LFCS

Laboratory for Foundations of Computer Science
Department of Computer Science - University of Edinburgh

A Systolic Array
for Pyramidal Algorithms

by

- Christian Lengauer and Jingling Xue

swyoB|y [epiwelld Joj Aeny 0101SAS v

LFCS Report Series ECS-LFCS-90-114
LFCS June 1990
Department of Computer Science

University of Edinburgh

The King's Buildings

Edinburgh EH9 3JZ Copyright © 1990, LFCS

A SYSTOLIC ARRAY
FOR PYRAMIDAL ALGORITHMS

0
CHRISTIAN LENGAUER AND JINGLING XUE

LABORATORY FOR FOUNDATIONS OF COMPUTER SCIENCE -
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF EDINBURGH
EDINBURGH, SCOTLAND

ECS-LFCS-90-114
29 MAy 1990

Abstract

Pyramldal algonthms mampulate hierarchical representatlons of data and are
used in many image processing applications, for example, in image segmen-
tation and border extraction. We present a systolic array which performs
pyramidal algorithms. The array is two-dimensional with one processor per
image pixel; the number of steps in its execution is independent of the size of
the image. The derivation of the array is governed by a mechanical method
whose input is a Pascal-like program. After a number of manual transforma-
tions that prepare the program for the method, correct and optimal parallelism
is infused mechanically. A processor layout is selected, and the channel con-
nections follow immediately.

Copyright (©1990 by Christian Lengauer and Jingling Xue. All rights reserved.

°Supported by an Overseas Research Students Award and a University of Edinburgh
Postgraduate Fellowship.

Contents

1 Pyramidal Algorithms

1.1 Imitialization e
1.2 Node Linking e e e e e

1.2.1 Father Selection

1.2.2 Father Update,
1.3 Tree Generation @it

2 Systolic Design

2.1 The Source Description o .
2.2 The Target Description

3 Towards a Systolic Implementation

4 Preliminary Remarks

5 Initialization

5.1 The Source Program
52 FixingtheLevel

53 Scaling e e e e e
54 Loop Elimination
5.5 OneBasicOperation enee...
5.6 Commutation e e .
5.7 Increasing Independence,
5.8 Eliminating Applicationsof comp
5.9 Decomposing divide L e e e e
5.10 Decomposing comp oo e e e e e e e

5.11 Elimination of Variable Reflection

6 Father Update

6.1 The Source Program e
6.2 Fixing the Level; Scaling; Loop Elimination; Commutation
6.3 One More Commutation
6.4 Increasing Independence L.
6.5 Decomposing comp and add; Elimination of Variable Reflection
7 Tree Generation
7.1 The Source Program
7.2 Fixing the Level; Scaling o .
7.3 Loop Elimination; Commutation
74 One More Commutation
7.5 Increasing Independence
7.6 Decomposing add; Elimination of Variable Reflection

8 Father Selection

8.1 The Source Program
8.2 Fixing the Level; Scaling; One Basic Operation; Loop Elimination; Com-
mutation L. e e e e e
8.3 One More Commutation,
8.4 Increasing Independence o

8.5 Elimination of Variable Reflection
9 Independence Declaration

10 The Systolic Array

10.1 For a Fixed Level i e e e

10.2 Composition of Levels and Phases
11 Conclusions
12 Acknowledgements

13 References

ii

23
23

23
24
24

.25

27

27
27
28

28
29

29

9%9 top level h—1

gh~1 o oh~1 intermediate level [
\ (0<l<h-1)

Y base level 0
2"%2 (original image)

Figure 1: Structure of a pyramid. The base level contains the original image. The level
number is given on the right, the size of each level in pixels on the left.

1 Pyramidal Algorithms

Pyramids are hierarchical data structures with rectangular arrays of nodes in a sequence
of levels [1]. Image resolution decreases as we move from the bottom level (finest) to the
top level (coarsest), as shown in Fig. 1. The input image is stored in the base level of
the pyramid. Each pixel in the image represents a node. The values of the nodes can be
the gray level, local standard deviation or an edge map, among others. The values of the
nodes at the higher levels are computed by averaging the values of the nodes, in some
neighbourhood, at the level below. The node that is calculated this way is referred to
as the father of the nodes in the neighbourhood of the lower level, and the nodes of that
neighbourhood are called the sons of the node at the upper level. This averaging process is
repeated until values for the four nodes at the top level have been determined. Assuming
that the neighbourhoods are square and overlap by 50% for neighbouring fathers, each
node has four fathers at the level above and sixteen sons at the level below. The nodes
at the base level, the original image, have no sons, and the nodes at the top level have
no fathers.

Next, in a bottom-to-top iterative process, the nodes are linked between levels, using
information from the level above and from the neighbour nodes at the same level, by
calculating a weight for each son-father link. The goal is to select a single father for each
node. This results in several trees with roots in the upper part of the pyramid and leaves
at the bottom level. After the iteration process has reached a steady state — it always
does [13] — each node is assigned the value of its chosen father, top to bottom.

The three phases of pyramidal algorithms, initialization, node linking and tree gen-
eration [1, 7, 8, 21], are described more precisely in the following subsections.

1.1 Initialization

Assuming that the original image has 2"«2" pixels, where A is a non-zero natural number,
an h-level pyramid, with levels numbered bottom to top 0 to h—1, is initialized by taking
the averages of a 2cx2c area of level [-1 to generate a node at level /; the natural non-zero
number c is called the span factor [7], and [(0<I<h) is the level being initialized. The

span factor determines the amount of overlapping used in the averaging of the sons; in .

~ our case, c=2 results in 50% overlapping.
Let us denote the node at point (3, j) at level [by the triple [¢, 7, []. If the property that
we are interested in is P, initialization is mathematically described as follows (assuming

c=2):

1 2¢+41 2741

> > P(ih5N-1D) (1)

i'=2i—2 j'=25-2
0<l<h 0<i,j<2"

P(le,5,1) =

numsons([t, 7, {])

The nodes indexed by [i', 5, I-1] are the sons of [z, 7,], which is in turn used in determining
the values of four nodes located at

[idiva, jdive, (+1], [idiv2, jdive+1, [+1], 2)
[z’div2+1 jdivz 1+1], [édiv2+1, jdiv2+1, I+1]

where div denotes lnteger division. These four nodes are the fathers of the node [2,7,1]. In
Equ. 1, numsons([i, 4,1]) is the number of valid sons of [z, j, /] (numsons([i, 5,1]) < (2¢)%);
nodes that fall outside the image’s boundaries are not considered. Thus, the nodes on
the edges of the 1mage have fewer sons and fathers.

1.2 Node Lmkmg

Node linking is an 1terat1ve process. It proceeds in two steps: father selection and father
update Both steps are executed 1terat1vely until the linking process has stabilized [8].

1 2, 1 Father Selectlon

In father selectlon, each node chooses its best father. This choice is based on a closeness
measurement and is described in [1]: the closeness, in property value, between a node
[, 7 ,l 1] and 1ts k th father l2ks 7%, 1] is evaluated using 6, where

‘ l 7’([z ,3'51=11) = P(lix, 35, 1) | 0<k<3 (3)
A welght w between the node and its father is assigned as follows:
» 1 f(Vm:0<m<3Am#k:
' w([il’j"l—lL [ik’jksl]) = 6kS6m./\=(5k=6m = k<m)) (4)
T 0 otherwise

That is, we »sel‘_ect the ﬁrs_t elpfseét,,fa:tliler, with increasing k.

2

An alternative method is to use weighted links described in [8]. The weighted links
between a node and its candidate fathers indicate their degree of similarity and are
assigned as follows:

(L — f(Vm:0<m<3:6, #0)
Zm=01/6m
w([i',jlal—lla[ik,jk,l]) = {1 if 6,=0AIf (Vm:0<m<3Am#k: (5)}
6,=0=k<m)
0 otherwise

\

1.2.2 Father Update

After the weights between each node and its fathers have been determined, the property
value of each node, at level [, is recalculated as follows:

%itl 2j+1 4 o . . o !
X w(lid, =11 6,6, 1) - PO 5, 1-1)
P5l) = = —m (6)

>3 wis,1-13,[,4,1)

#=2i—2 §'=2j—2

It is possible that a node is not chosen as a father by any of its sons, namely, when the
" denominator of Equ. 6 is zero. In this situation, its P-value remains undefined, until the
next iteration, when all the weights are recalculated.

1.3 Tree Generation

The last phase of pyramidal algorithms is tree generation. This phase uses the results of
the linking phase and assigns a region label to each node. Nodes with matching labels
define a region. Starting from a level H (0 < H < h), a distinct label is assigned to all
nodes with distinct property values at that level. Then, the nodes at level H—1 are
assigned the labels of their chosen fathers (i.e., the fathers with weight 1). This process
is repeated for all the levels below, each son being assigned the label of its chosen father.
At the end, the nodes at the base level are assigned one of the labels of the nodes at the
chosen level H. The smallest maximum number of labels occurs when H = h—1; in this
case, at most four labels are generated, segmenting the image into as many regions. As
one decreases the value of H, the maximum number of possible labels increases, resulting
in more segments in the image at the base level.

If one takes the property value of a node at level H to be its region label, tree
generation is mathematically described as follows (assuming ¢=2):

P([Z7Jal—1]) = Z Z w([iaj,l""l],[i,,jlal]) P([Z,’],7l]) (7)
(#=idiv 2,(i+2)div 2) (j'=;jdiv 2,(j+2)div?2)

0<I<H, 0<i,j<2"

2 Systolic Design

The concept of a systolic array [15] has received a lot of attention in the past decade.
Systolic arrays are distributed networks of sequential processors that are linked together
by channels in a particularly regular structure. Such networks can process large amounts
of data quickly by accepting streams of inputs and producing streams of outputs. Many
highly repetitive algorithms are candidates for a systolic implementation. Typical appli-'
cations are image or signal processing.

More recently, mechanical methods for the design of systolic arrays have been de-
veloped (see [10, 19] for bibliographies). The starting point is, essentially, either an
imperative program [10] or a functional program [4, 20] without parallel commands or
communication directives.

2.1 The Source Description

The following program format is necessary and sufficient for a systolic solution [16]:

for z, from lb, by st, to rb, do
for z, from [lb, by st, to rb; do

for z,._; from [b,_, by st,_, to rb._, do
:L'O::L'l:- . ':.'137._1

where zg:24:- - -:x,_; is of the form:

Tyt Tpq = A By(zg, 24,5 2,1) — So
[Bi(zo, 21,75 %pg) — 5

1 Bt—l(%a Ty, fcr—l) — Si1
fi

We call zy:zq:---:z,_, the basic operation of the program and refer to its components
S; as computations. B; — S; is called a guarded command [3]. The bounds [b; and
rb; are linear or piecewise linear expressions in the loop indices z4 to z;_; (0 <i<r)
and in additional variables that specify the problem size. The steps st; are constants.
The guards B; (0 < j < t) are Boolean expressions. The S; (0 < j <t) are functional
or imperative programs, possibly, with composition, alternation or iteration but without
non-local references other than to variables subscripted by the z;.

We have used the imperative method. We have an implementation of it, which we
employed in our derivation.

Let us call the subscript expressions of a subscripted variable the variable’s index
vector. In the imperative method, each computation of the basic operation must obey
the following additional restrictions in order to guarantee the existence of a systolic array:
it must refer to at most one element of any subscripted variable, and index vectors must
be composed of exactly r—1 subscripts that are linear expressions in the arguments of
the basic operation with a coefficient matrix of rank r—1 [16].

4

2.2 The Target Description

Both the functional and the imperative method describe a systolic array by two functions.
Let I denote the integers, and let Op be the set of basic operations of the imperative or
functional program:

step : Op — I specifies a temporal distribution of the program’s operations. Operations
that are performed in parallel are mapped to the same step number. ‘

place : Op — I"™' specifies a spatial distribution of the program’s operations. The di-
mension of the layout space is one less than the number of arguments of the oper-
ations.

The challenge is in the determination of optimal parallelism, i.e., of a step function with
the fewest number of steps possible. Here the functional and the imperative method
proceed differently. In the functional method, one employs techniques of integer pro-
gramming [20]; in the imperative method one uses techniques of program transformation
[10]. Both derivations are completely mechanical. After the derivation of step, the dis-
tribution in time, one chooses a compatible distribution in space by a search. With
this choice, one can optimize other aspects of the array, e.g., its throughput, number of
processors, number of channels vs. storage registers in processors, and so on.

When' step and place are linear functions, we can tell a lot from their definition. To
represent an implementable systolic design, step and every dimension of place must be
linearly independent [10]; if so, every processor of the array is required to execute at most
one operation per step, i.e., the array processors may be sequential. This is a traditional
(and, as we shall see, inconvenient) requirement on systolic arrays. Other information
about the systolic array can also be determined from linear step and place, notably the
flow direction and layout of the data. Let V be the set of variables of the program:

flow : V — I"™' specifies the direction and distance that variables travel at each step.
It is defined as follows: if variable v is accessed by distinct basic operations s, and
sy then

flow(v) = (place(s,)—place(sgy))/(step(s,)— step(sy))

Flow is only well-defined if the choice of the pair (sq, 3,) is immaterial. If necessary,
an appropriate scaling of place will make flow an integer.

pattern : V. — I"™" specifies the location of variables in the layout space at the first
step. It is defined as follows: if variable v is accessed by basic operation s and fs is
the number of the first step then

pattern(v) = place(s)—(step(s)—fs)-flow(v)

If flow is well-defined, so is pattern [10].

— J’

® ®
..y O I R R
Li’| e | ® ° |l e °
| I
! |
| I
| ® — T —
| I | I
|

a8
s

Figure 2: Father-son relationships in the two-dimensional systolic array. Nodes at level
[—1 are depicted as solid boxes, nodes at level [as fat dots, and nodes at level [+1 as
crosses. The sixteen sons of the node at level [that is highlighted with a circle (Equ. 1)
are indicated by a box in small dashes. The four fathers of the same node (Equ. 2) are
the four crosses that are linked by long dashed lines. Indices are scaled up by a factor
of two when moving up a level, i.e., on level [—1 neighbours are adjacent, on level [they
are two positions apart, and on level [4+1 they are four positions apart.

3 Towards a Systolic Implementation

In our development, we shall consider four phases separately: initialization, father selec-
tion, father update and tree generation. Initialization and father update have similarities,
and so do father selection and tree generation.

Both initialization and father update process levels bottom-to-top by reading sons and
assigning to fathers. In fact, initialization is father update with the weights in Equ. 6
set to 1. Variable weights introduce additional data dependencies that complicate the
systolic implementation of father update. We shall first solve initialization and, building
on the result, develop a solution for father update.

Both father selection and tree generation process levels top-to-bottom by reading
fathers and assigning to sons. Their use of fathers is identical. The subtraction in Equ. 3

6

and the product in Equ. 8 also play identical roles in the systolic design. But there is one
difference: the summation in tree generation is composed of steps that are associative
and commutative, the weight computation in father selection (Equ. 4 or 5) is not.

We have the following solution in mind (Fig. 2). The processor array consists of
2k % 2" processors, one per pixel of the image. That is, each processor corresponds to a
node at the base level of the pyramid. Initially, the property values of the image pixels
are loaded into the array, each pixel at its respective node. Then the four phases are’
executed successively and iteratively. The computations that occur at a fixed level of the
pyramid are performed systolically and the same systolic array is reused iteratively for
successive levels and phases.

At the transition between levels, the node array is reduced: three quarters of the
nodes are discarded — the respective processors become inactive; in the rest of the exe-
cution, they are only used to pass along data. The remaining active processors, which
we choose to distribute evenly throughout the array, are processing the next level. An
even distribution of active processors at every level ensures that data communicated
at the transition between levels are stationary, i.e., no channels are required for these
communications.

4 Preliminary Remarks

Most of the rest of this paper is concerned with behaviour-preserving transformations of
a first, simple source program into a format that enables the mechanical derivation of a
reasonable solution. Once that format is attained, we merely present the resulting array.
The input-output behaviour that we must preserve is with respect to the base level of
the pyramid (the image).

Our programs contain multiple assignments [6]. The general form of the multiple
assignment is:

(V0y ++ry Vne1) := (€0y ooy €p_1)

The expressions ey, ...,€,_; are evaluated in any order and then are assigned to the
corresponding variables vy, ...,v,_; left to right. We shall use a number of different
denotations of the multiple assignment. If the expressions are lengthy, we shall write:

() = €q

Up1 = €p

If the expressions are all identical — say, e — we shall write:
(Vgy ooy Upp) == €

We quantify the range of a multiple assignment by writing;:

(Vi:rangeofi: v;:=¢;)

Finally, a word of warning: this is not a toy demonstration. Our result is intended
to be an efficient array for a reasonably complex practical problem. The number of
transformations we are applying to obtain it may seem formidable to the uninitiated
reader. We do not claim that we arrived at the solution without search or back-tracking
— one rarely does when developing complex solutions. But we would like to suggest that

1. most of our transformations reflect a simple idea or choice," o
2. each transformations can be understood in isolation, and
3. we remain in the (comparatively easy) domain of sequential programs.

Each of these points is important. Complex solutions can only be derived and understood
if the development can be broken down into simple, isolated steps. Local behaviour-
preserving transformations in the sequential setting are managable and easily checked
(we did so with test runs but could also have used formal methods). If the source
program submitted to the systolic design method behaves correctly, so will the systolic
solution; this is guaranteed by the method.

The following section describes the treatment of the first phase: initialization. It is
the most comprehensive; its intention is to tutor the reader in tailoring source programs
for the method. The development of the subsequent phases is described more briefly,
although'it is more complex because more data dependences are involved. At the end
of each section, the final source program accepted by the method is fully stated. The
basic operations of these programs and the distribution functions derived for them fully
describe the respective systolic arrays.

5 Imitialization

5.1 The Source Program

The following program performs initialization:

for [from 1 to h—1 do
for i from 0 to 2" '—1 do
for j from 0 to 2"=1_1 do
for ¢’ from 2:—2 to 2:+1 do
for j' from 25—2 to 2541 do
Ligzged’sy’
l:e:g

Index ! enumerates the levels of the pyramid, bottom to top; ¢z and j enumerate the nodes
at each level; i’ and j' enumerate their sons. The operations l:i:5:i":5" and I:3:j are defined
as follows:

1Some transformations will be complicated with, at times, quite ornate selector functions. These
functions arise out of our desire to reduce the number of guarded commands in the basic operations (by
up to a factor of 16).

Y
ld:j::5° 1 node;;; := node; ; +nodey ji1_y
La;j = node;;;:=node,;;;/16

Because of the simple structure of our programs, we indicate scoping by indenting: here,
operation [:i:5:i":5' is the only statement of the loop on j’, and l:i:j is the last statement
of the loop on j.

The original image is assumed loaded into array elements node; ;o (0 <1,j < 2h). at!
the start of the computation. The elements of node at higher levels of the pyramid
are assumed initialized to zero. The computation of these levels follows the problem
description in the previous section (Equ. 1). We have replaced variable numsons by the
constant 16, i.e., (2c)2, seemingly disregarding border conditions. We shall later explain
why this is legitimate (Sect. 10.1).

5.2 Fixing the Level

The five nested loops of the source program suggest a time-optimal systolic array of
four dimensions — one dimension less than the number of loops (Sect. 2.2). We are
aiming instead at a two-dimensional systolic array. Its benefits are an increased processor
utilization, a simpler processor layout and fewer channels.

Our systolic array is specified for a fixed level. Consequently, we disregard the loop on
levels in the systolic design and drop the corresponding argument of the basic statement
(it becomes constant):

for i from 0 to 2"'—1 do
for j from 0 to 2"~'—1 do
for i’ from 2:—2 to 2:+1 do
for j' from 2j—2 to 2j+1 do
iy’
]

5.3 Scaling

At level I, the index space of the sons is of size 277! ><2h_l+1, that of the fathers of size
2"~1%2"~!. Following our scheme of Fig. 2, we must extend the index space of the fathers
to that of the sons, doubling the distance between neighbouring fathers. We transform
the source program to scale the indices ¢ and j of the father level [by 2 with respect to
the son level [—1.

The standard semantics-preserving transformation for scaling the steps of a loop

for « from rb by st to [b do f(z)
by a factor fac is:
for z,.,, from fac-rb by fac-st to fac-lb do f(z,.,/fac)

We must scale the loops on 7 and j by 2. With simplification, the previous transformation
scheme yields:

for : from 0 by 2 to 2h=H1_2 do
for j from 0 by 2 to 2h=1*1_9 do
for ¢’ from i—2 to i+1 do
for j' from j—2 to j+1 do
(i/2):/2)"5
(2/2):(4/2)

This scales the loop steps; to actually scale the indices of array node, i.e., distribute the
fathers over a 27711 x 2"=1+! range, we simply omit the fractions of 2:

for z from 0 by 2 to 2h=11_9 do
for j from 0 by 2 to 2"'*'—2 do
" for ¢ from i—2 to :+1 do
for j' from j—2 to j+1 do
gijd’sg’
17

This does not preserve the semantics of the program, but it does preserve its input-
output behaviour with respect to the son level. By induction on levels, the input-output
behaviour with respect to the base level (the image) is preserved.

Later, we shall stretch the systolic array for level [to size 2h % 2" by coding a factor
of 27" into the place function (Sect. 10.1).

5.4 Loop Elimination

We still have four loops — one too many for a two-dimensional array. We collapse the
inner two loops on i’ and j', which iterate through the sons, to one. They each have four
steps; each step performs one cumulative addition. We are going to let the new basic
operation perform not one but four cumulative additions, and we are going to rearrange
these additions such that each step of the new single loop sums up one quadrant of the
sixteen sons. We are justified in doing so, because addition is commutative.

We chose to define the steps of the new loop this way, because a quadrant is the
unit of overlap in the problem. The new loop has index k; k=0 selects the lower right
quadrant, k=1 the upper right, k=2 the lower left, and k=3 the upper left (Fig. 3).
To access quadrants correctly, we modify indices ¢ and j by selector functions (in k) to 7
and j:

= 1—2-(kmod 2)
= j—2-(kdiv2)

S e

For each value of k, the basic computation sums one quadrant of the array of sixteen
sons:

:j:k i1 node;;; := node; ;;+node;;;_;+node;z g 4
+node;, 51y tnode s 5

10

Figure 3: A father and its sixteen sons (compare Fig. 2). The father is the fat dot high-
lighted with a circle. Numbers indicate the value of k at which the sons are accumulated.
The nodes of each quadrant have identical fathers. E.g., the four fathers in the picture
are shared by the nodes of the upper left quadrant (k=3).

The three nested loops then look as follows:

for i from 0 by 2 to 2"""'~2 do
for j from 0 by 2 to 2h="1_2 do
for k from 0 to 3 do
1:5:k
2:3

5.5 One Basic Operation

Now we have the correct number of nested loops for a two-dimensional processor layout,
but the loop structure does not conform with the requirements on the source format for
a systolic design (Sect. 2.1): i:j is the offender. We need to absorb ¢:j into 2:5:k. To do
this, we extend the range of the inner loop by one step and redefine 2:5:k as follows:

i:j:k i if k<4 — comp(s, j, k)
I k=4 — divide(3, j)
fi

where comp(i, j, k) is the previous i:j:k, and divide(Z, j) is the previous i:j:

comp(i, 3, k) i1 node, ;; := node; ;;+node;z;_ +node;=. ;4
divide(i,7) = node; ;; := node; ;,/16

Now, the program has only one basic operation:

11

for : from 0 by 2 to 2h=*1_9 do
for j from 0 by 2 to 2h=1_9 do
for k from 0 to 4 do
i:5:k

5.6 Commutation

This program scans linearly through each of the two dimensions of the father level. We
can expect that the conflicts caused by the 50% overlapping of the sons will reduce the
potential for parallelism. Therefore, we break the linear progression by moving the loop
on k to the outside (again, simply rearranging additions):

for k from 0 to 4 do
for ¢ from 0 by 2 to 2h=1+1_9 do
for j from 0 by 2 to 2h=1_92 do
2:5:k

5.7 Increasing Independence

The crucial property for the infusion of parallelism into programs is independence. The
usual independence criterion for systolic design is the absence of shared variables. In our
program, the computations comp(s, j, k) for each of the four quadrants (k=0,1,2,3) are
not independent because they share the target variable node; ;;. This may (and indeed
does) reduce the potential for parallelism. We increase the potential for parallelism by
giving each quadrant its own target variable z.k; ;;_;. To set the new index k apart from
the three indices into the pyramid, we do not subscribe it but attach it by an infix period:

comp(,5,k) 1 z.kij;_y = node;;, ;+node;s ;. +node; 5, +node; g

Computation divide(z,5) must then read z.k instead of node. Since the read values are
now in four separate variables, we must read all four variables and add them:

dZ’UZd@(Z,j) " node,-,j,, = (Z.O,"j’[_l +z'1i,j,l-—1 +z'2i,j,l—1+Z'3'i,j,l—1)/16

Now, the computations comp(z, j, k) of different quadrants (k=0,1,2,3) are mutually
independent.

5.8 Eliminating Applications of comp

The transformations described in this and the two following sections are optimizations
even in the sequential setting.

Computations comp(s, j,0), comp(i+2,7,1), comp(i,j+2,2), and comp(i+2,5+2,3)
all accumulate the same quadrant:

20,501 =219 01 = 2.2 4011 = 23542 4201

12

We only need to perform one of these computations and can eliminate the other three. We
arbitrarily choose one of 2.0, 2.1, 2.2 and 2.3 — we choose 2.0 and rename it to z (omitting
the constant index). This means that we choose to compute comp(3, j,0); again, we can
omit the constant third argument. In divide, we select for each z.k (k=0,1,2,3), when
transforming it to z, the indices of the corresponding 2.0 (by the previous equations).
This leaves us with:

3

comp(1,) :: Z; ji-1 1= node;;;_1tnode; ;1 1tnode;y jiy+nodeiyy ji1i-q
divide(t,7) = node; ;) := (2 11+ % j_21-1FZima -1 Zi—2,j-20-1)/16

Note that there is no further need to use the selector functions.
Due to the elimination of three quarters of the computations, the loop on & is now
reduced to two steps. The new basic operation is defined as follows:

w3:k i if k=0 — comp(t,)
0 k=1 — divide(s,)
fi

5.9 Decomposing divide

We can perform the same type of optimization once more. Note that comp and divide each
perform three additions in sequence. Basic operations are atomic; their insides are not
subject to a parallelization in systolic design. To increase the possibility of parallelism,
we can decompose the sequence of additions into smaller computations which will be
applied alternatively in the basic operation and which, therefore, may be subject to a
parallelization. Let us first deal with divide this way. We are going to consider comp in
the next subsection.

Observe that divide(z,j) and divide(i+2,5) both add 2, ;; ; and 2;;_5;.;. Similarly,
divide(i,7) and divide(s,j+2) both add 2;;; ; and 2z;_, ;;_;. By breaking divide up, we
can save some of these additions. We decompose the sequence of additions in divide(s, j)
into a tree that is composed of two different computations:

sub-divide(i,7) 1 a; 11 = 2;j1_1F%ij20-1
divide(z,7) i1 node; ;34 = (a;;;1+a;_2;;-1)/16

At one leaf of the tree, the computation sub-divide(s, 7), adds z; ;;_; and 2; ;_o;_4; at the
other leaf, sub-divide(:—2,5) adds z;_5;; ; and z;_5;_5;_4. Finally, the new divide(s, j)
adds the results of sub-divide(i, 7) and sub-divide(: — 2, §), at the root of the tree. This
transformation reduces the number of additions. The basic operation 2:5:k becomes:

sijik i if k=0 — comp(s,)
0 k=1 — sub-divide(s, 5)
[k=2 — divide(s, j)
fi

Note that we have added on step to the loop on %k again.

13

5.10 Decomposing comp

Similarly, we may increase parallelism by transforming the sequence of additions in comp
into a tree of smaller computations:

sub-comp(i,7) i1 ¢ ;11 = node; ;;_1+node; iy 1
comp(2,7) 1 2511 = Ciju—1FCip1i-1
The two leaves of the tree apply sub-comp, the root applies comp. There are twice as
many applications of sub-comp as of comp: double as many as there are nodes on the
father level and half as many as there are nodes at the son level.

Incorporating the decomposition of comp correctly into the program requires a rather
complex transformation. Since there are more applications of sub-comp than there are
father nodes, we must accommodate them at the son level, whose index space is large
enough. A regrettable consequence is that the loops on 7 and j must be converted to
range over sons, not fathers. The resulting program is rather complex. We cannot simply
eliminate the scaling factor of 2 that we have introduced earlier; that would corrupt the
operations comp that are applied only for fathers. Instead, we are going to use the
evenness or oddness of ¢ and j and the value of k, in combination, as the program
counter. We must decide to which node to attach the two computations sub-comp on
which computation comp(z,j) depends. Let us choose nodes [z, 7] and [+1,7]; we shall
see that this results in a pleasingly regular channel layout. The basic operation i:5:k is
then defined as follows:

ik if k=0 A j even — sub-comp(t,j)
[k=1 Aieven A j even — comp(s,j)
[k=2 Aieven A j even — sub-divide(s,)
[k=3 Aieven A j even — divide(s, 5)
I else — skip
fi

?

5.11 Elimination of Variable Reflection

The program contains one more violation of the required source format: computations
refer to more than one element of some subscripted variables. This gives rise to reflections
in the systolic array: one subscripted variable may be associated with several distinct
flow vectors, i.e., may change direction and/or speed on its way through the systolic
array. A renaming of the multiple elements of a subscripted variable with new variable
names establishes the required source format and makes flow well-defined.

To obtain new variable names, we attach an m to the old names. (We have arranged
things such that the so renamed variables are moving through the systolic array, while
the variables that keep the old names are stationary.) Variables that would be read
before being assigned, must be initialized by additional copy operations. The renamings
in the computations could be performed mechanically. For the introduction of additional
copy operations, researchers are still working on a mechanical scheme. We performed all
modifications by hand.

The final program for pyramid initialization that we submit to the systolic design
method is:

14

Computations:

copy-node(i,j) :: nodem;;; ; = node; ;;_,

sub-comp(3,5) = (€;41-1,6m; j1—1) = node; ;;_1+nodem; ;41 4
comp(i,7) == (2ij0-1, #Mijg-1) *= € ju_1HCMiyy i1

sub-divide(s,7) = (@;j1-1,0m; 1 1) = 2 ;1 1+2M; 59711

divide(3,7) = node; ;i := (a;-1+am;_5;;1)/16
" Basic Operation:

i:j:k i if k=0 A j odd — copy-node(s,j)
[k=1 A j even — sub-comp(, j)
l k=2 A< even A j even — comp(z,j)
I k=3 At even A j even — sub-divide(z,7)
l k=4 A¢even A j even — divide(i,)
[else — skip

fi
Loops:

for k from 0 to 4 do
“for ¢ from 0 by 2 to 2h=1+1_9 do

for j from 0 by 2 to 2h=1+1_9 do
i:5:k

6 Father Update

Father update is similar to initialization. However, it consists of two cumulative calcu-
lations, namely that of the numerator and that of the denominator of Equ. 6. Both are
complicated by the presence of weights.

6.1 The Source Program
Father update is performed by the following set of loops:

for [from 1 to h—1 do
for i from 0 to 2"'—1 do
for j from 0 to 2"~1_1 do
for i’ from 2:—2 to 2i+1 do
for j' from 2j—2 to 2j+1 do
Li:gu’sy’
l:2:5

ZZ]ZI]I - numzyl - nungl+w f(27.77 7.])1' i i—-1 nOdez’ 7,i-1
denom, ;; := denom; ; ;+w. f(i, 5,45)m "1

l:i:j 2 node; ;= num, ;,/denom, ;,

15

r—t1 -1

1 0 | 2

| |

[
| 1 3

Figure 4: A quadrant and its four fathers. The four fathers of the nodes in the highlighted
quadrant are the boxes with numbers assigned according to the function f(s,7,4’,5).

The variable w. f(3, 4,4, j')# j;—1 holds the weight of the link between the node [¢', ;'] (at
level [-1) and one of its fathers, [¢,j]. Function f selects the father and identifies it with
a number between 0 and 3 (Fig. 4):

fi,5,4,5) = i=(i'div2)+2-(j—(j' div2))

Again, the original image is assumed loaded into array elements node; ;o (0<4,5 < Zh).
The elements of node, num and denom at higher levels of the pyramid are assumed initial-
ized to zero. Since this phase follows father selection, nodes at the son level Will be linked
to one of their four candidate fathers. That is, the Welght variables w.f (3, 7,4, ')y
will be defined. The computation follows Equ. 6 (Sect. 1.2.2).

1.77

6.2 Fixing the Level; Scaling; Loop Elimination; Commutation

To shorten the paper, we shall only consider the calculation of the numerator. The
calculation of the denominator is implemented by an identical array; the absence of the
son node [¢’,5'] does not change anything. The two systolic calculations can either be
merged (as they are in our source program) or applied in sequence. Subsequently, all
divisions can be performed in one parallel step.

Proceeding exactly is in Sects. 5.2, 5.3, 5.4 and 5.6, we obtain the program:

for k from 0 to 3 do
for ¢ from 0 by 2 to 2""*'—2 do
for j from 0 by 2 to 2"'*1—2 do
1:7:k

i:j:k i1 node; ;; := node; ;;+node; s, -w. F(z,y,k) S I
+n0de”+1 1 W F(z,_7+l k)”_l_“ 1
+n0de¢+1]l 1 “w. F(Z'I'l J7k)z+1,],l 1
+nodez+1 g4+1,0-1"W- F(Z+1,J+1 k)z+1,3+ll 1

16

The selector functions 7 and j are as in initialization (Sect. 5.4). We shall fill in the
definition of F, the version of f after scaling and loop elimination, later.

6.3 One More Commutation

The next step deals with the main difference between initialization and father update: the
presence of weights. In initialization, the previous commutation eliminates overlapping’
. of adjacent computations in the sequential program. Here, we are not quite at that
point yet (although the corresponding commutation does help). Conflicts caused by the
access of sons by their fathers remain. The following transformation eliminates these
conflicts with the same scheme as the commutation of Sect. 5.6, but scaled by a factor of
2 (i.e., one level higher). Rather than preventing the overlapping of 2x 2 neigbourhoods
(quadrants), we must prevent the overlapping of 4 x 4 neighbourhoods to keep fathers
from getting into each others way with accesses of sons. Since the iterations must remain
at the same level as for initialization, not one level higher, the change must be coded
into a program counter of the basic operation. Function g selects one of the four fathers
whose numbers are determined by function f (Fig. 4):

9(¢,7) = (¢mod2)+2-(jmod?2)

Spacing fathers four index positions apart prevents conflicts of their neighbours, but
forces us to quadruple the range of k£ from 0 to 15. We give the previous basic operation
1:j:k the new name comp:

e:j:k s if (kdiv4)=g(:,7) — comp(i, j, k mod 4)
[else — skip
fi

6.4 Increasing Independence

In the spirit of initialization (Sect. 5.7), we make the cumulative computations of the four
quadrants (Fig. 4) mutually independent. We give each quadrant its own target variable
2; j1~1, Where 2 and j are the coordinates of the father at that quadrant. This time, we do
not need the additional selector k because ¢ and j already uniquely identify quadrants.
We introduce a new computation add that reads and adds the target variables of the four
quadrants:

comp(i,5,k) 1 25,1 = node;;y_1-w.F(3,5,k); ;-1
+node; ;1y 11w . F(4,5+1,k); 4101
+node;yq 11w F(i4+1,5,k) 11 501
+node; g jr14-1 W F(E+1,541,k)01 50101
add(i,j) 2 node; ;=2 ;1 1+2ij_21-1+Zi—g i1+ Zi-2j-21-1

There are four times as many applications of comp as of add. Index k ranges from 0 to
7. The basic operation 2:j:k is now defined as follows:

17

il 1| 1]3]| 3

Figure 5: Spreading the identity of fathers to the sons of the fathers’ quadrant (compare
Fig. 4).

2:3:k v if (kmod 2)=0 — comp(i, j, k div 2)
0 (kmod2)=1 A (kdiv2)=g(:,5) — add(i,j)
[else — skip

fi

6.5 Decomposing comp and add; Elimination of Variable Reflection

The computations comp and add correspond to the computations comp and divide in
initialization. We proceed exactly as in Sects. 5.10 and 5.11. The shift of the indexing
scheme from fathers to sons transforms selector function ¢ to a new function G. Just
like f, F' determines the weight of the link between a node [z, j] and its father k (ranging
from 0 to 3). Function spread propagates the number that identifies the father in some
quadrant to the sons in that quadrant (Fig. 5).

Selector Functions:

reduce(z) = (((2-(zdiv2))mod4)div?2
spread(t,j) = reduce(i) + 2-reduce(y)
0 if spread(i,j)=k
F(i,5,k) = { spread(t,j)+k if spread(i,j)#k A spread(i,j)+k <3
6—spread(z,j)—k if spread(i,j)#k A spread(i,j)+k >3
G(¢,j) = 4-((:mod2)+ (j mod 2))
+((2 div 2) mod 2) 4 2-((¢ div 2) mod 2))

Computations:

copy-node(s, j, k) :: (node; ;;_q,nodem;;,) := node; ;;_;-w.F(i,j, k)i i1

sub-comp(,3) 1 (¢ j1-1,CM; 1) := node; ;_y+nodem; ;11 4
comp(2,7) it (Ziji—1>2Mij—1) = Cijp1+CMig jim1
sub-add(i, j) i (i j1-1,0Mi51-1) = Zijp1tH2mi g

add(i,j) i1 node; ;= a; ;;_1+am;_ g5, 4

18

Basic Operation:

e:j:k 0 if (kmod 5)=0 — copy-node(i, j, k div 5)
I (kmodb5)=1 A jeven — sub-comp(t,)
[(kmod5)=2 A ieven A j even — comp(t, 7)
I (kmod5)=3 A (kdiv10)=(G(¢,j) div2) — sub-add(z, j)
I (kmod5)=4 A (kdiv 5)=G(,j) — add(i, §)
[else — skip
fi

Loops:

for k£ from 0 to 19 do
for i from 0 by 2 to 2" ' -2 do
for j from 0 by 2 to 2h=*1_9 do
1:5:k '

7 Tree Generation

7.1 The Source Program

The following algorithm performs tree generation:

for [from H downto 1 do
for ¢ from 0 to 2" —1 do
for j from 0 to 2h=H1_1 do
for i’ from i div2 to :div2+1 do
for j' from jdiv2 to jdiv2+1 do
Li:ga'sy
Liizja’sj' i node; iy == node; ;;_y+node; ; j-w. f(i', 5, % 7)i i1

Index ! enumerates the levels of the pyramid, top to bottom; for a fixed level, ¢ and j
enumerate the nodes at the level below; i’ and j' enumerate their fathers. Function f is
taken from father update (Sect. 6.1). Array elements node; ; g are assumed to contain

the region labels derived by father selection. Elements of node at the lower levels of the
pyramid are assumed initialized to zero. The computation follows Equ. 8 (Sect. 1.3).

7.2 Fixing the Level; Scaling

As by now familiar, we omit the loop on levels and scale the indices of the father nodes
by 2:
for i from 0 to 2"7*'—1 do
for j from 0 to 2"""*'—1 do
for i’ from 2-(i div 2) by 2 to 2-(: div 2)+2 do
for j' from 2-(j div 2) by 2 to 2-(j div 2)+2 do
AP
:j:tg

19

r=T -1
@l 2|0 2
;1 3;l1 3
[

Figure 6: A neighbourhood of sixteen sons. Numbers are assigned to the sons by function
g(2,7). The four fathers shared by the sons in the highlighted quadrant are depicted by
circles.

7.3 Loop Elimination; Commutation

As for the previous phases, we collapse the inner two loops to one loop on index k, but
we do not enlarge the basic operation (this way we preserve more similarity with father
update). Then we move the loop on k to the outside:

for k from 0 to 3 do
for i from 0 to 2" "1—1 do
for j from 0 to 2h=H+1_1 do
1:5:k

i:j:k i1 node; j;_q = node; j;_i+node; s -w.k; ;1
with the following functions selecting the four fathers:

= 2:(¢div2)+2-(kmod 2)
= 2-(jdiv2)+2-(kdiv2)

S0 ey

The selector k of weights plays a similar role to the function F' in father update (Sect. 6.2).

74 One More Commutation

In father update, conflicts arise from the access of sons by their fathers (Sect. 6.3); here,
they arise here from the access of fathers by their sons (note the difference in the selector
functions 7 and 7). Following the same approach as in father update, we reduce these
conflicts by means of imposing the selector function g, now for sons, on k, which ranges
from 0 to 15. Function g is taken from father update (Sect. 6.1). Compare the resulting
numbering scheme (Fig. 6) with that of father update (Fig. 4). Again, we give the
previous basic operation ¢:j:k the new name comp:

20

i:jik e if (kdiv4)=g(2,7) — comp(s, j, k mod 4)
[else — skip

fi

7.5 Increasing Independence

We increase independence similarly as in initialization and father update. This time, we’
. need two additional indices to distinguish target variables: k, ranging from 0 to 3, will
distinguish sons, and g, ranging from 0 to 3, will give each son four different targets, one
for each member of the quadrant that the son belongs to:

comp(i,j,k) == 2.k-g(i,)i -1 3= nOdeiy agi), 420 (i) W-9(8 3)ik dgik) it ba(iR) d-1
add(i, j, k) node; ;1 = z-k-oi—Ao(k),j—Al(k),l-—l+z-k'1i+1-—Ao(k),j——A1(k),l—l
F2.k.2i_ Ao (k). j41-a1 (k) -1 Z-K-Bik1- Ao () j+1- A1 (k) 1-1

Because of the multitude of dependence patterns (there are 16 different patterns between
sons and fathers), we require a lot of selector functions.

Ag(z) = zmod2
Az) = =zdiv2
Ay(z,y) = Ao(y)—Do(z)
As(z,y) = Ai(y)—Ao(x)

Index k ranges over 8 steps. The basic operation 7:7:k is defined as follows:

2:5:k r if (kmod 2)=0 — comp(i, 7,k div 2)
[(kmod2)=1 A (kdiv2)=g(s,j) — add(i, s,k div 2)
[else — skip

fi

7.6 Decomposing add; Elimination of Variable Reflection

The computation add corresponds to computation divide in initialization. To decompose
add, we proceed exactly as in father update (Sect. 5.9). Computation comp need not be
decomposed. But, to eliminate variable reflection, we must copy respective weights and
fathers to new variables. Since both a weight and a father are accessed by four different
computations, four copys for each are required. In the resulting program, we need an
additional selector function A,.

We must make one more adjustment — a quite annoying one. It turns out that, for
nodes [, j] for which g(i,j) =0, computations copy-father(z,j) and copy-weight(i,j) can
be mapped to the sarhe step, but the method enforces a limit of one operation per step
(Sect. 2.2). To override it, we combine the two copy operations for these particular
nodes into one: copy-father-weight. An extension of systolic design methods to permit
parallelism within the processors would be desirable.

The final program is:

21

Selector Functions:

Ag(z) = zmod?2
Ayz) = zdiv2
Ay(z,y) = Ao(y)—Ao(z)
Ag(z,y) = Ai(y)—Do(z)
A z) = —-2-(zmod?2)+1
Computations:
/ wm.k.Oi,j,l_l

copy-father-weight(s, j, k) ::

copy-weight(z, , k) ::

copy-father(s, 5) ::

wm.k.li,j’,__l
wm.k.?,-’j’l_l
wm.k.3,-’j,,_1

nodem.0; ;;_,

nodem.1; ;4
nodem.2; ;;_,

\ nodem.3; ;1 1

wm.k.Oi’j’l_l
wm.k.1; ;4
wm.k.2; ;4
wm.k.3,¢,j’,_1

[

Ii

nodem.0; ;;_4
nodem.1; ;4
nodem.2; ;;_;

nodem.3; ;;_1)

Comp(i7j7 k) o z'k‘g(iaj)i,j,l—l =

T

w.0;11 \
w150
W.2; 501
w.3; 511

= node,:,j,,

w.0; ;-1
w.1; 501
w.2; 511
w.3; 51-1

= nodei,j’l

nodem.g(2, J)iy ao(i),i+ 00 (i)i-1

W k.g(2, 3) it Ag(5,k) i+ As (k)11

sub-add(z,j, k) = a.k.g(2,5); ;-1 = z°k'g(z’]_AO(J))i’j’A°(j)’l“1

2:5:k =

+2.k.g(3, 5 +1—L80(5))i 4120 (5)1-1

add(i,5,k) == node; j;_q 1= a.k.g(1,5); ji—1+a-k.g(i+A4(2), 5)ira,6)gi-1

Basic Operation:

if k=0 Aieven A j even — copy-father-weight(t,j,k div 4)

I (kmod4)=0Ak#0Aieven Ajeven — copy-father(s,j)
0 (kmod4)=0Ak#0A (kdiv4)=g(i,j) — copy-weight(s, j, k div 4)

[(kmod4)=1 — comp(i, j, k div 4)
0 (kmod4)=2 A (kdiv 8)=Ay(j) — sub-add(i,j, k div 4)
0 (kmod4)=3 A (kdiv4)=g(i,7) — add(i,j, k div 4)

[else — skip

fi

22

Loops:

for k£ from 0 to 15 do
for i from 0 to 2" '—1 do
for j from 0 to 2"""'—1 do
u:7:k

- 8 Father Selection

8.1 The Source Program
The following algorithm performs father selection:

for [from h—1 downto 1 do
for i from 0 to 2" "1 —1 do
for j from 0 to 2h="1_1 do
for ¢ from :div2 to :div2+1 do
for j' from jdiv2 to jdiv2+1 do
Lisga'sy’
l:i:g

Y) 7 Y
Lajuag o 2.0(4,5,4,7); 541 1= |node; ;;_y —nodey ;i ;|
l:Z:j o (V n: OSn S3 . w.ni,j,l_l = C(TL, Z'Oi,j,l-—l’ Z'li,j,l—l’z'2i,j,l—l7 2.3,5’.7"1__1))

The loop indices [, 7, j, i’ and j' play the same roles as in tree generation (Sect. 7.1);
function f is also as in tree generation (Sect. 6.1). The elements of array node at all
levels of the pyramid are assumed initialized with the values resulting from pyramid
initialization. Operation I:i:5:";j' computes the distances between sons and fathers fol-
lowing Equ. 3 (Sect. 1.2.1); l:i:5 computes the weights. Sect. 1.2.1 presents two different
definitions of C (Equ. 4, 5); the choice is up to the user:

1 if(Vm:0<m<3Am#n:
C(n,2.0,2.1,2.2,2.3) = zn<z.mA (zn=zm = n<m))
0 otherwise

(271% f(Vm:0Sm<3: z.m #0)

C(n,2.0,2.1,2.2,2.3)

A

1 if zn=0Af(Vm:0<m<3Am#n:
zm=0 = n<m)

. 0 otherwise

8.2 Fixing the Level; Scaling; One Basic Operation; Loop Elimi-
nation; Commutation

We proceed similarly as in initialization (Sects. 5.2-5.6). In the resulting program, com-
putation comp is the previous l:i:j:1":5' and compare is the previous l:i:5:

23

for k£ from 0 to 4 do
for ¢ from 0 to 2""*'—1 do
for j from 0 to 2"7*'—1 do
1:7:k
i:j:k if k<4 — comp(s, 5, k)
0 k=4 — compare(s, §)
fi

comp(i,j, k)2 2.k =]node,-,j’,_l—node;’g,ll

compare(t,j) 2 (Vn:0<n<3: wan,; g :=C(n,2.0;;,1,2.1;;11,2.2;1-1,2.3; 1-1))

The selector functions z and j are as in tree generation (Sect. 7.3).

8.3 One More Commutation

As in Sect. 7.4, we reduce the conflicts caused by the access of fathers by their sons by
imposing the same selector function ¢(z, j) for sons, on k (Fig. 6). Function g is taken
from father update (Sect. 6.1). Index k ranges from 0 to 19:

wy:k = if (kmod 5) <4 A (kdiv 5)=g(i,7) — comp(i, j, k mod 5)
[(kmod5)=4 A (kdiv 5)=g(:,7) — compare(z, J)
[else — skip
fi

8.4 Increasing Independence

Proceeding exactly as in Sect. 7.5, we give variable z the additional index k to give each
son four different target variables, one for each member of the quadrant to which the son
belongs. We need to add k as a parameter of compare, because z requires it:

comp(i,3, k) . 2.k.9(3,5)i51-1 = | n0Odeis Ay (3) 4 8o (5)1 — ODEi1 Ay (i,8), 42 (5.0),1
compare(s,j, k) 2 (n:0<n<3: wn;;p =
C(ry 2.0 g (k),j— a1 ()d=15 Z-K-Lit1— A (k)= Aq (k)I=1>
2525 ag (k) j+1-A1 (k)i=15 255t 1— Ag (k) j+1—Ag (k) 1=1)

All delta functions are as they were introduced in tree generation (Sect. 7.5). Index k

ranges over 8 steps. The basic operation :5:k is defined as follows:

@:j:k v if (kmod 2)=0 — comp(s, j, k div 2)
[(kmod2)=1 A (kdiv2)=g(s,j) — compare(s, j, k div 2)
[else — skip

fi

24

8.5 Elimination of Variable Reflection

The computation compare corresponds to add in tree generation (Sect. 7.6). But we

do not decompose compare as we did add. The computations that are the result of

decomposing add are associative and commutative. The same decomposition of compare

does not enjoy these properties. To eliminate variable reflections, we proceed exactly as

in Sect. 7.6, except that we must copy sons instead of weights. We use the same selector:
functions as in Sect. 7.5. '

‘ The final program is:

Selector Functions:

Ay(z) = zmod?2
Ay(z) = zdiv2
Ag(z,y) = Do(y)—Ao(2)
Az(z,y) = Ai(y)—Do(x)

Computations:

{ [wm.k.()i,j,,_,l

'wm.k.l,-,j,l_l \
’wm.k.2,~’j’1_1
\ wm.k.3,-,j,,_1

= node; ;;_;

copy-father-son(i, j, k) ::
(nodem.0; ;;_4
nodem.l,',j’z_l
nodem.2; ;4

\ \ nodem.3,-,j,l_1) /

:= node; ;|

wm.k.(),-,jyl_l
wm.k.l,-,j,,_l
wm.k.2; ;1 4
\ wm.k.3,"j’1_1

copy-son(z, j, k) :: = node; ;;_,

nodem.0; ;;_,
nodem.1;;;_y = node; .,
nodem.2; ;;_, by
\ nodem.?)i,j,,_l)

copy-father(i, j) ::

comp(3, §, k) =: z.k.g(z’,j),-,j,,_l. = N
|nodem.g (% J)i+A0 OREV.NIE) N wm.k.g(1, j)i+Az(z',k),j+A3 (5.k),1 |

compare(s, j, k) 2 (n:0<n<3: wn;; =
C(n, Z'k'oe‘—Ao(k),j—Al (k). 1-1» z.k1; 1, (k),5— A1 (k),I-13
262 Aq(k).4+1-A1 (k)I—1 Z-K-3ip1- A0 (k),j+1-A1 (R)1-1

25

Basic Operation:

wg:k o if k=0Aieven A j even — copy-father-son(s,j,k div 3)
D (kmod3)=0Ak#0Aieven Ajeven — copy-father(i,j)
[(kmod3)=0Ak#0 A (kdiv3)=g(s,5) — copy-son(t,j, k div 3)

[(kmod3)=1 — comp(,j, k div 3)

[(¥kmod3)=2 A (kdiv 3)=g(s,j) — compare(i,j, kdiv3) =
[else — skip

fi

Loops:

for k from 0 to 11 do
for i from 0 to 2"t —1 do
for j from 0 to 2=H1_1 do
1:7:k

9 Independence Declaration

The development in this section applies to all four phases.

The infusion of parallelism into the program exploits mutual independences of the
program’s operations. We must specify these independences. The usual independence
criterion for systolic design is the absence of shared variable accesses. This accounts for
the stream processing and the lack of shared memory in systolic arrays [10].

The arguments of the basic operation are ¢, § and k. We must exclude any two basic
operations with the same pair ¢ and j. In the layout that we have in mind (Sect. 3),
they will be mapped to the same processor and can therefore not be applied in parallel
or an inconsistency of step andplace results (Sect. 2.2). For varying 7, j and fixed k,
all operations are mutually independent. For varying ¢, j and varying k, there is some
independence, but declaring it does not alter the step function (we tried). Consequently,
we declare:

i0¢i1 Vj07é_71 == io:jozk ind il:jlzk

10 The Systolic Array

10.1 For a Fixed Level

We are considering level ! (0 <! < h). With the previous program and independence
declaration, our method generates the following temporal distribution:

step(i:3:k) = k

We can choose a spatial distribution. The processor layout that we had in mind all along
is place(i:5:k)=(i,7) but, as mentioned in Sect. 5.3, we scale the processor layout of level
l by a factor of 2=

26

place(i:j:k) = (3,5)-2""

If the determinant of the linear coefficients for the variable loop indices 7, 7 and k is not
zero, functions step and place are consistent [10]:

0 0 1
0 27 0

A table of all data flows can be found at the end of the paper (Tab. 1). All flows expressed
with delta functions are to neighbouring processors (at level). There are also schematics
of the arrays at the end of the paper (Figs. 7 and 8). All internal and input connections
of the depicted array segment are shown; the output connections follow by repetition.
Arrows that are partly dashed indicate channel connections between non-neighbours.
By linking the borders of the array, following the internal connection pattern, to form a
torus, we are justified in disregarding border conditions in the specification of the problem
(Sect. 5.1) and development of the systolic array. This trick is also algorithmically benign

[8].

10.2 Composition of Levels and Phases

Levels are composed in sequence. Their systolic arrays are superimposed. The processor
at point (7,7) holds the following set of node elements of the original problem statement

(Sect. 1):
{nodeyp jjz, | 0<4,5<2", 0<I<h}

We need not install separate channels for every level, even though, at first sight, the scal-
ing factor seems to require it. The dormant processors that lie between two neighbouring
active processors at level ! can be used for routing.

Subsequent phases are, again, composed in sequence and their arrays are superim-
posed.

11 Conclusions

Even though a mechanical method was used, the derivation of this systolic array still
involved a significant amount of preparation. We had to tailor the source program for the
mechanical method. Still, the use of the method was invaluable. It made our development
quicker and more precise (by use of an implementation of the method), and it gave us
immediate faith in the correctness of the systolic array.

It would be wrong to claim that our transformations of the source program were
motivated merely syntactically (i.e., to satisfy the requirements of the method). Many
aim at a specific — not just any — systolic array. These transformations required some
understanding of the range of systolic solutions. If this understanding does not exist a
priori, the use of the method helps us acquire it by deriving less desirable solutions first.
We repeat our claim that carrying out this search in the comparatively simple setting of
sequential programs is a significant advantage.

27

In our choice of transformations, we have given the benefit of parallelism higher
priority than the cost of communication. In a setting (in hardware or software) where
communication is a lot more expensive than computation, some of our transformations are
better omitted (e.g., Sect. 5.10 and the corresponding transformations in the subsequent
phases).

We selected a particular processor layout at the start of the development (Sect. 3)
and simplified the independence declaration, knowing that it would serve this processor;
- layout (Sect. 9). Systolic design methods are even more useful for searching the space
of all processor layouts based on a general independence criterion (see, for example, our
treatment of Gauss-Jordan elimination [11]).

12 Acknowledgements

Some ideas of the layout and style of transformations originate in an earlier attempt
at systolizing pyramid initialization [17]. Thanks to J. W. Sanders for discussions and
comments.

13 References

[1] P. J. Burt, T. H. Hong and A. Rosenfeld, “Segmentation and Estimation of Image
Region Properties through Cooperative Hierarchical Computation”, IEEE Trans.
on Systems, Man and Cybernetics SMC-11, 12 (Dec. 1981), 802-809.

[2] J. Cibulskis and C. R. Dyer, “Node Linking Strategies in Pyramids for Image Seg-
mentation”, in Multiresolution Image Processing and Analysis, A. Rosenfeld (ed.),
Series in Information Sciences, Springer-Verlag, 1984, 109-120.

[3] E. W. Dijkstra, A Discipline of Programming, Series in Automatic Computation,
Prentice-Hall, 1976.

[4] P. Frison, P. Gachet and P. Quinton, “Designing Systolic Arrays with DIASTOL”,
in VLSI Signal Processing II, S.-Y. Kung, R. E. Owen and J. G. Nash (eds.), IEEE
Press, 1986, 93-105.

[5] P. Gachet, B. Joinnault and P. Quinton, “Synthesizing Systolic Arrays Using
DIASTOL”, in Systolic Arrays, W. Moore, A. McCabe, and R. Urquart (eds.),
Adam Hilger, 1987, 25-36.

[6] D. Gries, “The Multiple Assignment Statement”, IEEE Trans. on Software Engi-
neering SE-4, 2 (Mar. 1978), 89-93.

[7] W. L. Grosky and R. Jain, “A Pyramid-Based Approach to Segmentation Applied
to Region Matching”, IEEE Trans. on Pattern Analysis and Machine Intelligence
PAMI-8, 5 (Sept. 1986), 639-650.

28

[8] T. H. Hong, K. A. Narayanan, S. Peleg, and A. Rosenfeld, “Image Smoothing and
Segmentation by Multiresolution Pixel Linking: Further Experiments and Exten-
sions”, IEEE Transactions on Systems, Man and Cybernetics SMC-12, 5 (May 1982),
611-622.

[9] T. H. Hong and A. Rosenfeld, “Compact Region Extraction Using Weighted Pixel
Linking in a Pyramid,” IEEE Trans. Pattern Analysis and Machine Intelligence!
PAMI-6, 2 (Mar. 1984), 222-229.

[10] C.-H. Huang and C. Lengauer, “The Derivation of Systolic Implementations of Pro-
grams”, Acta Informatica 24, 6 (Nov. 1987), 595-632.

[11] C.-H. Huang and C. Lengauer, “An Incremental Mechanical Development of Systolic
Solutions to the Algebraic Path Problem”, Acta Informatica 27, 2 (Nov. 1989), 97—
124. :

[12] T. Ichikawa, “A Pyramid Representation of Images and its Feature Extraction Fa-
cility”, IEEE Trans. on Pattern Analysis and Machine Intelligence PAMI-3, 3 (May
1981), 257-264.

[13] S. Kasif and A. Rosenfeld, “Pyramid Linking is a Special Case of ISODATA”, IEEE
Trans. on Systems, Man and Cybernetics SMC-13, 1 (Jan./Feb. 1983), 84-85.

[14] B. P. Kjell and C. R. Dyer, “Segmentation of Textured Images by Pyramid Linking”,
in Pyramidal Systems for Computer Vision, V. Cantoni and S. Levialdi (eds.), NATO
ASI Series, Vol. F-25, Springer-Verlag, 1986, 273-288.

[15] H. T. Kung and C. E. Leiserson, “Algorithms for VLSI Processor Arrays”, in In-
troduction to VLSI Systems, C. Mead and L. Conway (eds.), Addison-Wesley, 1980,
Sect. 8.3.

[16] C. Lengauer, M. Barnett and D. G. Hudson, “Towards Systolizing Compilation”,
submitted to Distributed Computing.

[17] C. Lengauer, B. Sabata and F. Arman, “A Mechanically Derived Systolic Imple-
mentation of Pyramid Initialization”, Proc. Workshop on Hardware Specification,
Verification and Synthesis: Mathematical Aspects, G. Brown and M. Leeser (eds.),
Lecture Notes in Computer Science 406, Springer-Verlag, 1990, 90-105.

[18] P. Quinton, “Automatic Synthesis of Systolic Arrays from Uniform Recurrent Equa-
tions”, Proc. 11th Ann. Int. Symp. on Computer Architecture, IEEE Computer
Society Press, 1984, 208-214.

[19] P. Quinton, “Mdpping Recurrences on Parallel Architectures”, in Supercomput-
ing 88 (ICS ’88), Vol. III: Supercomputer Design: Hardware & Software, L. P.
and S. I. Kartashev (eds.), Int. Supercomputing Institute, Inc., 1988, 1-8.

[20] S. K. Rao, “Regular Iterative Algorithms and their Implementations on Processor
Arrays”, Ph. D. Thesis, Department of Electrical Engineering, Stanford University,
Oct. 1985.

29

[21] A. Rosenfeld, “Some Useful Properties of Pyramids”, Multiresolution Image Process-
ing and Analysis, A. Rosenfeld (ed.), Series in Information Sciences, Springer-Verlag,

1984, 2-5.

[22] A. Rosenfeld, “Some Pyramid Techniques for Image Segmentation”, in Pyramidal
Systems for Computer Vision, V. Cantoni and S. Levialdi (eds.), NATO ASI Series,
Vol. F-25, Springer-Verlag, 1986, 261-271. _

1

30

Initialization / Father Update

flow(node, ;) = (0,0)
flow(node; ;;_;) = (0,0)
flow(nodem; ;;_,) = (0,—-1)-2"!
flow(c; ;1) = (0,0)
flow(em ;1) = (-1,0) 271

ﬂow(zi,j,l—l) = (0, 0)

flow(zm; ;;_4) = (0,2) o1
ﬂow(ai,j,l-—l) = (0, 0)
flow(am,;;_4) = (2,0) 21

Tree Generation / Father Selection

flow(node; ;)
flow(node; ;;_1)
flow(nodem.k; ;;_;)

(0,0)
(0,0)
(—Ao(k)a "‘Al(k))'2l—1.

flow(w.k; j;4)
flow(wm.k.g(3,5)i,-1)

(0,0)
(A0, k), —As(5, k) -2

. _ (0, A(k)—Ag(5))-2"" (tree generation)
flow(z.k.g(2,7)i j1-1) = { (Az(i,lk),Aa(]?, k))-2"! (father selection)
flow(ak.g(i,5)iju1) = (Do(k)=Ag(i),0)-2

Table 1: Data Flows

31

1 even

J even

7 oddi

7 even!

- —

7 even

J even

I 3

¢ odd

J even

1 even

j even

A

; oddi

j even!

1 even

7 odd

A

7 odd
j odd

1 even

J even

7 odd
7 odd

7 odd

j even

1 even

7 odd

7 odd
J odd

Figure 7: Initialization / Father Update — the Systolic Array

32

1 even »| 7 even ¢ even » % even
j even [* j odd [* j even [* j odd [*
A 7 A 7
A 4 A 4 A 4
¢ odd »| ¢z odd 1 odd ¢ odd
j even [* j odd j even [* j odd
A A
1 even » 2 even 1 even » ¢ even
j even [* j odd [* j even [* jodd [*
¥ 3 ¥ 3 r 3 A
h A 4 Y A 4
¢ odd » 7 odd i odd » %2 odd
7 even [* j odd j even [* j odd

Figure 8: Tree Generation / Father Selection — the Systolic Array

33

Copyright © 1990, Laboratory for Foundations of Computer Science,
University of Edinburgh. All rights reserved.

Reproduction of all or part of this work

is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

