
Some Notes on JastAddJ

February 17, 2009

1 The Java 1.4 Frontend
The Java 1.4 Frontend implements parsing, type checking, and error checking for the
Java 1.4 language.

1.1 Abstract Grammar
The abstract grammar of Java 1.4 is specified in the file java.ast. Here is a short
summary of the most important AST node classes.

• Program

Program ::= CompilationUnit*

This node type represents an entire Java program. Its only child is a list of
compilation units.

• CompilationUnit

CompilationUnit ::= <PackageDecl:java.lang.String>
ImportDecl* TypeDecl*;

This node represents a compilation unit, i.e. either a source file or a class file.
PackageDecl is the name of the package this compilation unit belongs to,
ImportDecl* and TypeDecl* are its import declarations and type declara-
tions, respectively.

• Access

abstract Access : Expr;

An Access is an expression that refers to a declared entity, such as a package,
a type, a variable, or a method. Roughly speaking, accesses are qualified names,
including array accesses and method calls.

• AbstractDot, Dot

1



AbstractDot : Access ::= Left:Expr Right:Access;
Dot : AbstractDot;

A Dot is a qualified access, such as this.x or "aluis".length(), with
Left and Right being the qualifier and the qualifiee, respectively. Note that
Left can be any expression, not necessarily an access (for example, it is a string
literal in the second example above), whereas Right has to be an access.

The node type AbstractDot represents both Dots and array access expres-
sions: for instance, x[i++] is represented as an AbstractDot whose Left
child is the access x, and whose Right child is an ArrayAccess, in turn
containing the expression i++.

Usually, it is more convenient to program against AbstractDot instead of
Dot, since the two cases can often be treated identically.

• VarAccess

VarAccess : Access ::= <ID:String>

A VarAccess is an occurrence of a variable, whose name is given by the ter-
minal child ID.

• MethodAccess

MethodAccess : Access ::= <ID:String> Arg:Expr*;

A MethodAccess is a call to a method ID with the list of arguments Arg.

• ConstructorAccess, SuperConstructorAccess

ConstructorAccess : Access ::= <ID:String> Arg:Expr*;
SuperConstructorAccess : ConstructorAccess;

A ConstructorAccess is an explicit constructor invocation of the form
this(x, y). The ID is always "this", and Arg contains the list of argu-
ments.

A SuperConstructorAccess is an explicit super constructor invocation
such as super(z). Here, ID is always "super", with Arg again giving the list
of arguments.

It is important not to confuse these nodes with ClassInstanceExpr: the
latter represents object construction through new, whereas these two nodes are
only for explicit constructor calls from within other constructors.

• TypeAccess

TypeAccess : Access ::= <Package:String> <ID:String>;

2



A TypeAccess is the equivalent of a VarAccess for types. The name of the
type being referenced is given by ID. As an optimisation, if a type is accessed
with a qualifier indicating its package, that package is given by Package (which
otherwise is "").

For example, in the declaration String s, the type access String is repre-
sented as a TypeAccess with Package being the empty string and ID being
"String". If, on the other hand, we have a declaration java.lang.String s,
then Package will be "java.lang", and ID as before.

• PrimitiveTypeAccess

PrimitiveTypeAccess : TypeAccess ::= /<Package:String>/
/<ID:String>/ <Name:String>;

A PrimitiveTypeAccess is represents a keyword like int or char that
accesses a primitive type. The name of the primitive type is in Name, Package
is the special string "@primitive", and ID is the same as Name.

• PrimitiveTypeAccess

ArrayTypeAccess : TypeAccess ::= /<Package:String>/
/<ID:String>/ Access;

ArrayTypeWithSizeAccess : ArrayTypeAccess ::= Expr;

An ArrayTypeAccess represents the array type whose component type is
represented by its child Access. For example, the type String[][] is repre-
sented by an ArrayTypeAccess whose child Access is another
ArrayTypeAccess, whose child is a TypeAccess with ID "String".

Both Package and ID of an ArrayTypeAccess are copied from its Access.

An ArrayTypeWithSizeAccess has additional information about the size
of the array type to represent type accesses like String[42].

• ThisAccess, SuperAccess

ThisAccess : Access ::= <ID:String>;
SuperAccess : Access ::= <ID:String>;

These node types represent, respectively, the accesses this and super. Their
IDs are "this" and "super".

• PackageAccess

PackageAccess : Access ::= <Package:String>;

A PackageAccess represents a package name. Package names are not hier-
archical, i.e. an access to java.lang is simply stored as a PackageAccess
with Package being "java.lang".

PackageAccess nodes occur very rarely. Mostly, package names only occur
as qualifiers of type accesses, and are then merged into their TypeAccess node
as explained above.

3



• ArrayAccess

ArrayAccess : Access ::= Expr;

An ArrayAccess is an expression that indexes an array. As explained above,
an expression like x[i++] is represented by an AbstractDot node, whose
Left child represents the array (here x); its Right child is an ArrayAccess,
with the expression i++ represented by its child Expr.

• ClassInstanceExpr

ClassInstanceExpr : Access ::= Access Arg:Expr*
[TypeDecl];

A ClassInstanceExpression is an object instantiation. The simplest
case would be an expression like new ArrayList(): It corresponds to a
ClassInstanceExpression whose Access child holds a TypeAccess
with ID "ArrayList". The list Arg is empty, and the TypeDecl child is an
empty optional node.

A slightly more complicated example would be new ArrayList(23). This
ClassInstanceExpression’s Access child is the same as before, but
now Arg is the one-element list containing the expression 23. As before,
TypeDecl is empty.

Finally, in an anonymous class like new MouseInputAdapter() { ... },
the declaration of the anonymous class becomes the value of the TypeDecl
field of the ClassInstanceExpression.

• ClassAccess

ClassAccess : Access ::= ;

A ClassAccess is used to represent class literals. For example, String.class
corresponds to an AbstractDot whose Left child is the access to String,
and whose Right child is a ClassAccess.

Note that despite their similar names TypeAccess and ClassAccess are
very different beasts.

• TypeDecl

abstract TypeDecl ::= Modifiers <ID:String> BodyDecl*;
abstract ReferenceType : TypeDecl;
Modifiers ::= Modifier*;
Modifier ::= <ID:String>;

TypeDecl is an abstract super class representing all sorts of type declarations.
ReferenceType more specifically represents class and interface declarations.

All type declarations have Modifiers and a name, given by ID, as well as
some declarations (e.g., of member methods), given by BodyDecl*.

Modifiers are simply given by their string representations in ID.

4



• PrimitiveType, NumericType, BooleanType, IntegralType,
ByteType, ShortType, IntType, LongType, CharType,
FloatingPointType, FloatType, DoubleType, NullType, VoidType

PrimitiveType : TypeDecl ::= Modifiers <ID:String>
[SuperClassAccess:Access] BodyDecl*;

abstract NumericType : PrimitiveType;
BooleanType : PrimitiveType;
abstract IntegralType : NumericType;
ByteType : IntegralType;
ShortType : IntegralType;
IntType : IntegralType;
LongType : IntegralType;
CharType : IntegralType;
FloatingPointType : NumericType;
FloatType : FloatingPointType;
DoubleType : FloatingPointType;
NullType : TypeDecl;
VoidType : TypeDecl;

Node types to represent the builtin types of Java.

• EmptyType, VoidType

EmptyType : PrimitiveType;
UnknownType : ClassDecl;

Convenience node types.

• ClassDecl, InterfaceDecl, ArrayDecl

ClassDecl : ReferenceType ::= Modifiers <ID:String>
[SuperClassAccess:Access] Implements:Access*

BodyDecl*;
InterfaceDecl : ReferenceType ::= Modifiers <ID:String>

SuperInterfaceId:Access* BodyDecl*;
ArrayDecl : ClassDecl;

A ClassDecl represents a declaration of a class, and InterfaceDecl a
declaration of an interface. Their children correspond straightforwardly to the
syntactic elements of the declarations.

An ArrayDecl does not correspond to a source-level declaration; it is created
on-demand for every ArrayTypeAccess occurring in the program.

• BodyDecl, InstanceInitializer, StaticInitalizer,
ConstructorDecl, MemberDecl

abstract BodyDecl;
InstanceInitializer : BodyDecl ::= Block;
StaticInitializer : BodyDecl ::= Block;

5



ConstructorDecl : BodyDecl ::= Modifiers <ID:String>
Parameter:ParameterDeclaration* Exception:Access*

[ConstructorInvocation:Stmt] Block;
abstract MemberDecl : BodyDecl;

A BodyDecl is any declaration that occurs within a type declaration. Such a
body declaration can be an initializer, either a InstanceInitializer or a
StaticInitializer, or a constructor declaration (ConstructorDecl),
or a member declaration (MemberDecl), i.e. a declaration of a method or field.

Initializers only consist of a single Block of statements. Constructor declara-
tions have modifiers, parameters, declared exceptions, and a block. Their ID is
always the name of the surrounding class. The first statement of a constructor
may be an invocation of another constructor of the same class or a constructor
of the super class. Such a statement, although syntactically part of the Block
making up the body of the constructor, is in many ways special (for example, it
can only occur in this precise syntactic position), so it is treated specially in the
syntax tree, and appears as an optional child ConstructorInvocation of
the constructor declaration.

• FieldDeclaration

FieldDeclaration : MemberDecl ::= Modifiers
TypeAccess:Access <ID:String> [Init:Expr];

MethodDecl : MemberDecl ::= Modifiers TypeAccess:Access
<ID:String> Parameter:ParameterDeclaration*
Exception:Access* [Block];

ParameterDeclaration ::= Modifiers TypeAccess:Access
<ID:String>;

abstract MemberTypeDecl : MemberDecl;
MemberClassDecl : MemberTypeDecl ::= ClassDecl;
MemberInterfaceDecl : MemberTypeDecl ::= InterfaceDecl;

Different kinds of member declarations for fields, methods, and member types.
The children correspond directly to the syntactic elements of the corresponding
declarations.

Note that parameters can be declared final, hence a ParameterDeclaration
has Modifiers.

• Expr

abstract Expr;

The abstract super type of all expressions.

• assignment expressions

abstract AssignExpr : Expr ::= Dest:Expr Source:Expr;
AssignSimpleExpr : AssignExpr ;
abstract AssignMultiplicativeExpr : AssignExpr;

6



AssignMulExpr : AssignMultiplicativeExpr ;
AssignDivExpr : AssignMultiplicativeExpr ;
AssignModExpr : AssignMultiplicativeExpr ;
abstract AssignAdditiveExpr : AssignExpr;
AssignPlusExpr : AssignAdditiveExpr ;
AssignMinusExpr : AssignAdditiveExpr ;
abstract AssignShiftExpr : AssignExpr;
AssignLShiftExpr : AssignShiftExpr ;
AssignRShiftExpr : AssignShiftExpr ;
AssignURShiftExpr : AssignShiftExpr ;
abstract AssignBitwiseExpr : AssignExpr;
AssignAndExpr : AssignBitwiseExpr ;
AssignXorExpr : AssignBitwiseExpr ;
AssignOrExpr : AssignBitwiseExpr ;

Node types for the manifold assignment operators of Java. Every assignment
has a left hand side Dest and a right hand side Source, both of which are
expressions.

• Primary Expressions

abstract PrimaryExpr : Expr;

abstract Literal : PrimaryExpr ::= <LITERAL:String>;
IntegerLiteral : Literal ;
LongLiteral : Literal ;
FloatingPointLiteral : Literal ;
DoubleLiteral : Literal ;
BooleanLiteral : Literal ;
CharacterLiteral : Literal ;
StringLiteral : Literal ;
NullLiteral : Literal ;

ParExpr : PrimaryExpr ::= Expr;

Primary expressions are the simplest kind of expressions. Literals have a child
LITERAL that contains a string representation of their constant value. For the
NullLiteral, this is always "null".

ParExpr nodes represent parenthesised expressions. They are not handled spe-
cially in any way, in particular they are not automatically inserted when creating
ASTs.

• ArrayCreationExpression, ArrayInit

ArrayCreationExpr : PrimaryExpr ::= TypeAccess:Access
[ArrayInit];

ArrayInit : Expr ::= Init:Expr*;

An ArrayCreationExpr represents an expression that allocates an array,
such as new int[] {23, 42}. By contrast, an ArrayInit can only occur

7



in the initialising expression of a variable declaration, and represents an array
literal like {23, 42}.

• CastExpr

CastExpr : Expr ::= TypeAccess:Access Expr;

A CastExpr node represents a cast, with the child expression giving the ex-
pression to be casted, and TypeAcess the type it is casted to.

• InstanceOfExpression

InstanceOfExpr : Expr ::= Expr TypeAccess:Access;

An InstanceOfExpression represents a run-time type check using
instanceof, with Expr the expression being checked, and TypeAccess the
type it is checked against.

• Unary Expressions

abstract Unary : Expr ::= Operand:Expr;
PreIncExpr : Unary ;
PreDecExpr : Unary ;
MinusExpr : Unary ;
PlusExpr : Unary ;
BitNotExpr : Unary ;
LogNotExpr : Unary ;
abstract PostfixExpr : Unary;
PostIncExpr : PostfixExpr ;
PostDecExpr : PostfixExpr ;

Node types to represent unary expressions.

• Binary Expressions

abstract Binary : Expr ::= LeftOperand:Expr
RightOperand:Expr;

abstract ArithmeticExpr : Binary;
abstract MultiplicativeExpr : ArithmeticExpr;
MulExpr : MultiplicativeExpr ;
DivExpr : MultiplicativeExpr ;
ModExpr : MultiplicativeExpr ;
abstract AdditiveExpr : ArithmeticExpr;
AddExpr : AdditiveExpr ;
SubExpr : AdditiveExpr ;

abstract ShiftExpr : Binary;
LShiftExpr : ShiftExpr ;
RShiftExpr : ShiftExpr ;
URShiftExpr : ShiftExpr ;

8



abstract BitwiseExpr : Binary;
AndBitwiseExpr : BitwiseExpr ;
OrBitwiseExpr : BitwiseExpr ;
XorBitwiseExpr : BitwiseExpr ;

abstract LogicalExpr : Binary;
AndLogicalExpr : LogicalExpr ;
OrLogicalExpr : LogicalExpr ;

abstract RelationalExpr : Binary;
LTExpr : RelationalExpr ;
GTExpr : RelationalExpr ;
LEExpr : RelationalExpr ;
GEExpr : RelationalExpr ;

abstract EqualityExpr : RelationalExpr;
EQExpr : EqualityExpr ;
NEExpr : EqualityExpr ;

Node types to represent binary expressions. In particular, AndLogicalExpr
is && and AndBitwiseExpr is &.

• ConditionalExpression

ConditionalExpr : Expr ::= Condition:Expr TrueExpr:Expr
FalseExpr:Expr;

The ternary conditional expression.

• Stmt

abstract Stmt;

An abstract node type to represent statements.

• VariableDeclaration

VariableDeclaration : Stmt ::= Modifiers TypeAccess:Access
<ID:String> [Init:Expr];

Similar to a FieldDeclaration, this node type represents a declaration of a
local variable with an optional initialisation expression.

• Block, EmptyStmt, ExprStmt

Block : Stmt ::= Stmt*;
EmptyStmt : Stmt;
ExprStmt : Stmt ::= Expr;

9



Three particularly simple kinds of statements: A Block represents a block of
statements in curly braces, an EmptyStmt is the do-nothing statement “;”, and
an expression statement wraps an expression.

• Branch Target Statements

abstract BranchTargetStmt : Stmt;
LabeledStmt : BranchTargetStmt ::= <Label:String> Stmt;
SwitchStmt : BranchTargetStmt ::= Expr Block;
WhileStmt : BranchTargetStmt ::= Condition:Expr Stmt;
DoStmt : BranchTargetStmt ::= Stmt Condition:Expr;
ForStmt : BranchTargetStmt ::= InitStmt:Stmt*

[Condition:Expr] UpdateStmt:Stmt* Stmt;

A branch target statement is a statement that can be reached by a break or
continue. In particular, all the loops are branch targets, but also switch state-
ments and labeled statements.

Note that switch statements are represented amorphously as the Expr to be
tested, and a block of statements, some of which may be case labels.

• Case, ConstCase, DefaultCase

abstract Case : Stmt;
ConstCase : Case ::= Value:Expr;
DefaultCase : Case;

These node types represent case labels in a switch statements. The AST does not
structurally guarantee that these labels only occur inside a SwitchStmt, this
must be checked by the compiler frontend.

• IfStmt

IfStmt : Stmt ::= Condition:Expr Then:Stmt [Else:Stmt];

An if statement with optional else branch.

• Control Transfer Statements

BreakStmt : Stmt ::= <Label:String>;
ContinueStmt : Stmt ::= <Label:String>;
ReturnStmt : Stmt ::= [Result:Expr];

Node types to represent the “disguised gotos” break and continue, and the
return statement.

For the former two, the Label will be the empty string if there is no explicit
label.

• Synchronization

SynchronizedStmt : Stmt ::= Expr Block;

10



A synchronized statement, which synchronizes execution of Block on the
value of Expr.

• Exception Handling

ThrowStmt : Stmt ::= Expr;
TryStmt : Stmt ::= Block CatchClause* [Finally:Block];
CatchClause ::= Parameter:ParameterDeclaration Block;

These node types represent the Java exception handling constructs.

• Assertions

AssertStmt : Stmt ::= first:Expr [Expr];

An AssertStmt represents an assertion statement.

• Local and anonymous classes

AnonymousDecl : ClassDecl ::= Modifiers <ID:String>
/[SuperClassAccess:Access]/ /Implements:Access*/

BodyDecl*;
LocalClassDeclStmt : Stmt ::= ClassDecl;

An AnonymousDecl represents a declaration of an anonymous class occurring
as part of a ClassInstanceExpression; ID is the name of the class it
extends, whereas BodyDecl* are its body declarations.

A LocalClassDeclStmt represents the declaration of a local class within a
constructor, method, or initialiser.

Another important node type is Variable, declared in file
VariableDeclaration.jrag: It is an interface implemented by
VariableDeclaration, ParameterDeclaration, and FieldDeclaration
that provides a common API for different kinds of variables.

1.2 Name and Type Analysis
The code pertaining to name and type analysis is mainly contained within the following
files:

• AccessControl.jrag defines attributes to implement accessibility rules. In
particular, it provides a family of attributes accessibleFrom, where
x.accessibleFrom(y) holds if the entity x can be accessed from node y.

• LookupConstructor.jrag defines a method lookupConstructor to look
up a constructor for a TypeDecl by its signature. It also provides an attribute
decl() for classes ConstructorAccess and ClassInstanceExpression
that computes the ConstructorDecl they resolve to.

11



• LookupMethod.jrag defines an attribute lookupMethod to look up a method
by name. It also provides an attribute decl() on class MethodAccess that
computes the MethodDecl the call resolves to.

• LookupType.jrag defines an attribute lookupType to look up a type by
its simple or qualified name. It also provides an attribute decl() on class
TypeAccess that computes the TypeDecl the access refers to.

• LookupVariable.jrag defines an attribute lookupVariable to look up
a variable (i.e., field, parameter, or local variable) by name. It also provides an
attribute decl() on class VarAccess that computes the Variable it binds
to.

• NameCheck.jrag implements the name checks performed by the compiler
frontend.

• TypeAnalysis.jrag handles the different kinds of implicit conversions in
Java, and defines an attribute type() on expression nodes that computes their
type.

• TypeCheck.jrag and TypeHierarchyCheck.jrag implement the type
checks performed by the compiler frontend.

The two most important attributes defined in this part of the frontend are decl()
and type() to access a type’s declaration, and an expression’s type.

1.3 Definite Assignment
The file DefiniteAssignment.jrag checks that a program adheres to Java’s
definite assignment rule, which stipulates that every local variable must be provably
assigned before it is used the first time.

Two very useful attributes defined in this file are isDest() and isSource(), both
defined on node type Expr, which indicate whether an expression is an lvalue or an
rvalue. Some expressions can be both, for example the i in i++.

2 Control Flow Analysis
The control flow analysis framework is not part of the compiler frontend proper; it re-
sides in the project ControlFlowGraph. Its most important file is
ControlFlowGraph.jrag, which defines two attributes pred() and succ()
that compute an AST node’s control flow predecessors and successors, respectively.

Control flow is tracked at the expression level, hence it makes sense to ask for the
control flow successor of x in x + y. Since in general a node can have more than
one control flow successor or predecessor, the attributes return sets of nodes. Note that
the analysis is intra-procedural, i.e. only predecessors and successors within the same
method (or constructor or initialiser) are computed.

For efficiency reasons, a custom implementation of sets called SmallSet is used.
It is defined in Sets.jrag.

12



A JastAdd Syntax

A.1 AST Node Types
AST node types are usually defined in files with the extension .ast. Every node type
is given a (single) production, e.g.

TryStmt : Stmt ::= Block CatchClause* [Finally:Block];

This declares the node type TryStmt as extending the node type Stmt. It has
three children: one of type Block, a child of type List<CatchClause>, which
holds a (potentially empty) list of nodes of type CatchClause, and a child of type
Opt<Block>, which holds either nothing or a node of type Block. The third child is
additionally given the name Finally.

From this declaration, JastAdd generates the skeleton of a Java class with getter
methods for the children that looks somewhat like this:

class TryStmt extends Stmt {
public TryStmt(Block p0, List<CatchClause> p1, Opt<Block> p2) {
...

}

public Block getBlock() { ... }
public List<CatchClause> getCatchClauseList() { ... }
public Opt<Block> getFinallyOpt() { ... }

public int getNumCatchClause() { ... }
public CatchClause getCatchClause(int i) { ... }

public boolean hasFinally() { ... }
public Block getFinally() { ... }

}

Observe in particular that for list children and optional children there are additional
convenience methods: for the former, we can query the number of children in the list,
and access a particular one given its position; for the latter, we can determine whether
the child is present, and retrieve it directly.

Node types may also have terminal children, as in

VarAccess : Access ::= <ID:String>;

JastAdd creates getter methods for them just like for node children.
A final variety of children are non-terminal attributes, which are not important for

the purposes of this introduction.
Just like a Java class, a node type can be declared abstract, which will make the

generated class abstract as well; such a node type cannot be instantiated directly.

A.2 Attributes
Once a node type is declared, we can define attributes on it. This is done in separate
files with the extension jrag. Such files should contain aspect declarations as their

13



top-level entities. For example, the file LookupVariables.jrag from the Java
1.4 compiler frontend defines attribute for handling variable lookup; all these attribute
definitions are inside three aspects VariableScope, VariableScopePropagation,
and Fields:

aspect VariableScope {
...
(attribute definitions)
...

}

aspect VariableScopePropagation {
...
(further definitions)
...

}

aspect Fields {
...
(further definitions)
...

}

A.2.1 Synthesised Attributes

The simplest form of attributes are synthesised attributes. They are declared on a node
type like this:

syn boolean Stmt.declaresVariable(String name) = false;

This declares a synthesised attribute declaresVariable on node type Stmt,
which takes a single parameter name of type String and returns boolean. The dec-
laration also provides a default implementation, which just returns false.

The above declaration is translated into the following (somewhat simplified) Java
method declaration, which is inserted into the definition of class Stmt:

public boolean declaresVariable(String name) {
return false;

}

Methods can be overridden on subclasses; likewise, synthesised attributes can be
given different definitions on derived node types:

eq VariableDeclaration.declaresVariable(String name)
= name().equals(name);

Besides the equational definition style in this example, synthesised attributes can
also be defined using Java method syntax. Indeed, the above definition could be rewrit-
ten as

eq VariableDeclaration.declaresVariable(String name) {
return name().equals(name);

}

14



Synthesised attributes can be declared lazy, meaning that their value will be cached
and reused on further invocations without being recomputed. Lazy attributes should
normally be side-effect free, although this is not enforced by the system.

Synthesised attributes can be declared circular:

syn lazy boolean TypeDecl.isCircular() circular [true] = false;

eq ClassDecl.isCircular() { ... }
eq InterfaceDecl.isCircular() { ... }

This means that, for every TypeDecl, JastAdd performs a fixed point iteration to
determine the value of isCircular, starting at the value true and iterating until no
further value change is observed. The user has to ensure that the definitions given for
such attributes are monotonic, and that a fixed point may be reached by iteration.

A.2.2 Inherited Attributes

While the definition of a synthesised attribute only depends on the children of a node
(and the values of their attributes), an inherited attribute can make use of additional
information about the location of the node with respect to its parent node.

For example, the definition

eq TypeDecl.getBodyDecl(int i).lookupVariable(String name) {
(...)

}

defines the attribute lookupVariable on a BodyDecl, but only if it is the child of a
TypeDecl. Additionally, the body of the declaration knows the index i at which the
body declaration occurs within the type.

Inherited attributes have to be defined for every possible combination of parent and
child nodes. If no explicit definition is given, JastAdd provides a default copy rule that
recursively evaluates the attribute on the parent node.

To use an inherited attribute on a certain node type, one has to declare it visible:

inh lazy SimpleSet Block.lookupVariable(String name);

This declaration causes a method lookupVariable(String) to be inserted into
the definition of class Block, that uses the definition rules of the attribute.

Like synthesised attributes, inherited attributes can also be declared lazy and
circular.

A.2.3 Collection Attributes

While synthesised and inherited attributes are locally defined, collection attributes are
global entities whose definition is contributed to by all the nodes in a certain subtree,
or even the entire syntax tree.

For example, to collect the names of all the types declared in a Java program one
could define the collection attribute

15



coll HashSet<String> Program.typeNames()
[new HashSet<String>()] with add
root Program;

This says that the collection attribute typeNames is declared on the program node,
and is of type HashSet<String>. It is initialised to new HashSet<String>(), and
contributions from individual nodes are added using method add in type HashSet<String>.
Contributors to the attribute value should be searched for in nodes below Program,
i.e. in the entire syntax tree.

Every type declaration now should contribute its own name to this global collection:

TypeDecl contributes name()
to Program.typeNames()
for getProgram();

This says that every type declaration contributes the value of its method name()1 to
the typeNames() attribute of the Program node to be found by evaluating getProgram().

Contributions may also specify a condition using when ... to indicate that they
only contribute if the condition evaluates to true.

Note that the contributions may be collected in an arbitrary order.

1This can be an arbitrary expression composed of field values and method invocations.

16


