
FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG
TECHNISCHE FAKULTÄT • DEPARTMENT INFORMATIK

Lehrstuhl für Informatik 10 (Systemsimulation)

Generating IDE Support for Multiple Domain Specific Languages

Michael Welscher

Bachelor Thesis

Generating IDE Support for Multiple Domain Specific Languages

Michael Welscher
Bachelor Thesis

Aufgabensteller: PD Dr.-Ing. habil. Harald Köstler
Betreuer: Sebastian Kuckuk, M.Sc.

Christian Schmitt, M.Sc.
Bearbeitungszeitraum: 2014/11/15 to 2015/04/13

Erklärung:

Ich versichere, dass ich die Arbeit ohne fremde Hilfe und ohne Benutzung anderer als
der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher oder ähnlicher
Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser als Teil einer
Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder sinngemäß
übernommen wurden, sind als solche gekennzeichnet.

Der Universität Erlangen-Nürnberg, vertreten durch den Lehrstuhl für Systemsimulati-
on (Informatik 10), wird für Zwecke der Forschung und Lehre ein einfaches, kostenloses,
zeitlich und örtlich unbeschränktes Nutzungsrecht an den Arbeitsergebnissen der Bache-
lor Thesis einschließlich etwaiger Schutzrechte und Urheberrechte eingeräumt.

Erlangen, den 2015/04/13 .

Abstract (de)
Mit der zunehmenden Weiterverbreitung von Domänenspezifischen Sprachen in vielen Be-
reichen von Computeranwendungen wird es immer wichtiger, diese Sprachen mit geeigneten
integrierten Entwicklungsumgebungen zu unterstüzten. Obwohl es zahlreiche Werkzeuge
gibt, die die gemeinsame Erschaffung von Sprache und Entwicklungsumgebung unterstützen,
ist unklar, wie gut diese Werkzeuge funktionieren wenn die Sprache extern implementiert und
entwickelt wird.
Das Ziel dieser Arbeit ist es, verschiedene Language Workbenches und andere, ähnliche
Werkzeuge bezüglich ihrer Eignung für einen solchen Ansatz zu evaluieren und dies mit der
Implementierung einer Fallstudie in einem der geeignet erscheinenden Werkzeuge zu belegen.
Um den Evaluationsprozess vorzubereiten erfolgt eine ausführliche Erklärung zu allgemeinen
Fähigkeiten von integrierten Entwicklungsumgebungen, insbesondere im Hinblick auf Editor
Features. Zusätzlich wird die Sprache die für die Fallstudie verwendet wird, ExaSlang aus
dem ExaStencils Projekt, in einem Überblick allgemein erläutert. Der Evaluationsprozess
wird mit besonderer Wertlegung auf die Anforderungsdefinitionen beschrieben. Die drei am
besten passenden Workbenches, wurden auf einer praktischen Ebene getestet und in großem
Umfang eingeführt, bevor die finale Wahl für die Fallstudie erläutert wird. Letzendlich wird die
Implementierung ausführlich beschrieben und Schlussfolgerungen über die Allgemeingültigkeit
der Ergebnisse gezogen.

Abstract (en)
The advent of Domain Specific Languages in many parts of computer applications makes
it increasingly important to support those languages with proper Integrated Development
Environments. While there are plenty of tools that support the creation of both language
and development environment, it is fairly unknown how well those tools work with a language
that is being implemented and developed externally.
The goal of the thesis is to evaluate different Language Workbenches and similar tools
towards their ability to enable such an approach and proof of the concept, by implementing a
case study in one of the, seemingly best fitting, tools. To prepare for the evaluation process,
an elaborate explanation of Integrated Development Environment abilities, especially with
regard to editor features is given. Additionally an overview of the language used for the case
study, ExaSlang of the ExaStencils project is provided. The evaluation process is described
with a strong emphasis on the requirement definition. The three best suited workbenches
have been tested on a practical base and are introduced in length before the final choice
for the case study implementation is exemplified. Last, but not least, the implementation is
described thoroughly and conclusions about the generality of the results are made.

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Motivation . 1
1.3 Outline . 2

2 ExaStencil and ExaSlang 3
2.1 ExaStencils Overview . 3
2.2 ExaSlang Overview . 4

3 Integrated Development Environments (IDEs) and IDE Tools 6
3.1 Purpose and Capabilities of IDEs . 6
3.2 Editor Support . 7

3.2.1 Syntax Highlighting . 7
3.2.2 Code Structuring and Bracket Matching 8
3.2.3 Syntactical Error Detection . 9
3.2.4 Syntactic Completion and Templates 10
3.2.5 References, Name Resolving and Type Analyzing 11
3.2.6 Dynamic Tooltips and Variable Templates 11
3.2.7 Outline Generation . 12

3.3 Other IDE Features . 14
3.3.1 Project Templates . 14
3.3.2 Code Compilation and Generation Support 14
3.3.3 Interface and Workbench Adjustments 15

4 Evaluation of LWBs and similar Tools regarding IDE support 16
4.1 Requirements . 17

4.1.1 General Requirements . 17
4.1.2 Editor Requirements . 18
4.1.3 Other Requirements . 18

4.2 Evaluation Process . 19
4.2.1 First and Second Evaluation Steps 19
4.2.2 Final Evaluation Step . 20
4.2.3 Results . 27

4.3 Remarks on the Evaluation Process . 28

5 The Spoofax Language Workbench 30
5.1 The Syntax Definition Formalism v.3 (SDF3) 31

i

5.2 The Name Binding Language (NaBL) . 34
5.3 The Type Specification Language (TS) 34
5.4 The Spoofax Testing Language (SPT) . 35
5.5 The Editor Services Language (ESV) . 36
5.6 The Stratego Transformation Language 39

6 ExaSlang in Spoofax and Eclipse 41
6.1 Spoofax Features . 41

6.1.1 Syntax Highlighting . 42
6.1.2 Outliner . 43
6.1.3 Completions . 47
6.1.4 Reference and Name Resolving 49
6.1.5 Folding . 52

6.2 Eclipse Features . 52
6.2.1 Project Templates . 54
6.2.2 UI Extension . 56
6.2.3 Plugin Deployment and Update Site 58

6.3 Other Features . 60
6.3.1 Language Project Husks . 60
6.3.2 Spoofax Runtime Adjustments . 61

7 Overall Results 62
7.1 Implementation Time to Endresult . 62
7.2 Recommendations for Future Projects . 62
7.3 Feasibility for other Languages . 63

8 Future Work 64
8.1 Possible Features for Future Versions . 64
8.2 Automation of Domain Specific Language (DSL) Transfer and Feature

creation . 64
8.3 Implementing the other ExaSlang Languages 65

9 Conclusion 66

Bibliography a

List of Figures c

List of Tables e

List of Snippets f

Acronyms h

A ExaSlang IDE Installation Instructions i

ii

B ExaSlang License: GNU Lesser Public License (GLPL) m

C Survey: Time Saved by IDEs q

iii

1 Introduction

1.1 Overview
The aim of this thesis is to show that already specified and implemented Domain Specific
Language can be extended with an Integrated Development Environment (IDE) through
the help of existing tools. Therefore it describes the implementation of an IDE for the
ExaStencil Project’s DSLs ExaSlang.

Domain Specific Languages (DSLs)
DSLs are a class of programming languages and stand in contrast to general-purpose
languages. While the latter are designed to appeal to as many fields of application as
possible, by only defining general constructs, DSLs are created to be used within one
specific domain of application. Therefore they incorporate expressions and constructs
that reflect specific characteristics of this domain. This is done primarily to ease working
in those domains. Depending on the domain, a DSL may be either textual based, or
graphical based. The majority of existing DSLs currently are text based [1]. An example
for such a language is TEX1, which is designed for the domain of typesetting.

1.2 Motivation
Over the past decades, the increased availability of computing power for scientific calcu-
lations and simulations, paired with new approaches to make use of this development,
has shown the need to provide tools to allow the proper application of new methods and
discoveries [2].
These tools should not be limited to only provide domain specific functionality, like a
library of mathematical functions. Moreover they should also provide features that are
helpful to the user in a more general way. A proper Graphical User Interface (GUI) can
be such a feature. When working with computers, it is often the easiest way to present
features and functionality to the end user in a convenient way. If given the choice, most
users will choose an application with a GUI over one without. The success of GUIs in
general over console based applications at almost all computer workplaces shows this
impressively.

The ExaStencil2 project aims at developing such tools and providing them to a wide va-
riety of users. It is currently being developed at the Chair of System Simulation (LSS)3

1http://www.tug.org
2http://www.exastencils.org/
3https://www10.informatik.uni-erlangen.de

1

http://www.tug.org
http://www.exastencils.org/
https://www10.informatik.uni-erlangen.de

and the Chair of Hardware Software Co Design (CoD)4 at the Friedrich-Alexander Uni-
versity Erlangen-Nürnberg (FAU)5. The development also takes place at the Chair of
Programming and the Chair of Software Product Lines from the University of Passau6

as well as the Applied Computer Science Group from the University of Wuppertal7.
As part of ExaStencils, ExaSlang is a set of DSLs. ExaSlang will allow engineers as well
as mathematicians, computer scientists and physicists to work on simulation problems
in their accustomed environment. They will be enabled to make use of the knowledge
of the other domains without having to learn too much outside of their own domain [3].
To provide an easy-to-learn setting for the use of ExaSlang, different tools will be offered
to the end user. One of these tools is, of course, an IDE in form of a language specific
editor, documentation and a GUI for the language. Examples for such editors are Mi-
crosoft’s Visual Studio 8 and Notepad++9 for Windows or the platform independent
Eclipse Environment 10 that each support many different programming languages.

1.3 Outline
Directly after this section, in chapter 2, a brief overview of ExaStencils and ExaSlang is
given. A general description of Integrated Development Environments and IDE features
is given in chapter 3, followed by the illustration of the evaluation process and its results
in chapter 4 of the thesis.
Spoofax 11, the resulting Language Workbench from the evaluation process, and its fea-
tures are explained in chapter 5. Details about the implementation of the IDE at the
example of ExaSlang are given in chapter 6. It describes in depth how the implemen-
tation works and how it can be extended further to be adjusted to future development
and other Domain Specific Languages.
Finally chapter 7 gives an overview of the work done, before in chapter 8 an outlook for
further improvement of the implemented IDE as well as the possible realization of more
complex features and other ExaSlang languages is given.

4https://www12.informatik.uni-erlangen.de
5https://www.fau.eu/
6http://www.uni-passau.de/
7http://www.uni-wuppertal.de
8https://www.visualstudio.com/
9http://notepad-plus-plus.org/

10http://www.eclipse.org/
11http://metaborg.org/spoofax/

2

https://www12.informatik.uni-erlangen.de
https://www.fau.eu/
http://www.uni-passau.de/
http://www.uni-wuppertal.de
https://www.visualstudio.com/
http://notepad-plus-plus.org/
http://www.eclipse.org/
http://metaborg.org/spoofax/

2 ExaStencil and ExaSlang
This chapter is in large part an excerpt from the articles ExaStencils: Advanced
Stencil-Code Engineering [2] and ExaSlang: A Domain-specific Language for
Highly Scalable Multigrid Solvers [3] from the year 2014 written by Christian
Schmitt, et al. For further details on ExaStencils and ExaSlang please refer to these
sources.

2.1 ExaStencils Overview
"The central goal of ExaStencils is to develop a radically new software
technology for applications with exascale performance. [...] The aim is to
enable a simple and convenient formulation of problem solutions in this do-
main. The software technology developed in ExaStencils shall facilitate
the highly automatic generation of a large variety of efficient implementa-
tions via the judicious use of domain-specific knowledge in each of a sequence
of optimization steps [...] The application domain chosen is that of stencil
codes [...] Stencils codes are used for the solution of discrete partial differen-
tial equations and the resulting linear systems." [4]

x x x x x
End-

user

Domain

expert
Mathematician

Software

specialist

Hardware

expert

DSL program
Discretization and
algorithm selection

Selection of algorithmic
components & parameter settings

Polyhedral
optimization

Code
generation

Tuning towards
target hardwareExascale C++

ExaStencils
Compiler

Figure 2.1: Concept of ExaStencils [2]

ExaStencils aims to provide all components shown in figure 2.1, from the DSL specifica-
tions, over compilers to knowledge libraries providing information of optimal algorithm

3

hardware combinations. This also includes the proper tools to access all of the offered
functionalities, like the IDE implementation described in this thesis.
Currently ExaStencils is not available to the public, and therefore not yet under any
license. This will most likely change when the package reaches its final completion.
Although not set in stone, the current plan is to publish it under one of the common
Free and Open-Source Software Licenses (FOSS Licenses) like the GNU Lesser Public
License (GLPL).

2.2 ExaSlang Overview

abstract
problem

formulation

concrete
solver

implementation

Layer 1:
Continuous Domain & Continuous Model

Layer 2:
Discrete Domain & Discrete Model

Layer 3:
Algorithmic Components & Parameters

Layer 4:
Complete Program Specification

TargetP
latform

D
escription

Natural
scientists

Mathe-
maticians

Computer
scientists

Figure 2.2: The DSL Layers of ExaSlang [3]

As part of ExaStencils the ExaSlang Languages provide DSLs for each of the optimiza-
tion steps as shown in figure 2.2.
Layer 1 is aimed at physicists and engineers. It consists of constructs that are similar to
physical formulas and expressions and describe the problem in a real world sense. The
second Layer, aimed additionally at mathematicians, transforms the real world model
specified in Layer 1 to a discrete, numerically solvable problem. While it is not an exact
representation of the real world problem it still is mathematically exact at the discrete
grid points and actually can be solved, while the continuous problem from Layer 1 usu-
ally can not.
Layer 3 allows to define algorithms that efficiently solve the discrete problem, appealing
primarily to computer scientists and mathematicians. Finally, depending on the ma-
chine, problem and specifics about parallelization, the computer scientists can use Layer
4 to optimize the algorithm, especially by parallelization, from Layer 3 to be able to run
at peak computation speed on the targeted machine. Layer 4 represents the complete
program specification available to the user before the program, with all its components,
is compiled and finalized for use.
The ExaStencils project not only provides the languages for each of these layers but
also consists of transformation algorithms that translate the different Layers into each

4

other without further input from the user. It also performs automated optimization
steps between layers, depending on external information like the hardware specification
file where possible. In a final step the Layer 4 file is translated to actual C++ code that
can then be compiled and run on the target system.
Beside the four DSLs, one for each Layer, the hardware specification itself has a DSL.
Additionally there are two configuration file types to guide the process. Overall there
are, or will be, at least five DSLs in the ExaSlang language package from which one,
the Layer 4 language, is already full-fledged. The Layer 3 language is currently under
development.
All of the languages are external DSLs, meaning they are not based on existing pro-
gramming languages but are completely self-sufficient. Internal DSLs in comparison are
extensions of existing languages adjusted for a domain specific use. When the ExaSlang
part of the ExaStencils project was started, an evaluation of different tools for language
design was conducted [5]. One result was that the advantage of having an already estab-
lished IDE, which an internal DSL would provide, was not worth the effort to force the
multigrid domain requirements into the corset of a general-purpose language. Therefore
an external DSL approach was chosen. This tends to cause more work on every level
of language development, especially the User Interface (UI) part, but it also offers the
highest versatility concerning all of those aspects. This leads, in the end, to the best
results possible.

5

3 IDEs and IDE Tools

3.1 Purpose and Capabilities of IDEs

Figure 3.1: Vim Editor1 with an opened bibtex file in a classical console

Idea of IDEs

An Integrated Development Environment is supposed to provide the user of a program-
ming language with a set of tools combined in a meaningful and conclusive way to aid
him in developing programs. Such tools range from code editors, like the in figure 3.1
shown vim-editor, over GUIs for compilers to full-fledged programs that combine all

1http://www.vim.org/

6

http://www.vim.org/

Figure 3.2: Example for an IDE: The Eclipse environment with an active ExaSlang
Project

aspects of programming (concept to executable) in one cohesive and consistent envi-
ronment. Prominent examples of such an environment are Microsoft Visual Studio and
the Eclipse platform2, the latter shown in figure 3.2. This thesis focuses mainly on the
most basic but also most used IDE features, primarily a language specific text editor,
accompanied by extension to the UI.

3.2 Editor Support

While for textual based languages any, even the most basic, text editor can suffice, a
specialized editor for the programming language someone is writing in will speed up
code writing, debugging and understanding considerably. To do so there may be any
combination of the following main components of a language editor present.

3.2.1 Syntax Highlighting

The probably easiest and most notable form of editor support is syntax coloring. By
giving different conceptual parts of the language different colors the structure and sub-
structure can be presented on an extra level, compared to plain black on white text. As

2http://goo.gl/s7iowq - Google Trend Search - 2015/04/08

7

http://goo.gl/s7iowq

Figure 3.3: Screenshots comparing the same part of code once without and once with
active Syntax Highlighting

is shown in the example in figure 3.3 the construct is divided into different parts that
can be distinguished by the different colors and text styles quite easily. Compared to the
non highlighted part of the example it is clearly visible that reading and understanding
the code as well as navigating to different sections of the command is much easier with
syntax highlighting. While with the use of an advanced text editor the user could do
this manually, in case he wants to show his code to people unfamiliar with the language
or code base, automation not only secures consistency, but also saves a lot of time better
spent elsewhere.

3.2.2 Code Structuring and Bracket Matching

Another simple method of making reading and understanding of programs easier is the
use of whitespaces, like space and tabulator, as mean to make indents of whole sections
of the program. Often neglected or only halfheartedly done by the programmer, some
programming languages, like Python3, enforce the use of indents for the program to
work. Whether forced or voluntary, automatic indents and tools to correct misplaced
indentations are a great way to make code more uniform and readable, especially in
team environments, where different people with different personal preferences work on
the same piece of code. Figure 3.4 shows the comparison of indented to non indented code
in a rather extreme case. Additionally the highlighting of matching brackets in languages
that use them to structure their code, like C++, is extremely helpful to quickly identify
misplaced or missing brackets. An example of this functionality is shown in figure 3.5.

8

Figure 3.4: The same code, once with and once without proper indentation

Figure 3.5: Editor snippet showing Highlighting of matching brackets in Eclipse

3.2.3 Syntactical Error Detection

Syntactical error detection checks the typed code regarding consistency with the lan-
guage definition and marks every position where the code can not be parsed into a valid
representation of the language used. This ranges from the detection of simple typos,
like the missing letters in figure 3.6, to recognizing if a section of code uses language
constructs that are not valid at this position, but would be correct otherwise. Figure 3.7
shows the latter. When applied constantly during typing, syntactical error detection not
only speeds up coding by preventing usually hard to recognize typing errors, but also
helps learning the language by instantly remembering the user that he used a construct
in the wrong way. This makes the feature exceptionally valuable for any DSL that is
still in active development, as it will often change considerably with a new version [3],
so that even a veteran user may have to learn parts of the language anew.

3https://www.python.org/

9

https://www.python.org/

Figure 3.6: Erroneously spelled keywords highlighted by Syntactical Error Detection

Figure 3.7: Error detection found not expected literals

3.2.4 Syntactic Completion and Templates

Figure 3.8: Template menu offering the choice of two different forms of the same con-
struct after typing the first few letters

Similar to the previous feature, syntactic completion and templates help users to better
navigate the language and avoid making annoying errors. Templates provide, based on
the current editing position, a list of possible expressions allowed. In figure 3.8 such a
list can be seen after the user has typed the beginning of an expression. While for often
used expressions typing usually is faster then choosing from a potentially rather long
list, the possibility to use them as quick references and to easily remember not so often
used expressions make them an important feature of any IDE.

10

3.2.5 References, Name Resolving and Type Analyzing

Figure 3.9: Error when trying to redefine already existing function

Figure 3.10: Editor reporting a non existent reference after a typo at the variable call

Most programming languages, including custom domain specific ones, have a form of
individual object creation and naming by the programmer. Such names usually are
custom strings, called Identifiers (IDENTs). Together with other parameters like object
data types or function return types they form a footprint for each object. As those
footprints usually have to be unique inside the scope or sub-scope of the program the
editor can support the programmer by analyzing such definitions and displaying an error
if a footprint appears more then once. On the other side, when an object is referenced
in the code, the editor can check whether the referenced name is defined for the kind
of object expected at the current position, and notifying the user if this is not the case.
This is shown exemplarily in figure 3.10 More advanced analyses can not only check
for IDENTs but also derive expected types and other parameters from the definition
and apply those to the reference to check for consistency and correctness. They range
from simply checking if return types of a function definition match the type of the
variable returned in the function body, to completely analyzing expression chains for
type consistency. While all of these capabilities are on the more complex side of editor
features, the last one is certainly one of the most advanced tools in an IDE, especially
when done at runtime during typing.

3.2.6 Dynamic Tooltips and Variable Templates
Beside for error checking the analyzing process, described in the previous paragraph,
can also be used to offer additional information to the programmer. When the editor
knows which of the custom objects are valid at any point of the program, it is only a
short way to offer template like lists of, for example, variables to the user to choose

11

Figure 3.11: Choice of multiple variables in the template view

from. An example for such a list is shown in figure 3.11. Another option, although still
difficult to automatically compose, is to offer context aware prewritten text info about
the commands that can currently be used as seen in figure 3.12.

3.2.7 Outline Generation
Navigating code files with several thousand lines of complex and convoluted code is a
real hassle. That is where the outline view comes into play. As shown in figure 3.13
on page 13 it usually consists of a list of top and near to top level definitions, that
is considerably shorter and better readable then even collapsed code in the actual file.
Another feature of outlines is the extraction of valuable information from single line
definitions, that are loaded with syntactic literals. Examples are the return-type or
the level definition in figure 3.13 from the ExaSlang Layer 4 Language. Besides saving
search time for the single user, in multiple-user projects this feature is especially valuable
because it offers a structured and static form of presenting code fragments to everybody.
This makes different coding styles less of an error source than usually.

12

Figure 3.12: Dynamically generated tool tip based on the prewritten class information
in the Java Library

Figure 3.13: Outline view of an Exa4 file

13

3.3 Other IDE Features
Besides the features directly linked to the text editor, an IDE also can offer support
to the developer in other sections of his project. While the features presented here
certainly are among the most commonly found in all kinds of Integrated Development
Environments, it is a fairly incomplete list as there is theoretically an endless number of
such features, covering every thinkable and unthinkable use case. Features not covered
here, are, for example, debugging and tracing support, in Eclipse and Visual Studio and
integration of general helper languages, like Ant4 and Maven5 for Java used in Eclipse67.

3.3.1 Project Templates

Figure 3.14: A newly generated ExaSlang project in Eclipse

For environments supporting many different languages and project types it often is
helpful to offer the user templates for specific projects to start from. This allows the
language creator to offer basic setups and integration of other elements of the environ-
mental framework to be setup properly without the user having to learn these, often
only briefly needed, parts. Additionally, by providing a basic folder and file structure
at the beginning of a new project examples and manuals can refer to those templates
to better explain basic relations of the different parts of the project. Such a generated
structure can be seen in figure 3.14. And, of course, even the experienced user profits
from not having to do the same basic steps every time he starts a new project.

3.3.2 Code Compilation and Generation Support
Usually programs that are under development need to be tested and debugged. This
can either be done in an external program, the system console, or be integrated into the
IDE. The latter offers the advantage of not having to switch between different windows
and applications as well as the possibility to show errors and debug information directly

4http://ant.apache.org/
5http://maven.apache.org/
6http://www.eclipse.org/eclipse/ant/
7http://www.eclipse.org/m2e/

14

http://ant.apache.org/
http://www.eclipse.org/eclipse/ant/
http://www.eclipse.org/m2e/

inside the familiar coding environment. When combined with a good UI to configure the
actual compilation process and integrating external programs, for example by redirecting
their output to an IDE internal console, the advantages are even greater.

3.3.3 Interface and Workbench Adjustments

Figure 3.15: New Toolbar Icon and Options Menu for ExaSlang in Eclipse

Usability of an Integrated Development Environment is strongly linked to the quality
of the User Interface it offers to the end user [6]. While in a completely custom cre-
ated environment this can be achieved by designing the UI exactly to the needs of the
supported language, when using a general IDE framework like Eclipse it is, therefore,
important that the UI can be and is adjusted to the individual needs of the project and
language implemented. Those adjustments can for example be the existence of outline
views or the exact look of the project structure. They also include additional menu and
shortcut buttons to language specific functions, as shown in figure 3.15 that otherwise
would need the use of a console to be used.

15

4 Evaluation of LWBs and similar
Tools regarding IDE support

Language Workbenches (LWBs) are an approach to offer tools and frameworks to
ease the development of programming languages in general and domain specific languages
in particular.

Description of the Evaluation Process

To evaluate which of the Tools and LWBs shown in table 4.1 is best suited to provide
an IDE for an already defined external DSL, a list of several requirements has been
composed. These differ in importance, from must-have to nice-to-have. Section 4.1
describes these requirements in detail.
After the list had been established, the actual evaluation process began. For details
of the results of this process, refer to section 4.2. A first iteration revealed which of
the candidates did not fulfill all of the must-have requirements. Those were removed
from the pool. The remaining candidates were then examined closer with regard to soft
requirements until only a few languages remained.
In the last step, ExaSlang Layer 4 was partially implemented in those tools to test their
feasibility for the intended use.
In the end, the best suited candidate for the formulated requirements was chosen as the
winner.

Tools in the Evaluation
Notpad++ Monticore Spoofax
Eclipse MPS 3.1 MetaEdit+
XText SugarJ Rascal
Onion

Table 4.1: List of all LWBs and Tools examined

16

4.1 Requirements
The requirements have been divided into three categories. Those categories are general,
editor and others.
Requirements themselves are rated between must-have, or hard requirements, over soft
requirements to nice-to-have ones. Table 4.2 shows all of them, divided by category and
plotted on a scale according to their importance. Hard requirements for example are
licensing restrictions, while soft requirements usually are the support for specific editor
features that should be supported, like syntax coloring. Nice-to-have requirements are
things like outline generation and an easy installation process for the end user.

Group Importance

hard-requirement soft-requirement nice-to-have

General

Platform Independent
Easy Deployment

Free of Charge
Open License

Features

Syntax Highlighting
Syntactical Error Detection

Reference and Name Resolving
Completion Templates

Auto Indents
Folding

Variable Templates
Dynamic Tooltips

Outliner

Others Documentation
Stability of Environment
Automated Generation

Table 4.2: List of all Requirements sorted by importance

4.1.1 General Requirements
The ExaSlang project itself is deemed to be platform independent. Therefore the Exa-
Slang IDE must be platform independent as well, forming the first hard requirement.
Secondly, to support the approach of ExaSlang becoming a widely used standard lan-
guage for multigrid solver programming, its IDE should be easy to deploy to the end
user. This means, no, or almost no, effort besides visiting the ExaSlang homepage and
downloading the IDE, or something similar, should be necessary to use it. Being some-
what vague in its formulation, this is a semi hard requirement.
Finally, as mentioned at the end of section 2.1 the legal base of ExaStencils, and there-

17

fore ExaSlang, is not yet determined. This means, any possible restrictions regarding
the legal status of collaborating software should be avoided. Therefore the license of
all used tools and libraries involved with the ExaSlang IDE must allow closed source
contribution and deployment of components while still being free of charge. Of course,
this makes the licensing requirement a must-have one, as well.

4.1.2 Editor Requirements

While in theory, the goal for the editor is to have every, or at least as many of the
capabilities introduced in section 3.2 as possible, there certainly are features that are
must-haves and others that are nice-to-have, but not mandatory. Nonetheless, all editor
features are considered soft requirements, as they will not prevent the IDE from doing
its job, as failure of the hard requirements, mentioned in the previous section, would do.
Syntax highlighting, as well as syntactical error detection, are considered quasi must-
haves. They provide the greatest improvement over a plain text editor and are universally
helpful for all users at all times. Nobody is safe from making typing errors once in a
while, and having different colors appear in the written text helps greatly to quickly see
if written code will be recognized by the compiler later on.
A similar effect, but not as important, primarily because it is a more complex feature,
is reference and name analyzing and resolving. The typing error argument stands here
as well, accompanied by relieving the user from having to memorize the correct spelling
of dozens or more variable and function names. Especially upper- and lowercase errors
often result in confusion and can easily be prevented by this feature.
On the other side, completion templates, automatic indents as well as folding capability,
are still helpful in many circumstances, but the lack of them is hardly a hindrance for
effective coding. Still, they are of great help in situations where the user has to read and
understand foreign code, as they, like paragraphs and chapters in regular texts, help to
recognize structure.
Dynamic tool tips and variable templates are, from a programmer’s point of view, really
great productivity increasing features. They help preventing erroneous reference even
better than name resolving and are, obviously, also a great relief for the memory of the
programmer. From an IDE’s point of view this is perhaps the most difficult feature to
properly implement, as it requires the editor to understand the language on runtime far
beyond the pure syntactic level. Overall, this brings those features to a nice-to-have
position in the requirements list.
Least important, as usually only regarded as a convenience feature, is outline generation.
Serving as an addition to functions other features already offer without introducing
unique functions itself, it is purely nice-to-have.

4.1.3 Other Requirements

Besides the features the IDE has to offer on the user side, there also are some require-
ments on the creator side.
Foremost, as it is planned to support the ExaSlang IDE over at least several years, it

18

is important that the resulting implementation can be read and understood by many
different people making contributions easily. Especially direct advice from the previ-
ous contributors should not be required, as this is not feasible in the given academic
environment. In detail, this means documentation and support of the framework LWB
should be existing, helpful and complete. The environment should be stable enough to
depend on the current implementation working even in future iterations without too
much interference, as well. While those points are rather vague and often can not be
clearly specified for every tool, at least a rough estimation should be used as point of
comparison.
Secondly, as the ExaSlang language is under constant development and changes almost
weekly the support effort to keep the IDE up to date should be minimal. This is realized,
either by offering templates and simple instructions for expanding and changing it or,
ideally, by offering programs and scripts that implement most changes on their own,
without overhead supervision by the user. The ability to fulfill this requirement was,
due to the lack of time to fully implement all features in the tested workbenches, only
estimated. Nonetheless it has not been neglected for the evaluation.

4.2 Evaluation Process

In section 4.2.1 the first two evaluation steps are summarized. For step one only the
reason for the elimination is given. Those eliminated during the second step are shortly
described with the reason for their failure. The tools that made it to the final step of the
evaluation process are described in length and then compared in section 4.2.2, before
the overall results are presented in section 4.2.3.

4.2.1 First and Second Evaluation Steps

Examined tools that did not fulfill the basic hard requirements were, Notepad++, Onion,
MPS 3.1 and MetaEdit+. The first two are not platform independent as they are only
available for Windows. MPS 3.1, is not open source and MetaEdit+ does not provide
textual editor support. Table 4.3 shows an overview of the examined tools and the
evaluation step they reached.

Eclipse1 itself offers many tools that allow the implementation of own editors and
therefore support for DSLs, but the evaluation process has shown that those features
often are already used by LWBs as a basic framework. Therefore it was concluded that
those should be used instead of a plain Eclipse implementation.

SugarJ2 was looked at after appearing in the LWB challenge 2013 [7]. It did not fit
the requirements, because it is more of a meta programming tool to combine existing

1http://www.eclipse.org/
2https://www.student.informatik.tu-darmstadt.de/~xx00seba/projects/sugarj/

19

http://www.eclipse.org/
https://www.student.informatik.tu-darmstadt.de/~xx00seba/projects/sugarj/

languages than a tool to implement new languages . Also, SugarJ could not be made to
run reliably on the development working station.

Rascal3 simply did not offer any automated generation of editor features and was
therefore deemed to be not fit enough for further evaluation.

Tools in the Evaluation

Notpad++ Monticore Spoofax
Eclipse MPS 3.1 MetaEdit+
XText SugarJ Rascal
Onion

Table 4.3: Tools and LWBs, background shaded after evaluation step they reached.
Darker means earlier elimination.

4.2.2 Final Evaluation Step
Monticore4

Developed by the RWTH Aachen University, Monticore is unique in the way it handles
project generation. It does not generate locally on the users machine but provides a
server that does all of the generation work, a so called Online Software Transformation
Platform (OSTP). Its focus lies on efficient and fast implementation of DSLs and their
tools.
The creators of Monticore offer a fairly complete documentation of their concepts as
well as a wide variation of examples for the version 2.2.0 of their product, dating back
to the end of 2013 [8]. For newer versions of Monticore there is no documentation at
all. The latest known released version from late 2014 is 3.2.0. As the download servers
for Monticore can currently, as of 2015/04/07, not be reached, it is unknown if a newer
version has been released.
The definition language Monticore uses is closely aligned to the Extended-Backus-Naur-
Form (EBNF) [9] with components of object oriented languages similar to Java.

1 Field = "Field" Name "<" Name "," Name "," FieldBoundary ">" ("["
IntegerLit "]")? (Level)?;

2

3 FieldBoundary = (BinaryExpression | "None");
4

5 interface IndexGroup;

3http://www.rascal-mpl.org/
4http://www.monticore.org/

20

http://www.rascal-mpl.org/
http://www.monticore.org/

Feature Monticore XText Spoofax

Platform Independence yes yes yes
Ease of Deployment easy medium easy
Free of Charge yes yes yes
Open License yes yes yes

Ease of Implementation very easy medium easy
Syntax Highlighting yes yes yes
Syntactical Error Detection yes(?) yes yes
Reference and Name Resolving yes(?) yes yes
Completion Templates yes yes yes
Automatic Indents yes(?) yes(?) yes
Folding yes yes yes
Variable Templates no(?) yes yes
Dynamic Tooltips no(?) yes limited
Outline Generation yes yes yes

Documentation Quality good bad medium
Documentation Quantity very good medium good
Stability during development medium good medium
Stability when deployed unknown good medium
Integrated Feature generation medium very bad medium
Possibility of automated IDE generation good bad medium

Table 4.4: Feature overview for candidates of the final evaluation step, features marked
with „?“ could not be tested but documentation lets assume their existence

6 interface Index extends ("[" IntegerLit)=> IndexGroup;
7 DoubleIndex implements Index = "[" IntegerLit "," IntegerLit "]";
8 TrippleIndex extends ("[" IntegerLit "," IntegerLit ",")=> DoubleIndex

= "[" IntegerLit "," IntegerLit "," IntegerLit "]";

Snippet 4.1: Monticore language definition

Supported editor functions by Monticore are outline, folding and keyword highlighting,
as well as customizeable tool tips and content completion. Those features are mostly
defined directly in the language definition file and then automatically generated [8].

1 concept editorattributes {
2 keywords:
3 Func, Function,
4 Var, Variable,
5 Val, Value,
6 Domain, Layout, Field, Stencil, StencilField, Set, external,

Globals,

21

7 repeat, times, count, with, contraction,
8 loop, until, over, fragments, where, starting, ending, stepping,

reduction,
9 if, else,

10 current, coarser, finer, coarsest, finest, to, not, all, and,
11 with, communication, None,
12 apply, bc, to,
13 begin, finish, communicate, communication, dup, ghost, of,
14 diag,
15

16 foldable:
17 Programm,
18 Definition,
19 LevelsListe,
20 Function,
21 FuncCall,
22 StatementClause,
23 CommunicateStatement,
24 LayoutOptions,
25 Stencil;
26 }

Snippet 4.2: Editor function definition in Monticore

XText5

XText is an open source project, led and managed by itemis6, and part of the Eclipse.org
Project. This section is based on information from the XText homepage5 and experi-
ences made during the evaluation implementation of ExaSlang.
Called a „language development framework“ by the developers, it provides support
to generate user experience similar to Java programming. Naturally, as part of the
Eclipse.org Project, it is completely realized inside of the Eclipse environment. At the
date of writing, the current version is 2.8.0 released on 2015/03/11. The version evalu-
ated for this thesis is 2.7.3 from 2014/11/20.
The main features XText provides are syntax coloring, content completion, strong type
validation and runtime error detection, as well as a superior Java integration and the
interconnection to other Eclipse tools.
The language definition in XText is extremely close to what an EBNF would look like,
and with the direct and required integration of variables in the definition makes it easy
to structure the language.

1 loopOverFragments:

5http://www.eclipse.org/Xtext/
6http://www.itemis.com/

22

http://www.eclipse.org/Xtext/
http://www.itemis.com/

2 ’loop’ ’over’ ’fragments’ (’with’ clause = reductionClause)? ’{’
(list += statement)+ ’}’

3 ;
4

5 loopOver returns loop:
6 ’loop’ ’over’ field = fieldLikeAccess
7 (’sequentially’)?//FIXME: Likely to change in the future (HACK)
8 (’where’ expression = booleanexpression)?
9 (’starting’ exprIndex += expressionIndex)?

10 (’ending’ exprIndex += expressionIndex)?
11 (’stepping’ exprIndex += expressionIndex)?
12 (’with’ reduce += reductionClause)?
13 ’{’ list += statement+ ’}’
14 ;
15

16 reductionClause:
17 ’reduction’ ’(’ left = (IDENT | PLUS | MULTIPLY) ’:’ right = IDENT

’)’
18 ;

Snippet 4.3: Example of XText’s language definition syntax

All additional functionalities are directly coded in Java, and therefore should be easily
understandable for new users. Unfortunately this is not the case. XText is a prime
example why DSLs are necessary. Its strong dependency on Java and Java like code add
up to hundreds of files classes and functions being generated, as can be seen in figure 4.1.
These provide the basic framework the user has to work upon. This makes the whole
process rather confusing and convoluted, and definitely generates a lot of overhead code
that could be avoided.
Although the project is under longtime development, the documentation, while fairly
complete feature wise, is confusing and often incomplete when it comes to details, like
where to put or find specific files or how naming conventions work in the generated files.

1 /**
2 * Returns the value of the ’Size’ attribute.
3 * <!-- begin-user-doc -->
4 * <p>
5 * If the meaning of the ’Size’ attribute isn’t clear,
6 * there really should be more of a description here...
7 * </p>
8 * <!-- end-user-doc -->
9 * @return the value of the ’Size’ attribute.

10 * @see #setSize(String)
11 * @see exaSlang.exaSlang_L4.ExaSlang_L4Package#getdatatype_Size()
12 * @model

23

13 * @generated
14 */
15 String getSize();

Snippet 4.4: Example of badly done comments and documentation in XText. Lines
4 to 8 show this in particular.

This makes it hard to start working on specific features without completely learning the
language theory wise beforehand. Emphasized by the lack of individually automatically
generated functions and features this is a real time drain. Although, this might somewhat
be mitigated by the fact, that the developers of XText offer additional courses and
support to finance the XText project.
As mentioned before, the integration into the Eclipse framework really is exceptional,
but it still leaves room for improvement. For example, while XText prepares a feature
project for the language, it does not offer an update site to accompany the deployment
automatically.

Figure 4.1: Excerpt of generated classes for the test implementation of Exa4

24

Spoofax7

Spoofax is a long standing project from the University of Delft, dating back to at least
the year 2007 [10]. It is still under heavy development, going from version 1.2 in August
2014 to 1.4 in March 2015 [11]. The version evaluated was Spoofax 1.1, as 1.2 was fairly
new and had problems with lifting the Syntax Definition Formalism (SDF) syntax from
SDF2 to SDF3 for the evaluation implementation. As with the release of version 1.3,
in November 2014, this problem, discouraging the use of version 1.2, has been fixed, a
switch to the newer version has been done during the evaluation process. Because of
this, the examples in this section usually consist of two parts showing both version 1.1
and 1.3. More detailed information about Spoofax can be found at metaborg.org/ in
general and metaborg.org/spoofax/ in particular.
Core concept of Spoofax is the usage of different languages to define different parts of
the DSL and the corresponding editor, that are implemented.
The language definition itself is written in the Syntax Definition Formalism. While still
close to the EBNF, it deviates significantly from this standard formalism in some points,
especially in the syntax it uses.

1 StatementInsideRepeat* ReturnStatement -> RepeatBody
{cons("RepReturn"), prefer}

2 StatementInsideRepeat* -> RepeatBody {cons("RepNoRet")}
3 Statement -> StatementInsideRepeat
4 BreakStatement -> StatementInsideRepeat
5 "loop" "over" "fragments" "{" SectionBody "}"
6 -> LoopOverFragments {cons("LoopOverFragments")}
7 "loop" "over" "fragments" "with" ReductionClause "{" SectionBody "}"
8 -> LoopOverFragments {cons("LoopOverReductionFragments")}

Snippet 4.5: Spoofax language definition in SDF2

With the introduction of the third iteration of the Syntax Definition Formalism, SDF3,
in Spoofax version 1.2, this difference has been reduced to some extend.

1 RepeatUntil.RepeatUntil = "repeat" "until" SimpleComparison "{"
RepeatBody "}"

2 RepeatBody.RepReturn = StatementInsideRepeat* ReturnStatement
{prefer}

3 RepeatBody.RepNoRet = StatementInsideRepeat*
4 StatementInsideRepeat = Statement
5 StatementInsideRepeat = BreakStatement
6

7 LoopOverFragments.LoopOverFragments =
8 "loop" "over" "fragments" "{" SectionBody "}"
9 LoopOverFragments.LoopOverFragments_reduction =

10 "loop" "over" "fragments" "with" ReductionClause "{" SectionBody "}"

7http://metaborg.org/spoofax/

25

metaborg.org/
metaborg.org/spoofax/
http://metaborg.org/spoofax/

Snippet 4.6: Spoofax language definition in SDF3

The documentation for SDF is widely complete, but there is no update documentation
for SDF3. The only help offered for the new version is a short description of concepts.
And the general tip to keep using the old documentation.
To implement the editor functions, it uses a variety of languages that are all derived
from the Stratego transformation language, which builds the core of Spoofax itself. Like
SDF3, those languages lack a proper documentation as only explained examples are
given on the websites of each language, as can be seen in figure 4.2. Nonetheless for
most editor functions examples and automatically generated functionality is provided,
which helps greatly to resolve those shortcomings. Spoofax offers a complete set of edi-

Figure 4.2: Excerpt from the Name Binding Language documentation website8 showing
an explained example of the Definition Sites functionality

tor features, ranging from coloring and folding over outline to type analysis and content
completion.
Also, while not relevant for this project, but still notable, it offers support for trans-
forming any code written in the newly defined DSL into other languages, like Java or
C++, when corresponding definitions are implemented.
The support for integration in Eclipse is minimal consisting of a pregenerated plugin.xml
file and a simple integration of toolbar menus into the User Interface, which is shown in
figure 4.3 in its state when Spoofax uses it for its internal languages.

8http://metaborg.org/nabl/

26

http://metaborg.org/nabl/

Figure 4.3: Spoofax toolbar menu used by the Spoofax environment itself

Comparison of the three Candidates

Table 4.4 shows an overview of the features present in the free final candidates as well
as, where appropriate, a rating between „very good“ and „very bad“ on a five step scale.
While fulfilling most of the requirements pretty well, the ExaSlang implementation in
Monticore could, despite a week long effort, not be made working at all. Disqualify-
ing an otherwise good, maybe even winning, candidate. The errors appeared one at a
time, seemingly overshadowing each other in a way that makes it almost impossible to
comprehend what is happening. For example, removing a part of the language, that
was reported as faulty let a new error in a completely different section of the language
appear. The new error was neither mentioned before nor was it connected logically to
the removed part.
This leaves only XText and Spoofax as possible candidates for the case study implemen-
tation. While XText takes the lead in GUI integration and stability, Spoofax is not that
far behind. While Spoofax and XText are on par editor feature wise, Spoofax clearly
has the advantage due to the ease of implementation. The better documentation and
the automated generation of features clearly see Spoofax as favorite, with XText being
an almost total failure in the latter category.

4.2.3 Results

Overview
Overall, eleven different LWBs and IDE tools have been evaluated. In general, the results
were rather mixed and not totally satisfying. While the number of tools and approaches
is plentiful, most of them are either underdeveloped or tailored to such specific use
cases that usability was rather limited. Only the three workbenches examined in detail
during the last evaluation step provided a general purpose support for the intended
usage. No workbench fulfilled all of the soft requirements to a totally acceptable degree.
Nonetheless, a workbench, while not perfect still suitable for the provided problem has
been found.

27

Conclusion: Spoofax and Eclipse
The only possible conclusion of the evaluation, given the presented results, is the use of
Spoofax inside the Eclipse environment.
It not only fulfills all of the hard requirements with ease, but also has the best score
on the soft requirements overall. Especially the amount of offered editor features, and
the, although still under heavy development, automated generation of said features are
remarkable. Combined with the, compared to most of the other candidates, rather good,
although somewhat outdated and short, documentation the overall results where satis-
fying.
Furthermore, the evaluation has shown that most LWBs do not offer a complete environ-
ment themselves but are integrated in other environments, most notably Eclipse. This
led to the additional conclusion that this approach should be taken by the ExaSlang
implementation as well. As Eclipse is widespread, multi platform and free of charge, it
fits perfectly in with the hard requirements and provides potential users with a generally
well known and often familiar User Interface structure.

4.3 Remarks on the Evaluation Process
With the reports [7] released from the yearly Language Workbench Challenge9 held as
a workshop during the Code Generation Conference10 in Cambridge and the paper An
evaluation of domain-specific language technologies for code generation [5]
there was a pretty solid base to work from. This is especially true for the initial choice of
LWBs to examine. Nonetheless, the differences in requirements between the approach in
these papers and the approach shown in this thesis made another evaluation inevitable.
Both sources used not existing, or only in theory existing Domain Specific Languages
as starting points, while this thesis examines whether it is possible to transfer existing
DSLs into LWB environments.
This kind of approach seems not to be covered by existing papers extensively and there-
fore it was difficult to determine which requirements to set. In the end, the chosen
requirements led to promising results, indicating that they can be reused for future eval-
uations of similar kind. The biggest issue with the presented evaluation process was the
time constrains, about 160 working hours where invested overall. Although, given the
fact, that the mentioned evaluations of LWBs were usually conducted by several people
[5] or even a whole team [7] for each workbench, this still was surprising. This amplifies
the assumption that a multi person approach is preferable to the used single person
approach. This of course would have to take into account the different skill levels of
multiple persons. Therefore objective parameters have to be used or a weighing of the
cons and pros has to be done.
The time constrains limited the overall number of candidates, especially in the second
and third phase, after the tools not fitting the hard requirements were eliminated. Mean-
ing that, despite the process resulting in a successful search, other, better, results might

9http://www.languageworkbenches.net
10lhttp://codegeneration.net/

28

http://www.languageworkbenches.net
lhttp://codegeneration.net/

have been overlooked, simply because they were not obvious during the second process
stage. Still, Spoofax proved to be a solid and good choice and can be recommended for
IDE implementation of existing DSLs.

29

5 The Spoofax Language
Workbench

The Spoofax Language Workbench1 was and is being developed at the Delft University
of Technology. Its current release version is 1.4 from 2015/03/06. The version used
and described in this thesis is 1.3.1 from 2014/12/09. It is part of the MetaBorg2 meta-
programming tools collection and serves as platform between the different languages and
tools of MetaBorg to enable them to work together as a Language Workbench for textual
DSL development. The LWB is designed for Eclipse 4.3 to 4.4 with Java 7 and supports
the creation of fully featured Eclipse editor plugins [11]. Installation instructions can be
found in the „Getting Started“ section of the Spoofax Tour page3.

Different Languages for Different Tasks
As part of a meta language and tool environment the Spoofax Language Workbench
consists of several Domain Specific Languages for different parts of the language and
editor creation. These languages are Syntax Definition Formalism v.3, Name Binding
Language, Type Specification Language and Stratego. Additionally it uses the Edi-
tor Services Language for its editor integration and the Spoofax Testing Language for
language-agnostic tests on the implemented DSL [11].
This chapter will describe these languages in general and give detailed examples if this
is not done in section 6.1. The descriptions are based on their respective counterparts
on the metaborg.org website [11] and the experiences made during the implementation
of ExaSlang.

General Structure
All languages in Spoofax are divided into modules, that are subdivided into sections.
Modules are usually used to better distinguish between different parts of a language
or to reuse parts of it in other languages. Every module definition in Spoofax has to
be defined in its own file. To use one module in another the include section is used.
Listing 5.1 shows how the ExaSlang_Base module is included at the beginning of the
Exa4 module.

1 module Exa4
2

3 imports

1http://metaborg.org/spoofax/
2http://metaborg.org/
3http://metaborg.org/spoofax/tour/

30

metaborg.org
http://metaborg.org/spoofax/
http://metaborg.org/
http://metaborg.org/spoofax/tour/

4 ExaSlang_Base

Snippet 5.1: Example of a module being included in another module

5.1 The Syntax Definition Formalism v.3 (SDF3)

The Syntax Definition Formalism has been under development since at least 1989 when a
reference manual for the SDF was released [12]. While SDF3 has some notable differences
syntax wise to the original SDF, its concepts are still quite similar and therefore, in
lack of a full documentation for SDF3 it is advised, by the creators, to use the SDF2
documentation4 instead. SDF3 has been introduced with Spoofax 1.2 in August 2014
and an explanation of its concepts can be found at metaborg.org/sdf3.
The primary syntactical change was the order productions are written in, the integration
of constructors more directly into the language, as can be seen by comparing listing 4.5
to listing 4.6 on page 25. Additionally template definitions have been newly introduced.

Lexical and Context-Free Syntax
SDF3 differentiates between lexical and context-free syntax. Both define productions and
are handled in almost the same way by most of the other components of Spoofax. The
only two differences are that lexical productions can not have constructors and can not
include context-free productions, while context-free productions can have constructors
and include both types of productions. Usually lexicals are used to define low level
elements of a language like Keywords and Layout symbols. Context-free productions
are used to define all other parts of the DSL.

Productions: Sorts and Constructors
Every definition or expression of a language component in SDF3 is called a production.
These productions are identified by two different parts. The first part is called sort,
the second constructor. They are written with a dot between them as presented in the
example below

Sort.Constructor = Definition-content {Flags}

After the declaration a equal sign follows which divides the declaration part from the
definition part of the production. Here the actual language definition is done much like
it would be in the EBNF. Additionally the production can have certain flags that are
written inside of curly brackets. When multiple flags are used they are separated by a
comma.

Sorts are part of all productions. When the production consists of any other parts
than pure literals, or the sort has more than one definition, it should be predeclared in
the sorts section of the grammar. Otherwise, some editor functions do not work properly.
Sorts can have multiple definitions bound to their name, as shown in the example below

4http://homepages.cwi.nl/~daybuild/daily-books/syntax/2-sdf/sdf.html

31

metaborg.org/sdf3
http://homepages.cwi.nl/~daybuild/daily-books/syntax/2-sdf/sdf.html

where the sort Mine can be the literals "mine", "my" and "not yours". Sorts always
begin with a capital letter.

1 module myLanguage
2 sorts
3 Mine
4 Language
5 Something
6 lexical syntax
7 Mine = "mine"
8 Mine = "my"
9 Mine = "not yours"

10 Something = "everything"
11 context-free syntax
12 Language.combination = {Mine "and"}+ {prefer}
13 Language.single = Mine {avoid}
14 Language = "yours"

Snippet 5.2: Exemplary language definition

Constructors are not required and are only necessary if a sort consists of non static
elements, usually other sorts. As can be seen in the example above a single sort can
have multiple constructors assigned to it. For better readability it is advised to define
a constructor for every production. Technically constructor names do not have to be
unique, but as they are referenced in the editor definitions quite frequently it is strongly
advisable to only use a constructor name once.

List of Common Flags

• {prefer} production is preferred to other productions if they are disambiguous

• {avoid} production is avoided if disambiguous with other productions

• {reject} production is never valid if disambiguous (usually used in lexicals to
distinguish between IDENT and keywords)

A list of all possible flags can be found at metaborg.org/sdf3/ in the Attributes
section.

Definition of Lists
Lists are defined by surrounding the part of a production that acts as a list with curly
brackets, followed by either "+" or "*" denoting if there has to be at least one entry
("+") in the list or if it can be empty ("*"). Inside the brackets the first element
defines the items in the list and the second element defines the means by which items
are divided from each other. In the example above Language.combination is a list of

32

Mines separated by the literal and. Note that the separator can only appear between
two items, so a list always ends with an item.

Regular Expressions of Literals
In lexical productions it is possible to define sequences of literals that are allowed in
the production. This is particularly useful when defining parts of the language that
consist of infinite amounts of possible combinations of symbols. Usually this is the case
for IDENTs and Numerals. The IDENT defintiion in listing 5.4 shows how a regular
expression of characters looks like in SDF. In this case an IDENT can consist of any
combination of letters, numbers and the _ symbol.

Start Symbols
Start symbols can be any production either lexical or context-free and serve as starting
points for the Abstract Syntax Tree (AST) parser. So, only productions reachable from
a start symbol are part of the grammar that is usable in a program later on. There can
always be only one AST per file. That means productions from separate trees may not
occur in the same file without causing parsing errors.

1 lexical start-symbols
2 Something
3 context-free start-symbols
4 Language

Snippet 5.3: Start-symbols for example language

In this example a file can either contain any of the „Language“ productions or the word
„everything“.

Restrictions and Priorities
Restrictions are used to introduce look-ahead for productions. Most commonly, they are
used to enforce the longest-match policy on identifiers.

1 lexical syntax
2 IDENT = [a-zA-Z0-9_]+
3 lexical restrictions
4 IDENT -\- [a-zA-Z0-9_]

Snippet 5.4: Identifier definition and "longest-match" restrictions

Priorities are used to define more complex disambiguation conditions. They use their
own section, as can be seen in the example below, and multiple priorities in one section
are divided by comma. Priorities are mathematically transitive.

1 context-free priorities
2 {Exp.Times} >
3 {Exp.Plus Exp.Minus},
4 {Exp.Plus Exp.Minus} >
5 {Exp.Equals}

Snippet 5.5: Priorities example from http://metaborg.org/sdf3/

33

http://metaborg.org/sdf3/

In this example, the Exp.Times production always supersedes the Exp.Plus and
Exp.Minus productions, which are on the same priority level. Also, all three are priori-
tized over Exp.Equals.

Layout Characters
are defined by the reserved LAYOUT production. Characters defined as LAYOUT will be
ignored if encountered between productions or parts of a production, but not if they ap-
pear inside a literal. There they are still required. Usually LAYOUT consists of whitespace
characters and has a longest-match policy enforced.

Templates
ease the use of the completion and pretty printer auto generation as they pre-define
what the language should look like. They almost look like regular context-free produc-
tions with the only difference, that the left-hand side is enclosed in pointy brackets.
Additionally productions that appear on the left-hand side can be enclosed in pointy or
square brackets to act as placeholders. This syntax is equal to the completion template
syntax described in section 6.1.3 but has the advantage that the user can define which
symbols are allowed or expected between parts of the template and its end more easily
via Template Options.

5.2 The Name Binding Language (NaBL)

Spoken „enable“ [11], this language provides the name definition and analyzing support
for the DSLs designed in Spoofax. Specifically it offers functionality for namespaces,
name declaration and references as well as scopes. Additionally it allows to import
NaBL name binding rules from other languages to allow multi-layer language references.
Besides the specification on metaborg.org/nabl/, section 6.1.4, beginning at page 49,
offers an elaborate description with examples from the ExaSlang Layer 4 implementation.

5.3 The Type Specification Language (TS)

TS is complementary to NaBL as it tackles the type bindings and analysis of Spoofax
languages through a declarative approach. TS files are currently not pregenerated in
Spoofax and therefore have to be added and included by the user manually to the
\trans folder.

1 module types
2

3 type rules // binding
4

5 Var(x) : t
6 where definition of x : t

Snippet 5.6: Type specification example from metaborg.org/ts/

34

metaborg.org/nabl/
metaborg.org/ts/

The example in listing 5.6 from the Type Specification Language homepage metaborg.
org/ts/ shows the beginning of a type module in Spoofax. A simple binding rule assigns
the type t to the variable x when the definition of x matches t. This can be extended to
make complete expression analysis, as is exemplarily described at metaborg.org/ts/.
As there are sections of the TS reference page that are incomplete, this might suggest
that TS is not feature complete yet. Note that type analysis is not implemented for the
ExaSlang IDE so far and it is unknown to the author if it works properly in the current
version of Spoofax at all.

5.4 The Spoofax Testing Language (SPT)

SPT is, like TS, not realized in the ExaSlang IDE yet and holds the same restrictions
regarding its functionality. But, in difference to TS it is wildly feature complete and
fully described at metaborg.org/spt/. It allows automated tests to examine the con-
sistency and functionality of „(...) parsing rules, operator precedence and associativity,
the abstract syntax tree, errors and warnings, and transformations (...)“ [11].

1 module Expression-tests
2

3 start symbol Exp
4

5 test Add [[1 + 2]] parse succeeds
6

7 test Multiply has correct AST [[1 * 2]] parse to Mul(Int("1"),_)
8

9 test Parentheses [[(1 + 2)]]
10

11 test Multiply and add precedence [[1 * 2 + 3]]
12 parse to [[(1 * 2) + 3]]

Snippet 5.7: Language testing example from metaborg.org/spt/

The tests in this example, listing 5.7, begin at the start symbol Exp. They check if
the parse for 1+2 in the Add production does succeed and examine if 1*2 results in the
AST Mul(Int("1"),_). With the second argument being an unspecified placeholder,
the parentheses test checks whether the expression (1 + 2) is valid. But it is unclear if
there is any effect on the end result, as there is no success or failure condition specified.
In the last test a simplified version of the AST parsing is used. It simply checks if 1 *
2 + 3 parses to the same AST-node as (1 * 2) + 3. For further instructions on how
to write SPT refer to metaborg.org/spt/.

35

metaborg.org/ts/
metaborg.org/ts/
metaborg.org/ts/
metaborg.org/spt/
metaborg.org/spt/

5.5 The Editor Services Language (ESV)

Although not explicitly mentioned on MetaBorg as a stand-alone language, the Editor
Services Language does qualify as one. It is a conglomerate of small defining sections each
describing the contents of one specific editor service feature. These sections are directly
interpreted by Spoofax. In addition to the description given in this chapter, http://
metaborg.org/spoofax/editor-services/ offers a complete overview and additional
examples and explanations. The overall nine editor services, or features, can be divided
in three groups. First there are those completely defined in ESV, second those only
offering basic interface information to the actual feature implementation, usually done
in Stratego, and third services that are relatively static and define some basic properties
of the Editor and the Language.

The first group consists of Foldings, Completions and Colorer. Those three are presented
in detail in section 6.1 at the example of ExaSlang Layer 4.
In the second group one can find Views, References and Refractorings.
Menus, Syntax from the third and Main from the last group.

Views are by default only providing an interface to the two non editor windows used by
Spoofax Editors, the outline view, shown in figure 3.13 on page 13 and the properties view
shown in figure 5.1. The Views code shown in listing 5.8 shows the whole, unchanged,
views file of Exa4 as it has been generated. Both views point to Stratego functions that
then calls into Java functions that link into the Eclipse UI environment. Technically it
is possible to add further views by implementing them in Spoofax and then linking them
to this service. Nonetheless, it is often easier to directly implement GUI addons directly
in Java together with the Eclipse interface for extensions, explained in section 6.2.

1 module Exa4-Views
2

3 views
4

5 outline view: editor-outline (source)
6 expand to level: 3
7

8 properties view: editor-properties

Snippet 5.8: The Exa4-Views.esv file unchanged from its state after initial generation

Reference simply lists all Stratego strategies used for the reference and type system
and does not need to be edited by the programmer at all. For the actual implementation
of references see sections 5.2 and 6.1.4.

Refractoring only defines the UI information as shown in listing 5.9 from metaborg.
org/spoofax/tour/ in the Refactoring Specifications section.

36

http://metaborg.org/spoofax/editor-services/
http://metaborg.org/spoofax/editor-services/
metaborg.org/spoofax/tour/
metaborg.org/spoofax/tour/

Figure 5.1: Spoofax properties view showing the AST properties of the main node of a
short .exa4 file

1 refractorings
2 refractoring ID: "Rename" = rename(cursor)
3 shortcut: "org.eclipse.jdt.ui.edit.text.java.rename.element"
4 Input
5 identifier: "New name"=""

Snippet 5.9: Refractoring example from metaborg.org/spoofax/tour/

It results in a window with an empty field asking for a new name. As the actual re-
fractoring is a transformation, not surprisingly it is written directly in Stratego. The
corresponding file can be found at \trans\refractor.str in the Spoofax project. Fur-
ther details on the layout of refractoring strategies can be found at metaborg.org/
spoofax/tour/ under „Refractoring Transformations“.

Menus are used to directly link Stratego functions to the GUI. It generates an ar-
bitrary amount of menus and submenus as buttons in the Eclipse toolbar. Each can
contain several commands, called actions, which specify Stratego function calls. Addi-
tional keywords specify the behavior of the specific menu or action. An example can be
seen in listing 5.10.

1 menus
2 menu: "Analysis" (meta)
3

4 action: "Reset and reanalyze" = debug-reanalyze
5

6 submenu: "Show analysis" (openeditor)
7 action: "Project" = debug-project
8 action: "Partition" = debug-partition
9 end

Snippet 5.10: Menus example

37

metaborg.org/spoofax/tour/
metaborg.org/spoofax/tour/
metaborg.org/spoofax/tour/

Syntax derives its contents from the default LAYOUT definitions of Spoofax lan-
guages, and does not adjust to changes made by the DSL programmer. It provides the
editor with information about when to do indents automatically or what literals func-
tion as fences. For whitespace unaware languages, the default behavior usually is good
enough to work properly. This is especially the case when deviating language constructs,
like the coloring of identifiers, are already handled in other parts of the editor specifi-
cations. Therefore it is usually unnecessary to make changes to this part of the editor
specification.

1 module Exa4-Syntax.generated
2

3 language Syntax properties (static defaults)
4

5 // Comment constructs:
6 line comment : "//"
7 block comment : "/*" * "*/"
8

9 // Fences (used for matching,
10 // inserting, indenting brackets):
11 fences : []
12 ()
13 { }

Snippet 5.11: Snippet from a default syntax file

Main usually only needs to be edited if some basic changes to the language are made,
for example the associated file extension or the name of the language itself is changed.
Otherwise it just merges all of the other ESV files together in one place by importing
them. Furthermore it offers some meta information, like a general description and an
url that may appear in specific Eclipse queries.

1 language General properties
2

3 name: Exa4
4 id: exa4
5 extends: Root
6

7 description: "Spoofax-generated editor for the ExaSlang Level4
language"

8 url: http://www.exastencils.org/
9

10 extensions: exa4
11 table: include/Exa4.tbl
12 start symbols: Start

Snippet 5.12: Snippet from the unchanged main file of Exa4

38

5.6 The Stratego Transformation Language

1 rules // Editor services
2

3 // Resolves a reference when the user control-clicks or presses
Shift-F3 in the editor.

4 editor-resolve:
5 (node, position, ast, path, project-path) -> definition
6 where
7 definition := <analysis-resolve(|<language>, project-path)>

node

Snippet 5.13: A Stratego function used for languages defined in Spoofax to enable
the resolving of references and locating their position in the code,

Most languages used in Spoofax, directly or indirectly, are transformed into Stratego
during code generation or at least do reference it strongly. Because Stratego was a
stand-alone project before being merged with Spoofax and later the MetaBorg project
its documentation is still in transfer to the MetaBorg homepage5 and can currently be
found in the Stratego documentation6. Unfortunately the important manual and tutorial
paths can, as of 2015/03/30, no longer be accessed making it difficult to work with at
the moment. Thankfully this is not that great of a problem, because there are only three
Spoofax features requiring to be written directly in Stratego. These are the outliner and
the pretty printer as well as the transformations of DSL code into general languages like
Java. The latter was not scope and goal of this thesis anyway. A „how to“ description of
the outliner functionality can be found in section 6.1.2, as it is already implemented in
the ExaSlang IDE. Figure 3.13 on page 13 shows an outliner generated by the Spoofax
outline function.
Not realized during the implementation of the ExaSlang IDE was the pretty printer
functionality. The pregenerated functions were buggy, as they did not add any line
breaks to their output, as can be seen in figure 5.2. It was therefore deactivated in
the end user version. This is clearly a bug in the current version of Spoofax and a
reintroduction of this feature to a later point is quite likely.

5http://metaborg.org/stratego/
6http://strategoxt.org/Stratego/StrategoDocumentation

39

http://metaborg.org/stratego/
http://strategoxt.org/Stratego/StrategoDocumentation

Figure 5.2: Exemplary Exa4 file converted by Spoofax generated pretty printer, shown
in KATE with automatic line wrapping

40

6 ExaSlang in Spoofax and Eclipse

6.1 Spoofax Features

Remarks
While Spoofax offers a wide variety of automated feature generation the implementation
for ExaSlang has shown, that these mechanisms are not yet good enough to satisfactorily
generate the front-end features used in an editor. This leads to a considerable effort after
implementing the language itself, to adjust, expand and correct the pregenerated features
in a way that results in a good end user experience. To support future work on ExaSlang,
this section describes the implemented features in detail and gives hints on how to
expand and adjust them in the future. Note that the original SDF3 implementation of
the languages, especially for ExaSlang Layer 4, while formally correct, has been proven
incapable of satisfying the needs of the various editor features. This led to the insertion
of additional transformation steps and the separation of syntactically similar productions
into separate ones, that now have to be maintained on their own as well. Overall this
led to an about 20 % extended code base for the language definition and certainly will
lead to additional maintenance effort in the future.

1 Function.Function = FUNCTION IdentWithOptLevel
2 "(" FunctionArgumentList ")" ":" ReturnDatatype "{" FunctionBody "}"
3 VariableDeclaration.VariableDeclaration = VARIABLE
4 IdentWithOptLevel ":" Datatype
5

6 IdentWithOptLevel.IdOpt_Level = IDENT Level

Snippet 6.1: Original Exa4 SDF3 definition

1 Function.Function = FUNCTION FunctionIdentWithOptLevel
2 "(" FunctionArgumentList ")" ":" ReturnDatatype "{" FunctionBody "}"
3 VariableDeclaration.VariableDeclaration = VARIABLE
4 VariableIdentWithOptLevel ":" Datatype
5

6 FunctionIdentWithOptLevel.IdOptF_Level = IDENT LevelTop
7 VariableIdentWithOptLevel.IdOptV_Level = IDENT Level

Snippet 6.2: Extended Exa4 SDF3 definition

41

The comparison between listing 6.1 and listing 6.2 shows that the original
IdentWithOptLevel.IdOpt_Level production has been split into
FunctionIdentWithOptLevel.IdOptF_Level
and
VariableIdentWithOptLevel.IdOptV_Level.
This has been done to make them distinguishable for the reference resolver. Without
doing this, there would be no difference when defining the name of a Function to a
Variable from the NaBL point of view. Note, that this example is a slightly changed
and shortened version of the original code used for the Exa4 IDE and is purely meant
to illustrate the problem described before.

Manual
This chapter also serves as manual and reference for future contributors to the IDE.
It is written in such a way that new contributors are able to orientate themselves and
learn how and where they can make changes and additions to the existing features of
the project.

Version
The document is based on the Version 1.1.8.release of the ExaSlang feature, deployed
on April 4, 2015.

6.1.1 Syntax Highlighting
The ExaSlang editor uses three parts of the Spoofax coloring scheme. The source files
are located in \editor\<LANGUAGENAME>-Colorer.esv. An Example of the Syntax
Highliting offered by Spoofax can be found on page 8 in figure 3.3.

Lexical Coloring is the simplest part, all default syntax components are directly
colored via the scheme:

keyword : Color

Particularly all numerals, integers and reals alike, are subject to this. It will apply
when no other coloring schemes supersede it and the parser correctly identifies those
components, which is not guaranteed in deep AST-branches.

Syntactical Coloring is somewhat more complex and is split into two parts. The
first one, following the scheme SORT.CONSTRUCTOR : Color colors all literals of the
specified constructs. Sub-constructs keep their own colors, or, if not specifically colored,
will use the default ones. To override sub-construct schemes, the keyword „environ-
ment“ is used which will force the entire construct including all sub-constructs, but
not sub-sub-constructs, to use the uppermost coloring scheme. As always when the
SORT.CONSTRUCTOR scheme is used either of them can be substituted by a _ to define
all possible sorts or constructors at this place.

environment SORT.CONSTRUCTOR : Color

42

A color is either directly assigned by specifying the three 8bit unsigned integer RGB val-
ues, optionally followed by the bold and/or italic keywords. Alternatively a predefined
color can be named. But those two methods can not be mixed.

1 AccIntVar.AAccIntVar : 0 0 0 italic
2 AccIntVar.AAccIntNum : color_numbers
3

4 At._ : 128 0 0 bold
5 Level._ : _ bold
6 environment Level._ : _ bold

Snippet 6.3: Example for color assignment to productions

The definition of a color follows the same pattern as its assignment, but replaces the
colon with a "=" and looks the way shown in listing 6.4.

1 color_numbers = 245 140 0 //darkorange
2 color_index = 0 0 128 // darkblue
3 color_level = 128 0 0 bold // dark red // color_keyword
4 color_fctcall = 0 0 0 italic // black

Snippet 6.4: Definition of colors

It is also possible to assign an additional name to an existing color definition, as has
been done in listing 6.5.

1 gray = 128 128 128
2 grey = gray

Snippet 6.5: redefining color names

A placeholder _ an be used to add additional style tags to an assignment or color
definition without overwriting the previous color settings.

environment Level._ : _ bold

6.1.2 Outliner

In difference to the other implemented Spoofax editor features, the outline is directly
written in Stratego and can be found in the <LANGUAGENAME>-outliner.str file in the
\editor folder.
To generate an outline term, the predeclared Stratego rule to-outline-label is used,
which is called by the Spoofax runtime every time a constructor is invoked. The given
constructor then is transformed by an arbitrary amount of Stratego rules and the final
result listed as a string in the outline tree, that follows the AST branching. Shown in
figure 3.13 on page 13 is a fully fledged Exa4 outline view.

to-outline-label : Def_Globals(_) -> "Globals"

43

This simple example of such a transformation is called when a Global clause is opened in
ExaSlang Layer 4. For the outline function it transforms the constructor Def_Globals(_)
to the string "Globals". This string then is used as a node in the outline view as can be
seen in figure 6.1.

Figure 6.1: A Global structure with several variable defines and its resulting outliner

1 to-outline-label = ?Domain(_,name,_,_);
2 !("Domain: \"",Name,"\"");
3 conc-strings

Snippet 6.6: Generation of an outline string

This invocation of to-outline-label uses the strategy syntax-style instead of the simple
rule-syntax. The transformation from the constructor to the resulting outline nodes has
three steps.
The first step is to analyze whether the right constructor is present at the current
Abstract Syntax Tree-Node, by specifying the constructor and using the leading "?"
literal. When this check is passed the "!" literal denotes the creation of a new term.
!("Domain: \"",Name,"\"") creates the string „Domain: "Name" “, with Name being
the content of the variable name defined in the constructor. Note that the constructor
actually has four variables, but as only the second is used the others are ignored by using
the "_" literal as a placeholder.
As the variables are actually AST-Nodes themselves, in the last step, the rule invocation
conc-strings removes all literals from the AST-Node to string transformation and
leaves only the actual, human readable, variable content of the node. In this case the
string specified before with the content of the IDENT is extracted from Name.
If the actual information is deeper below in the AST it has to be extracted by sub-
transformations that convey it to the AST-Level used in the outline label call. This
can be necessary if the unique node marking an object that should be outlines has sub-
constructors in common with other nodes that have different or no outlines at all. This
is the case with the listing of global variables of the Global scope used as example above.

to-outline-label = ?GlobalEntry_Variable(<varinfoextraction>)

44

Instead of simply applying a name to the variables another strategy is called that has
the AST-Node serving as variable base. So it is one level beneath the initial node.
Syntactically the strategy name is surrounded by pointy brackets. The result of such a
call can be assigned to a variable by using => Variable-Name after the call name inside
the brackets, as can be seen in the following example.

to-outline-label = ?FieldLevel(<levelextraction => Level>); !(Level)

Here the level is extracted from the sub-nodes, assigned to the variable level and then
the result is applied to the initial rule, overwriting its previous contents.
In case there are several different possible constructors appearing in the same place inside
a node, the analyzing sub-rule can use the or() case to check which of the possibilities
is true and then continue from there on.

1 levelextractionB =
2 or (
3 ?LevelType_Relative(<levelextractionR => text>),
4 or (
5 ?LevelType_Range(<levelextractionP => text>),
6 or (
7 ?LevelType_List(<levelextractionL => text>),
8 or (
9 ?LevelType_Simple(<levelextractionS => text>),

10 ?LevelType_Negation(NegLevel(<levelextractionN => text>))
11)
12)
13)
14);!(text)

Snippet 6.7: Extraction of information from deeper nodes in the AST

The or() case can only handle two entries at a time and therefore must be nested with
other or() cases if more than two options are possible. Syntactically the first option is
always separated by a comma "," from the second option. The "?" literal is also needed
to actually analyze something inside of an option clause, otherwise it would always
default to true. As the analysis is done before the strategy call, the above construct
only assigns a value to text if the analysis was successful. Note that it is not specified
what happens if several options result in valid cases.

funcnameextraction : IdOptF(Name) -> Name

If only a direct transformation of a constructor variable to a string is necessary, the
rule-syntax can be used. The above rule returns the same result as the strategy below
would do.

funcnameextraction = ?dOptF(Name);!(Name);conc-strings

45

⇓

⇓

Figure 6.2: Knowledge Completion Menu - three steps to a complete entry

46

6.1.3 Completions
Implementation in ExaSlang Technically Spoofax supports both syntactical and
semantic completion, however, the current version of the ExaSlang IDE only supports the
first one. The code can be found in the \editor folder in the
<LanguageName>-Completions.esv file. The style of the completion templates is dif-
ferent in ExaSlang Layer 4 as well as each of the two configuration languages. Exa4
concentrates on offering templates to almost all productions and keywords that can be
accessed where syntactically allowed, which is very similar to the standard Java com-
pletions in Eclipse. Exa-Settings simply offers a list of all keywords which result in a
template that already is correctly formatted and only has to be filled with a valid value.

Exa-Knowledge, with its more diverse values and the larger amount of keywords, offers
multi-step assistance to find correct combinations, which is shown in figure 6.2. The
user first can choose between different data types, and then between the actual keywords
eligible for the chosen type. Then the final step offers the choice between the default
value for the chosen keyword, a permitted custom value, or, in case of variables with
only a small amount of allowed values, a list of all possible values. Note that the
editor does not check whether certain combinations of different values in the knowledge
file are valid, because the NaBL does not support non-literal or dynamic associations.
Checking for those connections could appear when type detecting is implemented, as
similar analyses are part of the TS system. Still, it is not supported natively by the
Spoofax environment and it could turn out to require the implementation of a custom
Stratego or Java functionality or not be possible to be properly included in the editor
at all.

The Exa4 completions work in a similar fashion by offering lists of allowed productions
at the current cursor position. They have variables which themselves offer either lists
with sub-productions or keywords accepted at their position to the user. Because of the
size of some production trees, the offered lists usually are not in line with the actual
language definition, but offer choices only from tree nodes that are actually relevant to
the user.

Coding Details In detail the completions section is divided in completion template
and completion trigger structures. The templates specify a production of any kind
where it should be triggerable followed by the textual representation of the template
in the completion list and finished with the actual template contents. The last part
is optional and when no content is specified, the textual representation will be used
instead.

1 completion template TYPE : "Unit"
2 completion template TYPE : "Array"
3 completion template TYPE : "Real"
4 completion template TYPE : "Integer"
5 completion template TYPE : "String"
6 completion template TYPE : "Complex"

47

Snippet 6.8: Templates for keywords

This code snippet shows a simple completion template for the TYPE lexicals that result
in a list of all types available. As can be seen, completion templates do not have to
be unique. Multiple templates for the same production simply result in a larger list of
choices for the user.

1 //Function Definition Templates
2 completion template Function :
3 "Function Name@Level () : Returntype { }" =
4 "Function " <Name@Level (Arguments) Returntype:FunctionFootprint> "

{ }" (blank)
5

6 completion template FunctionFootprint :
7 "Name@Level () : Returntype" =
8 <FunctionIdentWithOptLevel:FunctionIdentWithOptLevel> " ("

<Arguments:FunctionArgument> ") : " <Returntype:ReturnDatatype>
9

10 completion template FunctionFootprint :
11 "Name@Level () : Returntype" =
12 <FunctionIdentWithOptLevel:FunctionIdentWithOptLevel> " ("

<Arguments:FunctionArgument> ") : " <Returntype:ReturnDatatype>
13

14 completion template FunctionArgument :
15 "Name : Datatype" = <Name:IDENT> " : " <Datatype:Datatype>

Snippet 6.9: Examples for completion templates with multiple levels

The more complex templates above are used for the function definition production. The
string between the ":" and the "=" literals is an one-to-one representation of the text
later shown in the completion menu. After the equals sign the completion consists of
strings that will literally translate into the inserted completion and the "< >" expres-
sions, marking the section as a variable that uses more templates to be completed. The
first part of the pointy bracket expression is the string representation of the variable in
the template and works similarly to pure strings.
In the second part, after the colon, another production specifies which template should
be called for further completion. This production does not actually have to be valid
at the current position of the AST from a language point of view but needs to have a
completion template defined. As can bee seen in the code example, this functionality
can be nested to allow complex guided templates for almost all imaginable language
constructs. By using the (blank) property keyword the editor only will offer the com-
pletions in empty lines, a helpful tool to avoid bad syntax and keep the completion list
from overcrowding. To navigate a template Spoofax uses the same mechanisms Eclipse
uses for Java and other language completions. Pressing alt-space presents the user, if
possible, with a list of templates. When the template has been chosen and confirmed

48

by pressing enter, the editor enters into the template editing state. There the user can
navigate between the variables of the template by pressing tabulator and calling lists of
sub-templates by pressing alt-space. Note, however, that once entering a sub-template
the editor closes the old template environment without the possibility to reopen it. So
entering a sub-template prohibits from regularly entering another of the sub-templates.
This behavior is not Spoofax exclusive, but due to the complex nature of ExaSlang Layer
4 it is quite noticeable here compared to generic languages like Java.

6.1.4 Reference and Name Resolving

For reference and name resolving in ExaSlang the Name Binding Language, mentioned
already in section 5.2, is used. While the other editor feature source files can be found
in the \editor folder, the file names.nab is located in the \trans folder. The Spoofax
developing environment translates the file during runtime into the names.str Stratego
file in the same folder. The reference files in the \editor folder only serve as a link to
the analyzer functions of Stratego and, although they can be customized, they have not
been changed for the ExaSlang implementation. An example how reference errors look
like in the resulting editor is given on page 11 in figure 3.10.

Like many of the editor features, the nabl language uses constructors and their variables
as base for its functionality. Like at other places in Spoofax, it is not advisable to
use a constructor more than once inside a given section, due to undefined behavior of
double occurrences. This is especially important for the reference and name resolving
definitions, as they consist basically of three different parts using the same constructor
calls. Additionally a list of all used namespaces must be defined, beforehand. The one
for Exa4 can be seen in the code snippet below.

1 namespaces
2 FunctionNames
3 FunctionFootprints
4 StencilNames
5 StencilFootprints
6 StencilFieldNames
7 StencilFieldFootprints
8 FieldNames
9 FieldFootprints

10 LayoutNames
11 LayoutFootprints
12 VariableNames
13 VariableFootprints
14 GlobalVariableNames
15 DomainNames

Snippet 6.10: List of all namespaces in Exa4

49

These will be referenced by the binding rules section to link different objects to-
gether in their corresponding namespaces. For example, all functions will hand their
name into the FunctionNames namespace and the complete function footprint into the
FunctionFootprints namespace. A similar pattern is used for all other types of objects.
Note that in Exa4 there exist two VariableNames namespaces, one for local variables
defined inside a function, and one for global variables defined implicitly by the language
itself, or in the Global scope by the user. This has to be done due to namespace scoping.

1 binding rules
2 Programm (_):
3 scopes
4 FunctionNames, FunctionFootprints,
5 StencilNames, StencilFootprints,
6 StencilFieldNames, StencilFieldFootprints,
7 FieldNames, FieldFootprints,
8 LayoutNames, LayoutFootprints,
9 VariableNames, VariableFootprints,

10 GlobalVariableNames,
11 DomainNames

Snippet 6.11: Scoping example

This example shows all namespaces, that are scoped inside the Programm(_) constructor.
Currently only variables have local scopes in ExaSlang. These are scoped inside of
functions, including the function parameters, and inside all predefined bodies of loops
and conditional terms.

1 Function (_,Footprint,_):
2 defines FunctionFootprints Footprint
3 scopes VariableFootprints, VariableNames
4

5 IdOptF_Level (Name,_):
6 defines non-unique FunctionNames Name
7 IdOptF (Name):
8 defines non-unique FunctionNames Name
9

10 FunctionArgumentList(Footprint):
11 defines VariableFootprints Footprint
12

13 FunctionArgument(Name,_):
14 defines non-unique VariableNames Name

Snippet 6.12: Variable name definitions

Every object declaration defines a unique footprint, consisting of its name and param-
eters like level, types and in case of functions variables, that identify them as a whole
and may not occur twice in the same section of code. Furthermore, to be able to

50

check whether an object call is valid, their identifiers are stored separately and with the
non-unique keyword. This allows multiple objects of the same type to have the same
name and only be separated by their actual footprint.

1 FunctionCall_Leveled (Name,_,_):
2 refers to FunctionNames Name
3 FunctionCall_Flat (Name,_):
4 refers to FunctionNames Name

Snippet 6.13: Variable name resolving

Object access is then checked as in the code above with the refers to NAMESPACENAME
Variable phrase. In cases where a specified reference may refer to multiple namespaces
the second and all following refer-to phrases are led by the otherwise keyword. The
example below shows this for the assignment construct, once with and once without an
additional level access. Note, that any unique constructor may only be called once in
all of the type binding modules. This means, that it has to encapsulate all parts of the
name binding and different modules can not extend or modify this call later on.

1 Assignment_FieldLike (Name,_,_):
2 refers to VariableNames Name
3 otherwise refers to GlobalVariableNames Name
4 otherwise refers to StencilNames Name
5 otherwise refers to FieldNames Name
6

7 Assignment_Flat (Name,_):
8 refers to VariableNames Name
9 otherwise refers to GlobalVariableNames Name

Snippet 6.14: Multiple choice name resolving

In the name binding file of Exa4 there is also a list of implicitly prebound functions
and variables, for example mathematical functions like sin, cos and global variables like
X,Y,Z coordinates of the current position in the domain or field. They are defined at
the Program._ scope and marked with the implicitly keyword, that allows to define
non variable strings as references.

1 implicitly defines non-unique GlobalVariableNames
"geometricCoordinate_x"

Snippet 6.15: NaBL: Definition of internal variables

These references bind to internal functions of the languages and include access to a
prefabricated timer framework, mathematical functions from the C Math.h library 1 and
corresponding mathematical constants. Additionally, a few other functions are provided,
as well. Most prominently are a set of print() functions and a set of functions to invert
stencils.

1http://www.cplusplus.com/reference/cmath/

51

http://www.cplusplus.com/reference/cmath/

6.1.5 Folding

Figure 6.3: Expanded and folded function in a .exa4 file

As the folding generation of Spoofax is quite good, the generated files where only slightly
changed for Exa4. Basically all top level declarations that have a body, marked by curly
brackets, can be folded. The bodies of loops and conditionals clauses and longer listings,
like a list of levels in an access declaration, can be folded as well. An example of how
folding looks in Exa4 can be seen in figure 6.3. Settings and Knowledge neither have
nor need any code folding.

1 folding
2 Layout._
3 Else.Else

Snippet 6.16: Basic folding examples

As folding is written in the .esv language of Spoofax, its syntax is fairly simple and
straightforward. It consists of a single list, that contains either the sort, the constructor,
or a valid combination of both and gives the resulting sub-AST the ability to be folded.
\editor is the folder the source file <LanguageName>-Folding.esv can be found in.

6.2 Eclipse Features

Some of the features in the ExaSlang IDE are not indirectly provided by Spoofax but
directly by functionalities in Eclipse itself.

Eclipse Plugins and Features The Eclipse environment is build in a way that makes
it easy to expand and adjust the platform to the individual needs of the user. This is
done via so called plugins, packages of Java code and linking information to other parts of

52

eclipse. Plugins, as single units of functionality expansions, are usually bundled together
in features.

Plugins in the ExaSlang IDE Feature The ExaSlang IDE is such a feature, de-
scribed in the previous section, consisting of one plugin for each individual language
as well as a few additional plugins adding UI functionality to the IDE. Eclipse itself
offers numerous options to ease the use of an external DSL. Only the ones used in the
ExaSlang IDE project are listed here. These are project templates and UI extension.
Project templates add a wizard that allows to create a new ExaSlang project in Eclipse
that already is set up and configured properly to be used. The UI extension on the other
hand integrates ExaSlang specific functions in the general GUI of Eclipse common to
all distributions. Templates and UI extension serve as solid base for expansion of their
functionality to meet future requirements. For this they use the extension feature for
Eclipse plugins, whose interface can be seen in figure 6.4. It allows the plugin creator
to easily link into the standard functionality of Eclipse. Specified in the plugin.xml file
and supported by its own wizard page, the creator can choose from a list of possible
extension points that are then added to the extension list of the plugin. These extension
point entries have predefined fields that specify their name, internal IDs and other in-
formation, like icons for GUI elements, adjustable by the user. If the actual behavior of
the extension can be customized inside the plugin itself, a Java class that contains the
code for this behavior usually must be specified. If the class does not already exist the
wizard supports its automatic generation with all needed sub-classes and basic functions.
Afterwards, those then can be extended and changed by the creator. Additionally an

Figure 6.4: Extension wizard page of the ExaSlang UI project plugin.xml

53

update site project has been created to offer an easy and convenient way to deploy the
IDE feature to the users via Eclipses own update mechanisms.

6.2.1 Project Templates

Templates, as introduced in section 3.3.1, are integrated into the ExaSlang IDE by using
the Eclipse extension points for project wizards (org.eclipse.ui.newWizards). This
approach allows direct integration with the Eclipse GUI and standard procedures as well
as the ability to write and extend the feature in Java. Currently there is one project
wizard implemented in the newExaSlangWizard package. It consists of two setup pages,
the first one being the default page asking for project name and workspace location, and
the second one asking for the location of the ExaSlang generator .jar archive. For details
of the inner workings of this Eclipse extension please refer to the Eclipse homepage2 and
references3.
Upon completing the wizard, shown in figure 6.5 and figure 6.6, a new project with
the folder structure and files specified in ExaSlangSimpleProject.java is created, the
result can be seen in figure 3.14 on page page 14.
The ExaSlang template project is set up in a way, that new projects can be added easily.
Besides having to add a new wizard extension, the user can simply create a new sub-class
of the abstract ExaSlangProject class to initialize the creation of files and folders and
add it to the pregenerated Wizard interface Java class. The derived ExaSlangProject
class must implement the functions
protected ArrayList<Folder>MakePaths(IProject project) and
protected ArrayList<File>MakeFiles (IProject project) which return an array-
list of their respective types, either a File or a Folder definition. Note that File and Folder
are inner classes of ExaSlangProject and not related to other File or Folder classes in
Java. As the code snippet below shows, they simply consist of string variables contain-
ing their location, name and, in case of files, the content of the file itself. The method
calcPath() can be used to return the complete path to the object.

1 public ExaSlangSimpleProject(String name, URI location, String genpath)
{

2 super(name, location);
3

4 GeneratorPath = genpath;
5 BasePath = new String();
6 DSL = new Folder();
7

8 (...)
9

10 exa4 = new File();
11 }

2http://www.eclipse.org/
3http://help.eclipse.org/luna/index.jsp

54

http://www.eclipse.org/
http://help.eclipse.org/luna/index.jsp

12

13 protected ArrayList<Folder> MakePaths(IProject project) {
14 ArrayList<Folder> paths = new ArrayList<Folder>();
15 paths.add(DSL);
16 DSL.Name = "dsl";
17

18 (...)
19

20 return paths;
21 }
22

23 protected ArrayList<File> MakeFiles (IProject project) {
24 ArrayList<File> files = new ArrayList<File>();
25 String NEWLINE = System.getProperty("line.separator");
26

27 (...)
28

29 files.add(exa4);
30 exa4.Path = DSL.calcPath();
31 exa4.Name = "Source.exa4";
32 exa4.Text = "//Enter your Level 4 Code here" + NEWLINE
33 + NEWLINE;
34

35 (...)
36

37 return files;
38 }

Snippet 6.17: Definition of dsl folder and containing exa4-file

ExaSlangSimpleProject constructs its File and Folder information directly in the meth-
ods by creating new objects and directly writing the string information into them. More
advanced approaches for complex needs are possible of course. To link the new project
class to the actual wizard, in the wizard’s Wizard class, the function performFinish()
should create a new object of the project class and then call the createProject()
function of the project class object.

55

Figure 6.5: ExaSlang Project Wizard page one

6.2.2 UI Extension
Like the project template plugin, the UI plugin of ExaSlang uses the Eclipse extension
framework. Unlike all other elements of the ExaSlang IDE it actually depends on Java
8 not on Java 7, as it uses with this version newly introduced features. If Java 8 is not
present or configured correctly, the plugin will print an error message in the Eclipse log
file at start up and will not load at all. The functionality of the other components of
the IDE are not compromised by this. Currently, the plugin adds the ability to call the
ExaSlang generator directly from inside the Eclipse application and to see its output in
the Eclipse console.
Access to generator call wrapping function is offered in three different ways through the
UI. The additional toolbar button, as well as a the new "ExaSlang" menu can be seen
in figure 3.15 on page 15. Additionally the keyboard shortcut ctrl-alt-E is provided
for the same functionality.
All of these interface elements call the generateHandler function that starts the build
process after a confirmation dialog. The extensions for this plugin consist of three linearly
dependent extensions, the UI elements specified with the org.eclipse.ui.menus exten-
sion, the key binding, through org.eclipse.ui.bindings. They generate the interface
elements and link to the actual command, provided by org.eclipse.ui.commands. The
command then is assigned to the handler from org.eclipse.ui.handlers that links to
the handler class that is called every time one of the UI elements is activated. figure 6.4
on page 53 shows all of those elements.
As the generator part of the UI does not have to be directly extended, it is not explained

56

Figure 6.6: ExaSlang Project Wizard page two

here in full detail. It basically creates a process that calls the Java interpreter with a
command line generated from the generator.config file that is present after creating
an ExaSlang project and can be seen in figure 6.7. It also redirects the output of the
generator process to a custom console view, exemplarily shown in figure 6.10.

Figure 6.7: Generator.config after project generation

Further details on the generator call implementation are offered together with the Java
code in the file ExaSlandLevel4ProjectBuilder.java inside the ExaSlangUIElements
project. There are comments on every mayor step of the process and it is rather straight
forward. In any case the plugin can be used as base for more UI functions for ExaSlang
by adding additional extensions elements and specifying more commands and corre-
sponding handlers. Please refer to the Eclipse documentation4 for Information on what

4http://help.eclipse.org/luna/index.jsp

57

http://help.eclipse.org/luna/index.jsp

the capabilities of the Eclipse UI are and how they are implemented. On page 60 fig-
ure 6.10 shows an example on how the output to the console looks after the ExaSlang
generation process.

6.2.3 Plugin Deployment and Update Site

Feature and Update Site Projects
All of the ExaSlang plugins are bundled in a feature project. It consists only of a
simple .xml file that lists all included plugins as well as information about the author,
copyright agreements and so on. The deployment of the ExaSlang IDE can be done via
the Eclipse internal „Install New Software...“ functionality. Whenever a new version of
the IDE is deployed, the deployer simply needs to increase the version information of
all changed plugins in their respective plugin.xml file and the version of the feature in
the site.xml. The according wizard pages containing the version information of can be
seen in figure 6.8. After that, the new feature version must be added to the site.xml
file in the update site project. After building all plugins to update their compiled Java
code to the latest version, a „build all“ on the update site project configuration page
must be performed to add the new files to the update site. Both the newly added feature
and the „build all“ button are shown in figure 6.9. Note that if no new version number
is given, for a changed plugin, the builder assumes that the plugin has not been changed
and will not overwrite the already existing version.

Figure 6.8: Version identifier of the ExaSlangUIElements project.xml and the ExaSlang
feature.xml

58

Figure 6.9: New feature version added to Update Site project, to update it the marked
button is pressed

All files inside the update site project that are not marked with a leading "." can then
be deployed on a server as they are. There they can be accessed by the end users to
update their ExaSlang version. In figure 6.10 the web page generated by the Update
Site project can be seen.
Besides automatically archiving and packaging the feature, the update site also creates
a web page that links to all feature versions present on the site and allows to download
them manually, if preferred over the automatic Eclipse update process, by the user. The
update site project has been created with the Eclipse update site wizard and besides
adding the ExaSlang feature versions has not been altered by the author. It is not
expected that changes to the update site project will be necessary in the future as well.

Installation
Most parts of the ExaSlang feature package should run on Eclipse 3, but as it was
created with Eclipse 4.1 and 4.2 only the latest is guaranteed to work properly when
set up correctly. Note that at least Java 7, and for full functionality Java 8, is required.
To install the ExaSlang IDE the "Install New Software..." feature of Eclipse can be
used. It guides the user smoothly through the whole update process and makes sure
compatibility issues are prevented. A detailed installation instruction can be found in
appendix A.

59

Figure 6.10: Update Site of the ExaSlang IDE

6.3 Other Features

Besides the Spoofax implementation of the existing ExaSlang languages and the ex-
tension of the Eclipse framework, there are prepared project husks for the remaining,
already planned, ExaSlang languages. Also included is a slightly adjusted version of
the Spoofax runtime library version to avoid some key binding issues that occur during
development.

6.3.1 Language Project Husks

In preparation for the future implementation of the remaining ExaSlang Languages husk
projects have been prepared. Each of them is a default Spoofax project plus base files
used in all ExaSlang language projects. Additionally, general bug fix and adjustment
edits to the pregenerated files have been made. This allows the direct implementation
of the four languages without the need of setting up and configuring the surrounding
framework and ensures the consistency of all of the resulting projects with the established
conventions.

60

6.3.2 Spoofax Runtime Adjustments
The ExaSlang extension package is delivered together with the Spoofax runtime package
that is a slightly edited version of the 1.3.0.20150224-164813-master nightly build. In
detail the following two changes have been made. The key binding for "go to Definition"
has been remapped from ctrl-F3 to shift-F3 to avoid conflicts with some default key
bindings occurring in some Eclipse versions. Also, a duplicated entry for the "alt-T"
binding has been removed. Both of these changes are not required to run the ExaSlang
package and, therefore, any version of the Spoofax runtime version 1.3 or later can be
used. This is, however, not recommended due to possible compatibility issues.

Figure 6.11: Generation Console Output Example

61

7 Overall Results

Conclusively it can be said, that the project was successful, and almost all of its goals
were achieved. Although the estimated time for the evaluation was exceeded, the im-
plementation timeframe has been fulfilled. While most of the IDE features that have
been planned were realized, these time restrains where the main reason the final goal,
developing an automated process for converting existing DSLs to Spoofax Projects with
a working editor, was not reached.

7.1 Implementation Time to Endresult Timesavings
Is it worth the effort?
Overall, the implementation took about 200 man hours, i.e. 10 working weeks at 5 days
at 4 hours each, which equals roughly 1.5 months of full-time work by a single person.
This includes early bug fixes and feature changes made between version 1.0.0.release
and 1.1.8.release. A quick survey at the LSS Chair of FAU, whose results can be seen in
appendix C, resulted in a span of 35 % to 88 % time saved between the use of an IDE
and a simple text editor for larger projects. Therefore, taking the lower number as base,
a minimum of 572 man hours of total coding and debugging work would be required to
make the effort worthwhile. This equals not even half a year of average 40 hour work
week of a single person. For smaller projects there was no clear tendency whether it
would take more or less time using the IDE. The survey was done under the assumption
that the language as well as the tools are well known. Therefore it can be assumed that
for new users the effects would be shifted towards more saved time when using the the
IDE.
Even with those rough numbers it can clearly be seen, that implementing an IDE in the
matter presented in this thesis is usually well worth its time and results, all in all, in
significant time savings.

7.2 Recommendations for Future Projects
As already mentioned, the evaluation process was surprisingly time-consuming. Fu-
ture projects that include an evaluation process of this kind should, in this light, make
changes to the evaluation process. This could be done either by making stronger restrains
upon the requirements, to speed it up by more early eliminations, or by narrowing the
process down to only a few selected tools, so that those can be evaluated thoroughly.
The implementation itself was exactly as initially expected, making the scope of the

62

implementation a perfect match for the given timeframe. Regarding Spoofax, this thesis
should greatly help in future projects by providing many examples, explanations and
background information brought together in one place. Spoofax is therefore the perfect
tool for future projects of this kind, that do not want to undergo a new evaluation pro-
cess. Especially with regard to the implementation of ExaSlang Level 1, 2 and 3 this
should be kept in mind.

7.3 Feasibility for other Languages
As it has been shown, the results of the ExaSlang implementation are quite pleasing.
The implementation, even of complex, usually non existent language constructs, like
the Levels and Access parts, is doable. Nonetheless, Spoofax was at the brink of its
capability performance wise, as ExaSlang is fairly complex and large compared to most
DSLs. Therefore it can be concluded that the approach of transferring an existing DSL
into a LWB, especially Spoofax, just for the IDE support is feasible. Long existing or
more complex languages like ExaSlang Layer 4 profit greatly from the IDE, without
the need to completely re-implement the complicated generators and transformers into
another language. The time and amount of work needed to completely implement an
own IDE from scratch would be significantly higher than using one of the many existing
frameworks and building upon it. Not to mention, many of the frameworks are contin-
uously developed further and enriched with new and better features. This is something
a dedicated internally developed IDE is unlikely to do, given the time and manpower
restrains of today’s projects at many universities. Spoofax has proven to be a versatile
and effective tool overall. Albeit it still requires time to accommodate oneself with it
and its beta status makes it somewhat unreliable in some cases. Overall, the chosen
approach was successful and can be recommended as a way to improve DSL projects in
general.

63

8 Future Work

"Software is Never Finished, Only Abandoned."

—Unkown Software Engineer1

This is for sure the best perspective concerning the outlook to future developments
concerning the ExaSlang IDE. There are still features in Spoofax and Eclipse that can
be added to the environment. Development of automation tools has not started yet.
And, of course, there still are four ExaSlang languages that need implementation, Layer
1 to 3 and Hardware.

8.1 Possible Features for Future Versions
As can be seen by comparing the list of Spoofax features in chapter 5 to the list of features
implemented for the ExaSlang Layer 4 IDE in section 6.1, there are still features that
are missing. Most notably these are the type specification and analysis described in
section 5.3 and the refractoring described in the corresponding paragraph in section 5.5.
Both of these features are helpful and should be implemented if possible. Considering
that work on the IDE has already been continued it is likely that the next major release
of the ExaSlang IDE already has these functionalities. Unlikely to be implemented is
semantic analysis, as this would imply implementing most of the code transformations to
Stratego, which is not feasible according to the results of the evaluation done by Christian
Schmitt et al. at in early 2014 [5]. Similarly, the implementation of automated test cases
usually is not feasible for a DSL that is already existing, as all possible cases can be
tested by a simple example file as well with much less effort. Other possible features for
the IDE could be extended support for generation, by allowing to, for example, specify
multiple configuration files that then automatically are run, and similar extensions for
the ease of use.

8.2 Automation of DSL Transfer and Feature
creation

Regarding the automation of the implementation of features discussed in chapter 6 it is
pretty sure to say, that most of the editor features are too complex and individual to

1after Leonardo da Vinci (Florence, 1452 a.c. to 1519 a.c.): "Art is never finished, only abandoned.”

64

provide more than a basic husk that has to be improved manually. This husk can either
be directly derived from the generated Spoofax files or be generated in a similar manner
from an external tool. This only could be circumvented by largely expanding the Scala
definition with additional information, like keyword and production colors, or using parts
of the Scala parser as a guideline. Of course, this would make the implementation of
a generator much more complex and time consuming. The language definition, on the
other hand, could, maybe with the exception of complex constructs like the Access and
Expression products, be generated on its own directly from the Scala files. It is even
possible to assume that the additional extensions to the definition could be pregenerated
in order to work with all editor features. This could possibly even make them unnecessary
with a non-redundancy reducing approach to the generator.

8.3 Implementing the other ExaSlang Languages
As briefly mentioned in section 2.2, ExaSlang, once finished, will consist of four main
and three support languages. Only the three existing ones have been implemented so
far. Once the other four languages are close to completion it is planned that they will
be implemented as well. While it will not require a new evaluation process it still will
require time to learn how Spoofax works and of course time to implement the languages.
Given the experience of the already done implementations one to three months of full
work time should be expected for the main languages and a few weeks for the hardware
language. This depends on the status of the automation tools and the depth and amount
of features wanted to be realized.

65

9 Conclusion

The goals of the thesis have been reached. The evaluation process and its requirements
have been proven to fulfill the specified goals, with regard to finding a LWB or similar
tool that is capable of implementing an existing DSL without the DSL being fully imple-
mented inside the LWB. As the amount of time used for the actual evaluation process
was much larger than expected, it was concluded, that future approaches should be done
by more than one person.
Spoofax, the winner of the evaluation, was used to implement the IDE for ExaSlang
Layer 4 and the configuration languages, which was successfully done as well. Due to
time constrains not tested implementation wise, the question, whether it is possible
to fully automate the implementation can be answered with a "no". Nonetheless it is
certain that partial automation is possible and should be used for future work to save
working time. Despite this time intensive work a small survey indicates, that it is still
worthwhile to create such an IDE in any case. Especially, because the overall conclusion
is, that the chosen approach can be used for any DSL, no matter how complex.

66

Bibliography

[1] Martin Fowler. Domain-specific languages. Pearson Education, 2010. Chap. 2.

[2] Christian Lengauer et al. “ExaStencils: Advanced Stencil-Code Engineering”.
English. In: Euro-Par 2014: Parallel Processing Workshops. Ed. by Luís Lopes
et al. Vol. 8806. Lecture Notes in Computer Science. Springer International
Publishing, 2014, pp. 553–564. isbn: 978-3-319-14312-5. doi:
10.1007/978-3-319-14313-2_47. url:
http://dx.doi.org/10.1007/978-3-319-14313-2_47.

[3] Christian Schmitt et al. “ExaSlang: A Domain-specific Language for Highly
Scalable Multigrid Solvers”. In: Proceedings of the Fourth International Workshop
on Domain-Specific Languages and High-Level Frameworks for High Performance
Computing. WOLFHPC ’14. New Orleans, Louisiana: IEEE Press, 2014,
pp. 42–51. isbn: 978-1-4799-7020-9. doi: 10.1109/WOLFHPC.2014.11. url:
http://dx.doi.org/10.1109/WOLFHPC.2014.11.

[4] C. Lengauer et al. ExaStencils.org. Access: 2015/04/08. url:
http://www.exastencils.org/.

[5] Christian Schmitt et al. “An evaluation of domain-specific language technologies
for code generation”. In: Computational Science and Its Applications (ICCSA),
2014 14th International Conference on. IEEE. 2014, pp. 18–26.

[6] Rex Bryan Kline and Ahmed Seffah. “Evaluation of integrated software
development environments: Challenges and results from three empirical studies”.
In: International journal of human-computer studies 63.6 (2005), pp. 607–627.

[7] Sebastian Erdweg et al. “The State of the Art in Language Workbenches”.
English. In: Software Language Engineering. Ed. by Martin Erwig,
RichardF. Paige, and Eric Van Wyk. Vol. 8225. Lecture Notes in Computer
Science. Springer International Publishing, 2013, pp. 197–217. isbn:
978-3-319-02653-4. doi: 10.1007/978-3-319-02654-1_11. url:
http://dx.doi.org/10.1007/978-3-319-02654-1_11.

[8] Christoph Ficek et al. MontiCore 2.2.0 Framework zur Erstellung und
Verarbeitung domänenspezifscher Sprachen. Tech. rep. RWTH Aachen, Software
Engineering, Nov. 2013. url: http://www.monticore.de/doc/MCDoku.pdf.

[9] Information technology – Syntactic metalanguage – Extended BNF. ISO
Standard. Geneva, CH: International Organization for Standardization, 1996.

a

http://dx.doi.org/10.1007/978-3-319-14313-2_47
http://dx.doi.org/10.1007/978-3-319-14313-2_47
http://dx.doi.org/10.1109/WOLFHPC.2014.11
http://dx.doi.org/10.1109/WOLFHPC.2014.11
http://www.exastencils.org/
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://dx.doi.org/10.1007/978-3-319-02654-1_11
http://www.monticore.de/doc/MCDoku.pdf

[10] Karl Trygve Kalleberg and Eelco Visser. Spoofax: An Extensible, Interactive
Development Environment for Program Transformation with Stratego/XT.
Tech. rep. Delft University of Technology, Software Engineering Research Group,
2007.

[11] Eleco Visser et al. MetaBorg.org. Access: 2015/04/08. 2000-2015. url:
http://metaborg.org/.

[12] J. Heering et al. “The Syntax Definition Formalism SDF—Reference Manual—”.
In: SIGPLAN Not. 24.11 (Nov. 1989), pp. 43–75. issn: 0362-1340. doi:
10.1145/71605.71607. url: http://doi.acm.org/10.1145/71605.71607.

b

http://metaborg.org/
http://dx.doi.org/10.1145/71605.71607
http://doi.acm.org/10.1145/71605.71607

List of Figures

2.1 Concept of ExaStencils [2] . 3
2.2 The DSL Layers of ExaSlang [3] . 4

3.1 Example Editor: Vim . 6
3.2 Example for an IDE: The Eclipse environment 7
3.3 Screenshots comparing the same part of code once without and once with

active Syntax Highlighting . 8
3.4 The same code, once with and once without proper indentation 9
3.5 Editor snippet showing Highlighting of matching brackets in Eclipse . . . 9
3.6 Erroneously spelled keywords highlighted by Syntactical Error Detection 10
3.7 Error detection found not expected literals 10
3.8 Template menu offering the choice of two different forms of the same

construct after typing the first few letters 10
3.9 Error when trying to redefine already existing function 11
3.10 Editor reporting a non existent reference after a typo at the variable call 11
3.11 Choice of multiple variables in the template view 12
3.12 Dynamically generated tool tip . 13
3.13 Outline view of an Exa4 file . 13
3.14 A newly generated ExaSlang project in Eclipse 14
3.15 New Toolbar Icon and Options Menu for ExaSlang in Eclipse 15

4.1 XText: Excerpt of the long list of generated classes for the test imple-
mentation of Exa4 . 24

4.2 Spoofax: Excerpt from the documentation website of NaBL 26
4.3 Spoofax toolbar menu used by the Spoofax environment itself 27

5.1 Spoofax properties view showing the AST properties of the main node of
a short .exa4 file . 37

5.2 Examplary .exa4 file converted by Spoofax generated pretty printer . . . 40

6.1 A Global structure with several variable defines and its resulting outliner 44
6.2 Knowledge Completion Menu - three steps to a complete entry 46
6.3 Expanded and folded function in a .exa4 file 52
6.4 Extension wizard page of the ExaSlang UI project plugin.xml 53
6.5 ExaSlang Project Wizard page one . 56
6.6 ExaSlang Project Wizard page two . 57
6.7 Generator.config after project generation 57

c

6.8 Version identifier of the ExaSlangUIElements project.xml and the ExaSlang
feature.xml . 58

6.9 New feature version added to Update Site project, to update it the marked
button is pressed . 59

6.10 Update Site of the ExaSlang IDE . 60
6.11 Generation Console Output Example . 61

d

List of Tables

4.1 List of all LWBs and Tools examined . 16
4.2 List of all Requirements sorted by importance 17
4.3 Tools and LWBs, background shaded after evaluation step they reached.

Darker means earlier elimination. 20
4.4 Evaluation: Final Candidate Feature Overview 21

e

List of Snippets

4.1 Monticore language definition . 20
4.2 Editor function definition in Monticore 21
4.3 Example of XText’s language definition syntax 22
4.4 XText: Example of badly done comments and documentation 23
4.5 Spoofax language definition in SDF2 . 25
4.6 Spoofax language definition in SDF3 . 25

5.1 Spoofax: Example of a module being included in another module 30
5.2 SDF3: Exemplary language definition . 32
5.3 SDF3: Start symbols for example language 33
5.4 SDF3: Identifier definition and longest-match restrictions 33
5.5 SDF3: Priorities example from http://metaborg.org/sdf3/ 33
5.6 TS: Type specification example from metaborg.org/ts/ 34
5.7 SPT: Language testing example from metaborg.org/spt/ 35
5.8 ESV: Pregenerated exa4-Views.esv file 36
5.9 ESV: Refractoring example from metaborg.org/spoofax/tour/ 37
5.10 ESV: Menus example . 37
5.11 ESV: Snippet from a default syntax file 38
5.12 ESV: Snippet from the unchanged main file of Exa4 38
5.13 Example of a Stratego function as it appears in Spoofax 39

6.1 Original Exa4 SDF3 definition . 41
6.2 Extended Exa4 SDF3 definition . 41
6.3 ESV Colorer: Example for color assignment to productions 43
6.4 ESV Colorer: Definition of Colors . 43
6.5 ESV Colorer: Redefining color names . 43
6.6 Stratego Outline: Generation of an outline string 44
6.7 Stratego Outliner: Extraction of information from deeper nodes in the AST 45
6.8 ESV Completions: Templates for keywords 47
6.9 ESV Completions: Examples for completion templates with multiple levels 48
6.10 NaBL: List of all namespaces in Exa4 . 49
6.11 NaBL: Scoping example . 50
6.12 NaBL: Variable name definitions . 50
6.13 NaBL: Variable name resolving . 51
6.14 NaBL: Multiple choice name resolving 51
6.15 NaBL: Definition of internal variables . 51

f

http://metaborg.org/sdf3/
metaborg.org/ts/
metaborg.org/spt/
metaborg.org/spoofax/tour/

6.16 ESV Folding: Basic folding examples . 52
6.17 Project Templates: Definition of DSL folder and containing exa4 54

g

Acronyms
AST Abstract Syntax Tree

CoD Chair of Hardware Software Co Design

DSL Domain Specific Language

EBNF Extended-Backus-Naur-Form

ESV Editor Services Language

FAU Friedrich-Alexander University Erlangen-Nürnberg

FOSS License Free and Open-Source Software License

GLPL GNU Lesser Public License

GUI Graphical User Interface

IDE Integrated Development Environment

IDENT Identifier

LSS Chair of System Simulation

LWB Language Workbench

NaBL Name Binding Language

SDF Syntax Definition Formalism

SDF3 Syntax Definition Formalism v.3

SPT Spoofax Testing Language

TS Type Specification Language

UI User Interface

h

A ExaSlang IDE Installation
Instructions

In the Help menu of Eclipse, select "Install New Software...".

i

Enter the URL or path to the update site into the search field, select the ExaSlang
feature group and make sure that "Show only latest version of available software" as
well as "Group items by category" are checked.

j

Accept the EULA for ExaSlang and Spoofax.

k

Wait for the installation process to finish.

When you are prompted about unsigned content click OK to continue.

Restart Eclipse and you are ready to go.

l

B ExaSlang License: GLPL1

1 GNULESSERGENERALPUBLIC LICENSE
2 Version 3, 29 June 2007
3

4 Copyright (C) 2007 Free Software Foundation, Inc . <http:// f s f . org/>
5 Everyone is permitted to copy and distribute verbatim copies
6 of this license document, but changing it i s not allowed .
7

8

9 This version of the GNU Lesser General Public License incorporates
10 the terms and conditions of version 3 of the GNU General Public
11 License , supplemented by the additional permissions listed below.
12

13 0. Additional Definitions .
14

15 As used herein , "this License" refers to version 3 of the GNU Lesser
16 General Public License , and the "GNUGPL" refers to version 3 of the GNU
17 General Public License .
18

19 "The Library" refers to a covered work governed by this License ,
20 other than an Application or a Combined Work as defined below.
21

22 An "Application" is any work that makes use of an interface provided
23 by the Library , but which is not otherwise based on the Library .
24 Defining a subclass of a class defined by the Library is deemed a mode
25 of using an interface provided by the Library .
26

27 A "Combined Work" is a work produced by combining or linking an
28 Application with the Library . The particular version of the Library
29 with which the Combined Work was made is also called the "Linked
30 Version".
31

32 The "Minimal Corresponding Source" for a Combined Work means the
33 Corresponding Source for the Combined Work, excluding any source code
34 for portions of the Combined Work that , considered in isolation , are
35 based on the Application , and not on the Linked Version .
36

37 The "Corresponding Application Code" for a Combined Work means the

1http://www.gnu.org/licenses/lgpl-3.0.en.html

m

http://www.gnu.org/licenses/lgpl-3.0.en.html

38 object code and/or source code for the Application , including any data
39 and uti l ity programs needed for reproducing the Combined Work from the
40 Application , but excluding the System Libraries of the Combined Work.
41

42 1. Exception to Section 3 of the GNUGPL.
43

44 You may convey a covered work under sections 3 and 4 of this License
45 without being bound by section 3 of the GNUGPL.
46

47 2. Conveying Modified Versions .
48

49 I f you modify a copy of the Library , and, in your modifications , a
50 fac i l i ty refers to a function or data to be supplied by an Application
51 that uses the fac i l i ty (other than as an argument passed when the
52 fac i l i ty is invoked) , then you may convey a copy of the modified
53 version :
54

55 a) under this License , provided that you make a good faith effort to
56 ensure that , in the event an Application does not supply the
57 function or data , the fac i l i ty s t i l l operates , and performs
58 whatever part of i ts purpose remains meaningful , or
59

60 b) under the GNUGPL, with none of the additional permissions of
61 this License applicable to that copy.
62

63 3. Object Code Incorporating Material from Library Header Files .
64

65 The object code form of an Application may incorporate material from
66 a header f i l e that is part of the Library . You may convey such object
67 code under terms of your choice , provided that , i f the incorporated
68 material i s not limited to numerical parameters , data structure
69 layouts and accessors , or small macros, inline functions and templates
70 (ten or fewer lines in length) , you do both of the following :
71

72 a) Give prominent notice with each copy of the object code that the
73 Library is used in it and that the Library and its use are
74 covered by this License .
75

76 b) Accompany the object code with a copy of the GNUGPL and this license
77 document.
78

79 4. Combined Works.
80

81 You may convey a Combined Work under terms of your choice that ,
82 taken together , effectively do not restrict modification of the
83 portions of the Library contained in the Combined Work and reverse

n

84 engineering for debugging such modifications , i f you also do each of
85 the following :
86

87 a) Give prominent notice with each copy of the Combined Work that
88 the Library is used in it and that the Library and its use are
89 covered by this License .
90

91 b) Accompany the Combined Work with a copy of the GNUGPL and this license
92 document.
93

94 c) For a Combined Work that displays copyright notices during
95 execution , include the copyright notice for the Library among
96 these notices , as well as a reference directing the user to the
97 copies of the GNUGPL and this license document.
98

99 d) Do one of the following :
100

101 0) Convey the Minimal Corresponding Source under the terms of this
102 License , and the Corresponding Application Code in a form
103 suitable for , and under terms that permit , the user to
104 recombine or relink the Application with a modified version of
105 the Linked Version to produce a modified Combined Work, in the
106 manner specified by section 6 of the GNUGPL for conveying
107 Corresponding Source .
108

109 1) Use a suitable shared library mechanism for linking with the
110 Library . A suitable mechanism is one that (a) uses at run time
111 a copy of the Library already present on the user ’ s computer
112 system, and (b) will operate properly with a modified version
113 of the Library that is interface−compatible with the Linked
114 Version .
115

116 e) Provide Installation Information , but only i f you would otherwise
117 be required to provide such information under section 6 of the
118 GNUGPL, and only to the extent that such information is
119 necessary to instal l and execute a modified version of the
120 Combined Work produced by recombining or relinking the
121 Application with a modified version of the Linked Version . (I f
122 you use option 4d0, the Installation Information must accompany
123 the Minimal Corresponding Source and Corresponding Application
124 Code. I f you use option 4d1, you must provide the Installation
125 Information in the manner specified by section 6 of the GNUGPL
126 for conveying Corresponding Source .)
127

128 5. Combined Libraries .
129

o

130 You may place library fac i l i t i e s that are a work based on the
131 Library side by side in a single library together with other library
132 f a c i l i t i e s that are not Applications and are not covered by this
133 License , and convey such a combined library under terms of your
134 choice , i f you do both of the following :
135

136 a) Accompany the combined library with a copy of the same work based
137 on the Library , uncombined with any other library fac i l i t i e s ,
138 conveyed under the terms of this License .
139

140 b) Give prominent notice with the combined library that part of i t
141 i s a work based on the Library , and explaining where to find the
142 accompanying uncombined form of the same work.
143

144 6. Revised Versions of the GNU Lesser General Public License .
145

146 The Free Software Foundation may publish revised and/or new versions
147 of the GNU Lesser General Public License from time to time . Such new
148 versions will be similar in spir it to the present version , but may
149 dif fer in detail to address new problems or concerns .
150

151 Each version is given a distinguishing version number. I f the
152 Library as you received it specif ies that a certain numbered version
153 of the GNU Lesser General Public License "or any later version"
154 applies to it , you have the option of following the terms and
155 conditions either of that published version or of any later version
156 published by the Free Software Foundation. I f the Library as you
157 received it does not specify a version number of the GNU Lesser
158 General Public License , you may choose any version of the GNU Lesser
159 General Public License ever published by the Free Software Foundation.
160

161 I f the Library as you received it specif ies that a proxy can decide
162 whether future versions of the GNU Lesser General Public License shall
163 apply , that proxy’ s public statement of acceptance of any version is
164 permanent authorization for you to choose that version for the
165 Library .

p

C Survey: Time Saved by IDEs

The survey was conducted by asking ten coworkers of LSS how large they estimate the
time saved, or lost, when using an IDE like Eclipse compared to a simple text editor like
Notepad++ on differently sized projects.
As can be seen in table A the answers vary greatly, especially for simple projects. How-
ever, a clear tendency towards a time gain with an IDE on large projects can be seen.
These observations are reinforced by the basic statistical analysis shown in table B.

Simple Project Large Project

60 % 99.9 %
40 % 90 %
25 % 80 %
0 % 70 %

-10 % 66 %
-15 % 60 %
-30 % 60 %
-50 % 45 %
-50 % 30 %

Table A: Relative time saved or lost in different project
sizes when using an IDE compared to a simple text edi-
tor. Numbers are sorted by value and not by interviewee

Simple Project Large Project
Arith. Mean -3.33 % 61.59 %
Median -10 % 66 %
σ 39.76 % 26.15 %
σ range -43.9 % to 36.43 % 35.44 % to 87.74 %

Table B: Baseline Statistical Analysis of the Survey Results

q

	Introduction
	Overview
	Motivation
	Outline

	ExaStencil and ExaSlang
	ExaStencils Overview
	ExaSlang Overview

	IDEs and IDE Tools
	Purpose and Capabilities of IDEs
	Editor Support
	Syntax Highlighting
	Code Structuring and Bracket Matching
	Syntactical Error Detection
	Syntactic Completion and Templates
	References, Name Resolving and Type Analyzing
	Dynamic Tooltips and Variable Templates
	Outline Generation

	Other IDE Features
	Project Templates
	Code Compilation and Generation Support
	Interface and Workbench Adjustments

	Evaluation of LWBs and similar Tools regarding IDE support
	Requirements
	General Requirements
	Editor Requirements
	Other Requirements

	Evaluation Process
	First and Second Evaluation Steps
	Final Evaluation Step
	Results

	Remarks on the Evaluation Process

	The Spoofax Language Workbench
	The SDF3
	The NaBL
	The TS
	The SPT
	The ESV
	The Stratego Transformation Language

	ExaSlang in Spoofax and Eclipse
	Spoofax Features
	Syntax Highlighting
	Outliner
	Completions
	Reference and Name Resolving
	Folding

	Eclipse Features
	Project Templates
	UI Extension
	Plugin Deployment and Update Site

	Other Features
	Language Project Husks
	Spoofax Runtime Adjustments

	Overall Results
	Implementation Time to Endresult
	Recommendations for Future Projects
	Feasibility for other Languages

	Future Work
	Possible Features for Future Versions
	Automation of DSL Transfer and Feature creation
	Implementing the other ExaSlang Languages

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	List of Snippets
	Acronyms
	ExaSlang IDE Installation Instructions
	ExaSlang License: GLPL
	Survey: Time Saved by IDEs

