
Christian Lengauer, Patrice Quinton,
Yves Robert, Lothar Thiele (editors):

Parallelization Techniques for
Uniform Algorithms

Dagstuhl-Seminar-Report; 66
21 .06.-25.06.93 (9325)

ISSN 0940-1121

Copyright© 1993 by IBF I GmbH, Schloss Dagstuhl, D-66687 Wadern, Germany
TeI.: +49-6871 - 2458 .

Fax: +49-6871 - 5942

Das lntemationale Begegnungs- und Forschungszentrum für Informatik (IBFI) ist eine gemein-
nützige GmbH. Sie veranstaltet regelmäßig wissenschaftliche.Seminare, welche nach Antrag
der Tagungsleiter und Begutachtung durch das wissenschaftliche Direktorium mit persönlich
eingeladenen Gästen durchgeführt werden.

Verantwortlich für das Programm ist das Wissenschaftliche Direktorium:
Prof. Dr. Thomas Beth., i
Prof. Dr.-Ing. José Encarnacao,
Prof. Dr. Hans Hagen,
Dr. Michael Laska,
Prof. Dr. Thomas Lengauer,
Prof. Dr. Wolfgang Thomas,
Prof. Dr. Reinhard Wilhelm (wissenschaftlicher Direktor)

Gesellschafter: Universität des Saarlandes,
Universität Kaiserslautern,
Universität Karlsruhe,
Gesellschaft für Informatik e.V., Bonn

Träger: Die Bundesländer Saarland und Rheinland-Pfalz

Bezugsadresse: Geschäftsstelle Schloss Dagstuhl
Universität des Saarlandes
Postfach 15 11 50

D-66041 Saarbrückr n, Germany
Tel.: +49 -681 - 302 - 4396
Fax: +49 -681 - 302 - 4397
e-mail: office@dag.uni-sb.de

Dagtuiii Workshop

Paraiieiization of Regular Aigoritiims

Organized by

Christian Lengauer (Universität Passau)
~ Patrice Quinton �8i� Rannes),

Yves Robert Lyon),
Lothar Tixieie (Universität ties Saarlandes)

Sch1oBDagstuhl 21.6. � 25.6.1993

Contents

1 Preface 4

2 Abstracts 5

Optimal Tiling of Dynamic Programming Recurrences on a Ring of Processors
Rumen Adonov and Sanjay Rajopadhye 5

The Complexity of analyzing Data Dependencies in Systems of Bounded Uni-
form Recurrence Equations A
Wolfgang Baches . 5

Transformation of Nested Loops with Modulo Indexing to Af�ne Recurrences
Florin Balasa, Frank H.M. Franssen, Franclcy V.M. Catthoor and Hugo
J. De Man . 6

Piece-Wise Linear Program Transformation
Young-il Choo . 6

A Graph Theoretic Approach to the Alignment Problem
Alain Darte and Yves Robert . 7

Delay Estimation and Clocking for Structured Circuits
Jean�Marc Delosme . 7

Estimating Data Locality in Loops
F. Bodin, C�. Eisenbeis, W. Jally and D. Windheiser 8

Toward Automatic Distribution

Paul Feantrier . 8

On the Parallelization of While-Loops
Martin Griebel 9

7 Analysis of Uniform Dependence Structures
Franz Hofting . �Cx� . . . 9

Dynamic Loop Based Scheduling for Hardware Description
Ahmed Amine Jerraya . 10

The OMEGA Project
William Pugh, Wayne Kelly, Vadim Maslov and Dave Wommacott . . 10

Representing Lattice Domains in ALPHA
Herve� le Verge and Patrice Quinton l1

Formal Extraction of Concurrent Systems
Brian McConnell . 12

Mapping a Class of Run-Time Dependencies onto Regular Arrays
Graham Megson . 12

An Approach to Systematic Design of a Variety of Processor Arrays
A. Schubert, R. Merker and H. Schreiber 13

Data Compiling from Systems of Recurrence Equations
Catherine Mongenet . 13

Reasoning About Parallel Loops With Scan Functions -or- Parallelizing Func-
tional Loops
John T. 0�Donell . 14

Nano-Threads

Constanine D. Polychronopoulos . 15

Rewriting Loops With Parametric Integer Programming
Jean Francois Collard, Paul Feautrier and Tanguy Risset 15

LACS: A Language for Af�ne Communication Structures
Sanjay Rajopadhye . 16

Veri�cation of Computational Networks
Ivan Sadinsky . 16

Accurate Data Dependence Test
Zhaoyun Xing and Weijia Shang . 17

Scheduling to Parallelize Loop with Loop-Carried Dependencies
Barbara Simons . 17

Loop Transformation Using Non-Singular Matrices
Miguel Valera-Garcia . . . � . 18

Design of a Co-processor for Recurrent Computations
Benjamin W. Wah . . . ; . 18

The Complexity of Analyzing Data Dependencies in Systems of Bounded
Uniform Recurrence Equations
Egon Wanke . 19

An Experimental Parallelizing Systolic Compiler for Regular Programs
Friedrich Wichmann . 19

-Compiling Distributed Loops onto SPMD Code
Vincent Van Dongen . 20

� Programming Multi-computers
Jan L.A. van de Snepscheut . 21

�A Mathematical Theory and its Environment for Parallel Programming
E'ric Violard . 22

3 List of Participants 23

1 Preface

Recently the two research areas of parallelizing compilation and regular array design
have found common ground when, with the help of researchers in both areas, the
parallelization of nested loops could be put on a theoretical basis in linear programming,
linear algebra, convex polyhedra and formal semantics. At the same time, the relevance
of loop parallelization has increased due to advances in parallel (particularly massively
parallel) processor technology.

This workshop aimed to bring the two research communities even closer together and
provide a forum for the discussion of questions like:

o Combine research areas of parallelizing compilation and regular array design. In
particular, mathematical models and methods have been compared, i.e. linear
(integer) programming, linear (integer) algebra, convex polyhedra, formal se-
mantic and automated proving for construction and veri�cation of parallelizing
program transformations.

o What techniques in either area are relevant for loop parallelization? Constraints
implied by different target architectures have been taken into account.

o What is the impact of recent developments in parallel hardware on loop paral-
lelization (and vice versa)?

o What degree of automation can be expected in loop parallelization and what
shape do (should) loop parallelization tools take?

Some of the presentations will be published within a special issue of �Parallel Processing
Letters� in Spring 1994.

The 40 participants of this workshop came from 8 countries, i.e. l1 from Germany, 17
from other European countries, 1 from Canada and 11 from US. The organizers would
like to thank everyone who has helped to make the seminar a great success.

Christian Lengauer Patrice Quinton Yves Robert Lothar Thiele

2 Abstracts

Optimal Tiling of Dynamic Programming
Recurrences on a Ring of Processors

Rumen Adonov and Sanjay Rajopadhye
IN RIA, Rennes

We discuss the implementation of a class of dynamic programming algorithms on a
ring. Systolic solutions for these algorithms are known, but are not efficient on general
purpose processors because of high communication costs. We develop a tiling approach
for the corresponding class of recurrences and present an optimization method for
reducing synchronization costs and communication overhead. First we analytically
determine the optimal size of the tile which minimize the parallel execution time as a
function of problem size and number of processors. Then we show that we are able
to also �nd the optimal number of processors. Since the results are analytic, they can
easily by used in parallelizing compilers to determine tile sizes automatically.

The Complexity of analyzing Data Dependencies
in Systems of Bounded Uniform Recurrence

Equations

Wolfgang Backes
Universität des Saarlandes

My talk is concerned with the determination of longest paths in periodic graphs. Peri-
odic graphs are in�nite graphs with a regular structure. They are described by a �nite
directed graph, usually called the static graph. I do stress the analysis of the structure
of longest paths, i.e. we show that the regular topology of periodic graphs is re�ected
in a regularity of longest paths. This regularity allows a �nite representation of in�-
nitely many longest paths. The major work consists is exactly describing what this
periodicity looks like. The analysis of longest paths in periodic graphs is completely
based on an investigation of the corresponding static graph.

Transformation of Nested Loops with Modulo
Indexing to Af�ne Recurrences

Florin Balasa, Frank H.M. Franssen, Francky V.M. Catthoor and
Hugo J. De Man

IMEC VSDM, Leuven

For multi�dimensional (M-D) signal and data� processing systems, transformation of
algorithmic speci�cations is a major instrument both in code optimization and code
generation for parallelizing compilers and in control flow optimization for (application
speci�c) architecture synthesis. State-of-the-art transformation techniques are limited
to affine index expressions. This is however not sufficient for many important applica-
tions in image, speech, and numerical processing. In this paper, a novel transformation
method is introduced, oriented to the subclass of algorithm speci�cations that contains
modulo expressions of affine functions to indexed M-D signals. The method employs
extensively the concept of Hermite normal form. The computational complexity is
polynomial and only integer arithmetic needs to be applied.

Piece-Wise Linear Program Transformation

Young-il Choo
Yale University

Data �elds are functions de�ned over �nite index domains that represent computations
over distributed data structures. The index domains embody the shape of the compu-
tation. As functions, data �elds can be de�ned recursively and transformed according
to simple algebraic rules. Mappings between index domains can be used to specify
various types of program optimizations for distributed memory machines. Within this
framework, Warshall�s algorithm for computing the transitive closure can be succinctly
speci�ed, but its naive implementation is very inefficient. After applying a standard
method to eliminate broadcasting, we showed how to transform the program into a new
one with a more e�icient piece-wise linear schedule. The key insight is in formulating
the piece-wise linear domain morphism. Next, the inverse needs to be de�ned. Then,
the new program can be described in a purely algebraic way.

A Graph Theoretic Approach to the Alignment
Problem

Alain Darte and Yves Robert

ENSL, Lyon

This talk deals with the problem of aligning data and computations when mapping
uniform or affine loop nests onto SPMD distributed memory parallel computers. For
affine loop nests we formulate the problem by introducing the communication graph
which can be viewed as the counterpart for the mapping problem of the dependence
graph for scheduling. We illustrate the approach with several examples to show the
difficulty of the problem. In the simplest case, that of perfect loop nests with uniform
dependences, we show that minimizing the number of communications is NP-complete,
although we are able to derive a good allocation matrix in most practical cases.

Delay Estimation and Clocking for Structured
Circuits

J ean-Marc Delosme

Yale University

Digital circuits often consist of several interconnected arrays consisting of translations
of identical cells. Closed form expressions -in terms of cell delays and arrays dimensions-
that approximate the delay between circuit inputs and outputs enable quick perfor-
mance evaluation for such circuits. These expressions may be used to compare different
circuit structures and guide the design of cells. The critical paths within the arrays
are found by first enumerating all possible paths, without introducing extraneous ones,
assuming unbounded arrays. Then the constraints on these paths due to the physical
boundaries of the arrays are introduced as well as the time at which the inputs are avail-
able. Under reasonable modeling assumptions the delay estimation amounts to solving
many small, parameterized, linear programs. This set up enables the interactions be-
tween arrays to be handled via a simple relaxation technique. The technique suggests
an approach for obtaining near-optimal pipelined or bit-serial implementations of such
circuits, by combining a search over tes within the cells to roughly equalize their delays
(and approximating the delay of these groups by their upper bound) with the appli-
cation of the delay estimation procedure. The resulting approximated computation
wavefronts specify where the registers should be inserted. The regularity (piecewise

7

linearity) of these schedules facilitates the layout of pipelined systems and is essential
to the derivation of bit�serial implementations.

Estimating Data Locality in Loops

F. Bodin, C. Eisenbeis, W. Jally and D. Windheiser
INRIA, Rocquencourt and Rennes

One major point in loop restructuring for data locality optimization is the choice
and the evaluation of data locality criteria. In this talk, we show how to compute
approximations of window sets de�ned by Garron, Jalky and Gallivan. The window
associated with an iteration i describes the �active� portion of an array: elements that
have already been referenced before iteration i and that will be referenced after iteration
i. Such a notion is extremely useful for data localization because it identi�es the
portion of arrays that are worth keeping in local memory because they are going to be
referenced later. The computation of these window approximations can be performed
symbolically at compile time and generates a simple geometrical shape that simpli�es
the management of the data transfers. This strategy allows �derivation of a global
strategy of data management for local memories which may be combined ef�ciently
with various parallelization and/or vectorization optimizations. Indeed, the effects
of loop transformations �t naturally into the geometrical framework we use for the
calculations. The determination of window approximations is studied both from a
theoretical and a computational point of view and examples of applications are given.

Toward Automatic Distribution

Paul Feautrier
Laboratoire MASI

This paper addresses the problem of distributing data and code among the processors
of a distributed memory supercomputer. Provided that the source program is amenable
to data �ow analysis, one may identify potential communication and set up the prob-
lem of removing as many exchanges as possible by clever placement of the data. Such
a placement is speci�ed by a function which gives the identity of the virtual proces-
sor on which each elementary calculation is executed. One has then to �realize� the
virtual processors on the PE. The placement function is obtained by solving a system
of over-determined linear homogeneousequations by a process analogous to �Gaussian

elimination. The resulting program satis�es the �owner computes rule� and is remi-
niscent of two -level distribution schemes like HPF�s ALIGN and DISTRIBUTE, or the
CM-2 virtual processor system '

On the Parallelization of While-Loops v

Martin Griebel
Universität Passau

WHILE-loops can be interpreted as FOR-loops with a varying upper bound which
has to be evaluated after every iteration. The index domain of a perfect loop nest
containing WHILE-loops is a polyhedron (not a polytope) of which at run time only
some �in general not convex� subspace, called the execution space is executed. The loop
nest is parallelized via an affine space-time-mapping. Then the transformed execution
space is converted into a nest of target loops. Since this is not always possible without
enumerating holes a criterion for the transformation matrix is presented to allow a

precise scanning.

Analysis of Uniform Dependence Structures

Franz Hofting
Universität GH Paderborn

A formal modelling of the dependencies between variable instances in terms of depen-
dence graphs and reduced dependence graphs is given and restated in terms of matrices.
Thereby only uniform unconditional systems without parar*-eters are considered. The
matrices representing these form of dependencies are then used to formulate questions
on properties of dependence structures as systems of linear equations,

Am = b

a: 7¬ Ö
a: nonnegative integer

where A is de�ned by the dependency structure, b is some integer vector and the so-
lution a: must observe a certain connectivity property. Properties of interest are, for
instance, computability, parallelizability of two variable instances and determining the
best possible computation time of the dependency system. By means of the system of
equations it is shown that the problem mentioned above can be solved in nondetermin-
istic polynomial time. It is also shown that in several restricted versions the problem

9

remain NP�hard. For the practically relevant restriction where the dimension of the
problem is a constant and the index dependencies are given in unary the best possible
value for a schedule of the dependency system can be computed in polynomial time.
The results have been published in the proceedings of SODA 93.

Dynamic Loop Based Scheduling for Hardware
Description

Ahmed Amine J erraya
INPG/TIMA, Grénoble

We present an algorithm that can effectively schedule large control-�ow graphs. This
algorithm is an improvement of the trace scheduling developed by Fisher (1981). The
new algorithm allows the inclusion of loop feed back edges in the control �ow graphs. It
also interrupts the generation of traces on the �y. The latter eliminates the generation
of false paths thereby avoiding the path explosion problem. These improvements make
the algorithm able to handle complex descriptions with an acceptable response time.

The OMEGA Project

William Pugh, Wayne Kelly, Vadim Maslov and Dave Wommacott
University of Maryland

We �rst give a summary of our research, including:

o The Omega test: algorithms dealing with linear constraints over integer variables.

0 Standard array reference alias detection.

o Analysis of value-based array data dependences.

o Narrowing the search for unexplored parallelism.

o Uni�ed framework for reordering transformations.

We then describe our system for transforming programs which has two parts:

10

1. THE FRAMEWORK: We present a framework for unifying iteration reordering
transformations such as loop interchange, loop distribution, skewing, tiling, index
set splitting and statement reordering. The framework is based on the idea that a
transformation can be represented as a schedule which maps the original iteration
space to a new iteration space. The framework is designed to provide a uniform
way to represent and reason about transformations. As part of the framework, we
provide algorithms to assist in the building and use of schedules. In particular,
we provide algorithms to test the legality of schedules, to align schedules and to
generate optimized code.

2. DECIDING WHICH TRANSFORMATION TO APPLY: We show how we can

estimate the performance of a program by considering only the schedule from
which it was produced. We also show how to produce an estimate of the maximum
performance obtainable by extending a partially speci�ed schedule. Our ability
to estimate performance directly from schedules and to do so even for partially
speci�ed schedules allows us to efficiently �nd schedules which will produce good
code.

Representing Lattice Domains in ALPHA

Hervé le Verge and Patrice Quinton
Universität Passau and IRISA, Rennes

The synthesis of regular iterative algorithms relies basically upon the expression and
transformation of systems of recurrence equations. Another equivalent formalism is
based upon a language of functions mapping integral polyhedra (their domains) onto
some value type. This approach has been taken in Alpha, Crystal, and more recently,
in PEI. One problem which remains largely unsolved is the possibility of expressing
functions on more general domains, such as for example lattices. This talk deals with
this problem. We present the Alpha language, its properties. We illustrate this problem
called �lattice extension� on the description of a multi-rate system. We then presents
solution to this problem based on the possibility to describe lattices as projections
of higher dimensional dense lattices. This extension can be used to model efficiency
de�cient systolic arrays, two-level pipelined arrays, and multi-rate systems.

11

Formal Extraction of Concurrent Systems

Brian McConnell
University of Edinburgh

We present an overview of the FECS (Formal Extraction of Concurrent Systems)
project. FECS aims to analyze formally strategies for developing parallel systems
from abstract speci�cations. In this talk we present an approach for deriving synchro-
nous systems from specifications in a language based on first order equational logic.
The approach we follow is a �proofs to programs� approach based on translating a
proof of correctness of a speci�cation into a function scheme in the form of a collection
of simultaneous primitive recursive equations. We argue that simultaneous primitive
recursive equations are a model of a certain class of parallel algorithms, known as Syn-
chronous Concurrent Algorithms (SCAs). Finally, we observe the similarity between
generalized simultaneous primitive recursive equations and recurrence equations

(and their standard models) and speculate on the application of transformation tech-
niques for recurrence equations to systems of equations derived from the �proof to
programs� approach.

Mapping a Class of Run-Time Dependencies onto
Regular Arrays

Graham Megson
University of Newcastle

The production of regular computations using algorithmic engineering techniques is
beginning to play an important role in the synthesis of massively parallel and VLSI
processor .rrays. In this paper we widen the class of algorithms that can be formally
synthesized by introducing a mapping theorem for a class of algorithms with run-time
dependencies. The technique is illustrated by deriving uniform recurrences for the so
called knapsack problem, the resulting systolic array is known to be optimal.

12

An Approach to Systematic Design of a Variety of
Processor Arrays

A. Schubert, R. Merker and H. Schreiber
Technische Universität Dresden

A design method is considered that is aimed at designing a variety of processor arrays
for one initial algorithm speci�cation. The initial algorithm speci�cation of our ap-
proach is a single assignment code, which may contain global data with non-localized
data dependencies in the several sets of statements on several index spaces. The single
assignment code is associated with a dependence graph on the iteration-level since it
realizes only data dependencies between different iterations. Therefore, the graph holds
both local data dependencies and global data references. To handle the inhomogeneity
of the graph, control data are used. During the design process different transforma-
tions are selected; optimization strategies are used to determine localization of data
dependencies. With this approach we provide the possibility to choose from among
a variety of �good� processor arrays (near the minimal number of processors and the
minimal time) the one best suited to the appropriate application.

Data Compiling from Systems of Recurrence
Equations

Catherine Mongenet
Université Lois Pasteur, Straßburg

The objective is to compile systems of recurrence equations in order to get ef�cient
implementations on distributed memory machines. One issue when focusing on dis-
tributed memory architectures is to minimize the number of communications, i.e. to
distribute the data in such a way that the virtual processors use as much as possible
local data. Automatic parallelization of such systems of equations are well-known tech-
niques due to the systolization studies. They are founded on a dependency analysis
from which one determines a space/ time mapping. This mapping usually describes an
af�ne timing or scheduling function and a linear allocation function. The timing func-
tion indicates at which time step an elementary computation of the system is executed
while the allocation function speci�es on which virtual processor it is executed. Since
the number of communications of a parallel solution is related to the allocation, we first

13

show how to determine an allocation which minimizes the number of communications

and then we present how to compile these communications and the virtual processors
code. These techniques are applied to systems of uniform recurrence equations and
then generalized to systems of affine recurrence equations. They are based on the de-
pendency analysis, more precisely the notion of utilization sets. For a given result item
Y(zo) we call utilization set related to this item, the set of all the point using it as a
data for their own computation. The notion of band is then introduced and used to
determine an optimal allocation. Once an optimal allocation has been computed and
a schedule has been chosen, one can generate the processor code. The data depen-
dencies are compiled either in terms of communications or in terms of local registers.
This compiling process uses the dependency information to automatically synthesize
the code, in particular the send/ receive instructions and the register management.

Reasoning About Parallel Loops With Scan
Functions -or- Parallelizing Functional Loops

John T. O�Donell
University of Glasgow

The family of scan functions provides a general mechanism for expressing iteration
over arrays. By restricting the function being scanned, we can often transform a
general iteration into a more efficient one targeted for an appropriate parallel machine.
Depending on the function being scanned, the result may be

1. The scan is inherently sequential because of data dependencies.

2. The scanned function is associative, allowing a log time parallel implementation
using a tree machine.

3. The scanned function performs near-neighbor communication, leading to a trans-
formed version that does unit-time communication followed by a parallel map -
this may be time 6(1).

This approach exploits the expressiveness of functional languages: the original general
iteration says nothing about the implementation, while the �nal result may be a parallel
program where the communication and the complexity are made explicit.

14

Nano-Threads

Constanine D. Polychronopoulos
University of Illinois

In this presentation we address new directions in the development of powerful compil-
ers and operating systems for high-performance multiprocessors, and in particular we
will overview the design and characteristics of a new compiler-based threads model.
The resulting environment � called auto-scheduling - becomes possible due to recent
progress in control dependence analysis and optimization, which will also be reviewed
in this presentation. Our work is based on the position that the problem of parallel pro-
gramming is too complex to be entirely solved by the user, although at the same time,
the environment must provide the necessary mechanisms for user feedback / interaction,
or in case of expert users, the ability to overwrite the compiler. Full automation of
the process of thread packaging, creation and scheduling is achieved via �intelligent�
code embedded in user code by the compiler, following extensive data and control
dependence analysis.

Rewriting Loops With Parametric Integer
Programming

Jean Francois Collard, Paul Feautrier and Tanguy Risset
ENSL, Lyon and Laboratoire MASI

Most parallelization techniques for DO-loop nests are based on re-indexation. Re-
indexation yields a new iteration space, which is a convex integer polyhedron defined
by a set of af�ne constraints. Parallel code generation needs this to scan all the integer
points of this convex, thereby requiring the construction of a new DO-loop nest.� We
detail an algorithm for this purpose, which relies on a parameterized version of the
dual simplex algorithm. We show how the resulting loop nest and especially the loop
bounds can be kept simple and streamlined, thus reducing the control overhead of
parallelization to a minimum.

15

LACS: A Language for Affine Communication
Structures

Sanjay Rajopadhye
IRISA, Rennes

We propose a language which provides a uni�ed notation for specifying parallel as-
signrnent, communication and reduction operations in massively parallel programs.
It is designed around a Parallel Assignment Statement (PAS) and Atomic Commu-
nication Events (ACE�s), and can be used to describe most common communication
libraries such as one-to-one transfer, broadcast, personalized communication structures
and scans as APL-style one-liners. LACS uses convex polyhedra and a�ine transforma-
tions. This allows works from linear algebra to be used for compile-time analysis. We
can automatically detect whether a PAS is well-formed, has write con�icts etc.. We
can also detect the presence of communication schemes like scatters, gathers, reduces,
scans and their generalizations.

Veri�cation of Computational Networks

Ivan Sadinsky
Delft University of Technology

The verification objective is set to compare two networks for input-output equivalence.
A network communicates with its environment via sequential inputs and outputs and is
seen as an asynchronous multi-rate dynamical system. An input-output representation
is suggested that is a recurrence which unrolls to an in�nite output process of symbolic
expressions. An expression maps input token values to an output token value by depth
�rst tree evaluation semantics. For two networks under comparison, the input-output
representation establishes formal correspondence between a finite number of expressions
over a common alphabet of prime function symbols. The veri�cation process starts
with transforming each network to an equivalent sequential program, i.e. to a single
node. Next, the sequential program is compiled into the input-output representation
by applying transformation primitives such as sequential composition of basic blocks

and branch uni�cation, as well as more complex loop transformations. Finally, the
corresponding expressions from the input-output representation of two systems are
compared. The comparison is a maximal common subgraph problem, which is known

16

to be polynomial for trees. Eventually, a resulting difference is output as a function
equation that becomes a condition for the equivalence of two networks which may be
asserted as a mathematical identity by the user.

Accurate Data Dependence Test

Zhaoyun Xing and Weijia Shang
University of Southwestern Louisiana

To test if there is a dependence between different iterations in a loop can be converted
to checking if there exist integral points in a polyhedron described by a set of linear
equations and inequalities. In this paper, two transformations of data dependence test
problems with any number of linear equations to equivalent test problems with only one
linear equation are presented. Also, three dependence test methods, interval test, tent
function method and sequence test, are proposed. The interval test is motivated by
I-test, and is applicable only to test problems with one equation. In the tent function
method, a nonnegative and piecewise linear function, called tent function, is de�ned
on the polyhedron whose minimum value is zero iff the polyhedron contains integers.
Then a piecewise linear program is used to find the minimum value of this tent function.
By using the modi�ed simplex method for linear programming, a polynomial average
time method is proposed to test dependences accurately. In the sequence test, data
dependence test problems are first transformed to test problem with only one linear
equation. Then, a sequence of ef�cient test methods applicable only to test problems
with one equation are used in order of their time complexities. If one of those methods
succeeds, then stop. If not, a more expensive method is tried. If all those methods
do not work, then the tent function method is applied which always gives accurate
results with polynomial average time. The methods reported improve some previously
proposed methods in aspects of accuracy, applicability and efficiency. This research
was supported in part by Louisiana Education Quality Support Fund under contract
number LEQSF(191-93)-RD�A-42 and by the National Science Foundation under Grant
MIP-9110940.

Scheduling to Parallelize Loop with Loop-Carried
Dependencies

Barbara Simons
IBM, Palo Alto

Loop parallelization, an important tool for automatic parallelization of code written in a
sequential language such as Fortran, assigns separate invocations of a loop to different

17

processors. It is often necessary to delay the start time of loops to avoid violating
data dependence. We study a scheduling problem, called the Delay Problem, that
approximates the problem of minimizing the delay in the start time of the loops. Our
major result is a fast polynomial time algorithm for the case in which the precedence
constraints (obtained from the �backwards� loop carried dependences) are a forest of
in-trees or a forest of out-trees. Since most of the dependence graphs derived from
loop-carried dependences for the Delay Problem are sparse, the algorithm can be used
as a heuristic for solving the general Delay Problem as it arises in practice. We prove
that the Delay Problem becomes NP-complete when the precedence constraints are a
set of arbitrary trees. We also prove that the Delay Problem becomes NP-complete
for precedence constraints of independent chains when it is generalized to allow either
non�unit execution times or release times and deadlines.

Loop Transformation Using Non-Singular Matrices

Miguel Valero-Garcia
Universitat Politecnica de Catalunya, Barcelona

In this presentation we describe two pieces of work under development at our De-
partment. Both works are related to loop transformation using non-singular matrices.
The first work is a solution to the problem of rewriting a loop nest to implement a
given transformation represented by a matrix T. Previous methods are restricted to
unimodular transformations. Our solution is more general and works even when the
transformation matrix is non-unimodular. The second part of the presentation de-
scribes a proposal to include loop alignment in the transformation framework based
on non-singular matrices. Loop alignment allows to reduce loop carried dependences.
This type of transformation requires to treat separately the different statements of the
loop body. In the presentation, a methods is described to apply loop alignment com-
bined with an other loop transformation represented by a non-singular matrix T. The
method produces the loop nest which implements the combined transformation.

Design of a Co-processor for Recurrent
Computations

Benjamin W. Wah
University of Illinois

In this talk we present the design of an application-specific co�processor for algorithins
expressed as uniform recurrences or nested loops with constant dependencies. The

18

co-processor is simple with a regular array of processors connected to an access unit
for intermediate storage of data. Our approach is based on a parameter-based method
for synthesizing optimal arrays of lower dimension from a general uniform recurrence.
Constraints on parameters are derived to avoid data collisions in lower dimensional
arrays. Our parameter-based method also allows tradeoffs between the completion
time of evaluating a recurrence and the number of processors required. We present
results on tradeoffs between reduction in clock rate and area of a chip for implementing
a design.

The Complexity of Analyzing Data Dependencies
in Systems of Bounded Uniform Recurrence

Equations

Egon Wanke
GMD, St. Augustin

We consider systems of uniform recurrence equations

U(a:) z: f(U(I1(a:)), . . . , U(I;,(a:))) if a: E D

whose index domains D are �nite, whenever the computation functions f are constant.
We analyze the complexity of the following three problems: Given a system S of
bounded uniform recurrence equations and two variable instances I (m), U Has the
dependence graph G� of S a cycle? Has G a path from U (as) to U (y)? How long is a
longest path from U (x) to a variable instance that does not depend on further variable
instances? It is shown that all three questions are PSPACE-complete even p3G� for
2-dimensional systems in that all equations with non-constant computation functions
are de�ned for index domain {ac E Z2 I Ö S z 5 m} for some m E Z2, for systems
of the form

else
um := { {(U(I.(x)>.....U(Ik(x)>> if z e {o. w�

and �*A� for 4-dimensional systems of the form

U�) z: { {(U(I1(a:)),...,U(I;,(:c))) if a: E D
else

where {z E Z� I Ö5 a: S m} for somem E Z4.

19

An Experimental Parallelizing Systolic Compiler
for Regular Programs

Friedrich Wichmann
Universität Paderborn

Systolic techniques have been applied to the generation of parallel code from regular
loop programs in an experimental work to study the practical problems. The compiler
uses unimodular index transformations yielding linear mappings to de�ne an execution
time �6� and an executing processors 5' for each iteration i6 D Q Zd of the loop
nest. Its input language allows nested loop programs to be speci�ed in an imperative
or functional style and is analyzed by a front-end developed with help of the compiler
generation tool-set ELI. Different techniques have been used to derive the systolic
mappings: an enumeration method called �vector-guessing�, a simplified techniques
from [Huang/Lengauer 89] and the method from [Moldovan / Fortes 86]. The selection
of �good� solutions can be changed to study the effectiveness of the generated parallel
C code for a simulator. This is shown by the convolution example, which are evaluated
with respect to different hardware characteristics. Such experimental system is a good
basis for development of systolic parallelizing compilers for regular programs or program
parts.

Compiling Distributed Loops onto SPMD Code

Vincent Van Dongen
CRIM, Montreal

Given a loop written in a sequential language and a distribution, we present some com-
piler techniques for generating SPMD code to run on distributed memory machines.
Three cases are being considered. First, the loop is parallel and with only one state-
ment. The distribution model to start with is a block distribution. We present a first
compilation technique that generates a SPMD code made of two parts: p/)� the commu-
nication part and (ii) the computation part. We show that each of these parts involves
the scanr°ng of parameterized polyhedra that can be written at compile-time as a
loop. This technique is then applied to other distribution models such as block-cyclic,
alignment etc.

We also present a way of distributing the loop in terms of a folding factor, which
de�nes the numbe I� of blocks per processor, and the manner to compile it with scanning
polyhedra also. V Je present a second compilation techniques which performs for each
parallel loop the � amputation �rst, an «i then the communications. The communication
step is such that it sends all the data- produced in the loop to all the processors that
will consume them. The motivation behind this is to reduce the communications. The

20

way to compile the program is by using the producer-consumers relation given by the
array data flow analysis. We then consider parallel loops that contain several sequential
statements. The first way to compile such a loop is to transform it so that the parallel
loop becomes internal. The compiler techniques presented in the previous model are
then applicable. Although this transformation can always be achieved, it introduces a
lot of communication steps. We show that, under some distribution conditions, it is not
necessary and that all the communications can be done in one step. In order to achieve
this, we use array data �ow analysis. We also present another distribution model
which distribute the computations instead of the data. The motivation for this model
is that a parallel loop will always be able to be executed with only one communication
step. The compiler technique relies on the array data �ow analysis and the scanning of
polyhedra again. In the third loop model, the parallelism is hidden. That is the loop
must be re-indexed in order to make it parallel. Under this more general model, we
first consider a compilation strategy that preserves the order of execution of the loop
within each processor. However, each processor scans the computations that it owns
only. Under a data distribution model, this scanning can be quite expensive if the data
to be produced have different distributions. A computation distribution is suggested
to improve this. Finally, we consider a compilation strategy that internally performs
a loop transformation so that it becomes parallel. Because there is a linear relation
between the new indices and the original ones, the compilation strategies developed
for parallel loops can now be used. The data distribution model may however be too
restrictive because it distributes the variables of the original program. We explain why
a computation distribution seems more promising.

Programming Multi-computers

Jan L.A. van de Snepscheut
California Institute of Technology, Pasadena

We describe how the architecture of a �ne-grain multi-computer in�uences software
design. The Mosaic C multi-computer is used as an example. Its relevant charac-
teristics are that each node has limited storage capacity and that communication in
the form of message passing is fast compared with computation. A consequence is
that our programs are organized as a large collection of small processes. We illustrate
the development of such programs as a sequence of transformation steps that start
with a sequential program and then introduce variables to avoid reevaluation of ex-
pressions; next, introduce more variables to reduce interference; partition the program
into processes that share variables; and �nally modify the processes to communicate
via message passing. As an example, a distributed sorting algorithm is derived. Fi-
nally, we describe an editor whose purpose is to support the most tedious parts of this
transformation process.

21

The derivation of the same algorithm is redone, as well as a functional programming
example. The programmer selects the transformation and the editor carries it out after
determining the substitutions needed to make the transformation applicable.

A Mathematical Theory and its Environment for
Parallel Programming

Eric Violard

University of Franche-Comté

A lot of programming models have been proposed to deal with parallelism in order
to express program transformations and re�nements. This justifies to introduce an
unifying theory to abstract different notions. This paper presents the main concepts of
such a theory called PEI. It includes the de�nitions of problems, programs and trans-
formation rules. It is founded on the simple mathematical concepts of multi-set and of
an equivalence between their representations as data �elds. Program transformations
are based on this equivalence and de�ned from a re�nement relation. The mathe-
matical basis of this theory leads to an elegant software environment in CENTAUR
using MAPLE whose purpose is to transform parallel programs. It is illustrated by
two examples: the convolution sum and the Dirichlet product. The second one uses
non-af�ne depends ncies that can be easily treated using PEI.

22

Dagstuhl-Seminar 9325: List of Participants

Flumen Andonov Ed Deprettere
Université de Rennes Delft University of Technology
IRISA Department of Electrical Engineering
Campus de Beaulieu P.O. Box 5031
Avenue du General Leclerc NL-2600 GA Delft
F-35042 Flennes Cedex The Netherlands
France ed@dutentb.et.tudelft.nl
andonov@irisa.tr
tel.: +33-99.84.72.07 Vincent van Dongen

CRIM
Mike Barnett Bureau 8oo
The University of Idaho 1801 Av. McGill College
Depart. of Computer Science Montreal PQ H3A 2N4
Laboratory for Applied Logic Canada
Moscow ID 83844-1010 vandonge@crim.ca
USA teI.: +1-514-398-1234
mbarnett@cs.uidaho.edu
tel.: +1-208-885-5524 lcriqhäiäine Eisenbeis
Francky Catthoor Domaine de Voluceau
IMEC VSDM Rocquencourt
Kapeldreef 75 BP 105
B- 3001 Leuven F-78153 Le Chesnay Cedex
Belgium France
catthoor@imec.be christine.eisenbeis@inria.fr
teI.: +32-16-281201 tel.: +33-1-139 63 55 82

Young-il Choo Paul Feautrier
Yale University Laboratoire MASl
Degartment of Computer Science 45 Avenue des Etats-Unis
P. . Box 21 58 F-78035 Versailles Cedex
Yale Station France
New Haven CT 06520-2158 feautrier@masi.ibp.fr
USA tel. : +033-1 -39254066
teI.: +1 203-432-6400
choo-young�iI@cs.yale.edu José A. B. Fortes

Purdue University _ _
Alain Dane School of Electncal Engineenng
Ecole Normale Superieure de Lyon W951 La�aY9�9 �N 47944
Laboratoire LlP,~�IMAG USA
45 auee (mane fortes@ecn.purdue.edu
F - 69364 Lyon Cedex 07 _
France Martin Grlebl
darte@lip.ens-lyon.fr Universität Passau

Fachbereich Mathematik/ Informatik
Jean Marc Delosme P0SÜ8Ch 2540
Yale Unix arsity 0194030 P_8S5gaU
Department o Electrical Engineering 9�9D|@fm|-U"|'P3$53U-d9
Yale Station teI.: +49-851-509-710
New Haven CT 06520
USA Franz H_6fting
delosme-jean-marc@cs.yale.edu U0|V9fS|t3t GH Pad9fb0m

FB 17 - Mathematik/Informatik

Warburgerstr. 100
W�4790 Paderborn

fh@uni-paderbom.de
tel.: +49-228-550-2 18 (an der Uni Bo:

Christian Heckler
Universität des Saarlandes
Fachbereich 16 - Elektrotechnik
Im Stadtwald 13
W�6600 Saarbrücken 11
heckIer@ee.uni-sb.de
tel. : +49-6801 -302-3574

Ahmed Amine Jerraya
System-Level Synthesis Group
INPG/TIMA
46 Avenue Felix Viallet
F-38031 Grenoble Cedex
France

jerraya@imag.fr
teI.: +33-76-57 47 59 / +33�76-87 61 74

Wayne KellyUniversity o Maryland
De artment of Computer Science
Co lege Park MD 20742
USA

wak@cs.umd.edu
teI.: +1 -301-405-2726

Herve Le Ver e
Université de ennes
IRISA

Campus de Beaulieu
Avenue du General Leclerc
F-35042 Rennes Cedex
France

Christian Lengauer
Universität Passau
Fachbereich Mathematik/ Informatik
Postfach 2540
D-94030 Passau

|engauer@fmi.uni-passau.de
teI.: +49 851 509-347

Brian McConnell

University of Edinburgh
Department of Computer Science
King�s Buildings
Mayfield Road
Edinburgh EH9 3JZ
Great Britain
BM@DCS.ED.AC.UK
teI.: +44--31-650 5124

Graham Megson
University of Newcastle
Department of Computer Science
Claremont Tower
Claremont Road
Newcastle-upon-Tyne NE1 7RU
Great Britain

graham.megson@newcastle.ac.uk
teI.: +44-91-222-76 53

Renate Merker
TU Dresden
Fakultät Elektronik
Institut IEE / Lehrstuhl Systemtheorie
Mommsenstr. 13
0-8027 Dresden

merker@e-technik.tu-dresden.dbp.de
teI.: +49-351 -463-3108

Catherine Mon enet
Université Stra burg
Departement d�lnformatique
7 rue Rene Descartes
F-67084 Strasbourg
France

mongenet@dpt-info.u-strasbg.fr
teI.: +33-8841-6344

Thomas Noll
RWTH Aachen
Fachbereich Informatik
Ahornstr. 55
W-5100 Aachen

noll@zeus.informatik.rvvth-aachen.de

John T. O'Donnell

University of Glasgow
Department of Computing Science
17 Lilybank Gardens
Glasgow G12 8QQ
Great Britain

jtod@dcs.glasgow.ac.uk

Constantine D. Polychronopoulos
The University of lllinois
Center for Supercomputing
Research and Development
1308 West Main Street
Urbana IL 61801
USA

cdp@csrd.uiuc.edu
tel. : 217-244-4144

Patrice Quinton
Université de Rennes
IRISA
Campus de Beaulieu
Avenue du General Leclerc
F-35042 Rennes Cedex
France

quinton@irisa.fr
teI.: +33-99 36 20 00

Sanjay Raiopadhye
Université de Rennes
IRISA
Campus de Beaulieu
Avenue du General Leclerc
F-35042 Rennes Cedex
France

rajopadhye@irisa.irisa.tr

Tan uy Risset Jürgen Teich
Eco e Normale Superieure de Lyon Universität des Saarlandes
Laboratoire LIP/IMAG Fachbereich 16 - Elektrotechnik
46 allee d�ltalie Postfach 1150
F - 69364 Lyon Cedex 07 W-6600 Saarbrücken 11
France teich@ee.uni-sb.de
risset@Iip.ens-Iyon.fr te|.: +49-681-302 3230

Yves Robert Lothar Thiele
Ecole Normale Superieure de Lyon Universität des Saarlandes
Laboratoire LIP/IMAG Fachbereich 16 - Elektrotechnik
46 allee d�ltalie Postfach 1150
F - 69364 Lyon Cedex 07 W-6600 Saarbrücken 11
France thieIe@ee.uni-sb.de
yrobert@Iip.ens-|yon.fr te|.: +49-681 -302-3584
te|.: + 33 72 72 83 89

Miguel Valero-Garcia
Georg Sander Universidad Politécnica de Cata|u\~na
Universität des Saarlandes Dept. Arquitectura de Computadores
Fachbereich 14 - Informatik Gran Capita s/n
Postfach 1150 E-08028 Barcelona
W-6600 Saarbnücken 11 Spain
Germany miguel@ac.upc.es
sander@cs.uni-sb.de tel. : +34-3-401 6995
teI.: +49-681-302 3054

Eric Violard
Yvan Sandinsky Universite de Franche-Comte
University of Delft Laboratoire d�Informatique
Degartment of Electrical Engineering Route de Gray
P. . Box 50 31 F-25030 Besancon Cedex
\lL-2600 GA Delft France
The Netherlands perin@comte.uucp

Weijia Shang Ben Wah
University of Southwestern Louisiana The Universit of Illinois
Center for Advanced Computer Studies Coordinated cience Laboratory
P.O. Box 44330 1308 West Main Street
Lafayette LA 70504-4330 Urbana IL 61801
USA USA n
sw@cacs.usl.edu wah@manip.crhc.uiuc.edu

te|.: +1 -21 7-333-35 16
Barbara Simons _ n
IBM Corp. Egon Wanke
MS/17 Gesellschaft für Mathematik und
1510 Page Mill RD Datenverarbeitung mbH
Palo Alto CA 94304 Schloß Birlinghoven
USA Postfach 1 31 6
simons@paloalto.vnet.ibm.com W-5205 St. Augustin 1
te|.: +1-415-855-41 75 wanke@ md.de

te|.: +49- 241-142783
Jan van de Snepscheut
California Institute of Technology Friedrich Wichmann
Computer Science 256-80 Universität GH Paderborn
Pasadena CA 91125 FB 17 - Mathematik/Informatik
USA Warbu er Str. 100
jan@vlsi.cs.caltech.edu 33098 aderborn
te|.: +1 -81 8-356-42 69 fwich@uni-paderbom.de

te|.: +49-5251-60-26 51

Zuletzt erschienene und geplante Titel:

C.A. Ellis, M. Jarke (editors):
Distributed Cooperation in Integrated Information Systems; Dagstuhl-Seminar-Report; 38; 5.4.-
9.4.92 (9215)

J. Buchmann, H. Niederreiter, A.M. Odlyzko, H.G. Zimmer (editors):
Algorithms and Number Theory, Dagstuhl-Seminar-Report; 39; 22.06.-26.06.92 (9226)

E. Borger, Y. Gurevich, H. Kleine-Boning, M.M. Richter (editors):
Computer Science Logic, Dagstuhl-Seminar-Report; 40; 13.07.-17.07.92 (9229)

J. von zur Gathen, M. Karpinski, D. Kozen (editors):
Algebraic Complexity and Parallelism, Dagstuhl-Seminar-Fteport; 41; 20.07.-24.07.92 (9230)

F. Baader, J. Siekmann, W. Snyder (editors):
6th lntemational Workshop on Unification, Dagstuhl-Seminar-Report; 42; 29.07.-31.07.92 (9231)

J.W. Davenport, F. Kriickeberg, R.E. Moore, S. Rump (editors):
Symbolic, algebraic and validated numerical Computation, Dagstuhl-Seminar-Report; 43; 03.08.-
07.08.92 (9232)

R. Cohen, R. Kass, C. Paris, W. Wahlster (editors): '
Third lntemational Workshop on User Modeling (UM'92), Dagstuhl-Seminar-Report; 44; 10.-
13.8.92 (9233)

R. Reischuk, D. Uhlig (editors):
Complexity and Realization of Boolean Functions, Dagstuhl-Seminar-Report; 45; 24.08.-28.08.92
(9235) A -

Th. Lengauer, D. Schomburg, M.S. Waterman (editors):
Molecular Bioinfomiatics, Dagstuhl-Seminar-Report; 46; 07.09.-11.09.92 (9237)

VP. Basili, H.D. Rombach, R.W. Selby (editors): -
Experimental Software Engineering Issues, Dagstuhl-Seminar-Fteport; 47; 14.-18.09.92 (9238)

Y. Dittrich, H. Hastedt, P. Schete (editors):
Computer Science and Philosophy, Dagstuhl-Seminar-Report; 48; 21 .09.-25.09.92 (9239)

RF. Daley, U. Furbach, K.P. Jantke (editors):
Analogical and Inductive Inference 1992 , Dagstuhl-Seminar-Fteport; 49; 05.10.-09.10.92 (9241)

E. Novak, St. Smale, J.F. Traub (editors):
Algorithms and Complexity for Continuous Problems, Dagstuhl-Seminar-Report; 50; 12.10.-
16.10.92 (9242) I

J. Encamaqao, J. Foley (editors):
Multimedia - System Architectures and Applications, Dagstuhl-Seminar-Report; 51; 02.11.-
06.1 1.92 (9245)

F.J. Rammig, J. Staunstrup, G. Zimmermann (editors):
Self-Timed Design, Dagstuhl-Seminar-Fleport; 52; 30.11.-04.12.92 (9249)

B. Councelle, H. Ehrig, G. Flozenberg, H.J. Schneider (editors):
Graph-Transformations in Computer Science, Dagstuhl-Seminar-Report; 53; 04.01.-08.01.93
(9301)

A. Amold, L. Priese, R. Vollmar (editors):
Automata Theory: Distributed Models. Dagstuhl-Seminar-Report; 54; 11.01 .-15.01 .93 (9302)

W. Cellary, K. Vidyasankar, G. Vossen (editors):
Versioning in Database Management Systems, Dagstuhl-Seminar-Report; 55; 01.02.-05.02.93
(9305)

B. Becker, R. Bryant, Ch. Meinel (editors):
Computer Aided Design and Test , Dagstuhl-Seminar-Report; 56; 15.02.-19.02.93 (9307)

M. Pinkal, R. Scha, L. Schubert (editors):
Semantic Formalisms in Natural Language Processing, Dagstuhl-Seminar-Report; 57; 23.02.-
26.02.93 (9308)

W. Bibel, K. Furukawa, M. Stickel (editors):
Deduction , Dagstuhl-Seminar-Report; 58; 08.03.-12.03.93 (9310)

H. Alt, B. Chazelle, E. Welzl (editors):
Computational Geometry, Dagstuhl-Seminar-Report; 59; 22.03.-26.03.93 (9312)

H. Karnp, J. Pustejovsky (editors):
Universals in the Lexicon: At the Intersection of Lexical Semantic Theories, Dagstuhl-Seminar-
Report; 60; 29.03.-02.04.93 (9313)

W. Strasser, F. Wahl (editors):
Graphics & Robotics, Dagstuhl-Seminar-Report; 61; 19.04.-22.04.93 (9316)

C. Beeri, A. Heuer, G. Saake, S. Urban (editors):
Formal Aspects of Object Base Dynamics , Dagstuhl-Seminar-Report; 62; 26.04.-30.04.93 (9317)

R. V. Book, E. Pednault, D. Wotschke (editors):
Descriptional Complexity, Dagstuhl-Seminar-Report; 63; 03.05.-07.05.93 (9318)

H.-D. Ehrig, F. von Henke. J. Meseguer, M. Wirsing (editors):
Specification and Semantics, Dagstuhl-Seminar-Report; 64; 24.05.-28.05.93 (9321)

M. Droste, Y. Gurevich (editors):
Semantics ot Programming Languages and Algebra, Dagstuhl-Seminar-Report; 65; 07.06.-
1 1.06.93 (9323)

Ch. Lengauer, P. Quinton, Y. Robert, L. Thiele (editors):
Parallelization Techniques tor Uniform Algorithms, Dagstuhl-Seminar-Report; 66; 21 .06.-25.06.93
(9325)

G. Farin, H. Hagen, H. Noltemeier (editors):
Geometric Modelling, Dagstuhl-Seminar-Report; 67; 28.06.-02.07.93 (9326)

Ph. Flajolet, R. Kemp, H. Prodinger (editors):
"Average-Case"-Analysis of Algorithms, Dagstuhl-Seminar-Report; 68; 12.07.-16.07.93 (9328)

J.W. Gray, AM. Pitts, K. Sieber (editors):
Interactions between Category Theory and Computer Science, Dagstuhl-Seminar-Report; 69;
19.07.-23.07.93 (9329)

D. Gabbay, H.-J. Ohlbach (editors):
Automated Practical Reasoning and Argumentation, Dagstuhl-Seminar-Report; 70; 23.08.-
27.08.93 (9334)

A. Danthine �W. Ettelsberg, O. Spaniol, (editors):
Architecture and Protocols for High-Speed Networks, Dagstuhl-Seminar-Report; 71; 30.08.-
03.09.93 (9335)

R. Cole, E. W. Mayr, F. Meyer a.d.Heide (editors):
Parallel and Distributed Algorithms, Dagstuhl-Seminar-Report; 72; 13.09.-17.09.93 (9337)

V. Marek, A. Nerode, P.H. Schmitt (editors):
Non-Classical Logics in Computer Science, Dagstuhl-Seminar-Report; 73; 20.-24.09.93 (9338)

A. Odlyzko, C.P. Schnorr, A. Shamir (editors):
Cryptography, Dagstuhl-Seminar-Report; 74; 27.09.-01.10.93 (9339)

J. Angeles, G. Hommel, P. Kovacs (editors):
Computational Kinematics, Dagstuhl-Seminar-Report; 75; 1 1 .10.-15.10.93 (9341)

T. Lengauer, M. Sarratzadeh, D. Wagner (editors):
Combinatorial Methods for Integrated Circuit Design, �Dagstuhl-Seminar-Report; 76; 18.10.-
22.10.93 (9342) -

