
07361 Abstracts Collection

Programming Models for Ubiquitous Parallelism

� Dagstuhl Seminar �

Albert Cohen1, María J. Garzaran2, Christian Lengauer3, Samuel P. Midki�4

and David Chi-Leung Wong5

1 INRIA Futurs - Orsay, FR
Albert.Cohen@inria.fr

2 Univ. of Illinois - Urbana, US
garzaran@cs.uiuc.edu

3 Univ. Passau, DE
lengauer@fim.uni-passau.de

4 Purdue Univ., US
smidkiff@purdue.edu

5 Intel Corp., US

Abstract. From 02.09. to 07.09.2007, the Dagstuhl Seminar 07361 �Pro-
gramming Models for Ubiquitous Parallelism� was held in the Interna-
tional Conference and Research Center (IBFI), Schloss Dagstuhl. During
the seminar, several participants presented their current research, and
ongoing work and open problems were discussed. Abstracts of the pre-
sentations given during the seminar as well as abstracts of seminar results
and ideas are put together in this paper. The �rst section describes the
seminar topics and goals in general. Links to extended abstracts or full
papers are provided, if available.

Keywords. Parallel programming models, transactional memory, lan-
guages, compilers, optimizations, architecture, automatic parallelization

07361 Introduction � Programming Models for Ubiquitous

Parallelism

The goal of the seminar is to present a broad view of the research challenges and
ongoing e�orts to improve productivity, scalability, e�ciency and reliability of
general-purpose and embedded parallel programming.

Keywords: Parallel programming models, transactional memory, languages,
compilers, optimizations, architecture, automatic parallelization

Joint work of: Cohen, Albert; Garzarán, María J.; Lengauer, Christian; Midki�,
Samuel P.; Wong, David Chi-Leung

Extended Abstract: http://drops.dagstuhl.de/opus/volltexte/2008/1373

Dagstuhl Seminar Proceedings 07361
Programming Models for Ubiquitous Parallelism
http://drops.dagstuhl.de/opus/volltexte/2008/1377

http://drops.dagstuhl.de/opus/volltexte/2008/1373

2 A. Cohen, M. J. Garzaran, C. Lengauer, S. P. Midki� and D. Chi-Leung
Wong

High productivity at what price? a look at the IBM UPC

implementation

Gheorghe Almasi (IBM TJ Watson Research Center, USA)

Large scale machines are becoming cheaper and faster, but programming these
machines has not become easier. In this talk we examine the promise of the UPC
(Uni�ed Parallel C) language to combine productivity with high performance:
what the shortcomings of the language are and how we are addressing these to
allow UPC to scale to large machines.

Keywords: Performance, scalability, productivity

Joint work of: Almasi, Gheorghe; Cascaval, Calin; Nishtala, Rajesh

The Berkeley View 2.0

Krste Asanovic (Univ. California - Berkeley, USA)

Following on from the Berkeley View survey, the Par Lab team at UCB has been
thinking about how to develop a programming system that will make it easy to
write correct programs that run e�ciently on manycore systems. Our approach
is based on two layers: a productivity layer, which sidesteps most concurrency
issues, to be used by the majority of programmers; and an e�ciency layer, which
can achieve close to "bare metal" performance, for use by expert programmers.

Other important ingredients include a composition and coordination lan-
guage, used to safely compose parallel libraries and frameworks, and a light-
weight hypervisor layer that provides protected partitions within which user
code controls all scheduling decisions.

High Performance Library Generation with Hierarchical

Decomposition

Denis Barthou (University of Versailles, F)

Performance libraries are the building blocks of high performance applications.
These libraries, architecture-dependent, are mostly hand-tuned. On-going re-
search e�orts have led to the design of automatic library generators such as
ATLAS for linear algebra functions, SPIRAL or FFTW for signal processing
and DFT functions. These generators, domain-speci�c, automatically tune the
code according to the target architecture features.

In this talk I will present a new approach for the generation of performance
libraries. This approach is not application-speci�c: it relies on performance mea-
sures of source code kernels and on a very simple performance model in order to
build library functions from these building blocks. Performance results will be

Programming Models for Ubiquitous Parallelism 3

compared with ATLAS and vendor libraries on Itanium2 and Pentium architec-
tures. Challenges of this approach, in particular of the performance model, will
be discussed.

An Intermediate Language for Productive and E�cient

Parallel Programming: A Stream-Computing Experiment

Albert Cohen (INRIA Futurs - Orsay, F)

Moore's law on semiconductors is coming to an end. Scaling the von Neumann
architecture over the 40 years of the microprocessor has led to unsustainable
circuit complexity, very low compute-density, and high power consumption. On
the other hand, parallel computing practices are nowhere close to the portability,
accessibility, productivity and reliability levels of single-threaded software engi-
neering. In terms of productivity, the dominant parallel programming models
are often worse level than sequential programming ... in assembler. Moreover,
these models hide the key decisions about scheduling and resource management
on a variety of distributed, multi-level and heterogeneous parallel architectures.
This lack of expressiveness may be desirable for a high-level language, but inside
a compiler and at the interface with the run-time system and architecture, it
leads to unnecessary overheads, lack of scalability and performance portability.

In addition, designers of physically constrained embedded systems are used
to attaching temporal and resource requirements to the functional semantics
of programs, a requirement often contradicting the modularity and abstraction
expectations of modern programming models.

This talk advocates for an intermediate-language-driven approach to these
challenges. We report on work in progress, building on recent advances of poly-
hedral compilation (a�ne scheduling and partitioning) on one side, and on new
insights from the synchronous data-�ow paradigm. We will highlight the main
features of a stream-oriented intermediate language to bridge the productivity
and e�ciency gaps while o�ering higher levels of control to the compiler and
to the expert (library) programmer. This intermediate language is based on a
data-�ow, stream-oriented generalization of the classical (scalar) SSA form, and
also share some commonalities with transactional memory.

Keywords: Data-�ow, primitive constructs, intermediate language, e�ciency,
optimization

Predictable performances for embedded systems

Marc Duranton (NXP Semiconductors - Eindhoven, NL)

Programmable embedded systems are ubiquitous nowadays, and their number
will further increase with the emergence of Ambient Intelligence.

4 A. Cohen, M. J. Garzaran, C. Lengauer, S. P. Midki� and D. Chi-Leung
Wong

One of the �rst challenges for embedded systems is mastering the increasing
complexity of future Systems on Chip (SoC). The complexity will increase re-
lentlessly because the applications will become more and more demanding with
the algorithmic complexity growing exponentially over time. Performances can
only be reached by using all forms of parallelism. This will bring the challenges
of designing multi-core systems using all possible levels of parallelism to reach
the required performance density, of extracting all the parallelism from the ap-
plication(s) and of e�ciently mapping this e�ciency to the hardware.

But for most embedded systems, a main challenge is in having sustained per-
formances, not peak: guaranteed performances, and predictable timing behavior
are important, together with Quality of Service, safety, reliability and depend-
ability. The notion of time is key in embedded systems, and most of the current
methods and tools, inherited from mainstream computer science, did not really
cope with this extra requirement.

The new technology nodes (65nm, soon 45nm) will also bring their own chal-
lenges: the global interconnect delay does not scale with logic, the leakage power
will be more and more important, and the increasing variability of components
will be major problems for the design of complex systems.

Assembling systems with unpredictable elements will increase the global sys-
tem unpredictability. Also, systems are not really designed with separation of
concernin mind, and due to shared resources, a slight change can have a drastic
impact.

Major breakthroughs will be required in compiler technology and in map-
ping tools, both in term of correctness and in terms of performance to achieve
an e�cient use of resources (performance- and power-wise), but also for the de-
bug, validation and test of the system. Systems can no longer be veri�ed with
simulations, and we will need new validation approaches. Otherwise, the unpre-
dictability and unreliability due to the combination of use cases will make the
systems practically unusable.

Keywords: Predictability, complexity, nanophysic, concurrence, parallelism

Design Issues in Parallel Array Languages for Shared

Memory

Basilio B. Fraguela (Universidad da Coruna, E)

In this talk I shall give a brief introduction to the Hierarchically Tiled Array
(HTA), a data type on which researchers from UIUC, IBM and UDC (Spain),
have been working for some years. HTAs enable the speci�cation of locality and
parallelism in object-oriented languages in a straightforward way by means of
operations on tiles.

We have found that codes written with HTAs are very readable, and their
performance is similar to that of other approaches to express parallelism. Imple-
mentations in MATLAB and C++ have been developed, with the focus to date

Programming Models for Ubiquitous Parallelism 5

being on distributed memory systems. In the second part of the talk I shall dis-
cuss the design options, challenges and opportunities we face when considering
a shared memory implementation of HTAs .

Keywords: Array languages, parallelism, shared memory

Parallelism in Spiral

Franz Franchetti (CMU - Pittsburgh, USA)

Spiral (www.spiral.net) is a program generation system for linear transforms
such as the discrete Fourier transform, discrete cosine transforms, �lters, and
others. For a user-selected transform, Spiral autonomously generates di�erent
algorithms, represented in a declarative form as mathematical formulas, and
their implementations to �nd the best match to the given target platform. Be-
sides the search, Spiral performs deterministic optimizations on the formula level
e�ectively restructuring the code in ways impractical at the code level.

In this talk we give a short overview on Spiral and then explain how Spiral
generates e�cient programs for parallel platforms including vector architectures,
shared and distributed memory platforms, the Cell processor, and GPUs.

Library Generators for Parallel Machines

Maria J. Garzaran (Univ. of Illinois - Urbana, USA)

The growing complexity of processors has made the generation of e�cient code
increasingly di�cult. As a result, hand-tuned code can be orders of magnitude
faster than compiled code.

To address this problem library generators such as ATLAS, FFTW, or SPI-
RAL use empirical search to �nd the parameter values such as tile size or degree
of unroll that deliver the best performance for a particular machine.

In this talk, I will present our experience in the generation of an adaptive
sorting library for sequential and parallel machines, and discuss the issues that
appear when applying this technology for the automatic generation of libraries
for parallel machines.

Some Experiments on Tiling Loop Programs for

Shared-Memory Multicore Architectures

Armin Gröÿlinger (Universität Passau, D)

The model-based transformation of loop programs is a way of detecting �ne-
grained parallelism in sequential programs.

6 A. Cohen, M. J. Garzaran, C. Lengauer, S. P. Midki� and D. Chi-Leung
Wong

One of the challenges is to agglomerate the parallelism to a coarser grain, in
order to map the operations of the program to the available cores in a multicore
architecture. We consider shared-memory multicores as target architecture for
space-time mapped loop programs and make some observations concerning code
generation, load balancing and cache e�ects.

Keywords: Multicore, automatic parallelization, loop transformations, polyhe-
dron model

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1374

A Uni�ed Retargetable Design Methodology for Dedicated

and Re-Programmable Multiprocessor Arrays - Case

Study and Quantitative Evaluation

Frank Hannig (Universität Erlangen-Nürnberg, D)

The e�cient mapping of algorithms onto parallel architectures is of utmost im-
portance since many state-of-the-art embedded digital systems have to deploy
parallelism in order to increase their computational power.

This talk deals with the mapping of nested loop programs onto massively
parallel processor arrays. We present a uni�ed design methodology in order
to achieve highly parallel implementations for two kinds of architectures: (a)
dedicated, application-speci�c arrays and (b) coarse-grained, "weakly program-
mable" processor arrays. We describe which steps of the design �ow can be
conducted for both architecture types in common.

The hardware synthesis of dedicated hardware accelerators is mostly auto-
mated and only relatively few architectural constraints have to be considered.

Whereas, when targeting coarse-grained processor arrays, a large number
of architectural parameters have to be incorporated during the backend code
generation.

The proposed uni�ed retargetable design methodology is applied in several
case studies. Implementations for both target architectures with respect to per-
formance, area cost, and recon�guration time are evaluated. The results show
that both approaches have their speci�c bene�ts and drawbacks.

Keywords: Embedded systems, Parallel architectures, Multiprocessor, Compi-
lation, Domain-speci�c computing

Joint work of: Hannig, Frank; Ruckdeschel, Holger; Dutta, Hritam; Kissler,
Dmitrij; Stravert, Andrej; Teich, Jürgen

http://drops.dagstuhl.de/opus/volltexte/2008/1374

Programming Models for Ubiquitous Parallelism 7

It's not just the CPU - managing resources matters more

than ever

Tim Harris (Microsoft Research UK - Cambridge, GB)

I would like to give a short talk about some systems issues that are often over-
looked in discussions about using multi-core processors.

When thinking about desktop workloads machines vary massively in the re-
sources devoted to a given application, either because of hardware di�erences,
or because many applications and services are running concurrently on the same
machine.

The challenge is not just designing programming models that enable appli-
cations to run e�ectively across di�erent levels of hardware parallelism, but also
arbitrating the con�icting requirements of concurrent applications � e.g. I do not
want my spare CPU time used to run a disk indexing workload when the disk is
already saturated. I would rather that some cores be left idle if that processor's
memory bus is already saturated.

If two non-time-critical background tasks can each �ll all of memory then let
us run them in series rather than parallel.

What can we do to deal with these kinds of resource management problems?

A Case for Deconstructing Hardware Transactional

Memory Systems

Mark Hill (University of Wisconsin - Madison, USA)

Major hardware and software vendors are curious about transactional memory
(TM), but are understandably cautious about committing to hardware changes.

Our thesis is that deconstructing transactional memory into separate, in-
terchangeable components facilitates TM adoption in two ways. First, it aids
hardware TM re�nement, allowing vendors to adopt TM earlier, knowing that
they can more easily re�ne aspects later.

Second, it enables the components to be applied to other uses, including
reliability, security, performance, and correctness, providing value even if TM is
not widely used. We develop some evidence for our thesis via experience with
LogTM variants and preliminary case studies of scalable watchpoints and race
recording for deterministic replay.

Keywords: Hardware transactional memory

Joint work of: Hill, Mark D.; Hower, Derek; Moore, Kevin E.; Swift, Michael
M.; Volos, Haris; Wood, David A.

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1375

Full Paper:
http://www.cs.wisc.edu/multifacet/papers/tr1594_dtm.pdf

http://drops.dagstuhl.de/opus/volltexte/2008/1375
http://www.cs.wisc.edu/multifacet/papers/tr1594_dtm.pdf

8 A. Cohen, M. J. Garzaran, C. Lengauer, S. P. Midki� and D. Chi-Leung
Wong

A model for the design and programming of multi-cores

Chris Jesshope (University of Amsterdam, NL)

This talk will describe a machine/programming model for the era of multi-core
chips. It is derived from the sequential model but replaces sequential composition
with concurrent composition at all levels in the program except at the level where
the compiler is able to make deterministic decisions on scheduling instructions.
These residual sequences of instructions are called microthreads and they are
small code fragments that have blocking semantics. Dependencies that would
normally be captured by sequential programming are captured in this model
using data�ow synchronisation on variables in the contexts of these microthreads.
The resulting model provides a foundation for signi�cant advances in computer
architecture as well as operating systems and compiler development. I will take a
high-level perspective on the �eld of asynchronous distributed systems and draw
conclusions that indicate dynamic and concurrent models are the only viable
solution for this era but that these should not necessarily be visible to the users
of the system.

Keywords: Multi-cores, many-cores, programming model, resource management

Active Library Infrastructure for Multicore Performance

Paul H. J. Kelly (Imperial College London, GB)

Active libraries are libraries that play an active part in the compilation, and
especially the optimization, of their client code.

This talk motivates active libraries with a couple of examples we have built,
for linear algebra and for visual e�ects for the movie industry. The main ob-
jective is to press the argument for active libraries as the delivery medium for
performance optimisation technologies, and to map out some of the issues. As
well as concrete examples, I will explore some of the issues in developing tools
and interoperable infrastructure.

Keywords: Active Libraries, Compilers, Parallel Processing, Locality

Ubiquitous HPC Computing by Means of Reparallelizable

and Migratable OpenMP Applications

Michael Klemm (Universität Erlangen, D)

Researchers often can access various computing resources through Computa-
tional Grids. However, to actually use these resources is far from user-friendly
because of di�erent architectures, network interconnects, memory bandwidths,
etc.

Programming Models for Ubiquitous Parallelism 9

Users are also faced with the systems' schedulers that assign CPUs/nodes to
jobs. Schedulers ask the user to provide an estimate of what amount of resources
their application will demand at runtime. It is especially di�cult to estimate
wall clock times, as the runtime not only depends on the algorithms and the
degree of parallelism used in the application.

Moreover, it is in�uenced by environmental issues (e.g. the current system
load or network load) that are often di�cult to predict and change in unforeseen
ways. If a job's runtime is underestimated the scheduler terminates it. This
causes a loss of computation.

There are two common ways out to deal with the runtime estimation problem.
First, the application can be decomposed into smaller phases after each of which
the application can resume if it was terminated.

However, this increases both programming e�ort and code complexity.

Second, the runtime can be overestimated extensively (twice what is esti-
mated or maximal allowed runtime). By accepting the penalty of extra long
waiting in the cluster queues users "buy" a likely complete run of their job.
Besides waiting penalties this also causes reservation holes in the job schedules
and hence reduced overall cluster throughput.

We propose a solution to this problem that does not su�er from the above
mentioned drawbacks and that also makes Grid computing more transparent. If
an OpenMP application is about to exceed the reserved time, it is automatically
checkpointed and transparently migrated to either a new local reservation or to
a reservation on a di�erent accessible (possible remote) system. The target sys-
tem may have a di�erent architecture or network interconnect. If the available
CPU count is changed in this migration, the application is automatically repar-
allelized and adapts to the new degree of parallelism by adding to or removing
threads from the parallel region that was being executed when checkpointing
and migration commenced.

Our current research focuses on the migration strategy. We investigate a
centralized bidding system. Each accessible cluster runs a small daemon that
continuously monitors its load. In regular intervals, the daemon reports a bid
that indicates what compute power the cluster can deliver at what time in its
future job schedule.

Based on the incoming bids, the runtime system selects the most suitable
cluster as the target for migration, i.e., the one that delivers the highest com-
puting power at the earliest time. This repeats until the application has �nished.

Keywords: HPC, Cluster, OpenMP, Migration, Reparallelization

Joint work of: Klemm, Michael; Philippsen, Michael

Full Paper:
http://www2.informatik.uni-erlangen.de/Forschung/Publikationen/download/
migration-OpenMP.pdf

http://www2.informatik.uni-erlangen.de/Forschung/Publikationen/download/migration-OpenMP.pdf
http://www2.informatik.uni-erlangen.de/Forschung/Publikationen/download/migration-OpenMP.pdf

10 A. Cohen, M. J. Garzaran, C. Lengauer, S. P. Midki� and D. Chi-Leung
Wong

See also: Michael Klemm, Matthias Bezold, Stefan Gabriel, Ronald Veldema,
and Michael Philippsen. Reparallelization and Migration of OpenMP Programs.
In: Proceedings of the 7th International Symposium on Cluster Computing and
the Grid, pages 529-537, Rio de Janeiro, Brazil, May 2007.

Parallel Programming or High-level Programming?

Christos Kozyrakis (Stanford University, USA)

Parallel computing has always been the ideal �eld for math wizards and hackers.
Consistency models, locking protocols, non-blocking communication, lock-free
algorithms, and open-nesting are examples of the complex topics that the experts
love to debate. Will mere mortals ever be able to master such mechanisms in
order to process petabytes of data using thousands of cores? Unlikely...

This talk will argue that for massive parallelism to become ubiquitous, we
need to adopt higher-level forms of programming. The abstractions exposed to
the programmers should be closer to the mathematical or physical entities they
want to process (sets, collections, relations, probability distributions, arrays).
Computations should be expressed in a declarative manner that focuses on the
algorithmic properties of the computation rather than its low-level implementa-
tion and management. Notice that nothing about these high-level programming
models says that they have to be parallel. Nevertheless, I will argue that such
models often reveal the concurrency in the computation in the most �exible,
portable, and scalable manner.

For high-level programming to be e�ective for ubiquitous parallelism, we need
an extensive infrastructure that can extract, map, and manage the concurrency
it captures. This talk will hopefully initiate a discussion on some of the many
open issues:

� What are the useful high-level abstractions?

� How do we synthesize multiple abstractions into one program?

� Are domain-speci�c languages, libraries, or coding patterns the way to write
high-level programs?

� What are the necessary low-level primitives to express the concurrency and
locality characteristics in the high-level program (iterators, messages, fu-
tures, transactions, ...)?

� How much of the mapping & managing problem can we solve statically vs.
dynamically?

� How do we manage scalability and portability?

� How do we manage locality? Is scheduling memory more important that
scheduling cores?

� How does the high-level programmer tune such a program?

� How do we express and enforce QoS requirements in this environment (real-
time, power, ...)?

Programming Models for Ubiquitous Parallelism 11

� What performance overhead does the high-level approach incur? Do we need
to spend half of the resources to continuously monitor, manage, and compile
program? Is that the best we can do?

� Does knowledge of the high-level requirements of the computation helps us
bypass or optimize some of the age-old issues with parallel computing?

Keywords: High level programming models, scalable parallelism

Full Paper:
http://csl.stanford.edu/∼christos

Reconsidering Transactional Memory

James Larus (Microsoft Research - Redmond, USA)

Transactional Memory (TM) has been seen by many as a panacea for parallel
programming problems. After several years experience implementing TM and
a smaller amount of experience using TM, it is possible to make a preliminary
assessment of the value of this programming mechanism. Implementations of TM
have exposed a number of unresolved issues in the transactional programming
model and in the integration of TM into existing programming languages and
run-time environments. This talk surveys some of these problems and suggests
some open research problems that need to be resolved before TM is adopted in
its most general form.

Domain-Speci�c Programming

Christian Lengauer (Universität Passau, D)

A short basis for discussion of what a domain is and what the types and uses of
domain-speci�c programming are.

Keywords: Domain-speci�c programming

Domain-Speci�c Languages for Ubiquitous Parallelism

Calvin Lin (Univ. of Texas at Austin, USA)

This talk explains how the Broadway system o�ers a promising mechanism for
creating parallel domain-speci�c libraries. The key idea is to encapsulate domain-
speci�c information that a compiler can exploit.

http://csl.stanford.edu/~christos

12 A. Cohen, M. J. Garzaran, C. Lengauer, S. P. Midki� and D. Chi-Leung
Wong

The current Broadway compiler accepts as input the source code of an ap-
plication, the source code of a library, and a set of annotations that describe
the library. With this information, the Broadway compiler can perform domain-
speci�c data-�ow analyses and transformations.

This talk summarizes empirical results that show that Broadway success-
fully optimizes programs written using the PLAPACK parallel linear algebra
package, matching manually-optimized code that requires deep knowledge of
the PLAPACK implementation. This talk also shows how the same compiler
and annotation language, con�gured with a di�erent set of annotations, can be
used to detect a number of security vulnerabilities in a set of 18 Open Source
C programs, consisting primarily of systems utilities and servers. Finally, this
talk conjectures that the Broadway architecture is ideal for conveying domain-
speci�c information that could be used to create parallel libraries from sequential
libraries.

This new goal is signi�cantly more ambitious and would require changes to
both the Broadway annotation language and the Broadway compiler.

Keywords: Broadway compiler, domain-speci�c information, parallelization

Embedded Systems & Parallel Programming

Peter Marwedel (Universität Dortmund, D)

Embedded Systems typically have to respect tight constraints. In particular, they
have to respect tight constraints for the consumed energy. Therefore, hardware
platforms for embedded systems are characterized by their energy e�ciency. The
e�ciency of embedded processors has been increased in order to get close to the
e�ciency of bare silicon.

Ed Lee showed in 2005 that the characteristics of threads do not match well
with the requirements for speci�cation techniques for embedded systems. This
observation motivates research on models of computation other than the Von
Neumann approach.

Software generation is being used for safety-critical systems. For example
SCADE is employed for generating code for Airbus planes and dSPACE Tar-
getlink is employed for generating control software in the automotive domain.
This removes some of the problems with generating parallel programs manually.

Many systems are speci�ed in the form of task graphs. Software exists which
maps such task graphs onto parallel processors. In particular, we consider Thiele's
approach for generating optimized architectures for signal processing and Sym-
tavision's approach of mapping automotive applications onto execution control
units (ECU). This way, parallel implementations are generated without having
to care about locks, monitors etc.

Programming Models for Ubiquitous Parallelism 13

Using accelerators based on recon�gurable logic attached to a standard proces-
sor is another approach to parallel programming of embedded systems. Tech-
niques from high-performance computing should be applicable to this approach.

Keywords: Embedded Systems, Parallel Programming

ARTIST2 and ArtistDesign networks of excellence

Peter Marwedel (Universität Dortmund, D)

For its 6th Framework (round of funding), the European Commission decided
to introduce so-called networks of excellence (NoEs). Such networks consist of
excellent researchers (known for a particular area) and their research groups.
The main purpose of these networks is to improve the cooperation between
researchers and between researchers and academia. Certain amounts of money
are made available to support cooperating partners. The ARTIST2 network on
Advanced Real-Time and Embedded Systems is an example of such networks.
The scope of this network includes all aspects of real-time and embedded systems.

Due to the good amount of cooperation, there will be a follow-up network,
called ArtistDesign. ArtistDesign will start in 2008.

Keywords: Embedded System, network of excellence, ARTIST, ArtistDesign

Into the abyss: Parallel Programming for the masses

Samuel P. Midki� (Purdue University, USA)

Multicore processors have fundamentally changed the way software is developed.
In particular, no longer can features be added to software with increases in

processor clock speeds covering any overhead. Rather, programs must be parallel
to see performance gains with new processors. This forces the average program-
mer to perform duties previously only expected of heroic programmers.

A partial solution to this problem is domain speci�c languages. Three exam-
ples were given: HPF, a compiler for polymer chemistry, and Aspen, a language
for network services. We show these languages raise the level of abstraction high
enough that respective domain experts can achieve good performance on parallel
machines while remaining oblivious to the parallel structure of �nal application.

Parallelism through Digital Circuit Design

John O'Donnell (University of Glasgow, GB)

We commonly assume a sharp distinction between computer hardware and soft-
ware: the digital circuit designer takes logic gates as primitives to build proces-
sors, while the programmer takes processors as primitives to build applications.

14 A. Cohen, M. J. Garzaran, C. Lengauer, S. P. Midki� and D. Chi-Leung
Wong

Specialists in one of these domains seldom cross into the other.
For many years this division of labour has su�ced. The increased circuit

density that resulted from improved chip manufacturing has enabled circuit de-
signers to produce faster processors, and everyone bene�ted. That era has now
ended, and the current trend is toward multiprocessors rather than bigger proces-
sors.

But there is an alternative way to exploit all those extra transistors that
are now available: you can use them to provide special assistance to ordinary
processors, or even to design circuits that solve problems directly.

That approach is often unreasonable, because traditional processors solve
many problems e�ciently. There are, however, some applications where it does
make sense to combine circuit design with programming. Two examples are spe-
cialised functional units and data parallel processors. There has been progress
in languages and software tools to support such hybrid systems as well as al-
gorithms that make the most of their capabilities. Combining hardware with
software also raises some intriguing new questions in computational complexity.

Keywords: Hardware software codesign, data parallel, FPGA, models of com-
putation

Parallelism through Digital Circuit Design

John O'Donnell (University of Glasgow, GB)

Two ways to exploit chips with a very large number of transistors are multicore
processors and programmable logic chips. Some data parallel algorithms can
be executed e�ciently on ordinary parallel computers, including multicores. A
class of data parallel algorithms is identi�ed which have characteristics that
make implementation on multiprocessors ine�cient, but they are well suited for
direct design as digital circuits. This leads to a programming model called circuit
parallelism. The characteristics of circuit parallel algorithms are discussed, and
a prototype system for supporting them is described.

Keywords: Circuit parallelism, data parallelism, FPGA

Full Paper: http://drops.dagstuhl.de/opus/volltexte/2008/1372

GRAIL: A Generic Recon�gurable A�ne Interconnection

Lattice

Sanjay Rajopadhye (Colorado State University, USA)

A�ne control loops (ACLs) constitute an important class of compute and data
intensive programs. Domain speci�c SIMD architectures are an attractive target
for direct hardware implementation of such programs.

http://drops.dagstuhl.de/opus/volltexte/2008/1372

Programming Models for Ubiquitous Parallelism 15

This compilation requires, in the most general case, interconnections which
(i) are a�ne functions of the PEs and (ii) change dynamically with program
execution. We propose a recon�gurable, on-chip, interconnection network, called
GRAIL, that supports such temporally changing a�ne interconnections through
constant time recon�guration. It is generic in the sense that the same fabric can
be (re)used to support any a�ne communication pattern. The GRAIL may be
viewed as a non-blocking circuit-switched multistage interconnection network
that has an attractive cost-connectivity tradeo� vis-a-vis traditional networks.
We describe the properties of interconnections realized by a GRAIL, and show
how the switch settings as well as the dynamic recon�gurations can be deter-
mined systematically.

Keywords: Polyhedral model, a�ne dependence programs, dynamically re-
con�gurable interconnect, massively parallel architectures, non-programmable
arrays

A High Productivity Programming Infrastructure for

Parallel and Distributed Computing

Lawrence Rauchwerger (Texas A&M University, USA)

The Standard Template Adaptive Parallel Library (STAPL) is a collection of
generic data structures and algorithms that provides a high productivity, parallel
programming infrastructure with an approach that draws heavily in design from
the C++ Standard Template Library (STL).

By abstracting much of the complexities of parallelism from the end user,
STAPL provides a platform for high productivity by enabling the user to focus
on algorithmic design instead of lower level parallel implementation issues. In
this talk, we provide an overview of the major STAPL components, discuss its
framework for adaptive algorithm selection, and show that several important
scienti�c applications can be written with relative ease in STAPL and still have
scalable performance.

Automatic Parallelization with Hybrid Analysis

Lawrence Rauchwerger (Texas A&M University, USA)

Hybrid Analysis (HA) is a compiler technology that can seamlessly integrate all
static and run-time analysis of memory references into a single framework capa-
ble of generating su�cient information for most memory related optimizations.

In this talk, we will present Hybrid Analysis as a framework to perform
automatic parallelization of loops.

For the cases when static analysis does not give conclusive results, we extract
su�cient conditions which are then evaluated dynamically and can (in)validate
the parallel execution of loops.

16 A. Cohen, M. J. Garzaran, C. Lengauer, S. P. Midki� and D. Chi-Leung
Wong

The HA framework has been fully implemented in the Polaris compiler and
has parallelized 22 benchmark codes with 99% coverage and speedups superior
to the Intel Ifort compiler.

Keywords: Hybrid analysis, program analysis, automatic parallelization

Experiences with shared memory programming in

scienti�c computing

Gudula Rünger (TU Chemnitz, D)

Shared memory programming has a long history in parallel programming and is
especially appropriate for adaptive or irregular applications.

With the advent of multi-core processors there are new opportunities for
this programming style and shared memory will spread out into many areas of
software development.

The talk will present and discuss experiences with shared memory program-
ming on recent parallel machines and multi-core processors.

Keywords: Shared memory programming, multi-core programming , applica-
tions

Unleashing the power of simdization

Ayal Zaks (IBM - Haifa, IL)

Fine-grain data-level parallelism can be exploited using SIMD or short- vector
architectures, which have become ubiquitous in DSP's, desktops and servers.
Programmers have bene�ted from such instructions for some time using both
programming language extensions as well as automatic vectorization or simdiza-
tion by compilers. Yet some limitations still hinder wider usage and e�ciency
of SIMD extensions, mostly involved with gathering data to feed the SIMD
processing engine, including its programmability, compilability and portability.
In this short talk we'll discuss several approaches that aim to overcome these
limitations.

Controlling Nondeterminacy in Parallel programs with

Shared Memory

Christoph von Praun (IBM TJ Watson Research Center, USA)

When sequential programs are extended with parallel code, shared memory mul-
tithreading is the common programming model. The transition from a sequential
to a correct parallel program is however a di�cult task.

Programming Models for Ubiquitous Parallelism 17

Race conditions are a common source of error, which can introduce (unde-
sired) nondeterminism. We show how language support can alleviate the task of
parallelization: Parallel programs are by default determinate, nondeterminism
can be introduced selectively. The key idea is to de�ne an implicit order among
parallel tasks and resolve race conditions among tasks accordingly.

The ideas are illustrated as extensions of the X10 programming language.
The approach leads quickly to a correct parallelization of an application with
irregular memory access and unstructured data dependencies (umt2k). We also
show the importance of task scheduling and data access locality and demonstrate
how such performance critical aspects can be addressed at an algorithmic level.

Keywords: Parallel programming, thread level speculation, determinacy

Full Paper:
http://portal.acm.org/ft_gateway.cfm?id=1229443&type=pdf

http://portal.acm.org/ft_gateway.cfm?id=1229443&type=pdf

	07361 Abstracts Collection Programming Models for Ubiquitous Parallelism --- Dagstuhl Seminar ---
	 Albert Cohen, María J. Garzaran, Christian Lengauer, Samuel P. Midkiff and David Chi-Leung Wong

