Dagstuhl Seminar
on

Theory and Practice of Higher-Order Parallel
Programming

Organized by

Murray Cole (University of Edinburgh)
Sergei Gorlatch (Universitat Passau)
Christian Lengauer (Universitét Passau)

David Skillicorn (Queen’s University at Kingston)

Schloff Dagstuhl 17. — 21.2.1997

Contents
1 Preface

2 Abstracts

Skeletal Programming — Present and Future

Murray Cole
Combining Task and Data Parallelism within Skeleton-Based Models

Susanna Pelagatti
The Higher-Order Parallel Programming (HOPP) Model

Roopa Rangaswami
PAR Considered Harmful

Luc Bougé
Development of Parallel Programs: Towards a Systematic Approach

Sergei Gorlatch
Systematic Mapping of Higher-Order Functional Specifications

Zully Grant-Duff
SPMD Programming in Java

Susan Flynn Hummel
Abstract Parallel Machines: Organizing Higher Order Functions for Pa-

rallel Program Derivation

John O’Donnell and Gudula Rnger
Costs, Transformations, and Parallel Programming

Dauvid Skillicorn
Deriving Programs with Mixed Method and Data Parallelism

Gudula Ringer
Higher-Order Functions in Hardware Design

Mary Sheeran
BSP Cost Analysis and the Implementation of Skeletons

Jonathan M.D. Hill
A High-Level Programming Environment for Distributed Memory Ar-

chitectures

Wolfgang K. Giloi
Distributed Types: A Unifying Model of Spatial Structure in Parallel

Programming

Andreas Schramm
Deriving Parallel Algorithms using Data Distribution Algebras

Thomas Nitsche
Exploiting Maximum Parallelism in Hierarchical Numerical Applica-

tions

Alexander Pfaffinger L

A Data Flow Approach to Higher Order Functions for Recursive Nu-

merical Applications

Ralf Ebner
The Elements, Structure, and Taxonomy of Divide-and-Conquer

Z. George Mou
Translation of Divide-and-Conquer Algorithms to Nested Parallel Loop

Programs

Christoph Herrmann and Christian Lengaver
Algorithm + Strategy = Parallelism

Phil Thrinder
Runtime Interprocedural Data Placement Optimisation for Lazy Paral-

lel Libraries

Paul HJ Kelly
Functions Compute, Relations Co-ordinate

Manuel M. T. Chakravarty
Practical PRAM Programming with Fork95

Christoph W. Kessler
Costs and Semantics in Parallel Languages

Gaétan Hains
Vectors are Shaped Lists

C. Barry Jay
Alpha: A Functional Data Parallel Language Based on Polyhedra

Sanjay Rajopadhye
Structured Parallel Programming: Parallel Abstract Data Types

Hing Wing To
Yet Another Bridging Model — The Parallel Memory Hierarchy

Larry Carter
Data-parallel Skeletons

Herbert Kuchen
Skeleton-Based Implementation of Adaptive Multigrid Algorithms

George Horatiu Botorog
Classification of Parallel Implementations for Linearly Recursive Func-

tions

Christoph Wedler and Christian Lengauer
Types in Parallel Programming

Eric Violard
Formal Validation of Data-Parallel Programs: The Assertional Approach

Luc Bougé and David Cachera
Data-Parallel Programming: Can we Have High-Level Languages *and*

High-Performance?

Jan F. Prins

ii

Load Balancing Strategies to Implement Non-Uniform Data Parallel
Computations
Salvatore Orlando

3 List of Participants

iii

1 Preface

The diversity and complexity of parallel computers (both proposed and imple-
mented) drives the quest for portable, tractable and efficiently implementable pa-
rallel programming models and languages. One approach to the problem focuses
on the design and exploitation of higher-order programming and algorithmic con-
structs which can become the fundamental building blocks in such a model. An
analogy can be drawn with the historical development of sequential programming,
in which simple, relatively unstructured mechanisms, closely tied to the under-
lying architecture, have given way to more powerful, structured and abstract
concepts. Similar progress in the parallel case would raise the level of abstraction
from models in which communications (or the like) are primitive to a world in
which more complex patterns of computation and interaction are combined and
presented as parameterized higher-order program-forming constructs.

There are three more or less interwoven threads of research in the area. Work on
algorithmic skeletons focuses on the selection and implementation of appropriate
primitives (the “skeletons”), typically with a bias towards coarse-grain primitives
and control-parallel implementation. Researchers in program development apply
and extend techniques from the sequential branch of the field to the parallel case,
developing new design methodologies and models in which, as discussed above,
the level of abstraction is raised from the base level of simple concurrent activities,
and in which there are facilities for understanding the cost of the program under
development during its design. The final thread seeks to design and understand
the formal models which underpin the area, whether by viewing existing models
in a parallel light (for example, work on the Bird-Meertens Formalism as a parallel
programming model) or by developing new ones. Much work in this thread takes
a more data-parallel view of the process.

The concerns spanned by these groups range from the very pragmatic questions of
implementation techniques and real applications to the abstract world of formal
program development. Many researchers from all of the areas had already been
brought together electronically, via e-mail lists and WWW pages. The seminar
was an opportunity to establish the community and intensify the contacts.

Questions discussed at the seminar included:
e Which primitives are suitable for a parallel programming model?

e Can the selection of primitives be justified pragmatically and/or theoreti-
cally?

e To what extent should the parallelism within the primitives be apparent to
the programmer?

e To what extent can and should the implementation mechanisms attempt
to optimize the parallel structure of composed primitives?

e To what extent can this optimization be reflected in a compositional cost
model (or cost calculus)?

e To what extent do ‘sequential’ techniques in program development shed
light on the parallel case?

e What are the new transformations for the new primitives?

e How well does the approach compare with conventional models in its ability
to express ‘classical’ parallel algorithms and to derive new ones?

The 43 participants of the workshop came from 10 countries: 16 from Germany,
8 from the UK, 6 from the USA, 5 from France, 2 from Italy and 1 from each
Australia, Canada, Japan, New Zealand and Sweden. The organizers would like
to thank everyone who has helped to make this workshop a success.

Murray Cole Sergei Gorlatch Christian Lengauer David Skillicorn

2 Abstracts

Skeletal Programming — Present and Future

Murray Cole
University of Edinburgh, UK

This talk considers the common theme which unites the participants, namely
that abstraction and control of structure should play an important role in pa-
rallel programming, and suggests four related areas in which further research is
required. Firstly, in the area of “expressivity” it is as yet unclear what might
constitute the right set of types and operators (or whether such a bounded set
even exists) and what might be the most appropriate language framework within
which to express the base level of a skeletal scheme. Secondly, the challenge
of building a tractable, compositional cost calculus for such a model, and the
choice of underlying cost/computational model must be resolved. Thirdly, the
techniques and frameworks required for formal program derivation and transfor-
mation when the target context is parallel must be further developed. Finally,
our implementations and concrete programming languages must be sensitive to
the needs of “real” parallel programmers, who must be convinced that our ideas
have something to offer in practice.

Combining Task and Data Parallelism within
Skeleton-Based Models

Susanna Pelagatti
University of Pisa, Italy

This talk approaches the problem of providing both task and data parallel ab-
stractions within a system which is easy to use, portable and reaches high levels
of performance on different architectures. To achieve all this, an automatic and
efficient solution of mapping, scheduling, data distribution and grain size determi-
nation must be found. These problems are proved intractable for models allowing
parallel computations with arbitrary structure to be expressed. Moreover, paral-
lel applications appear to use a restricted set of recurring structures, possibly
nested, for both data and task parallel parts. The talk analyzes the most com-
mon paradigms of task and data parallelism (task queue, pipeline, independent
and composed data parallelism) and shows how they can be provided within a

skeleton based language (P3L). The P3L support is organized according to a tem-
plate based methodology and embeds in a transparent way good implementation
strategies for each skeleton.

The Higher-Order Parallel Programming
(HOPP) Model

Roopa Rangaswami
University of Edinburgh, UK

Programming parallel computers remains a difficult task. An ideal parallel pro-
gramming environment should enable the user to concentrate on the problem-
solving activity at a convenient level of abstraction, while managing the intricate
low-level details without sacrificing performance.

In an attempt to achieve these goals, a model of parallel programming based on
the Bird-Meertens Formalism (BMF) is investigated. It comprises of a predefined
set of higher-order functions, many of which are implicitly parallel. Programs are
expressed as compositions of these higher-order functions. A parallel implemen-
tation is defined for each of these functions and associated costs are derived. An
analyzer estimates the costs associated with different possible implementations
of a given program and selects a cost-effective one. The parallel implementa-
tion strategy output by the analyzer is input to a code generator which produces
parallel SPMD code in C4++, using MPI to handle communication.

Initial experiments involving the generation and execution of parallel code for
predicted cost-effective implementations of simple problems on the Cray-T3D
are encouraging. Further work will concentrate on the expressivity of the model.

PAR Considered Harmful

Luc Bougé
ENS Lyon, France

The evolution of computer languages is dominated by the quest of abstraction.
The programming models develop independently of the execution models, and
compiler technology becomes a central concern. A typical example of this contin-
uous trend is the advent of “structured programming” in the 70’s and Dijkstra’s
claim “GOTO Considered Harmful”.

We claim that parallel programming languages are now developing along the same
lines. The advent of data-parallel programming in the 90’s introduces structure

and abstraction. A parallel composition of sequential processes (PAR/SEQ) is
recast into a sequential composition of actions on parallel objects (SEQ/PAR).
The price to pay for this is a possible loss in expressivity and performances. We
beleive this will be outweighted by major gains:

e performance predictability (BSP);

e compositional semantic methods for program validation and refinement
(skeletons);

e new perspectives in software engineering (in particular, reusability).

The next step is probably to go from flat parallel objects (arrays) to structured
ones (lists, trees, etc.).

Development of Parallel Programs: Towards a
Systematic Approach

Sergei Gorlatch

Universitt Passau, Germany

This paper reports a case study in the development of parallel programs in the
Bird-Meertens formalism (BMF), starting from divide-and-conquer algorithm
specifications. Our long-term goal is to come up with a parallel programming
methodology which would simplify the development of correct programs with
predictable efficiency over different parallel architectures.

The contribution of the paper is two-fold: (1) we classify divide-and-conquer al-
gorithms and formally derive a parameterized family of parallel implementations
for an important subclass of divide-and-conquer, called DH (distributable homo-
morphisms); (2) we systematically adjust the mathematical specification of the
Fast Fourier Transform (FFT) to the DH format and thereby obtain a generic
SPMD program, well suited for implementation under MPI. The target program
includes the efficient FF'T solutions used in practice — the binary-exchange and
the 2D- and 3D-transpose implementations — as its special cases.

The case study demonstrates a potential of systematizing the development of
parallel programs by using higher-order skeletons and formal transformations.
More information can be found at: http://www.uni-passau.de/~gorlatch

Systematic Mapping of Higher-Order Functional
Specifications

Zully Grant-Duft
Imperial College, UK

The talk described a general method for mapping combinator (higher-order object-
less functions) applications onto loosely-coupled multiprocessors. Programs in
ACL, the source language where the combinators are a set of constant constructs,
are represented as weighted task graphs. The weight associated with a node rep-
resents computation cost, while that associated with an arc represents commu-
nication cost. Analogously, the network is represented by a system graph whose
nodes (processors) have an associated computation speed and whose arcs (com-
munication links) have an associated communication bandwidth. The mapping
algorithm clusters both graphs through identifying concurrency and connectivity
respectively, and proceeds to match clusters according to demand and capacity.
We showed experiments where the resulting mapping — and inherent scheduling
— achieves a speed up which is approximately 66 % of the optimum.

SPMD Programming in Java

Susan Flynn Hummel
IBM T.J. Watson Research Center, USA

We consider the suitability of the Java concurrent constructs for writing high-
performance SPMD code for parallel machines. More specifically, we investigate
implementing a financial application in Java on a distributed-memory parallel
machine. Despite the fact that Java was not expressly targeted to such appli-
cations and architectures per se, we conclude that efficient implementations are
feasible. Finally, we propose a library of Java methods to facilitate SPMD pro-
gramming.

Abstract Parallel Machines: Organizing Higher
Order Functions for Parallel Program
Derivation

John O’Donnell and Gudula Rnger

University of Glasgow, UK, and Universitt Saarbrcken, Germany

We need to take a flexible approach in designing a family of higher order functions
to support parallel program derivation. For example, it isn’t enough just to define
scan and give it a log time cost model, because there are actually many different
implementations with different costs, suitable in different circumstances. To help
a programmer decide what to do next in a derivation, the parallel operations need
to be defined at several levels of abstraction and to have a suitable operational
semantics at each level.

We propose Abstract Parallel Machines to address these problems, and we apply
them to two case study derivations: a parallel heat equation program and a
parallel addition algorithm.

An abstract parallel machine defines a set of parallel operations, and it expresses
these definitions using a set of computational sites (“abstract processors”) and
coordination functions (“abstract network”). This makes a suitable model of
implementation available at each level. The framework can describe higher or-
der parallel operations at high levels (SPMD), intermediate levels (scan) and low
levels (digital circuits). We have found that this approach helps guide the deriva-
tion process by clarifying the relationships between alternative realizations of a
function, and we plan to experiment with it on more complex case studies.

Costs, Transformations, and Parallel
Programming

David Skillicorn

Queen’s University at Kingston, Canada

A programming model cannot be useful for designing programs unless it possesses
a transformation system. A transformation system is not useful unless it possesses
a cost model. A cost model maps functions to program texts (that is, implicit
implementations) and transformation rules to rewrite rules.

It is useful to consider what we might expect of a cost-based transformation sys-
tem. There are two properties of interest. The first is the degree of confluence.

7

A rewriting system may be confluent, simply confluent (on components of pro-
grams), directed, or without costs altogether. The second property of interest
is convexity: it is not possible to increase the cost of a piece of a program to
decrease the cost of the whole.

Neither convexity or some degree of confluence are easy to get for parallel sys-
tems. Convexity is usually destroyed by congestion phenomena. It is possible
to get a directed convex transformation system for homomorphic skeletons by
the following process: start from a small fixed set of skeletons, form all short
compositions, define a new skeleton for each composition with a cheaper than
expected implementation, and add the defining equation as a new rewrite rule.
It also seems possible to get simply confluent rewrite systems using variants of
BSP such as miniBSP.

Deriving Programs with Mixed Method and
Data Parallelism

Gudula Riinger

Universitt Saarbrcken, Germany

The talk presented an overview of a methodology for deriving parallel programs
in the area of scientific computing with mixed method and/or data parallelism.
The final parallel programs are group-SPMD programs in a message-passing style
aimed at distributed memory machines.

The top-down derivation process contains three stages: (i) the hierarchical mod-
ule specification of the algorithmic structure designed by the application pro-
grammer, (ii) a parallel frame program resulting from decision steps (multitask-
scheduling, partitioning the sets of processors into groups, data distribution types
for input /output of each module) , and (iii) the executable message passing pro-
gram with a small set of collective communication operations. The emphasis lies
in the methodology how to transform one stage into the next one by being more
precise concerning the parallelism to be exploited in the final program.

The performance analysis is based on the structure of the frame program which
enables the programmer to test different alternatives of parallel implementation
decisions before realizing the best. There is a library of programs in the area of
linear and nonlinear algebraic or differential equation solvers realized according
to this methodology. The performance prediction mechanism was verified for the
library programs on the Intel Hypercube and Paragon, the Cray T3D, and the
IBM SP2.

Higher-Order Functions in Hardware Design

Mary Sheeran
Chalmers University of Technology, Gteborg, Sweden

I presented my experiences in using higher-order functions in hardware design.
I briefly described pFP, an extension of Backus’ FP to synchronous streams,
in which the combining forms are given a geometric as well as a behavioural
interpretation. The result is a hardware design language that is particularly well
suited for designing and reasoning about regular array algorithms. In 1986-87,
it was used by engineers at Plessey to design a video picture motion estimator
circuit that became a product. Unfortunately, the design group was closed down
shortly afterwards.

Next, I presented Ruby, a generalisation of uFP in which circuits are modelled
as binary relations on synchronous streams. I showed the kinds of higher order
functions that are used in circuit design and some examples of their algebraic
properties. Groups of higher order functions for various design idioms have been
studied, for example regular arrays (including grids and hex-connected arrays),
state machines, and high wire area networks (such as butterflies). An extensive
suite of tools has been built (by people other than me): a formalisation in Isabelle,
a transformation assistant, symbolic evaluators, visualisers, VHDL generators etc.
Ruby can perhaps be classified as an academic success. But, it is not used in
practice. We have provided many of the tools for hardware design that the
skeletons community plans to provide for high level parallel programming, yet we
have not succeeded in finding users. Why is this? A possible reason is that our
papers are cryptic and published in the wrong places. But maybe it is just that
circuit design by formal derivation is just too hard to do! I asked this question
in order to prompt the skeletons community into thinking about its plans for the
future.

Finally, I briefly described my current work with Satnam Singh on a hardware
design system that uses Haskell as the hardware description language. Further
information can be found on the Lava web page:

http://www.dcs.gla.ac.uk /“satnam/lava/main.html

BSP Cost Analysis and the Implementation of
Skeletons

Jonathan M.D. Hill
Oxford University Computing Laboratory, UK

The Bulk Synchronous Parallel (BSP) model provides a theoretical framework for
the development of predictable architecture independent parallel algorithms. One
of the strengths of BSP compared to alternative models of parallel computation is
its simple yet realistic cost model that decomposes costs into communication and
computational parts. By placing an emphasis on these two fundamental aspects
of parallel algorithms, the aim of this talk is to show how BSP cost analysis can
be used to guide algorithm design towards optimal solutions across a wide variety
of machines.

In contrast to BSP, the skeletal approach to parallelism provides an expressive
way of encapsulating general patterns of computation and communication, yet it
lacks “flesh”. The fundamental problem is the naivity of skeletal cost analysis,
which has produced a plethora of techniques that are unusable on today’s parallel
machines.

The aim of this talk is to show how BSP cost analysis can be used to develop
architecture independent skeletons at a high level of abstraction, whilst providing
a basis for optimal performance on todays (and future) parallel machines.

A High-Level Programming Environment for
Distributed Memory Architectures

Wolfgang K. Giloi
GMD-FIRST and TU Berlin, Germany

The talk presents the PROMOTER programming model for the abstract, problem-
oriented programming of message-passing architectures. PROMOTER enables
its user to formulate parallel applications in an abstract, algebraic form so that
the PROMOTER compiler can take care of the correct and time-optimal execu-
tion. PROMOTER allows the user to deal with a large variety of array-like or
hierarchical data structures that may be regular or irregular, static or dynamic.
Programs are written at a level at which the data types look homogeneous — thus
allowing the use of distributed types — although there may be local differences

10

in thread execution. Domains of computation are created as finite, possibly ir-
regular and/or dynamic substructures of a regular, static “structured universe”,
which is an index domain with group property. Communication is viewed by the
programmer as the observation of state in some domain points by other domain
points as specified by the definition of a “communication domain”. Coordination
of parallel threads is guided by a “coordination scheme” selected by the pro-
grammer. Existing coordination schemes are: lock step (bulk synchronization),
wave fronts, asynchronous iteration, chaotic iteration. PROMOTER has been
implemented on a variety of platforms and competes in efficiency with PVM or
MPI.

Distributed Types: A Unifying Model of Spatial
Structure in Parallel Programming

Andreas Schramm
GMD-FIRST, Germany

In programming massively-parallel machines, preserving locality is the major
issue (because of the physical communication incurred).

Thus, the intent of Distributed Types is to formalize the spatial structure of
data-parallel applications explicitly at a problem-specific level.

The advantages of expressiveness at a high level are that the low-level implemen-
tation aspects such as mapping and message generation can be delegated to the
system. The benefits that can be expected are more compact and comprehensible
programs and improved architecture independence.

The actual challenge of this approach is that the formalization should reflect the
structuring principles that actually occur in the relevant class of applications.
The presented talk identified the most important problems that massively parallel
applications, mainly numeric ones, pose with respect to spatial structures, and
introduced a solution.

Deriving Parallel Algorithms using Data
Distribution Algebras

Thomas Nitsche
TU Berlin, Germany

Parallel and distributed programming are much more difficult than the develop-
ment of sequential algorithms due to data distribution issues and communication
requirements.

11

This talk presents a methodology which allows the abstract description of the
distribution of algebraic data structures using data distribution algebras. The
key idea behind the concept is that a data structure is split into a cover of
overlapping subobjects which may be allocated to different processors. The own
parts of the subobjects form a partitioning of the original structure, while the
overlapping foreign parts specify communication requirements and possible data
dependencies.

Algorithms are formulated in a functional setting using skeletons as certain higher
order functions based on (parallel or sequential) covers.

This allows the programmer to specify data distribution issues on an abstract
level. Such specifications enable the derivation of explicit lower—level communi-
cation statements.

To illustrate the concept, Wang’s partition algorithm for the solution of tridiag-
onal linear equations is derived.

Exploiting Maximum Parallelism in Hierarchical
Numerical Applications

Alexander Pfaffinger
TU Mnchen, Germany

Using hierarchical basis functions for the d-dimensional multilinear function rep-
resentation, the number of the corresponding grid points can be reduced drasti-
cally from n? to O(n log(drl) n) without significant increase of the approximation
error. This leads to so-called sparse grids. Instead of flat arrays, binary trees and
d-dimensional product graphs of binary trees are the natural implementation.
This product graph also reflects the dependency structure of the algorithm. Be-
cause of its complexity, exploiting the maximum inherent parallelism is tedious.
An intuitive domain decomposition formulation of a sparse grid algorithm leads
to a parallel complexity of O(logd n) whereas an optimal implementation would
achieve O(log n) complexity. The intuitive algorithm also results in an inefficient
communication and synchronization pattern.

On the other side, coding an optimal program within conventional imperative
languages (e.g., C with PVM) is a hard issue for general dimensions d. In the new
data flow language FASAN the programmer has only to specify the mathematical
data dependencies between the parts of the algorithm. The semantics of “wrapper
streams” automatically generates direct communication channels between the
dependent nodes, whereas the data flow semantics sends the data immediately
after they are produced. Thus, the optimal parallel complexity can be expressed
even with an intuitive divide-and-conquer description.

12

A Data Flow Approach to Higher Order
Functions for Recursive Numerical Applications

Ralf Ebner
TU Mnchen, Germany

Multilevel algorithms for the numerical solution of partial differential equations
like multi-grid methods, recursive substructuring techniques or algorithms based
on sparse grids are naturally implemented as recursive programs that operate
on adaptive tree structures. They typically apply a function to each tree node
during two different kinds of tree traversal: a downward mapping, where each
function application to a node’s value depends on the result of its parent node,
and an upward mapping, where the result of all children nodes are needed. A
sequence of these algorithmic patterns can easily be expressed as combination of
higher order functions.

A higher order extension of the functional language FASAN, which generates data
flow graphs as abstract evaluation machines, permits an efficient combination of
downward and upward mappings. The unnecessary overhead of construction
and decomposition of the tree structures induced by the higher order function
combination is deviated by the data flow concept of wrapper streams replacing
ordinary tree constructors. Wrapper streams yield direct communication channels
in the data flow graph, so locality of the tree node values, often large matrices or
equation systems, is achieved.

A special syntax for partial function applications allows the neatless integration
of higher order functions within the Pascal-like syntax of FASAN.

The Elements, Structure, and Taxonomy of
Divide-and-Conquer

Z.. George Mou
The Johns Hopkins University USA

Despite its broad range of successful applications, divide-and-conquer (DC) seems
to many nothing more than an informal strategy with neither clearly defined
elements nor a mathematical structure.

We identify three types of functionally orthogonal operations: relational, com-
munication, and strongly local. The relational operations take apart and put
together the data structures, the communication operations allow the nodes in
the data structure to exchange the values, the strongly local operations map each
node independent to others to its new value.

The elementary operations are structured under the pseudomorphism model,
which is a generalization of the homomorphism. The additional mapping — pre

13

and post adjust functions — are always compositions of communication and, in
general, weakly local functions. A weakly local function makes the computa-
tion over divided components independent of each other, but not necessarily that
over each data point. A weakly local function can be in turn a DC and results
in higher-order DC’s.

DC algorithms can be classified in terms of their elements and their structures.
The concepts of premorphism, postmorphism, strict, sequential, and polymorphic
DC algorithms are explained among others. It is pointed out that the model can
be used to derive fast parallel DC algorithms for many problems in numerical
analysis, computational geometry, and other areas of applications. The Divacon
language has been implemented on a number of parallel computers, and used to
build a linear algebra library. Optimal mappings of DC algorithms to a large
class of communication networks have been proposed and used to implement
many DC algorithms on real machines. It is also pointed out that recursive
doubling, cyclic reduction, and many BMF-based algorithms are special cases of
the pseudomorphism model. The model also subsumes most known programming
skeletons such as broadcast, reduction, scan, and nested scan.

Translation of Divide-and-Conquer Algorithms
to Nested Parallel Loop Programs

Christoph Herrmann and Christian Lengauer
Universitt Passau, Germany

We present a top-down classification of Divide-and-Conquer by skeletons ex-
pressed in the functional language Haskell.

Depending on the specializations made, the resulting skeleton can be transformed
into a nested parallel loop schema using equational reasoning. Building this into a
compiler allows the user to translate a recursive Divide- and-Conquer algorithm,
expressed in terms of a skeleton, automatically to an imperative, data-parallel
loop program, e.g., in HPF. The advantages of a loop program are that it can be
optimized for a given objective function, using integer linear programming, and
that it can be implemented on various architectures using existing compilers.
The ease of use of our skeletons is illustrated by the non-trivial example of
Strassen’s matrix multiplication.

14

Algorithm + Strategy = Parallelism

Phil Thrinder
University of Glasgow, UK

The process of writing large parallel programs is complicated by the need to
specify both the parallel behaviour of the program and the algorithm that is
to be used to compute its result. The talk introduced evaluation strategies, lazy
higher-order functions that control the parallel evaluation of non-strict functional
languages. Using evaluation strategies, it is possible to achieve a clean separation
between algorithmic and behavioural code. The result is enhanced clarity and
shorter parallel programs.

Evaluation strategies are a very general concept: the talk outlined how they can
be used to model a wide range of commonly used programming paradigms, includ-
ing divide-and-conquer, pipeline parallelism, producer /consumer parallelism, and
data-oriented parallelism. Because they are based on unrestricted higher-order
functions, they can also capture irregular parallel structures.

Evaluation strategies are not just of theoretical interest: they have evolved out
of our experience in parallelising several large-scale parallel applications, where
they have proved invaluable in helping to manage the complexities of parallel
behaviour. The largest application we have studied to date, Lolita, is a 60,000
line natural language parser. Initial results show that for these programs we can
achieve acceptable parallel performance, while incurring minimal overhead for
using evaluation strategies.

Runtime Interprocedural Data Placement
Optimisation for Lazy Parallel Libraries

Paul H J Kelly
Imperial College, London, UK

We are developing a lazy, self-optimising parallel library of vector-matrix rou-
tines. The aim is to allow users to parallelise certain computationally expensive
parts of numerical programs by simply linking with a parallel rather than sequen-
tial library of subroutines. The library performs interprocedural data placement
optimisation at runtime, which requires the optimiser itself to be very efficient.
We achieve this firstly by working from aggregate loop nests which have been op-
timised in isolation, and secondly by using a carefully constructed mathematical

15

formulation for data distributions and the distribution requirements of library
operators, which together make the optimisation algorithm both simple and effi-
cient.

Functions Compute, Relations Co-ordinate

Manuel M. T. Chakravarty
TU Berlin / GMD FIRST, Germany

Parallel implementations of declarative languages suffer from two problems: first,
the lack of an explicit, but declarative notion of parallelism; and second, latency
that is induced by remote data accesses. We get a declarative notion of par-
allelism by a combination of functional and relational programming elements,
where purely functional expressions denote step-at-a-time computations, whereas
relations express co-ordination of sequential computations. The essence of such
languages is captured by an extension of the lambda calculus — called D — that
adds co-ordinating relations. D has an abstract semantics, which is realized by an
encoding into linear logic, and a parallel operational semantics, which is derived
from the abstract one.

To tackle the second problem, namely latency induced by remote access, an inte-
gration of multi-threading into the Spineless Tagless G-machine is proposed. It
uses the freedom in the evaluation order, which is guaranteed by the semantics,
to overlap different communication operations and computation with communi-
cation.

Practical PRAM Programming with Fork95
Christoph W. Kessler

Universitt Trier, Germany

With the existence of the SB-PRAM architecture, the PRAM model of parallel
computation gains practical importance. We present the PRAM programming
language Fork95. A superset of ANSI C, Fork95 offers language constructs to con-
trol different levels of relaxed exact synchronicity and shared address subspaces
according to a hierarchical group concept.

Fork95 supports many important parallel algorithmic paradigms, including data
parallelism, parallel divide-and-conquer, and pipelining. It turns out that ex-
plicit new language constructs (“skeletons”) are not required to implement these
paradigms in Fork95.

16

A compiler for Fork95 is operational and available on the WWW, together with a
simulator for the SB-PRAM, documentation, source code, and example programs.
(http://www.informatik.uni-trier.de/“kessler /fork95)

We introduce a new language construct, the join statement, which allows to
easily express synchronous parallel critical sections and provides a flexible means
to switch from asynchronous to synchronous mode of program execution. We
visualize its semantics by an excursion bus analogy, and exemplify how it can be
applied in practice to speed up, e.g., parallel shared heap memory allocation.

Costs and Semantics in Parallel Languages

Gaétan Hains
Université d’Orleans, France

We observe that parallel algorithmics requires a special point of view on pro-
gramming languages and that specific language support for it should exist.

We then ask whether there exists a general theory of parallel languages distinct
from sequential and concurrent languages. Such a theory would constitute a
platform for the design of general-purpose parallel languages. The introduction
of higher- order user-defined functions makes it hard to characterise what a pa-
rallel language should be. This is because the standard semantics of functional
languages is not fully abstract.

Our work (with Loulergue, Mullins and Charloton) on functional parallel pro-
gramming with concrete data structures is introduced as a small step towards
resolving the tension between denotational and operational views of parallel pro-
grams.

More general observations lead us to call for an integration of semi-ring theory
with domain theory with the following problem in mind. Semi-rings are distribu-
tive and non-sequential domains are not. The semi-ring cost operations need
not coincide with the information order operations; but for the sake of parallel
languages they should somehow interact. The open question is how.

Vectors are Shaped Lists

C. Barry Jay
University of Technology at Sydney, Australia

Shape theory supports abstraction of data structures independently of the data
that is stored within them. For example, one may talk of a shape that stores
real numbers, without knowing whether the shape is a tree or an array. Shape

17

information is one of the keys to successful parallel programming, as it supports
error detection, efficient data distribution and redistribution, and load balancing.
This talk will introduce our higher-order functional language Vec for vectors and
arrays, and show how shape analysis yields these desired benefits, including a
new divide-and-conquer algorithm.

If there is time, I will discuss our plans for extending Vec to support imperative
features, so that we can embed native code from other languages.

Alpha: A Functional Data Parallel Language
Based on Polyhedra

Sanjay Rajopadhye
IRISA, France

Alpha was originally designed by Christophe Mauras (1989) to serve as a tool for
manipulating and transforming systems of affine recurrence equations in the con-
text of systolic array synthesis. In this talk, I present the basic language, discuss
the motivations behind its design and describe how affine dependency functions,
polyhedral domains and unimodular transformations interact in a coherent man-
ner an empower two important properties of the language: normalization and
change-of-basis.

Recent work on Alpha involves the addition of reductions to the language, the
development of subsystems so that computations can be expressed in a modular
and hierarchical manner, definition of a (proper) subset called AlpHard for defin-
ing regular VLSI (systolic) arrays, development of a transformation system based
on the Mathematica system, tools for static analysis of Alpha programs, compila-
tion of Alpha to sequential and parallel general purpose machines, extensions of
the language to sparse domains (domains which are defined as the intersections
of lattices and polyhedra), and some ongoing work on verification.

Structured Parallel Programming: Parallel
Abstract Data Types

Hing Wing To
Imperial College, UK

The work we present is motivated by the observation that irregular computation
underlies many important applications. In addressing this problem we propose
solutions to the problem of introducing new skeletons into an existing skeleton
language.

18

At Imperial College we have developed a language for structured parallel pro-
gramming (SPP(X)) using functional skeletons to compose and co-ordinate con-
current activities written in a standard imperative language. The kernel language,
which is currently under construction, is based around the distributed array data
type. The language is thus highly suitable for expressing regular computations.
The kernel language is less suitable for expressing programs over irregular data
structures. We propose the introduction of Parallel Abstract Data Types (PADT)
to enable such programs to be expressed naturally. A PADT consists of a data
type definition of the irregular data structure and a set of parallel operators over
this type.

The introduction of PADTs raises the question of how they are to be implemented.
A direct approach would be to hand code the operators in some imperative lan-
guage with message passing. In this approach the PADT becomes part of the
kernel language. This is undesirable as this could possibly lead to an ever increas-
ing kernel language as new PADTs are found to be necessary. The disadvantages
of increasing the kernel language with the introduction of each new PADT include
the need to extend and reformulate any system for optimising combinations of
skeletons and any system for compiling programs.

We propose an alternative approach to implementing PADTs. The philosophy of
our approach is to build the PADTs on top of the existing language constructs
rather than to extend the kernel language. The encoding of a PADT into the
kernel language can be arrived at through several data type transformations thus
ensuring correctness and providing the opportunity for reasoning about optimi-
sations. We demonstrate the approach by outlining a derivation from an example
program over an irregular triangular mesh to its final regular array encoding.
We conclude the talk by suggesting that the concept can be applied to High
Performance Fortran (HPF). Currently, HPF-1 cannot directly express irregular
applications. There are proposals to extend the language with constructs for
expressing irregular applications. It may be possible to apply our techniques to
HPF-1, thus enabling irregular applications to be expressed without the need for
kernel language extensions.

There are open questions including whether HPF-1 or SPP(X) are sufficiently
rich to build all “useful” PADTs.

Yet Another Bridging Model — The Parallel
Memory Hierarchy

Larry Carter
University of California at San Diego, USA

The Parallel Memory Hierarchy (PMH) model of computation is a tree of “mod-
ules”, where each module is a finite RAM, and communication of blocks of con-

19

tiguous data occurs on tree edges. Each module is parameterized by its memory
capacity and number of children. Each edge is parameterized by the block size
and transfer time. Modules nearer the root have larger memories; those nearer
the leaves are smaller but faster (and more numerous). High performance is
achieved by moving small, compute-intensive subproblems towards the leaves,
and finding independence among the subproblems that are assigned to separate
children. It is asserted that:

e Appropriate parameter choices can be made to model a wide variety of real
computers.

e Efficient PMH programs correspond to efficient real programs.

e Future machines will have more levels, more multi-child levels, (i.e., more
parallelism), and more heterogeneity.

e Portable, efficient PMH programs can be written by having each module
break its subproblems into still smaller sub-subproblems (whose number
and size is influenced by the PMH’s parameters) that are passed to the
module’s children in a pipelined fashion.

e Hierarchical tiling, or formal methods (e.g., skeletons) may reduce the dif-
ficulty of writing PMH programs.

Data-parallel Skeletons

Herbert Kuchen
RWTH Aachen, Germany

Algorithmic skeletons are abstracts of common parallel programming patterns.
We are particularly interested in using them for distributed memory machines. In
order to reach the required generality, they are typically defined as polymorphic
higher order functions. It is possible to distinguish data parallel, task parallel,
and application oriented skeletons. Typically, data parallelism offers a better scal-
ability and it can be easier implemented efficiently than task parallelism. Thus,
we focus (at least for the time being) onto data parallel skeletons, i.e. skeletons
working on a distributed data structure, in our case arrays. These skeletons can
mainly be divided into monolithic computation operations (like map and fold),
working in parallel on the elements of an array, and monolithic communication
operations, which change the mapping of partitions of an array onto the (local
stores of the) available processors. These communication operations can perform
a coordinated overall communication (rather than the transmission of individual

20

messages) and they can thus be implemented in a way which guarantees that
typical communication problems like deadlocks known from low-level message
passing cannot occur.

A couple of techniques have been developed which allow run times similar to C
with message passing. Among them is a technique which instantiates higher order
functions to a set of corresponding first order functions. Moreover a decentralized
execution model is used where “sequential computations” are replicated on every
processor and skeletons are split in such a way that every processor takes care of
computation concerning its local share of data.

Skeleton-Based Implementation of Adaptive
Multigrid Algorithms

George Horatiu Botorog
RWTH Aachen, Germany

We are considering two issues, which, we believe, are very important in the con-
text of algorithmic skeletons: on the one hand, finding an adequate level of gener-
ality for the skeletons and on the other hand, using skeletons to solve “real-world”
problems in parallel.

To the first issue, we argue that very general skeletons may be inadequate for
expressing certain algorithms and may lead to implementations that are not very
efficient, whereas too specialized skeletons may degenerate to plain parallel li-
brary functions. Our approach is therefore somewhere in between these two
extremes, more precisely, we try to design skeletons that can be used in solving
related problems, or problems from different areas, but having a similar (e.g.,
hierarchical) structure.

We choose as our class of applications adaptive multigrid algorithms. There
are several reasons for this. Firstly, multigrid methods are non-trivial numeri-
cal applications. Secondly, there is an entire class of multigrid methods, which
build however on the same blocks, thus fitting naturally in the skeletal concept.
Thirdly, multigrid skeletons can be used in the implementation of other classes
of hierarchically structured algorithms, like for instance N-body methods.

We have then analyzed the data dependencies and access patterns that occur in
multigrid and have derived from them two kinds of operations: “horizontal” or
intra-grid operations, like relaxation or correction computation and “vertical” or
inter-grid operations like grid refinement/coarsening and data prolongation and
restriction.

Based on these data dependencies, we have derived a series of skeletons for multi-
grid. Besides point wise operations like map, we also employed “environment
operations”, which are applied to single points, together with their environment,

21

i.e. their neighboring points in the horizontal case and their parents/children in
the vertical case, respectively.

Classification of Parallel Implementations for
Linearly Recursive Functions

Christoph Wedler and Christian Lengauer

Universitt Passau, Germany

Broadcast, Reduction and Scan are popular functional skeletons which are used
in distributed algorithms to distribute and gather data. We derive new parallel
implementations of combinations of Broadcast, Reduction and Scan via a tabu-
lar classification of linearly recursive functions. The trick in the derivation is to
not simply combine the individual parallel implementations of Broadcast, Reduc-
tion and Scan, but to transform these combinations to skeletons with a better
performance. These skeletons are also linearly recursive.

Types in Parallel Programming

Eric Violard

Université Louis Pasteur, France

A wide range of research works on the static analysis of programs and forms the
foundations of parallelization techniques. They greatly benefit from methods for
the automatic synthesis of VLSI systolic circuits from recurrence equations.
These methods are based on geometrical transformations either of the iteration
space or of the index domain of arrays. In some sense, it shows that beside a
classical functional point of view on programs, geometrical issues in parallel pro-
gramming or parallelizing compilation have to be considered of main importance.
The recent developments on the data-parallel programming model reinforces this
idea.

PEI was born of this approach and was introduced to express and transform
parallel programs. It enables to define and apply pointwise operations on the basic
objects of the language, called data fields — a kind of parallel variables. Abstract
reference domains are also defined. Conformity of data fields or hypotheses on
their domains have to be checked in order to apply operations or to transform
programs. This requires PEI to be a strongly typed language in which the types
of data fields, definition domains of partial functions on Z™, can be inferred. The
type system any correct PEI expression must solve is defined by induction on the

22

syntactic constructs of the language through inference rules. It can be expressed
in a normal form by applying confluent rules and then be solved.

The typechecking algorithm has been implemented by using the Omega library
which evaluates Presburger formulae and it works for a wide range of data field
expressions.

Formal Validation of Data-Parallel Programs:
The Assertional Approach

Luc Bougé and David Cachera
ENS Lyon, France

In this talk, we specifically address the validation of Alpha programs, as specified
by Quinton and Radopadhye, IRISA, Rennes, France. Alpha programs are made
of a set of recurrence equations, one for each variable. A rich set of transforma-
tions has been developed for them, including changes of basis to separate time
and space components. But little has been done to prove abstract properties of
such programs, especially partial properties of their functional behavior. We do
not consider here properties which may depend on a particular scheduling of the
program.

We present here a framework to prove input/output properties {p} S {q}. It
is based on the search for a program invariant, very much as in the proof of a
while-loop in Hoare’s logic. Our main result is the completeness of the method:
for any valid property, there exists an invariant to prove it. In fact, this invariant
is nothing but the logical encoding of all data-flow dependencies specified by the
program. Its external from is actually exactly the same as the program text, up
to a suitable interpretation of the “=" sign. Of course, a property may also be
proved using weaker ad-hoc invariants.

Using this approach sets up a firm foundation for all kinds of “handwaving”
manipulations found in the literature about Alpha programs. It is especially
crucial when the properties under study cannot be expressed as another Alpha
program: non-linear indexing of arrays, induction arguments, etc.

23

Data-Parallel Programming: Can we Have
High-Level Languages *and* High-Performance?

Jan F. Prins
UNC Chapel Hill, USA

Nested arrays and nested data-parallelism combine to provide a uniquely ex-
pressive mechanism for the specification of irregular parallel computations. The
flattening transformation first described by Blelloch in 1990 provides a technique
to realize all nested parallelism to within a constant factor of that specified with-
out increasing total work and with perfect load balance in execution. The price
for all these advantages is that the absolute performance and performance pre-
dictability fall precipitously in the presence of non-uniform memory access costs,
and this appears, in some sense, to be inherent.

Yet uniform memory access (UMA) on real machines can be guaranteed through
a bulk-reference condition that is easily satisfied by flattened parallel programs.
Current commercial machines (such as the Cray and NEC parallel vector pro-
cessors) provide UMA for vector operations. Using these machines and the flat-
tening technique, some important irregular applications, such as the solution of
unstructured sparse linear systems, may achieve the highest absolute performance
currently available.

Load Balancing Strategies to Implement
Non-Uniform Data Parallel Computations

Salvatore Orlando
University of Venice, Italy

The efficient implementation of data parallel loops on distributed memory mul-
ticomputers is a hot topic of research. To this end, data parallel languages such
as HPF generally exploit static data layout and static scheduling of iterations.
Unfortunately, when iteration execution costs vary considerably and are unpre-
dictable, some processors may be assigned more work than others. Workload
imbalance can be mitigated by cyclically distributing data and associated com-
putations. Though this strategy often solves load balance issues, it may worsen
data locality exploitation.

In this talk we present SUPPLE (SUPort for Parallel Loop Execution), an inno-
vative run-time support for parallel loops with regular stencil data references and

24

non-uniform iteration costs. SUPPLE relies upon a static block data distribu-
tion to exploit locality, and combines static and dynamic policies for scheduling
non-uniform iterations. It adopts, as far as possible, a static scheduling policy
derived from the owner computes rule, and moves data and iterations among
processors only if a load imbalance actually occurs. SUPPLE always tries to
overlap communications with useful computations by reordering loop iterations
and prefetching remote ones in the case of workload imbalance.

The SUPPLE approach has been validated by many experiments conducted by
running a multi-dimensional flame simulation kernel on a 64-node Cray T3D. We
have fed the benchmark code with several synthetic input data sets built on the
basis of a load imbalance model. We have obtained very interesting results: for
example, for some data sets, the total overheads due to communications and the
residual load imbalance only range between 0.88% and 1.69% of the optimal time.
These results are better than those those obtained with a CRAFT Fortran (an
HPF-like language) implementation of the benchmark. This work is described in
the paper:

S.Orlando and R.Perego. ”"SUPPLE: an Efficient Run-Time Support for Non-
Uniform Parallel Loops”, Tech. Report TR-CS-96-17, Dip. di Matematica Appl.
ed Informatica, Universita’ Ca’ Foscari di Venezia, 1996 - Submitted for publica-
tion to IEEE TPDS. http://www.dsi.unive.it/ orlando/ TR96-17-paper.ps.gz

25

3 List of Participants

26

