper 25% of
the most-concentrated decompositions, the concentration levels converge.

This ordering of concentration (i.e., Gini(FU) < Gini(CU) < Gini(CUF)) can only be found
in 12 out of 28 product lines. AJStats is one of them. In AJStats, the Gini coefficient of 0.22
for its feature decomposition captures that the top 20% of the most-coupled feature units ac-
count for 36% of the observed EUD, with EUD shares between 10% and 20% for the lower four
fifths. Recall from Figure that AJStats (9) has only 9% (472) of its total references (4855)
running externally. These nine percent then distribute across the feature units according to
these subset frequencies. Both, AJStats’ class and class-fragment decomposition are more un-
equal in this distribution between subsets of classes and between subsets of class fragments,
respectively (see Table [I5b). For the majority of 16 product lines, we find mixed orders of
concentration levels.

In our study, we have additionally investigated the condition of the fragmentation of the three

29

(@}
C
=

CuU
I
I
I
I
I
I
I
I
I
I
I
I
——
I
I
I
I
I
I
I
I
]
I
I
[]
I
I
]

T T T
100% 75% 100%

2
ES
%
2
ES
o
X

(a)

~
o
=

FU
I
000
I
I
I ——
I —
I
-
I
I
I
I
[

I ——
I
I
I ——
I
I
I
I
I
I
0@ _
I
I
I
]

75% 100%

o
X

25%

Minternal external

w
2
S

(c

~

Figure 14: Each stacked barplot relates the number of internal and external references as
percentage shares (y-axes) in total references per product line (x-axes). See Table (1, for the
product-line identifiers (1-28).

30

CU vs. CUF vs. FU

1.004

e

N

T
|

o

N

o
|

- E: Decompositions
resees —lcu

CU CUF FU

Bottom 20% 0 0 12.82
20-40% 0.96 0.82 14.79
40-60% 17.04 8.36 17.22
60-80% 25.18 10.36 19.06
Top 20% 56.82 80.47 36.12

G 0.56 0.74 0.22

SE(G) 0.1067 0.0371 0.0603

S 0.7065 1.0491 1.3357

0.00+

-+ CUF
--FU

Cumulated % of product lines, ordered by Gini coeff. over EUD
o
I
o

0.2 0.4 0.6 0.8
Maximum EUD concentration (G) per product line

(a) The three cumulative distribution curves (CDF), each
representing one decomposition (CU: solid curve, CUF:
dotted curve, FU: dashed curve). Each distribution curve
relates a cumulated share of the 28 product lines (per de-
composition, ordered by increasing EUD concentration)
and a maximum EUD concentration value (G, Gini coeff.)
observed for this subset of product lines. See Table [5] for
the corresponding data set.

(b) AJStats: Aggregated EUD shares hold by same-sized
groups (quintiles) of decomposition units, ordered by in-
creasing EUD; G: Gini coefficient; SE(G): Jackknife esti-
mate of Gini standard error; S: Lorenz Asymmetry Coef-
ficient

Figure 15

31

decompositions. While the resulting observations form the background of the five major re-
sults (0.1-0.5; see Section[d), we report these auxiliary observations in full detail for the sake
of completeness.

0.6—There are more feature decompositions containing comparatively large decomposition
units in terms of program elements introduced than class and class-fragment decompositions.
Feature decompositions exhibit a stronger dispersion of decomposition-unit sizes than class
and class-fragment decompositions.

In the Figures through five groups of SPLs having comparable median unit sizes
within a given decomposition are represented by circles of different diameter, from very small
to very large. In their class decompositions, 22 out of the 28 SPLs have very small or small
median unit sizes. By (very) small, we refer to one half of the (smaller) classes introducing
less than and the other half of the (larger) classes introducing more than between five and 20
program elements. This compares with just one product line (AJStats) having a median class
size of 57 program elements. For the class-fragment and feature decompositions, we observe a
shift towards medium and large median unit sizes. In their class-fragment decompositions, 18
out of the 28 product lines have small to medium unit sizes (between three and six program
elements). When decomposed into their feature units, each of 13 product lines contain feature
units of which the bottom 50% introduce less and the top 50% introduce more than between
30 and 50 program elements.

When comparing the median unit sizes between the three decompositions, we find that the
13 decompositions of (very) large median unit size also represent the decompositions contain-
ing the largest decomposition units, globally. This observation, however, is sharply contrasted
by the other 15 feature decompositions having median unit sizes less than or equal to 20
program elements per feature (see the product lines marked very small and small in Fig-
ure [16¢). These small-sized feature decompositions, therefore, directly compare with the 26
class decompositions of very small to large median unit sizes. This hints at an important
subset of product lines, in which feature units—conventionally thought of as coarser-grained
functional units or collaborations between classes—do not tend to contain more introductions
than classes as a convenient norm. A closer look at each of the 28 SPLs reveals that there are
eight SPLs (IDs 9, 15, 16, 20, 24, 26-28 in Table[I) having larger median class sizes than me-
dian feature-unit sizes. For example, AJStats (ID 9) decomposes into 13 classes of a median
unit size of 20 and into 20 feature units of a median size of 6 introductions. Note that this
observation is not specific to product lines having more features than classes per se.

We quantified the dispersion of unit sizes as the median deviation of the number of intro-

ductions compared to a reference value (viz., the median unit size of each product line)ﬂ The

8This is also referred to as the median absolute deviation from the median (MADM). Dividing the MAD by the
median unit size yields a coefficient of variance (said the relative MADM) suitable for comparing dispersions between

32

resulting dispersions are shown along the y-axes in Figures Consider the example
of BerkeleyDB’s class decomposition having a median unit size of 11 and a MADM of 10.37
introductionsE] This indicates a median spread of approximately 10 introductions above and
below the median class size of 11 (viz., 11 + 10.37; see the corresponding data point in the bot-
tom right corner of Figure [16a). Differently put, for the less deviating 50% of decomposition
units (classes), the MADM represents the maximum deviation observed in terms of program
elements introduced. For the upper 50%, it is the minimum deviation from the median unit
size. For BerkeleyDB, this gives us a relative MADM of approx. 0.94 (10.37/11 ~ 0.94), that is,
unit sizes float above and below the median unit size by 94% of the median unit size.

When contrasting the three decompositions, we find feature decompositions at compar-
atively higher relative MADM levels than class and class-fragment decompositions. Most
visibly, in Figure[16c| several data points are concentrated in the upper-left corner of the plot,
above a relative MADM ~ 1. To gain more insights, Figure plots the cumulative feature-
and class-specific distributions of the relative MADM against each other. At the bottom part
of the plot, the solid, class-specific distribution curve is right from the dashed, feature-specific
one. This area indicates that, for the bottom (approx.) 15% of class and feature decomposi-
tions, ordered by their relative MADM, the unit-size dispersion is more accentuated for class
decompositions. Above the (approx.) 17% mark of all feature decompositions (ordered by their
relative MADM rank), the feature-specific distribution curves shifts rightwards. This indi-
cates that the upper 75% of feature decompositions are more diverse than the upper 75% of
the class decompositions, that is, the feature-unit sizes vary more strongly around the median
unit sizes than the class-unit sizes]

Note, however, that this observation does not necessarily allow one to conclude that any
given SPL contains features of more varying size than the product line’s classes. When com-
paring the relative MADM of the feature and class decompositions per product line, we find—
similar to the median unit sizes—two groups: 6 product lines (incl., AJStats and MobilMe-
dia8) vary more strongly in their class decompositions, 22 have more varying feature sizes
(incl. AHEAD, BerkeleyDB, and ZipMe). We also find that 21 out of the 22 product lines
of higher feature-size dispersion fall into the upper 75% segment of product lines identified
in Figure This further supports the observation that feature decomposition vary more
strongly in terms of unit sizes than the other two decompositions.

From this observation, we gain the insight that, for the 28 observed product lines, the
observed feature units tend to be larger in size (# introductions per feature unit) than classes

decompositions of a product line.

"The MADM reported here is normalized by a constant factor (1.4826) to guarantee equality with the standard
(mean) deviation in the case of an underlying normal distribution of the data. For BerkeleyDB, the non-normalized
MAD is eventually 7 so that 7 x 1.4826 ~ 10.37.

8We omit the CUF decomposition in Figurebecause it follows the pattern of the class (CU) decomposition.

33

Cu

Median unit size
o very small; (3,7]; 18
O small; (7,11]; 4

c
S ° O /medium; (11,15; 2
;,—";1.0- Q large; (15,19]; 2
% Overy large; (19,23]; 2
3 @
o °
N
wn
o -
= -
30'5 °

]

T T T T T

0 100 200 300 400 500

Number of decomposition units
(a)
FU
o Median unit size
@ o very small; (0.9,1e+01]; 8
c O small; (1e+01,2e+01]; 7
o O medium; (2e+01,3e+01]; 0
nl.04 % QO large; (3e+01,4e+01]; 11
o
o very large; (4e+01,5e+01]; 2
@ O O . O
©
° o
N
005
=
c
5 °
0.0~ °

Figure 16: Key indicators for the decomposition fragmentation per product line; 1) the number
of decomposition units (x-axis); 2) the relative median dispersion of unit sizes (y-axis, relative
MAD); 3) the median unit size (diameter of the data points). Subfigure [I6¢| illustrates that
feature decompositions tend to have fewer, yet larger decomposition units whose unit sizes
vary more pronouncedly than those of classes and class fragments. Subfigure [16d] displays
two cumulative distribution curves (CDF), each representing one decomposition (CU: solid
curve; FU: dashed curve). Each distribution curve gives the cumulated share in the 28 product
lines (per decomposition, ordered by increasing rel. MADM) and a maximum dispersion (rel.

T T T
50 75 100

25
Number of decomposition units

(c)

CUF

Unit-size dispersion
o "
o o
| 1

o
o
1

Median unit size
o very small; (2,3]; 8
O 0O small; (3,5]; 9
O medium; (5,6]; 9
Q large; (6,8]; 1

a 00 Overy large; (8,9]; 1
O
[3]] Q ° o °
o
o o

250 500 750 1000
Number of decomposition units

(b)
CU vs. FU

1.00+

0.75 4

0.50+

0.25+

Cumulted % of product lines, ordered by rel. MAD

0.00 4

Decompositions
—Cu
- FU

MADM) observed for a given subset of product lines.

34

0.5 1.0 15
Maximum rel. MAD per product line

(D

and class-fragment units. Moreover, while also larger, feature units are more heterogeneous
in terms of their unit size than classes and class-fragments.

0.7—Feature decompositions are the most concentrated decompositions of the three decom-
positions regarding unit sizes: Fewer (large) feature modules are responsible for a compara-
tively larger share in total introductions.

To assess the fragmentation of each of the three decomposition kinds, we quantify to which
extent different groups of decomposition units (e.g., the comparatively larger or the compara-
tively smaller units) are responsible for important shares in the total introductions. This adds
to the insights from O.6. Having described how unit sizes and unit-size dispersions of either
decomposition are related, we look at the relative coverage of introductions by specific groups
of or even single decomposition units within each decomposition and within each product line.
This shows how ownership of introductions, at a given level of unit sizing (O.6), is distributed
among decomposition units.

CU vs. CUF vs. FU

-1.00-

0.75-

0.50-

0.25-

.- Decompositions
ok —cu
1 --- CUF
0.00- = CoIF

Cumulted % of product lines, ordered by Gini coeff.

025 0.50 075
Maximum concentration (G) per product line

(a)

Figure 17: The three cumulated rank distributions (ECDF), each representing one decompo-
sition (CU: solid curve, CUF: dotted curve, FU: dashed curve). Each distribution curve gives
the increasing, cumulated share of the 28 product lines (per decomposition, ordered by in-
creasing concentration) and the maximum concentration value (G, Gini coefficient) observed
the corresponding subset of product lines. See Table [5|for the corresponding data set.

We observe that there is a certain concentration of unit sizes for the absolute majority
of decompositions (G > 0.3 for 25 out 28, or approx. 90%). There are no occurrences of
perfectly or close-to-perfectly equal distributions of unit sizes (G ~ 0). That is, there is no
single decomposition (whether CU, CUF, or FU) having units of equal or close-to-equal size

35

(# introductions). All three decomposition kinds contain many small decomposition units and
only a few large ones. In Figure this is documented as the quasi-horizontal run of the
three distribution curves at the bottom, followed by the steep ascent of upper segments.

A second observation from Figure[17alis that, while the class (solid line) and class-fragment
(dotted line) decompositions maintain comparable levels of concentration for the upper 25
product lines, the 25 most concentrated feature decompositions (dashed line) exhibit higher
concentration values than the 25 most concentrated class- and class-fragment decompositions.

This is signalled by the FU distribution curve taking the rightmost position in Figure

CU CUF FU CU CUF FU CU CUF FU
Bottom 2.48 3.22 0.51 Bottom 2.05 2.61 1.69 Bottom 1.73 5.45 4.95
20% 20% 20%
20-40% 5.69 4.95 0.83 20-40% 5.43 5.36 4.59 20-40% 2.48 9.65 9.65
40-60% 10.33 8.55 1.62 40-60% 11.57 12.63 9.95 40-60% 4.46 12.13 14.11
60-80% 18.02 17.47 4.41 60-80% 15.38 17.85 12.00 60-80% 12.38 22.03 25.74
Top 20% 63.48 65.82 92.62 Top 20% 65.56 61.54 71.77 Top 20% 78.96 50.74 45.54
G 0.59 0.61 0.90 G 0.61 0.57 0.60 G 0.72 0.43 0.41
SE(G) 0.0213 0.0159 0.1353 SE(G) 0.0388 0.0360 0.0410 SE(G) 0.0392 0.0249 0.0405
S 1.0452 1.0144 1.0707 S 1.1465 1.1101 1.0726 S 1.0078 1.0669 1.0906

(a) BerkeleyDB (b) Bali (c) GPL

Figure 18: Shares in introductions for decomposition units (CU, CUF, FU) for three product
lines, grouped by their unit size into quintile groups (top fifth, bottom fifth, etc.)
The last observation, however, does not imply that the measured unit-size concentration

in the feature decomposition of any product line exceeds the concentration of its class decom-
position. This is because in Figure we compare the three decomposition kinds (CU, CUF,
FU) globally rather than within each product line.

At a per-product-line basis, we identify three different alignments of concentration levels

between the class and feature decompositions:

e Unit sizes are more concentrated (less equal) in the feature decomposition than in the
class decomposition (Gry > Gey): In 16 product lines, introduction ownership is more
unequally distributed among features than among classes. BerkeleyDB falls into this
group (0.59 < 0.90). More than 90% of the introductions are owned by the 20% of feature
units while the top 20% of classes only account for approx. 64% of the introductions (see
Table [18a). Also note that, in its feature decomposition, the lower four fifths of feature

units fall clearly below the corresponding shares in the class decomposition.

e Unit sizes are similarly concentrated (similarly equal/unequal) in the feature decomposi-
tion and in the class decomposition (Gry ~ Gey): In seven product lines, the feature and
class decompositions show very similar to nearly equal levels of unit-size concentration.
Bali showcases this in Table With the top 20% of classes and features settling be-
tween 65—72% of the introductions, and the middle 50% of classes and features between

36

10-15%, Gini coefficients of approx. 0.6 are reported for both decompositions.

e Unit sizes are less concentrated (more equal) in the feature decomposition than in the
class decomposition (Gry < Gep): In five product lines, including GPL (see Table [18c),
we find distributions of unit sizes more heavily concentrated in classes than their fea-
tures. In GPL, the top 20% of classes represent approx. 79% of the total introductions
compared to approx. 46% contained by the top 20% of its feature units. This discrepany
also holds for the lower unit fifths of the two decompositions. The resulting Gini coeffi-
cient is 0.72 for the GPL class decomposition, which exceeds the feature decomposition’s
one (0.41).

Comparing class and class-fragment decompositions draws a different picture: In 14 prod-
uct lines, class fragments have more concentrated unit sizes; in 11, the inverse holds; and
in 3, there are comparable concentration levels. The generally observed higher concentration
of unit sizes in feature decompositions in Figure however, signals a clear difference be-
tween CU vs. CUF and CU vs. FU. Feature decompositions, which either exceed or fall below
the concentration levels of the corresponding class decompositions (in 23 SPLs), do so more
strongly than the diverging unit-size concentration between CU and CUF (in 25 SPLs).

4.3. Discussion

How do coupling structures of a feature-oriented software product line differ be-
tween its decompositions into code units (classes), feature units (feature modules),
and code-unit fragments (class fragments)? A cross-reading of our observations on cou-
pling (CBU; see 0.1 and 0.2) tells us that (1) feature orientation is not necessarily associated
with a more loosely coupled decomposition. Rather, the inverse holds: Feature modules are
organized in more dense coupling structures than classes and class fragments. This adds to
the similar finding on feature cohesion by |Apel and Beyer|[2011]. To be precise, there appears
to be an inverse association between decomposition size (i.e., the number of classes, class frag-
ments, or feature modules) and the degree of import coupling (O.1; see Figure [9). Regardless
of the decomposition kind (CU, CUF, or FU), a product line decomposed into fewer units shows
a comparatively higher level of import coupling than larger decompositions. Hence, the cou-
pling structures of the three decompositions are similar to each other. More decomposition
units in a product line do not necessarily correlate with higher import coupling between these
units.

This leads to another important insight which tells us that (2) the coupling complexity
of the class and class-fragment decompositions appear to scale better with increasing decom-
position sizes. As for the coupling drivers, in class and class-fragment decompositions the
overall coupledness observed in dependence of the decomposition size is more related to the

37

Decomposition kind

Direct CU FU CUF Attribute
measures
CBU 0.1 loW CBU density, low medi}lm/h.igh ‘ CBU low. CBU density, Structural
midrange CBU, few density, high midrange medium midrange I
outliers, many isolates CBU, very few outliers, CBU, few outliers, couplng
few isolates many isolates
0.2 mixed, medium/high uniform, low/medium mixed, medium/high
CBU concentration CBU concentration CBU concentration
EUD 0.5 medium EUD level; medium/high EUD low EUD level; mixed,
mixed, medium EUD level, mixed, medium/high EUD
concentration low/medium EUD concentration
concentration
0.3 low midrange IUD, very low midrange low midrange IUD, Structural
IUD
very few outliers, IUD, very few outliers, many outliers, many cohesion
many incohesives few incohesives incohesives
0.4 mixed, medium IUD mixed, medium IUD uniform, medium/high
concentration concentration IUD concentration
Number of 0.6 medium decomposi- small decompositions, large decompositions, Decomposition
decomposi- tions, (very) small (very) small and (very) (very) small to medium fragmenta-
tion units, units, medium unit- large units, large vari- units, medium unit- tion
number of size variance ance of unit sizes size variance (decompo-
introduc- sition size,
0.7 mixed, medium unit- uniform, high unit-size mixed, medium unit-

size concentration

concentration

size concentration

Table 2: Summary of key observations on the three decompositions reported in Section

38

presence of coupling-free units (see O.1). For classes and class fragments, Figure[19]illustrates
this strong positive and quasi-linear association between decomposition size and uncoupled
decomposition units of (CBU = 0). The more units in a decomposition, the more are uncou-
pled. As a result, large class and class-fragment decompositions do not necessarily pair with
a dense coupling structure.

cu CUF FU
250- 250- o] 2504
200- » 200 - ot 200 -
150 - 8| 1504 e, 150 -
[J
100 - 100~ 100 -
. [4
50 - ’ 504 o 50 -
s i
oo 0- 0-attmmoe © o L)
T T T T T T T T T T T T T T T
0 100 200 300 400 500 0 250 500 750 1000 25 50 75 100

Figure 19: Decomposition size (x-axis) and the number of units without any import coupling
(y-axis; CBU = 0) for the 28 product lines.

Feature decompositions are more interconnected, reaching up to and beyond 50% of the
potential coupling relationships actually realized, already for smaller-sized feature decom-
positions (of up to 25 feature modules). In feature decompositions, however, the observed
association between decomposition size and non-coupled units is missing: (3) An increased
total number of feature modules is not associated with an increased number of coupling-free
feature modules. Rather, the larger a feature decomposition in terms of feature modules, the
more the measured coupledness associates with feature modules of a small import-coupling
degree: Most feature modules in these large feature decompositions tend towards a range be-
tween 2 and 6 coupled units per feature module. This holds even for the largest product lines
in our sample (BerkeleyDB, Violet, AHEAD, and MobileMedia8). More generally, for most
product lines, a major share in units of either decomposition does not exceed the CBU value
of 5 or 6 (see 0.2 and the boxplot in Figure [21]in Section [A).

Furthermore, we found that (4) per-unit coupling (CBU) in class and class-fragment de-
compositions follows right-skewed distributions, for all product lines (0.2). This holds also for
some feature decompositions (see AHEAD in Figure[20a). In such a right, or positively, skewed
distribution, the largest number of decomposition units takes a comparatively small CBU
value. For AHEAD, most feature modules take a CBU value of less than 20 (see Figure[20a).
At the same time, there is a small number of extreme outliers having an over-proportional
CBU. In AHEAD, for example, there is one feature module (BaliJavaParser) that is import-
coupled to 56 out of 59 feature modules in this product line. These outliers represent candidate
provider or hot-spot features.

39

0.20-
0.15-
0.15-
0.10- 0.10-
0.05- 0.05-
0.00- 0.00-
0 20 40 60 0 5 10 15
(a) AHEAD: right (positively) skewed (b) Bali: left (negatively) skewed

Figure 20: Distributions of CBU for feature modules (histogram and estimated density plot).

However, (5) feature decompositions are described by both right- and left-skewed coupling
distributions. The Bali product line in Figure is such an example. In this product line, a
medium to large number of comparatively high-coupled feature modules can be found (O.3).
This is in line with the related observation that feature modules appear to be more import-
coupled than classes and class fragments (0.1). Furthermore, most feature modules take a
more equal share in import coupling than typical classes and class fragments (0.3). This
means that there are not necessarily extreme outliers of either high or low coupling. The
dominance of highly-coupled feature modules and the lack of outliers requires us to re-assess
some working assumptions on provider and hot-spot features, originally established for non-
functional properties [Siegmund et al., 2012], when it comes to the code structure of product
lines. For example, product-sampling strategies based on the general assumption of hot spots
should be only applied when the product line is tested positively for their existence. More
generally, we must conclude that related empirical findings on coupling in object orientation
[Taube-Schock et al.,|2011]] cannot be easily applied to coupling in feature orientation.

Do features as decomposition units form cohesive units of functionality? How do
they compare with classes and class fragments in terms of cohesion? Apel and Beyer
[2011] found that feature modules depend mostly on their own elements, rather than on ele-
ments of other features. We can confirm this observation based on our reference data. Feature
units tend to be self-contained in terms of self-provided dependencies, in particular, when com-
pared to classes and class fragments (0.5). In addition, we show that feature modules appear
to be more similar in terms of their self-reliance than classes and class fragments: Between
classes and between class fragments, we find more varying levels of self-containment (O.5).

While Apel and Beyer| [2011]] report on product lines taking values in the entire spectrum
of internal connectedness (i.e., number of observed to possible internal references) of feature
modules (IUD), based on our reference data, we find that, first, there is a generally low degree

40

of internal connectedness regardless of the kind of decomposition. The maximum IUD value
reported is 0.86 (MobileMedia8; classes), with most other product lines reporting maximal
IUD values below 0.25 (especially for features and class fragments). Note that the different
observations are not necessarily conflicting. Our observations are based on actual, type-level
reference data, while |Apel and Beyer| [2011] used dependency graphs derived from data on
program elements introduced by feature implementations. In addition, we learn that the
constituent elements of classes and feature modules are comparatively more connected than
elements of class fragments (0.3). Note, however, that feature modules are not necessarily
more densely connected, internally. While settling at low levels, generally, the internal con-
nectedness is more equal between feature modules and between classes than between class
fragments (0.4).

Do the three decompositions differ in the sizes of chunks of interdependent de-
composition units?

There are more chunks of feature modules considered suitable for local decision-making
and short-term recall present than chunks of classes and class fragments. To solve an engi-
neering task in one unit, a developer must consider groups (chunks) of decomposition units
as a whole. Short-term memorizability of such cognitive chunks is a requirement primarily
resulting from the practical needs of many engineering tasks (e.g., code spelunking, navigat-
ing the control and data flow). Furthermore, there are debated conjectures on a reduced error
proness of short-term memory as compared to long-term memory. Memorizable chunks are
considered as limited to a comparatively small number of units per chunk, for example, 7+/-2
units per chunk as discussed by Bouwers et al.|[2011]. In addition, chunks are to represent
coherent and non-duplicated units of functional responsibility [Lilienthal, [2009].

We observe that feature modules form chunks of inter-dependent feature modules which
are closer to a size considered beneficial (6 to 10 units, including the feature module under
observation) than chunks of classes and class fragments (see 0.6 and O.7).

These chunk sizes, however, must be considered in a broader context. Feature modules are
much larger decomposition units than classes and class fragments in terms of introduced ele-
ments (see 0.6 below). Chunk sizes of feature modules might indicate an improved memoriza-
tion of dependency structures only. Not only are feature modules the comparatively largest
decomposition units, the introductions of a product line are also concentrated in comparatively
fewer units than in class and class-fragment decompositions (0.7). A small number of large
feature modules dominate.

Besides not all product lines show an allegedly favourable fragmentation of feature de-
compositions. To begin with, the feature decomposition of a product line is not necessarily the
smallest-sized decomposition. In some cases (e.g., Raroscope, AJStats, TankWar, Notepad),
there are more feature modules than classes. Then, for larger product lines, a consider-

41

able number of feature modules can be involved (47-99 feature modules). The concentra-
tion of feature-module sizes indicates an unwanted fragmentation with a subset of over-
proportionally large feature modules, also for small feature decompositions. A potentially
large decomposition size (see above) may deteriorate the fragmentation even further. As for a
beneficial fragmentation (medium number of decomposition units, balanced but distinct unit
sizes; see also Figure [2), none of the three decomposition kinds presents a clear advantage:
While classes and class fragments deviate more from the baseline chunk sizes, feature decom-
positions have comparatively larger and concentrated unit sizes. Nevertheless, being aware of
different decomposition fragmentations of a product line can help developers to improve defect
location in product-line code bases and performance testing. If less and more balancedly sized
feature units than classes are present, first testing at the feature-unit level can narrow down
the location; and vice versa.

5. Threats to Validity

Construct validity. The definition of the measures (CBU, IUD, EUD) deviate from their
originating research designs. A major particularity of our setup are deviating notions of de-
pendency: The references, on which the measure instantiations are computed, include all the
variation of a product line, that is, they reflect all possible configurations. Measurements
based on product-line references are different from measurements on the references found in
a single product. The latter is the originating usage context of CBU. However, as we com-
pare projects at the product-line level only, distortions from different reference kinds (product
line vs. product) are excluded. Another difference stems from different sources of creating
the underlying dependency graphs: The IUD and EUD measures of |Apel and Beyer| [2011]]
have been devised and applied to dependencies built from introduction data. As a result, the
computed dependencies could not indicate any direction of dependency (source vs. target).
In contrast, our references correspond to references as established and maintained by the
Fuji/Java type system, including direction. As we apply the direction-aware IUD and EUD
measures uniformly on each code base, all measurements would be similarly affected voiding
any confounding effects in our comparative analysis.

A further threat to validity is the assumption of direct dependencies. In our analysis, a
dependency is established between two elements iff there is a direct reference (e.g., a direct
method call) between the two. Transitive references between two elements do not give rise
to an indirect dependency. This notion of direct dependency, while intuitive and backed by
literature on software measures [Briand et al., [1999], is linked to the unit size. In decom-
position units large in element numbers (feature modules), cohesion measurement based on
direct dependencies may understate the cohesiveness of a unit. Conversely, cohesiveness of

42

smaller units may be overstated. As this assumption is uniformly applied in our comparative
analysis, it can limit, if at all, only the generalizability of our observations.

Finally, we consider only unique references between program elements. To include mul-
tiple, recurring references edge-weighted dependency graphs would be required as represen-
tation. However, any weighting risks introducing an ambiguous qualification, depending on
the weighting strategy. Empirical evidence on appropriate weighting strategies (e.g., refer-
ence frequencies, unique source/target pairs) and on their representation condition is missing.
Furthermore, we build upon indicator measures defined for unweighted dependency graphs
([Apel and Beyer} 2011]; see Section [3.3).

Internal validity. Our analysis design and procedure could have caused our observations
not to follow directly from the data collected (i.e., the code bases implementing the product
lines and processed to obtain the reference data). To begin with, data pre-processing, statisti-
cal analysis, and visualization are performed by approximately 3000 lines of R code. To control
this threat, critical steps, such as parsing reference data as provided by Fuji into R data sets,
building data subsets (e.g., by filtering based on presence conditions), and the implementation
of measure constructs (e.g., CBU, IUD), while developed by one author, have been reviewed by
a second author.

To avoid bias introduced by heterogeneous code bases written in different feature-oriented
programming languages, we deliberately limited ourselves to the product lines available from
the Fuji repository. Furthermore, the product lines in this repository have been developed in
various contexts, by different developers (e.g., to exclude learning effects), and for different
application domains. To assess the internal attributes (e.g., cohesion, coupling), we always
devised several—mostly two—measure constructs. This way, we mitigate the risk of single
measures being influenced by an unknown variable. For aggregating the direct measurements
for each product line, we employed established statistical techniques [Vasilescu et al., [2011]].

External validity. As to be expected for this kind of study, the selection of 28 subject
product-lines threatens external validity. This is because, first, our analysis design remains
exploratory by nature: We interpreted quantitative observations in the light of conjectures
on different decompositions of feature-oriented product lines found in the current state of lit-
erature. As usual for an exploratory study, these interpretations remain to be tested and
confirmed in a controlled setting. Second, our analysis is based on a single and coherent sam-
ple of product lines to increase internal validity. To mitigate the threats to external validity,
we made sure that the product lines stem from distinct domains (e.g., gaming, DBMS, model
authoring), and have not been developed for the purpose of this study. While the sample
does not allow for transferring our observations to product lines developed in alternative im-
plementation techniques (code pre-processors, plug-in frameworks), it overlaps widely with
samples used in earlier studies on feature-oriented product lines [Apel and Beyer, 2011} Sieg-

43

mund et al., [2011; Apel et al., 2013]]. With our study, we provide an important prerequisite
to perform meta-studies generalizing over the individual study findings in follow-up work. In
addition, our analysis design (including the statistical tooling) is repeatable for other product-
line code bases.

6. Related Work

Throughout the paper we already discussed related work on quantifying the internal at-
tributes of different system decompositions using component orientation [Bouwers et al.|
2011]], object orientation [Sarkar et al.,|2008]], and feature orientation [Apel and Beyer, 2011].

To this date, research on quality attributes of software product lines has already seen some
development. Montagud et al.|[2012] identified 97 different process-, resource-, and structure-
related quality attributes of product lines that have been investigated by published research.
These include both quality attributes characteristic to product lines (e.g., variability, reusabil-
ity) and more generic ones (reliability, time/space efficiency). It is noteworthy that none of
the research papers screened by Montagud et al.|[2012] provides a systematic comparison of
different product-line decompositions regarding internal attributes, as delivered in this paper.
In the following, we concentrate on related work which emphasizes the internal attributes of
structural coupling and structural cohesion.

6.1. Software measures for Software Product Lines

In a systematically sampled corpus of 35 research papers, [Montagud et al.|[2012] found 165
distinct software measures applied on software product lines. 144 out of these (i.e., 87%)
quantify internal attributes of various product-line artifacts, such as the code assets and the
variability model. In the following, we iterate over a selection of research contributions with
emphasis on measurement constructs on code assets and specific to three key implementation
techniques for feature-oriented software product lines: feature-oriented programming (FOP),
aspect-oriented programming (AOP), and annotation-based or preprocessor-based techniques
(ANN); see Table [3|for an overview.

In a longitudinal study on a commercial product line in the telecommunications sector,
Ajila and Dumitrescul [2007]] collected data quarterly on the product-line size, the product
size, and the code-churn size in terms of LOC over a period of several years and several release
cycles. In addition, they recorded the number of modules, each implementing a feature. The
data entered an analysis of quarterly growth rates in the product-line size, among others. We
do not consider LOC-based constructs in our research design because they do not qualify as
an indicator measure for structural coupling and structural cohesion. However, we included
SLOC counts to document the sizes of the 28 Fuji product lines.

44

In earlier work, [Sobernig| [2010] explored means to quantify dependency structures be-
tween feature units based on code-level dependencies. The approach puts forth the abstrac-
tion of feature interaction networks and the computation of network-statistical measures over
those dependency networks. Measure constructs are scattering (node degree), scatteredness
(density), and scattering concentration (degree concentration). When analyzing the overall
coupling structure in the three decompositions, we resorted to a density-based analysis in
Section [4.1]

Apel and Beyer| [2011]] employed the visual-clustering tool FeatureVISU to decompose de-
pendency graphs and a mapping between feature and program elements of a software prod-
uct line into a clustered graph, according to interdependencies between features. Based on
the clustered graph, they conducted measurements using internal-ratio feature dependency
(IFD), external-ratio feature dependency (EFD), as well as distance-basted variants of the for-
mer two constructs. The clustering and measurement approach was applied to data sets of 40
product lines, including the 28 product lines investigated in this paper. |Apel and Beyer|[2011]
study arrived at important observations that motivated our study, namely that a feature-
oriented decomposition alone does not guarantee improved feature cohesion, and that fea-
ture implementations take different roles which yield different dependency structures. In our
work, we extend the reach of the FeatureVISU study by including a novel data set on the
product lines (type-system references rather than feature-code mappings), by adding a view
on structural coupling (CBU), and by drawing a connection to product-line analysis.

There is an extensive body of research aiming at investigating internal attributes (and
beyond) of aspect-oriented code bases, including product lines (see, e.g.,|Burrows et al.|[2010]).
A key difference to our work is that we investigate the code bases including the variation
for entire product lines (rather than single products). In addition, our observations relate to
code bases implemented using feature-oriented programming techniques (Fuji), which target
predominantely heterogeneous and static crosscutting product-line designs [Lopez-Herrejon
and Apel| [2007; Apel et al.,[2008].

Figueiredo et al.| [2008] contrast two variability implementation techniques (AOP, syn-
tax preprocessor) by looking at the further development of two product lines: a variant of
the MobileMedia product line and a gaming product line called BestLap. In their study, the
authors collected data—among others—about the implementation structure and feature de-
pendencies over several release cycles. Each release cycle represents an implementation of
a specific functional scenario (feature addition). The comparison between AOP and syntax
preprocessing leads the authors to the conclusion that the former is preferable when it comes
to implementing alternative or optional features, and that the latter has advantages when
adding or removing mandatory features. They measured concern diffusion over components
(CDO), the concern diffusion over operations (CDC, including advices), and concern diffusion

45

over lines of code (CDLOC), thus extending the measure suite proposed by [Sant’Anna et al.,
2003], see below]. Feature dependencies are derived from the feature-code data in terms of
feature interlacing (component or operation sharing between two features) and feature over-
lapping (co-ownership of components or operations between two features). This compares with
the measure constructs proposed by [Sobernig| [2010].

Lopez-Herrejon and Apel [2007] present a measure suite aiming at quantifying aspect-
oriented program structures (e.g., feature and aspect counts, aspects code fraction in terms of
LOC) and feature crosscutting. For the latter, the authors propose four different measure con-
structs. The feature crosscutting degree (FCD) counts the number of classes that are tangled
by a feature-implementing aspect (aspects, ITDs). The advice crosscutting degree (ACD) limits
this tangling count on advices only. The homogeneity quotient differentiates how much of the
tangling is caused by advices or by ITDs. The program homogeneity quotient (PHQ) aggre-
gates the latter for all the features into a global indicator. The measures are employed on four
Aspectd product lines, two of which are also featured in our study: AHEAD and Prevayler.

Another strand of research [Wong et al.,|2000; Sant’Anna et al.,|2003;|Eaddy et al.,|2008] on
quantifying separation and composition of concerns relates to techniques of virtually separat-
ing concerns in feature-oriented software development [Késtner et al.,[2012] and annotation-
based or preprocessor-based implementation techniques of product lines. The key difference to
our measure suite is that their measure constructs relate features and code units to evaluate,
for example, activities in concern or feature location [[Robillard and Murphy, 2007]]. Besides,
the proposed measures are only local to the given measurement units.

Wong et al.|[2000] present a suite of three measures and their measure interactions to
indicate the closeness between functional, but higher-level concerns (such as features) and
code units. This includes the indicator measures for disparity between concerns and code
units, dedication of a code unit to a given concern (concern cohesion), and the concentration
of a concern in a given set of code units (concern coupling). These are primary examples of
measures based on absolute attributes, namely code slices.

The approach of concern diffusion measures, proposed by [Sant’Anna et al.| 2003, performs
counts of code units required to implement a concern. Concern diffusion measures reflect the
number of operations (i.e., the concern diffusion over operations CDO) and components (.e.,
the concern diffusion over components CDC) required to implement a given concern. Compar-
atively higher (lower) concern diffusion counts are read as indicators for a low (high) cohesion.

In Eaddy et al.|[2007, [2008]], two refinements over the closeness measures of Wong et al.
[2000] are presented. On the one hand, the authors suggest variance-based aggregates of
concentration for a given concern as the degree of scattering (DoS). Similarly, the variance
of dedications for all program components is discussed as the degree of focus (DoF; or its
inversion, the degree of tangling; DoT). These measure instruments are devised as frequency

46

and dispersion statistics based on code-unit links to concerns. The DoS is defined as the
straightforward bias-corrected sample variance of the contributions (expressed in SLoC) by
all code units to a given concern. The degree of focus (DoF) is calculated as the bias-corrected
sample variance of the dedicated contributions (in SLoC) of a code unit over a given set of
concerns. These local measures are only suitable for characterising a feature in isolation.

Montagud et al.| [2012] remark critically that measure constructs are seldomly reused
throughout the literature corpus and the different empirical research designs. Consequently,
the comparability of research findings is limited and the empirical validation of measures
remains an issue. We advance the field by reusing product-line code bases and measures al-
ready considered in earlier studies [Apel and Beyer, 2011} Siegmund et al., 2011} |Bouwers
et al.,[2011; Apel et al., 2013].

Implementation M remen
technique Units Scope (‘Jeta)‘rs:slt:uc(tas ‘
1-mode: 2-mode: _ 3
element XOR element AND s 3
FOP AOP ANN feature feature other 2w
‘Wong et al.|[2000] v v v Disparity,
Concentration,
Dedication
Sant’Anna et al. v v v LOC v CDC, CDO,
120031 CDLOC
Ajila and Dumitrescu, v v v v LOC v' lines count,
12007] code churn,
module count
Eaddy et al.|[2007 v v v DoS, DoF, DoT
2008]
Lopez-Herrejon and v v v LOC v' v FCD, ACD,
Apel|[2007] HQ, PHQ
Figueiredo et al. v v v v LOC v CDO, CDLOC,
[2008] feature
interlacing
Sobernig|[2010] v v v’ v Scatteredness,
Scattering
Concentration
Apel and Beyer|[2011] v v v IUD, EUD
Revelle et al.|[2011] v v v syntax v' SFC, term
tokens vectors,
document
matrices
This paper v v v, v CBU,IUD,
EUD

Table 3: Overview of related work on software measures for software product lines (in
chronological order); FOP: feature-oriented programming; AOP: aspect-oriented program-
ming; ANN: annotation; 1-mode: measurement of element-element or feature-feature rela-
tions; 2-mode: measurement of feature-element relations; local scope: measure(s) describe
the condition of one program element or feature; global scope: measure(s) describe the condi-
tion of the entire system or a subsystem.

47

6.2. Tailed Distributions in Empirical Software Data

Empirical research on software engineering has been showing strong interest in how empirical
quantities generated from code bases (e.g., hierarchical and non-hierarchical relationships be-
tween classes) are structured [Taube-Schock et al.,|2011}; Louridas et al.,|2008; Potanin et al.,
2005, Marchesi et al., 2004; Wheeldon and Counsell, |2003]. This way, we have learnt that
many empirical software quantities do not conveniently cluster around typical values (e.g.,
the mean value) and do not follow straightforward distributional shapes (i.e., a Gaussian dis-
tribution). It is more common to find quantities that place a critical number of observations
so far from any typical value that reporting this typical value and derived statistics (e.g.,
means, standard deviations) stops fulfilling the representation condition and becomes mis-
leading. Power-law distributions have attracted particular attention over the last two decades
[[Clauset et al.l |2009; |Louridas et al., |2008|]. Beyond power laws, many distributional shapes
having heavy tails of some sort—which indicate important fractions of observations taking
over-proportionally large portions of the measured entity—have been found (see below). On
the one hand, complex distributions bring a host of challenges for any empirical software re-
searcher, beginning with creating appropriate research designs, establishing measurement
plans, applying reporting guidelines, and extending to processing measurement results using
appropriate (often unconventional) statistical techniques [Vasilescu et al.,|2011]. On the other
hand, when mastered successfully, observations derived from such heavy-tailed distributions
are some of the most interesting ones for software engineering research [Louridas et al.,2008].

Taube-Schock et al.|[2011] selected 97 software systems written in Java provided by the
Qualitas corpus, including Tomcat, PicoContainer, and Weka. Note that the Qualitas corpus,
at the time of this writing, does not contain any feature-oriented code bases. Taube-Schock
et al.|[2011] extracted data on between-class and within-class dependencies from these sys-
tems and processed the link data into degree distributions. Using doubly logarithmic his-
togram plots as statistical “smoke tests”, the authors verified whether the 97 data sets follow
some power-law distribution by estimating the scale parameter. For the between-class depen-
dencies, their measurement plan revealed small fractions of classes being highly coupled at a
generally low level of coupledness in the dependency structures. Our findings support these
results because we find similar distribution structures for the class decompositions of the 28
software product lines. Taube-Schock et al.|[2011]] discuss the role of preferential attachment
in OO programming and software reuse in the face of these dependency structures, without
any empirical backing of these claims, however. For the same reason, we cannot draw any con-
clusions about processes leading to the concentrated class decompositions in software product
lines.

48

Louridas et al.|[2008] investigated the distribution structures of inter-dependencies (fan/in,
fan/out) between diverse building blocks of 17 software systems (e.g., Java classes in J2SE
SDK, Perl CPAN packages, Pascal modules underlying TgX). The data set collection was
processed to test whether the data distributions obeyed some power-law distributions (using
histogram plots on doubly logarithmic scales only) and to estimate the key parameters (i.e.,
the scaling parameter) of such a fitting power-law distribution. While the power law hypothe-
sis did not hold for all data sets, the authors found distributions with long, heavy tails in every
case. In an extensive discussion, they discuss implications on software reuse (e.g., observed
preferences towards already highly reused artefacts), software testing (e.g., test prioritisa-
tion), and software optimisation (e.g., move-to-front re-orderings according to popularity and
access patterns). While covering a large array of different systems, feature-oriented software
product lines are not included in their data collection.

7. Conclusion

Feature orientation imposes an additional dimension of decomposition. Decomposing a sys-
tem along the features it provides, crosscuts typically the underlying object-oriented decom-
position, which has implications for fundamental structural properties, such as cohesion and
coupling. In the literature, feature decomposition is supposed to improve the modular struc-
ture in terms of increasing cohesion and decreasing coupling, but little is known on whether
this is actually the case in feature-oriented systems.

We conducted an empirical study on 28 feature-oriented product lines, to compare feature-
oriented and object-oriented decomposition with regard to structural attributes, such as de-
composition size, import coupling, cohesion, and unit sizes. Our study is based on a compre-
hensive data set (which is an improvement over previous studies), based on actual, structural
references obtained from a product-line type system. We found that convenient claims on fea-
ture orientation, such an improved modular code structure, do not hold unconditionally. We
observed that, first, feature modules can form highly coupled code structures. Second, the de-
grees of per-unit coupling are distributed among the feature units of product lines unequally.
However, there are not necessarily hot-spot features, which has implications for product-line
analysis [Thim et al.,|2014]. Third, feature units do not always form the most cohesive units
of functionality when compared to classes and class fragments, although this is one of the key
goals of feature orientation. These observations add to the critical debate on modularity and
feature orientation [Kastner et al.| |2011].

Based on our study, we discussed the implications and perspectives of our measurement
methodology and experimental findings for future work on static and dynamic analysis of

product lines. For this purpose, we conducted two feasibility studies on type-checking prod-

49

uct lines and feature interaction detection. Our studies show that there are correlations of
important product-line characteristics (e.g., type errors) with our software measures. This
opens new research directions and, based on our data, there are strong hypotheses we can
empirically evaluate (e.g., regarding the predictive power of individual measures for detecting
feature interactions).

In further work, we will systematically integrate the findings of this study with earlier em-
pirical evidence in terms of a meta-study. We will also explore empirical research designs in-
tegrating our findings to improve prediction systems of non-functional properties [Kolesnikov
et al.,[2013].

Acknowledgements

This work has been supported by the German Research Foundation (AP 206/4, AP 206/5, and
AP 206/6).

References

Ajila, S. and R. Dumitrescu (2007). Experimental use of code delta, code churn, and rate of
change to understand software product line evolution. J. Syst. Software 80(1), 74-91.

Apel, S., D. Batory, C. Kastner, and G. Saake (2013). Feature-Oriented Software Product Lines:
Concepts and Implementation. Springer.

Apel, S. and D. Beyer (2011). Feature cohesion in software product lines: An exploratory study.
In Proc. ICSE, pp. 421-430.

Apel, S. and C. Kastner (2009). An overview of feature-oriented software development. oJ
Object Technology 8(5), 49-84.

Apel, S, C. Kastner, and C. Lengauer (2013). Language-independent and automated software
composition: The FeatureHouse experience. IEEE Trans. Softw. Eng. 39(1), 63—-79.

Apel, S., S. Kolesnikov, dJ. Liebig, C. Kéastner, M. Kuhlemann, and T. Leich (2012). Access
control in feature-oriented programming. Sci. Comput. Program. 77(3), 174—-187.

Apel, S., T. Leich, and G. Saake (2008). Aspectual feature modules. IEEE Trans. Softw.
Eng. 34(2), 162-180.

Batory, D., J. Sarvela, and A. Rauschmayer (2004). Scaling step-wise refinement. IEEE Trans.
Softw. Eng. 30(6), 355-371.

50

Bouwers, E., J. Correia, A. van Deursen, and J. Visser (2011). Quantifying the analyzability
of software architectures. In Proc. WICSA, pp. 83-92.

Briand, L., J. Daly, and J. Wiist (1998). A unified framework for cohesion measurement in
object-oriented systems. Empir. Softw. Eng. 3(1), 65-117.

Briand, L., J. Daly, and J. Wist (1999). A unified framework for coupling measurement in
object-oriented systems. IEEE Trans. Softw. Eng. 25(1), 91-121.

Burrows, R., F. C. Ferrari, A. Garcia, and F. Taiani (2010). An empirical evaluation of coupling
metrics on aspect-oriented programs. In Proc. WETSoM, pp. 53-58.

Clauset, A., C. Shalizi, and M. Newman (2009). Power-law distributions in empirical data.
SIAM Rev. 51(4), 661-703.

Clements, P. and C. Krueger (2002). Point — counterpoint: Being proactive pays off - eliminat-
ing the adoption. IEEE Software 19(4), 28-31.

Czarnecki, K. and U. Eisenecker (2000). Generative Programming — Methods, Tools, and Ap-
plications (6th ed.). Addison-Wesley.

Damgaard, C. and J. Weiner (2000). Describing inequality in plant size or fecundity. Ecol-
ogy 81(4), 1139-1142.

Eaddy, M., A. Aho, G. Antoniol, and Y. Gueheneuc (2008). CERBERUS: tracing requirements
to source code using information retrieval, dynamic analysis, and program analysis. In Proc.
ICPC, pp. 53-62.

Eaddy, M., A. V. Aho, and G. C. Murphy (2007). Identifying, assigning, and quantifying cross-
cutting concerns. In Proc. ACoM.

Figueiredo, E., N. Cacho, C. Sant’Anna, M. Monteiro, U. Kulesza, A. Garcia, S. Soares, F. Fer-
rari, S. Khan, F. Filho, and F. Dantas (2008). Evolving software product lines with aspects:
an empirical study on design stability. In Proc. ICSE, pp. 261-270.

Iglewicz, B. and D. C. Hoaglin (1993). How to Detect and Handle Outliers, Volume 16. ASQC
Quality Press.

Kakwani, N. (1980). Income Inequality and Poverty. Oxford University Press.

Kastner, C., S. Apel, and K. Ostermann (2011). The road to feature modularity? In Proc.
FOSD, pp. 5:1-5:8.

51

Kistner, C., S. Apel, T. Thiim, and G. Saake (2012). Type checking annotation-based product
lines. ACM Trans. Softw. Eng. Methodol. 21(3), 14:1-14:39.

Kiczales, G. and M. Mezini (2005). Aspect-oriented programming and modular reasoning. In
Proc. ICSE05, pp. 49-58.

Kolesnikov, S., S. Apel, N. Siegmund, S. Sobernig, C. Kdstner, and S. Senkaya (2013). Predict-
ing quality attributes of software product lines using software and network measures and
sampling. In Proc. VaMoS, pp. 25-29.

Lilienthal, C. (2009). Architectural complexity of large-scale software systems. In Proc. Euro-
pean Conf. Software Maintenance and Reengineering (CSMR), pp. 17-26.

Lopez-Herrejon, R. and S. Apel (2007). Measuring and characterizing crosscutting in aspect-
based programs: Basic metrics and case studies. In Proc. Int. Conf. Fundamental Ap-
proaches to Software Engineering (FASE), pp. 423—-437.

Lopez-Herrejon, R. and D. Batory (2001). A standard problem for evaluating product-line
methodologies. In Proc. GCSE, pp. 10-24.

Louridas, P., D. Spinellis, and V. Vlachos (2008). Power laws in software. ACM Trans. Softw.
Eng. Methodol. 18(1), 2:1-2:26.

Marchesi, M., S. Pinna, N. Serra, and S. Tuveri (2004). Power laws in smalltalk. In Proc.
Smalltalk Joint Event, ESUG.

Montagud, S., S. Abrahao, and E. Insfran (2012). A systematic review of quality attributes
and measures for software product lines. Softw. Qual. J. 20(4-5), 425-486.

Potanin, A., J. Noble, M. Frean, and R. Biddle (2005). Scale-free geometry in OO programs.
Comm. ACM 48(5), 99-103.

Revelle, M., M. Gethers, and D. Poshyvanyk (2011, December). Using structural and tex-
tual information to capture feature coupling in object-oriented software. Empir. Softw.
Eng. 16(6), 773-811.

Robillard, M. and G. Murphy (2007). Representing concerns in source code. ACM Trans. Softw.
Eng. Methodol. 16(1), 3—-38.

Sant’Anna, C., A. Gracia, C. Chavez, C. Lucena, and A. von Staa (2003). On the reuse and

maintenance of aspect-oriented software: An assessment framework. In Proc. BSSE.

Sarkar, S., A. Kak, and G. Rama (2008). Metrics for measuring the quality of modularization
of large-scale object-oriented software. IEEE Trans. Softw. Eng. 34(5), 700-720.

52

Siegmund, N., S. Kolesnikov, C. Késtner, S. Apel, D. Batory, M. Rosenmiiller, and G. Saake
(2012). Predicting performance via automated feature-interaction detection. In Proc. ICSE,
pp. 167-1717.

Siegmund, N., M. Rosenmiiller, C. Késtner, P. Giarrusso, S. Apel, and S. Kolesnikov (2011).
Scalable prediction of non-functional properties in software product lines. In Proc. SPLC,
pp. 160-169.

Smaragdakis, Y. and D. Batory (2002). Mixin layers: An object-oriented implementa-
tion technique for refinements and collaboration-based designs. ACM Trans. Softw. Eng.
Methodol. 11(2), 215-255.

Sobernig, S. (2010). Feature interaction networks. In Proc. SAC, pp. 2360—2364.

Stevens, W., G. Myers, and L. Constantine (1999). Structured design. IBM Syst. J. 38(2/3),
231-256.

Taube-Schock, C., R. Walker, and I. Witten (2011). Can we avoid high coupling? In Proc.
Europ. Conf. Object-Oriented Programming (ECOOP), pp. 204—-228.

Thiim, T., S. Apel, C. Kéastner, 1. Schaefer, and G. Saake (2014). A classification and survey of
analysis strategies for software product lines. ACM Comput. Surv.. Accepted for publication
Jan 30, 2014.

Vasilescu, B., A. Serebrenik, and M. van den Brand (2011). You can’t control the unfamiliar:
A study on the relations between aggregation techniques for software metrics. In Proc. Int.
Conf. Software Maintenance (ICSM), pp. 313-322.

Wheeldon, R. and S. Counsell (2003). Power law distributions in class relationships. In Proc.
SCAM, pp. 45-54.

Wong, W., S. Gokhale, and J. Horgan (2000). Quantifying the closeness between program
components and features. J. Syst. Software 54(2), 87-98.

A. Boxplot Statistics

We computed various statistics on the indicator measures (introduction count, CBU, IUD,
EUD) of the internal attributes investigated (unit size, import coupling, cohesion; see Section
3.4). This annex provides the boxplot statistics which back the discussion in Section [4.2]

53

5

e s e 0 o
.
.
.

T

Figure 21: Boxplot statistics for coupling between units (CBU; x-axis) per product line (y-axis);
see 0.1 and 0.2

Cu CUF FU
S) iy S— - - . | — i B S—
i . o . P e
ro— b F— .] — | = .-
ol —o— - | o m— e
e e Ea FERE— rsr——— | T —
f e i e i o, me——— -
o —— i S —Tre—
T 3 L
o a3y | e ———
e —— - i o= -
(¥ i o R S -
s ———— I o ..
'\'6' o] . 4 o . 1 Jo .o .
o Ts 3—— - | —Je—— O i SR
I e Tor—— - o me —
S E—— e BN I
S e S = . | ES .
W C— - v :
I i S Tot— - I, .
o ToT— . T i —F
e T - = —
T i S o3 - To - -
o ——— s +— - S
oA 1—— BT - R
4 e =g - R .
PV R gy — [—— . o 3 -
gq— Tot+— - R
Y , C A v = e - ,
0 C0g “0y Tl Tg0p Y0y Y05 0o 0 o o s

Figure 22: Boxplot statistics for internal-unit dependency (IUD; x-axis) per product line (y-
axis); see 0.3 and 0.4

54

w4 —1 e[——" T —1 kP
A— b | T t—— L T .
%6-—132— —ATrd— - . | Tl -
T | I/ T M=

b — T — — o +— 1 o3 -
Pp— o 1} T T ¢ +————— 1|1 —{ T +—
7 T3 — T /1 — A T
N—_L o F—— T+ o /el —
o 1s ———— s | — e — -

oL Lo b—— = « o0 o — O e S
il S+ | e .-
ST+ | T B L
A - S — | L
A= =+ | T | —C e .
I T e — R e
I 5 S R (| S i S
I e A i | —
Y i e — o TI— .
s—O——— o | 1 P o .
T S — : —
S I — , I ..
o i i A — , T 1— .
S T] - , | — -
Al e = 5 : e o .
e - S : — o .

Figure 23: Boxplot statistics for external-unit dependency (EUD; x-axis) per product line (y-
axis); see 0.5

Cu CUF
e e E S——
,L—‘--DQ— . . S[[Cof——9eee o coe e .
oL Te— - iy S .
ol - -
™ T - D— .
13-{@—-—. . - Jo———se o eses e .
A I R
ACe— - —E— -
,LQ-E— . ST oo eoee o R .
s TE— + e . B IR 1
jodl o I - -
nE - N
'\'6"4' +4l
Xc)-m— @memece o me - --D: ------ .
XD«'D"_" .o .e SO eee . .
\3.D}_. o .oe T LT Je—— eveeee e . .
\'L'D}_- e .o . ST Je——— oee e o oo
,\:_-D}—ﬂon o eeee . ST Je—— eeeece o .o .
N R . T oo -
ol e | LI — - o -
%-ED—— . « o -:E_n . .
1 p—eme = P L d———seee » .
6-[&——-- . -ED—... . . .
G B ¢ o o . S Id——seee . .
ol SO] S . 1 J
R S R T eoceee . —HT1 ° .
L B—= ¢ o o e T eeveeee . HI1 1 o e
A o ———— T — '—E—'.u-...: M | -D:’—e' N m— 5]
0 50 100 0 10 20 30 40 0 100 200 300 40(

Figure 24: Boxplot statistics for unit sizes (x-axis) per product line (y-axis); see O.6 and O.7

55

B. Data

o & E B8
— § &) ®] &) |®] E E
AHEAD 481 8 4 1 4 0 0 O
BCJak2Java 452 10 3 1 3 0O 0 0
Jak2Java 455 10 3 1 3 0O 0 0
Jampack 470 9 4 1 4 0 0 0
JREName 451 10 3 1 3 0 0 O
Mixin 455 10 4 1 4 1 0 O
MMatrix 456 10 3 1 3 0O 0 0
UnMixin 452 10 3 1 3 0 0 O
AJStats 37 3 2 15 2 4 0 O
Bali2Jak 127 9 5 4 5 3 0 0
Bali2JavaCC 129 9 6 4 6 4 0 0
Bali2Layer 134 9 5 4 5 3 0 0
Bali 133 8 6 4 6 3 0 0
BaliComposer 126 10 4 3 4 3 0 O
BerkeleyDB 340 4 126 31 272 30 O O
EPL 5 11 0 0 0 0O 0 0
GameOfLife 20 8 16 43 6 29 0 0
GPL 9 2 0 0 0 0O 0 0
GUIDSL 156 7 1 1 1 0O 0 0
MobileMedia8 60 6 10 17 43 25 0 O
Notepad 5 3 0 0 0 o 0 o
PKJab 34 5 0 0 0 0 0 0
Prevayler 109 8 18 11 21 12 0 O
Raroscope 4 5 0 0 0 0O 0 O
Sudoku 18 6 1 4 1 2 0 0
TankWar 24 3 0 0 0 0O 0 O
Violet 44 4 0 0 0 0O 0 0
ZipMe 59 8 1 3 1 2 0 0

Table 4: The numbers of introductions (I), code-units (classes, CU), code-unit fragments (class
fragments, CUF), and feature units (FU) per product line which do not participate in any
observed reference. The gray-shaded columns report the corresponding relative shares in the
total number of introductions (I%), of code units (CU%), of code-unit fragments (CUF%), and
feature units (FU%), respectively, as reported in Table

56

TOST'0 SIEH'0 €€98°0 E8LE'0 86¥L'0 18880 0€92°0 S699°0 LILG'0 €0¥L'0 SILY0 99g%'0 OWAZ
G8GL°0 6EGL°0 L2SE'0 GIG8'0 €OLL'0 6E¥E0 P9¥PP'0 LSPGO 8SLS'0 9T08°0 90950 IST¥FO0 I9[OIA
Y6050 ¥¥95°0 L6TV'0 ¢¥eS'0 T8SS°0 96070 88070 ¥605°0 93650 €199°0 9€LS°0 6LIS0 IBMUE]
LSET'0 62650 8IT¥0 6¢6¢'0 6L95°0 86660 6¢6c'0 LOSS'0 €L6V'0 ¥68%°0 G8%E€0 09670 n3opng
199%°0 TOLE'0 STLE'0 TEIE0 TIE09°0 SEIS0 98320 S¥3S0 ¥¥h¥0 LS9V'0 OFPSY'0 88%g0 ododsorey
G98T'0 €669°0 STES'0 €68€°0 ¥099°0 8¥2S'0 ¥¥¥E0 ¥0T6'0 0999'0 €5¥9°0 LYEF'0 985%'0 I9]LeAdI]
668¢°0 €¥EY'0 898E'0 ¢80¥'0 8IBS'0 00LE'0 8I9E'0 09GL°0 €999°0 66SL°0 99670 S20¥'0 qerdd

$00%°0 L9690 £9%%'0 GELE'0 SZ0S'0 OLIF'0 98030 0SS0 I8YS'0 €30%'0 98LE0 L6090 PedsjoN =)
6¥vLE0 ¢865°0 S6¥S°0 TI9E'0 PCIL'0 GLEL'O S¥8FY'0 €999°0 €0GL0 €9GL°0 C987'0 6I¥¥'0 SBIPPINCIIQOIN ..m
L862°0 89GL°0 SI69°0 #2050 T808°0 6LSS°0 ¥¥9€°0 89GL°0 €I9S°0 68€S°0 8ELS'0 ¥E€GS0 'TISAIND 3
Gv€c'0 LELS'0 09870 ¥20¥'0 T809°0 69650 86060 €85G5°0 98L9°0 TOT¥0 €86¥'0 8IGL0 'IdD n
8ITS'0 ¥06L°0 GITL'0 GEPI'0 OLI80 990L°0 LI99¥'0 82ZGL0 89GL°0 TILS'0 TIGY0 ¥IGS'0 PIrJOeurepH 3
G99L°0 PIG8°0 €E€92°0 0ELL'0 0008°0 999€°0 T¥LG'0 €699°0 0009°0 8LYI'0 TSTIE0 SE€6T'0 'IdH 0
L6ZE0 T¥E9'0 ¥0I9'0 868€°0 32080 TI¥9°0 68SE°0 0TEL'O 998L°0 33060 8090 €650 dUARevIeg .w,
GI8Z'0 GS99°0 L6090 ¥gES'0 €60L°0 08090 I6IZ0 69GL°0 LZGL'0 €899°0 8L8G'0 9.6G°0 Iesodwopieq m
86L2°0 96850 LIBS'0 GS9¥'0 ¥¥PIL'0 68650 09620 ¥SLL'O S6GL°0 €€09°0 02LS'0 6L09°0 IBd s
L0SZ'0 36990 ¥€09'0 SBES'0 ¥60L°0 33090 93SZ0 8ELL'O €TTL'0 T8YS'0 088S°0 L¥6S'0 IoAeTgleq =)
0¥¥2'0 9695°0 8L6S'0 GIES'0 ¥POL'0 88650 TCIE0 ¥EIL'0 6¥GL'0 GSES°0 92LS'0 TI8S'0 DOBABLEIBE 3
82¢6¢°0 GLGS'0 8L6S°0 08090 TZIL0 €909°0 L300 ¥¥PLLO 8LEGL'O SG¥SS'0 E€I8S'0 89650 Yergled ©
L6TG0 L8EL'0 09G5°0 T¥ET'0 0€89°0 85090 6E0T'0 S80S0 S6LL0 TIS8'0 0SE8°0 EGILO SIBISFV m
G88%'0 €667°0 06870 08650 S¥65°0 85050 020%'0 96690 €L89°0 €EBL'0 ¥¢8S'0 8ILS'0 UXINU[) @)
8¥¥4'0 08190 ¥909°0 G9GL°0 L¥I9'0 661S°0 06960 920L°0 ¥00L0 0E€6L°0 9€89°0 €9L9°0 XLIBNIN 3
0€9%°0 69€5°0 8I6%'0 €IVPS0 9¥€9°0 PYIS0 99LE'0 87690 60690 0L08°0 TLLSGO 90850 UXIN Py
9€99°0 29670 S06¥'0 6I¥L°0 0€6S°0 ¥605°0 ¥L9%'0 8E69°0 61890 L6¥8°0 0G8S°0 €GLG°0 OWENHYUL =
LTTG0 L¥69°0 TTOS0 8E€9°0 0LL9°0 S¥BS'0 8BEY'0 TT69°0 L6L90 PLBL'O 6LSS0 ¥.95°0 oedwep %.a

9LTG0 20¥S'0 €I67'0 TOE9'0 ¥0E9'0 G605°0 €88%'0 ESTL'O0 80690 €008°0 LLLS0 PTLS'0 BABLEYEr
¥995°0 T6TS0 LL8V'O ¥GL9°0 TLO90 2S0S°0 99L¥'0 ¥6IL0 ¥#¥89°0 LLOS'O 80850 6ILS0 BABLGBLDE
6965°0 €60L°0 0¥€S'0 €269°0 TI¥9L°0 GLYS'0 €995°0 OTOL0 660L°0 6LI8°0 TOES'0 #9650 AVHHV

nda A0nd no nd Jnd no ngd - 4090 no nda 409 no
and anI ndgo 9ZIS JTU()

57

€2€0°0 ¥¥S0°0 98500 9TLO'0 08€0°0 ¥090°0 L9L0°0 S6%0°0 0950°0 69810 ¥S€0°0 12700 OWAZ
98€0°0 GLg0°0 TE€E0'0 8IE0'0 8IG0'0 S¥€0°0 8¥90°0 L6E0'0 S2¥0'0 OT90°0 S6T0°0 0L90°0 I9[OIA
§6590°0 L660°0 TELO'0 #8300 60%0°0 8SL0°0 ¢8%0°0 69€0°0 ¥S90°0 €8LO'0 LSG0'0 69900 TeMiUB],
L¥90°0 T2¢90°0 €0L0°0 8I80°0 0TSO0 ¥690°0 8080°0 €8%¥0°0 €690°0 86GT°0 0LE0'0 ¥8€0°0 m3opng
9€81°0 032T'0 SIGT'0 989T°0 9880°0 T880°0 00020 09310 333’0 I6IG0 88310 9LIT'0 ddodsorey
GL¥0°0 8820°0 TOE0'0 TIET'0 €¥30°0 89¥0°0 9LST'0 99T0°0 ¥6280°0 SLET'0 S9€30'0 ¥2E0'0 I9[heAdid
98500 TSE0°0 68€0°0 L9600 TEE0'0 82¥0'0 0Z¥I'0 OI¥0'0 ¥9¥0°0 8I¥E'0 69600 66500 qerdd
$SIT'0 98900 88IT'0 ¥I0OT'0 ¥880°0 ¥93T°0 80ZT'0 08L0°0 LIET'0 Z6ET'0 ¥SG0°0 6€80°0 PedsjoN
€9€0°0 €L30°0 ¥9¥0°0 ¢6¥0°0 1200 S9€0°0 ¢680°0 T960°0 ¥8¥0°0 LO9T'0 TTIG0'0 9LE0°0 SBIPPINRIIGOA
€I€0°0 L0B0'0 ©Lg0'0 09%0°0 ¥STO°0 LOEO'0 TO90°0 9€¥0°0 GL¥0'0 8S¥0°0 8660°0 SIE0'0 'TSAIND
§690°0 68€0°0 €8IT'0 ¢6590°0 GL¥0'0 LLOT'O €6¥0°0 €6¥0°0 ¥SIT'0 SO¥0'0 6¥G60°0 66600 'IdD

0880°0 TTIS0°0 $290°0 #¥90°0 ¢8%0°0 €¥90°0 08LO0 LSP0'0 98G0°0 T8S0°0 L9€0°0 0L¥0'0 SIJJOoUredH
L6IT'0 96800 ¥6LT'0 ¥SIT'0 690T°0 OLST'0 69800 €080°0 OL¥I'0 GL80°0 99900 ¥EIT'0 'IdH

6220°0 SET0'0 68T0°0 ¥9%0°0 8800°0 €320°0 GLBO'O €3T0'0 ¥EIO'0 ESET'0 6S10°0 €100 dALeeIed
G890°0 6¥€0°0 9¥€0°0 TgOT'0 66g0°0 88S0°0 0060°0 8880°0 060T°0 $9.0°0 6%¥0°0 LZF0'0 Iesodwopiieq
60500 66600 TG€0'0 8L¥0'0 09600 ¥6¥0°'0 60900 L¥€0'0 ¥980°0 OI¥0'0 09€0°0 88€0°0 Ied

32¥0°0 8€80°0 TTE0'0 LZLO'O 80E0°0 €IS0°0 89L0°0 €8L0°0 600T°0 LL¥0'0 08€0°0 9980°0 IoAeTgied
65¥0°0 ¥€€0°0 ¥I€0°0 8680°0 OTE0'0 86¥0°0 T980°0 LILO'0 L6600 SS90°0 90¥0°0 9680°0 DDOBABLEIBE
07900 07€0°0 62€0°0 LSTIT'0 86600 9100 G880°0 0SLO'0 9TOT'0 €990°0 80¥0°0 ¢6E0°0 Yergled
€090°0 TLEO'O LI90OT0 ¥#E¥0'0 GLS0'0 SOTT'O0 SE€90°0 0TSO0 8€60°0 €6IG°0 OPST'O SO9T'0 SIBISCV
98L0°0 T0G0'0 90600 6L80°0 8LIO'0 ¥8T0°0 OTIT'0 20€C'0 O¥YIZ'0 ¥9¥0°0 TLIT'O L6IT'0 UXINU[)
GG80°0 L6T0°0 €060°0 T690°0 GLTO'0 €8T0'0 LITT'0 60120 9¥8T'0 ¥6¥0°0 9ZTT'0 IVIT'0 XLBNIN
9180°0 T6I0°0 €060°0 69L0°0 TSTO'0 @8T0'0 LZB0'0 9502°0 S00¢°0 SE¥0'0 6ITL'0 ¥OIT'0 UXIA
9080°0 €0G0°0 9060°0 ¢¥90°0 TI8T0'0 ¥8TI0°0 I¥¥Pc'0 ¥ESGC0 96€C°0 G9€0°0 ELIT'O 86IT'0 PWENHYCL
$180°0 €LI0'0 L6T0'0 ST90°0 T9TO'0 6LI00 SPLO'O ¥ELT'O SLIT'0 9TLO0 GLOT'O 6S0T'0 oedwep
0980°0 68T0°0 T0G0'0 LE€90°0 ¥LIO'0 08T0'0 GSLO'0 968T°0 0Z8T'0 €¥¥0°0 LITL'0 SCIT'0 ®BABLCHEl
9980°0 S610°0 ¥060°0 OTLO0 ¥LIO0 E8TO'0 LS60°0 0L6T'0 8661°0 96800 TI¥IT'0 TI9TT'0 BABLGHErDd
¢0S0°0 TET0'0 06T0°0 €LEO'0 8ITO'0 GLTIO'0 TO90°0 €6IT'0 090T°0 $980°0 ¢I60°0 0LL0'0 AVHHV

we computed a standard leave-one-

tatistic to quantify the degree of statistical

ing process.

’

tration s
58

i standard error (SE)

in

1n1 concen

nd J1d no nd 4090 no nd 409 no nd 40O no

anda ant ndgon 9ZIs j1u)

Jackknife estimate of G
ty inherent in our data-generat

out Jackknife estimate on the G

Table 6
insecuri

829T°0 68TIF'0 LT¥E'0 99€E0 T¥YL'0 ¥898°0 83IZ'0 1899°0 6L9G°0 89690 929%'0 160¥'0 OWAZ
LGGL'0 LTGL0 62¥E€°0 T6I8°0 889L°0 6E€€E°0 TO¥P'0 8¢¥S'0 ¥695°0 0008°0 SGLGS'0 STITFO I9[OIA
€G8%°0 ¥699°0 T26E°0 8LOS'0 69¥5°0 GIBE'0 ¥88E°0 8E0S'0 CELS'0 89690 €€9S°0 6E8Y'0 TBMAUB],
00800 T¥8S'0 6L8E0 6GE€G°0 663950 0€0€0 0CGST'O0 LIPS0 GLLY'O 999€°0 €9€E0 6LLY'O Topng
G680°0 63IE0 ¥68T'0 6STZ'0 0,950 €0ZE0 09300 6EFF'0 €E8T'0 L6ZE0 GLGE0 €650°0 ododsorey
T9PT'0 LS6S°0 98390 €763°0 €8%9°0 8IZS'0 ¥332'0 00360 6£99'0 8367’0 TOEY'0 8E8SGH'0 I9[AeAdid
LO¥Z'0 6S6%°0 SELE'0 O0LEEC'O GSLS'0 €LSE'0 6LEC'0 €CSL'0 ¥8¥9°0 ¥0E€¥'0 E€6I¥'0 €€6€°0 qerdd
LEEE'0 GLLS'0 EF¥E0 980€0 88LF'0 T6ZE0 ¥HGI'0 88350 GE8%'0 PSIL0 GPSE0 €099°0 PpedsjoN
€19€°0 8S96S°0 8IPS'0 GLYE'0 LOTL'0 6TIEL0 SELV'O €E99'0 9STL'0 STGL0 ¥E8Y'0 6SEV'0 SBIPPINPIIGOA
L98¢°0 8S9GL'0 88190 TS8¥'0 ¥L08'0 87950 68€E°0 69GL°0 ¢899°0 02690 T1899°0 991¢°0 'TSAIND
6661°0 T995°0 905%°0 OTLE0 TT09°0 09050 €8LI'0 ¥0SS°0 OTT9°0 ¢98C€0 96I¥'0 800L0 'IdD

69L7°0 G98L°0 €80L°0 08T9°0 9€I8'0 §869°0 TEI¥'0 LLILO L8YL'0 PGPS0 LETV'0 601IS°0 SIJJOoUre)H
8E¥L°0 9808°0 000T'0 ¥gSL°0 LSBL'0 T6IZ0 ¥9E€9°0 6¥€9°0 0009°0 6LGT°0 LILI'O 08800 'IdH

€¥2€0 LEEI0 ¥609°0 6E8€°0 0Z08'0 BS¥9'0 9TSE0 LIEL'O T98L°0 91060 ZLO9'0 66850 dALeeIed
6LE3°0 9299°0 99090 9IG¥0 S90L°0 6¥09'0 ¥6ST'0 €¥SL'0 SOBL'0 €689°0 80890 09850 Iesodwopieq
T0S2°0 €L8S'0 88LS'0 TI¥PP'0 ¥OIL'0 00650 ¥861°0 GvLLO 99GL°0 SS8S'0 €895°0 86650 IBd

L6230 ¥999°0 S009°0 S06%'0 €L0L'0 36650 SG¥0Z0 ¥ZLL'O €0ZL'0 09IS0 0¥8S'0 ¥98G°0 IoAeTgled
0STZ'0 69595°0 6¥65°0 LS9¥'0 920L°0 85650 G¥ST'0 6I9L°0 68GL°0 GL6V'0 T8990 G9ILS'0 DDBABLEIBE
88%¢'0 ¥¥S99°0 876590 GLIV'0 ¥90L°0 ¥€09'0 EEPI'0 0ELL'0 8SGL'0 8STS'0 €9L9°0 89890 Yergled
98LT'0 TLELO0 06TS0 €80T'0 TST90 LSS0 G090°0 G86%'0 TI9L'0 TG9G'0 96E8'0 ¢S65G°0 SIBISLV
LT¥P¥P°0 G86%°0 088%'0 GTI99°0 86590 87050 8IGE'0 T669°0 L9890 G99L°0 TE8S'0 PILS0 UXINUN)
6909°0 QLTG0 #¥09°0 89690 T¥PI9°0 68190 9082¢°0 C30L0 86690 89LL'0 €E8G'0 8SLS'0 XLBNIN
L8G¥'0 ¢985°0 80670 92IS0 T¥€9'0 SETS0 0€EE0 €¥V69'0 €069°0 ¥P6LLO 69L5°0 G08S'0 UXIA
6I€9°0 E¥6¥'0 96870 LSGL'0 €269°0 #8090 B8LIE0 8€69'0 €I89°0 ¥I¥P8'0 L¥8S'0 6VLG°0 OWENHYCL
%98¥'0 T¥69°0 TO0S0 SST9'0 S9L9°0 S€BS0 SG86E0 L0690 T6L9'0 89¥L0 LLSSO 69950 oedwep
GG8%'0 G6€9°0 €06%°0 99090 86690 98050 ¥¥¥¥'0 6VIL'0 G069°0 LZLLO SGLLG'O 0CLSO ®BABLCHEL
76650 €8TIS0 LI8Y'0 06¥9°0 S909°0 ¢¥0S°0 ¥OI¥'0 O6TL0 8€89°0 LBSL'O0 S08G°0 STLGO0 BABLGIBLDA
¥G8G°0 T60L°0 TEES0 0L89'0 6E€9L°0 €9¥G°0 8LEG0 LOOLO €60L°0 8T08°0 66850 66650 AVHHV

101S.

we computed the empirical .025 quantile

>

59

i error bounds (.025 quantile)

nd J1d no nd 4090 no nd 409 no nd 40O no

n

anda ant ndgon 9ZIs j1u)

Gini coefficients of different product lines or different decomposit

Lower G

based on a standard leave-one-out Jackknife resampling to set the lower error bounds when
comparing

Table 7

78810 988%'0 8ILE'0 69680 GLSL'0 ¥L6E0 86LZ'0 S089°0 S¥8G'0 03SL'0 8LLYO 18e%'0 OWdAZ
099L°0 0LGL'0 €95€°0 ¥868°0 ¥ELL'O GL¥E'0 S6¥¥'0 €8%S'0 G¢8S'0 0908°0 G295°0 6IG¥'0 I9[OIA
9€TS'0 9L99°0 T¥PEY'0 99€9°0 GLGG'0 8EGY'0 9LIF'O B8EIS'0 66090 TT99°0 G9LS'0 EIES0 TBMHUB]
GIST'0 66650 LECY'O0 ELIE0 G9LS0 €0¥E0 ¥E¥c'0 G8SS°0 0CIS'0 TI9TG'0 LISE0 600 Tm3opng
LOTE0 BIOV'0 8680 LIEYO I¥PEI'0 SEIP'0 00520 SS¥S'0 000S'0 00050 TGLY'O 08¥g0 ododsorey
620%°0 8T09'0 €¥€S'0 ELEY'0 T€99°0 9LZS°0 00070 87360 16990 T0L9'0 ZIEY'0 €09%'0 Io[AeAdid
920€°0 G860 S06E°0 G9E¥'0 0LBG'0 8¥YLE'0 998E€°0 6E9L°0 GS99°0 L8IL'0 00€¥'0 0LO¥'0 qerdd
68€¥'0 TSI90 98S7'0 0V6€0 €850 B6¥¥'0 80€Z'0 ¥ILG0 G669°0 6FEY'0 98860 €879'0 PedsjoN
86LE°0 80090 99G5°0 9L9€°0 GSIL'0 EGPL'0 9T6¥'0 T8990 L6GL0 0EEL0 SLBY'O €9¥¥'0 SBIPPINRIIGOA
GG0E'0 98BL°0 ¥¥69'0 CEIS'0 6608°0 6095°0 G¥LE'0 G8GL'0 LEYS'0 60G9°0 8YLS'0 ¥96S°0 'TISAIND
I¥¥e'0 T6LS'0 09TS°0 6ST¥'0 89190 GLIS'0O G9TE'0 0995°0 0¥0L0 O08I¥'0 LIEY'0 696L°0 'IdD

€8€G°0 ¢208°0 82ZEL'0 T¥99°0 0668°0 GEGL'0 96L¥'0 CTEL'0 9TLL'0 6889°0 L¥Gy'0 8LES'0 SIJJOoUre)H
GI€8°0 02L8'0 ¥ITE0 6¥€8°0 TLIG8'0 TSI¥'0 €209°0 G.89°0 00990 SOST'0 I¥62'0 ¢666°0 'IdH

LIEE0 L¥E9'0 9TI90 ¥g6E0 82080 €L¥9'0 ET9E0 9BEL'0 6L8L'0 ¥¥06'0 S809°0 1€6G°0 dALeredted
78630 0699°0 S€I90 8%SS'0 LZIL'0 BII90 S8EZ'0 L8GL'0 89EL'0 T009'0 00650 10090 Iesodwopieq
¥68¢°0 S66S°0 8¥8S°0 OLLY'O0 TLILO #9650 €9¥¢°0 €LLL'O €BEL'0 6¥19°0 LELSO TOT90 Ied

829%°0 G399°0 99090 80SS'0 8ZIL0 65090 96920 ¥9LL'0 €SBL'0 ¥099°0 T06S0 69650 IoeTgled
¥LS2°0 86950 60090 06¥S°0 LLOL'O #6090 €860 8G9L°0 8LEL'O0 895950 9¥LG0 ¥88G°0 DDeABLGI[EBL
¥60€°0 S095°0 ¢I09°0 98250 ¥STL0 TOT90 S8TZ'0 O0LLL'O 60EL°0 08LS'0 €E8S°0 I869°0 Yergled
G9¢6°0 ¥S¥L'0 ¥265°0 G8ET'0 €EE9°0 TOP9'0 T60T'0 69TS°0 90€8°0 LGS8'0 98EB'0 66EL0 SIBISLV
¢90S°0 20050 66870 68€9°0 ¥965°0 L9050 €270 ¢00L0 08890 PII8'0 TE8S'0 GoLS'0 UXINU[N)
€699°0 88190 €909°0 TSGL'0 99190 L0GS'0 GLLE'O CE0L'0 OTOL'0 CIg8°0 S¥89°0 0LLS'0 XLBNIN
VI8Y'0 8LEG0 LG6V'0 G950 SGE9°0 €SIS0 €T6€°0 #5690 91690 88I80 LLLSO €18G°0 UXIN
G6L9°0 0967°0 ¥I6¥7'0 9L9L°0 6€69°0 €0TS'0 89LY'0 #9690 LZ89'0 GIL8'0 9989°0 09LG°0 PWENHYCL
L88G'0 §S69°0 030S0 8G90 LLLIO ¥SBS0 89%¥0 91690 ¥089'0 LG6L0 ¥8GS0 18950 Yoedwep
G8€G°0 OIPS'0 G670 G8%9°0 GIE9'0 €0IS0 G80S'0 69STL°0 SI69°0 G¥I80 €8LG'0 TELG0 BABLCHEL
Y1650 66IS°0 98870 99690 08090 09050 S€6¥'0 TOCLO TS890 89¢8°0 ¥I8SG'0 LGLSO0 BABLGIBLDE
¢€09'0 00TL°0 6¥7€S°0 000L°0 L¥9L'0 TI8PS'0 TILS0O ETIOL0 SOTL0O 0€68°0 ¥0€S°0 0965°0 AVHHV

101S.

we computed the empirical .975 quantile

’

60

i error bounds (.975 quantile)

nd J1d no nd 4090 no nd 409 no nd 40O no

1

anda ant ndgon 9ZIs j1u)

Gini coefficients of different product lines or different decomposit

Upper G

based on a standard leave-one-out Jackknife resampling to set the upper error bounds when
comparing

Table 8

0LZT'T 16990 6¥ZL0 66060 T0L6'0 S¥L9°0 ¥98L°0 98TL°0 9€88°0 SOIT'T ¥688°0 ¥2g0'T OWAZ
€6GL°0 ¢¥08°0 L0980 8ETI8'0 G8G8°0 TLO6'0 €SVO'T 92180 6LEI'0 G¢86°0 09660 €9TO'T I9[OIA
Y0680 GELO'T LTIGL0 CECL'O0 8Y8L0 60LL°0 T968°0 2G990 68¥8°0 9L9T'T OISO'T C9E0'T IeMUE]
9L0L°0 TSS8°0 L8090 9I¥O'T 9TEL0 LI¥P9°0 €LEG'O0 GSG8°0 97080 TOPT'T ¥960'T 6080'T nopng
80650 6¥89°0 TOST'T T96L°0 8ZEO'T 9¥ST'T TL6V'T L9ST'T L9990 T9TIET 8LOZ'T L8GE'T ododsorey
9996'0 0SE€L'0 26390 T968°0 GL6L0 92090 €808°0 ZEL8'0 08IL'0 9980°'T Z096'0 GOSO'T Io[AeAdig
L8L6°0 €L88°0 LLL8'O TL¥YO'T GIE8'0 €L¥6'0 86GET €206'0 $S98°0 ¥¢E€I'T %0560 TOTOT qerdd
€99L°0 9968°0 L6660 T9€0°'T 8I¥9'0 L6690 SG968°0 8098°0 BIGL'0 €LSL'0 ¥L06'0 ¥8L6'0 PpedsjoN
G¢S8°0 GL69°0 080L°0 96090 ¢€E8°0 SLIT'T 8SLL0 SLYL'0 80690 GI90T T¥¥0'T L¥06°0 SBIPPINCIIQON
82¢08°0 99GL°0 00¥8°0 89%8°0 ¥908°0 TIG9'0 LEVL'0 666L°0 81860 ¢8L8'0 68G0'T 8EE0'T 'TISAIND
668%°0 TVIO'T 89595°0 €608°0 TE08'0 6LL9°0 ¥IG6°0 69690 6LG0'T 9060'T 6990°T 8L00T 'IdD
€L9L°0 ¥80L°0 ¥969°0 TCE6'0 €8GL'0 ¥969°0 82Gc'T G9498°0 GELI'0 €ZE0'T ¥I9TOT GSEO'T BIJJOoUEpH
88G8°0 €€88°0 888G°0 G898°0 0088°0 E€6IT'T 19860 11660 TIGT'T OOVT'T LEGT'T GEVL'0 'IdH
G600'T T¥99'0 LE99'0 E6EL'0 T0S98°0 BLI9'0 89¥E'T €8SL'0 GLLS'O LOLOT PHIOT gSVO'T ddAerevieqg
09590°'T Z¥¥9'0 60L9°0 ¥SIZT ¥889°0 L9990 TZLG0 ZLIO'T TSEO'T $896'0 998T'T GLPI'T Iesodwopieq
96860 8€L9°0 TE¥S'0 LISOT 060L°0 SL8S'0 S¥cL0 L¥I0'T #8660 9GL0°T TOTIT'T S9¥T'T I[ed
¥7L6'0 68190 28SS'0 629%'T 98890 0%09°0 ZS0L'0 08LO'T 9IZ0'T 8L30'T 69IT'T T99T'T JokerJgireg
IPI6°0 ¥S¥9°0 SGSG°0 0€EC'T 80690 868S°0 #0590 STLOT L¥PEOT 9LTIOT 9IET'T €6LT'T DOBABLGIEL
02L6°0 L8€9'0 66¥5°0 LLGT'T LEOL0 €L6S°0 LO6¥'0 LO9O'T G8E0'T 0¥86°0 LIET'T TISIT'T Yergled
LGEE'T T6¥V0'T G90L°0 OVGT'T G6GL0 GLSL'0 TE0G'0 G988°0 LS80 TIBIT'T S080'T #9S0'T SIBISCV
TOBT'T 0STS'0 988%°0 0L98°0 80¥S'0 S99%°0 68%8°0 906¢'T E8¥YI'T 80860 86801 SGYICT UXINU[)
¥0€0'T 28250 90TS°0 LGOO'T 0T9S°0 9€0S°0 €GTO'T TOST'T 80CT'T E€TITOT 0660°T 8ST'T XLIIBININ
TO¥6°0 GS95°0 909%°0 €2L8'0 €L9S°0 90%S°0 08¥YL'0 6E6T'T ¥8GT'T OSTO'T SSIT'T SI9LT'T UXIN
9€69°0 TG0S'0 S9L¥°0 0¥¢6'0 89%S°0 GGLY'0 LOBG'T 6L¥E'T €G0C'T 0GL6°0 980T 660C°T OWENHYUl
%9660 TGI9'0 89670 E€I168'0 ¥E09'0 L¥LS'0 TE3L'0 TETT'T LY00'T g9LO'T Zre6'0 €8€3'T oedwep
GEE0'T G699°0 €L67'0 TVEO'T 16990 €L3S'0 62816°0 LCET'T 080T €EG0'T 99GT'T 8EST'T ®BABLCYEl
L9L6'0 G¥ES'0 898%'0 €0€6°0 LEGS'0 GILY'O 8LGT'T GSET'T ¥SOT'T 6T00T LLOT'T €9LT'T BABfgHerDd
T6¥L°0 9TIGL0 99LS'0 ¥6L8°0 €E€89'0 S€09°0 9968°0 OSLI'T EVST'T SIGI'T 6LS96'0 6VIT'T AVHHV

nda A0nd no nd Jnd no ngd - 4090 no nda 409 no

anya ant ndgo 9ZIS JTuf)

g
e

; see Secti

ients

Lorenz Asymmetry Coeffici

Table 9

61

	Introduction
	Three Decompositions, Many Differences?
	Comparative Research Design
	Representing Decompositions
	Subject Product Lines
	Internal Attributes and Per-unit Indicator Measures
	Aggregating Measures

	Study Results
	Descriptive Analysis
	Observations
	Discussion

	Threats to Validity
	Related Work
	Software measures for Software Product Lines
	Tailed Distributions in Empirical Software Data

	Conclusion
	Acknowledgements
	Boxplot Statistics
	Data

