
Otto von Guericke University Magdeburg

Faculty of Computer Science
Department of Technical and Business Information Systems

Thesis

Empirical Comparison of FOSD Approaches Regarding
Program Comprehension – A Feasibility Study

Author:

Janet Feigenspan
August 3, 2009

Advisors:

Prof. Dr. rer. nat. habil. Gunter Saake,
Dipl.-Wirtsch.-Inf. Thomas Leich,

Dipl.-Wirt.-Inform. Christian Kästner,
Dr.-Ing. Sven Apel

Otto von Guericke University Magdeburg
Faculty of Computer Science

P.O. Box 4120, 39016 Magdeburg, Germany



Feigenspan, Janet
Empirical Comparison of FOSD Approaches Regarding
Program Comprehension - A Feasibility Study
Thesis, Otto von Guericke University Magdeburg, 2009.



I

Acknowledgements

I would like to thank my advisors for their helpful comments regarding my work.
Furthermore, I would like to thank all those persons that made the experiment in Passau

possible: Sven Apel and J¨örg Liebig, who helped me to prepare and conduct the experiment in
Passau. Andy, Andreas, Matthias, Martin, and Thomas for patiently being my pretest subjects.
All students of the programming course in Passau for being my subjects.

I thank Marcus and Feffi for reading and commenting my work. Additionally, Thomas,
Christian, and Chris for helping me to find programming experts.

Finally, Jan, Christian, and Knollo, who kept my spirit up during the tedious process of
designing and writing this thesis.



II



CONTENTS III

Contents

Contents iii

List of Figures vii

List of Tables ix

List of Abbreviations xi

1 Introduction 1

2 Background 5

2.1 Feature-oriented software development . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Goals of feature-oriented software development . . . . . . . . . . . . 5

2.1.2 Physical separation of concerns . . . . . . . . . . . . . . . . . . . . 10

2.1.3 Virtual separation of concerns . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Program comprehension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Top-down models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Bottom-up models . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Integrated models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.4 Measuring program comprehension . . . . . . . . . . . . . . . . . . 22

2.2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Conducting experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Objective definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27



IV CONTENTS

2.3.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.4 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Confounding Variables for Program Comprehension 45

3.1 Example scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2 Selection of the variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.1 Review of the literature . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2 Consultation of experts . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.3 Personal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.1 Programming experience . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 Domain knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.3 Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.4 Education . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3.5 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Environmental parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4.1 Training of the subjects . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.2 Motivation of the subjects . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.3 Tool support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4.4 Position and ordering effect . . . . . . . . . . . . . . . . . . . . . . 66

3.4.5 Effects due to experimenter . . . . . . . . . . . . . . . . . . . . . . 67

3.4.6 Hawthorne effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.4.7 Test effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4.8 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.5 Task-related parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.5.1 Structure of the source code . . . . . . . . . . . . . . . . . . . . . . 71

3.5.2 Coding conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.5.3 Difficulty of the task . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5.4 Comments and documentation . . . . . . . . . . . . . . . . . . . . . 74

3.6 Programming language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



CONTENTS V

4 Feasible Scope of Comparing FOSD Approaches 81

4.1 Comparing four approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.1.1 Creating a program for each FOSD approach . . . . . . . . . . . . . 82

4.1.2 Recruiting and managing a sufficient number of subjects . . . . . . . 82

4.1.3 Reducing number of required subjects (and introducing test effects) . 83

4.1.4 Assuring generalizability of our results . . . . . . . . . . . . . . . . 84

4.2 Comparing two programming languages . . . . . . . . . . . . . . . . . . . . 85

4.3 Realistic comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Agenda . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Experiment 91

5.1 The experiment in a nutshell . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Objective definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Independent variable . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.2 Dependent variable . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.3 Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.3.1 Controlling personal parameters . . . . . . . . . . . . . . . . . . . . 96

5.3.2 Controlling environmental parameters . . . . . . . . . . . . . . . . . 98

5.3.3 Controlling task-related parameters . . . . . . . . . . . . . . . . . . 99

5.3.4 Programming language . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3.5 Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.4 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.2 Conducting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.4.3 Deviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5.1 Descriptive statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5.2 Hypotheses testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 Interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.6.1 Evaluation of results and implications . . . . . . . . . . . . . . . . . 120



VI CONTENTS

5.6.2 Threats to validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6.3 Next steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Related Work 127

7 Conclusion 131

A Additional Material 135

Bibliography 141



LIST OF FIGURES VII

List of Figures

2.1 Tangled and object-oriented implementation of the stack example. . . . . . . 6

2.2 Elements of a feature diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Feature diagram of the stack example. . . . . . . . . . . . . . . . . . . . . . 9

2.4 Collaboration diagram of the stack example. . . . . . . . . . . . . . . . . . . 11

2.5 Aspect-oriented implementation of Safe and Top of the stack example. . . . . 13

2.6 Tangled version of the aspect-oriented implementation of Safe and Top. . . . 14

2.7 CPP implementation of the stack example (Antenna). . . . . . . . . . . . . . 17

2.8 CIDE implementation of the stack example. . . . . . . . . . . . . . . . . . . 18

2.9 Stages of an experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.10 Box plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.11 Overview of significance tests. . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1 Sample page of the expert survey. . . . . . . . . . . . . . . . . . . . . . . . 50

3.2 Sample implementation of observer pattern. . . . . . . . . . . . . . . . . . . 53

3.3 Implementation of quicksort algorithm in Haskell, Java, and C++. . . . . . . 77

4.1 CPP and CIDE implementation of the stack example. . . . . . . . . . . . . . 88

4.2 AspectJ and AHEAD implementation of the stack example. . . . . . . . . . . 89

5.1 Comparison of CPP and CIDE version of SPL in our experiment. . . . . . . . 93

5.2 Sample HTML file with preprocessor statements in Lines 12 and 15. . . . . . 100

5.3 Feature diagram of the MobileMedia SPL in the sixth scenario. . . . . . . . . 101

5.4 Collaboration diagram of the stack. . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Feature interaction (shared code) in the class PhotoController. . . . . . . . . 105

5.6 Bug for M1: bubbleSort is not implemented. . . . . . . . . . . . . . . . 105



VIII LIST OF FIGURES

5.7 Bug for M2: increaseNumberOfViews is not implemented. . . . . . . . 105

5.8 Bug for M3: viewFavoritesCommand is not added. . . . . . . . . . . . 106

5.9 Bug for M4: potential null pointer access (Line 11) . . . . . . . . . . . . . . 106

5.10 Histrograms for programming experience, age, and years since subjects study. 110

5.11 Box plots for response times. . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.12 Relationship between programming experience and response time for M4. . . 123

A.1 Correctly marked collaboration diagram template. . . . . . . . . . . . . . . . 137

A.2 Introduction to task M2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.3 Task description for M2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139



LIST OF TABLES IX

List of Tables

2.1 Overview of physical and virtual SoC. . . . . . . . . . . . . . . . . . . . . . 20

2.2 Simple one-factorial design. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 One-factorial design with repeated measures. . . . . . . . . . . . . . . . . . 31

2.4 Two-factorial design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Scale types and allowed operations. . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Cases in statistical decisions. . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Example of observed and expected frequencies. . . . . . . . . . . . . . . . . 38

2.8 Example response times for Mann-Whitney-U test. . . . . . . . . . . . . . . 40

2.9 Summary of relevant terms for experiments. . . . . . . . . . . . . . . . . . . 44

3.1 Characteristics of programmers in scenario. . . . . . . . . . . . . . . . . . . 46

3.2 Confounding parameters in literature. . . . . . . . . . . . . . . . . . . . . . 48

3.3 Number of experts that rated a parameter as no, little, & considerable influence. 52

3.4 Two-factorial design. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Design for controlling position effect. . . . . . . . . . . . . . . . . . . . . . 67

3.6 Overview of confounding parameters. . . . . . . . . . . . . . . . . . . . . . 79

4.1 Overview of problems with confounding variables. . . . . . . . . . . . . . . 86

5.1 Descriptives of sample by group for nominal scaled variables. . . . . . . . . 110

5.2 Descriptives of sample by group for metric scaled variables. . . . . . . . . . 111

5.3 Descriptives of response times. . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.4 Descriptives of subjects’ opinion. . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Mann-Whitney-U test for response times of S1 and S2. . . . . . . . . . . . . 115

5.6 Mann-Whitney-U test for response times of M1 - M4. . . . . . . . . . . . . . 115



X LIST OF TABLES

5.7 χ2 test for number of correct tasks. . . . . . . . . . . . . . . . . . . . . . . . 117

5.8 Mann-Whitney-U test for version. . . . . . . . . . . . . . . . . . . . . . . . 118

5.9 Mann-Whitney-U test for motivation. . . . . . . . . . . . . . . . . . . . . . 119

5.10 Mann-Whitney-U test for difficulty. . . . . . . . . . . . . . . . . . . . . . . 119

A.1 Questions of programming experience questionnaire used for diverse purposes. 135

A.2 Questions and their coding of programming experience questionnaire. . . . . 136



XI

List of Abbreviations

AOP Aspect-Oriented Programming

CIDE Colored Integrated Development Environment

CPP C/C++ Preprocessor

FOP Feature-Oriented Programming

FOSD Feature-Oriented Software Development

GUI Graphical User Interface

IDE Integrated Development Environment

LOC Lines of Code

OOP Object-Oriented Programming

OS Operating System

SoC Separation of Concerns

SPL Software Product Line



XII



CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

The first programmable computers were developed around 1945 (NEUMANN [Neu45]). In
order to program them, byte codes had to be used, which are hard to get accustomed to. This
lead to a discrepancy in human and computerized way of thinking, which is referred to as
semantic gap.

The problem with the semantic gap is that not all design information can be expressed
with computerized thinking, so that during implementation, information is lost. The greater
this semantic gap is, the more information gets lost. Consequences are that understandability
decreases and the legacy problem (adjusting an existing source code to new platforms) and evo-
lution problem (software systems deteriorate over time instead of being constantly improved)
occur, which produce high costs for software development (CZARNECKI [Cza98]). In order to
solve these problems and thus reduce software development costs, the semantic gap should be
reduced.

Since the development of the first programmable computers, several software develop-
ment approaches have been introduced to reduce the semantic gap, including assembler lan-
guages (SALOMON [Sal92]), procedural programming languages like Ada (CARLSON ET AL.
[CDFW80]) and Fortran (BACKUS ET AL. [BBB+57]), and Object-Oriented Programming
(OOP) (MEYER [Mey97]). Today, OOP is the state of the art programming paradigm (MEYER

[Mey97]). Several experiments proved the positive effect of OOP on program comprehen-
sion (e.g., HENRY ET AL. [HHL90], DALY ET AL. [DBM+95]).

However, new requirements of contemporary software products exceed the limit of OOP:
Today, variability of software products is crucial for successful software development (POHL

ET AL. [PBvdL05]). One mechanism to provide the required variability are Software Prod-
uct Lines (SPLs), which are inspired by product lines in industry, like used in the produc-
tion of a car or a meal at some fast food restaurants (POHL ET AL. [PBvdL05], p. 5). In
order to implement SPLs, several approaches can be applied, for example Aspect-Oriented
Programming (AOP), Feature-Oriented Programming (FOP), C/C++ Preprocessor (CPP),
and Colored Integrated Development Environment (CIDE), which some researchers summa-
rize as Feature-Oriented Software Development (FOSD) approaches (APEL AND KÄSTNER

[AK09]). However, realizing variability in software also introduces new challenges to program



2

comprehension, because now, programs are not developed for a fixed set of requirements, but
for several requirements, such that different products composed from the same SPL can fulfill
different requirements (POHL ET AL. [PBvdL05]).

Although issues like scalability and design stability of FOSD approaches have been evalu-
ated (e.g., BATORY ET AL. [BSR04], FIGUEIREDO ET AL. [FCM+08]), understandability was
mostly neglected during according evaluations. Despite theoretical discussions about effects
of FOSD approaches on understandability and anecdotical experience (e.g., MEZINI AND OS-
TERMANN [MO04], LOPEZ-HERREJON [LHBC05], APEL ET AL. [AKT07], KÄSTNER ET

AL. [KAB07]), sound empirical evaluations beyond anecdotical results from case studies are
missing.

It is important to gather empirical evidence regarding program comprehension to iden-
tify whether FOSD approaches provide benefit on program comprehension and under which
circumstances. This would allow us to focus on those approaches that actually benefit pro-
gram comprehension and to enhance them further. This way, we can reduce the semantic gap
between programmers and computers and thus reduce software development costs.

With our work, we aim at increasing the knowledge base of benefits and shortcomings of
different FOSD approaches on program comprehension. To the best of our knowledge, we
perform the first experiment assessing the effect of different FOSD approaches on program
comprehension.

We explain the particular goals of our thesis next.

Goals

In our thesis, we show whether and how FOSD approaches can be compared regarding pro-
gram comprehension. In order to succeed, we defined three goals:

• Evaluate the feasibility of comparing FOSD approaches regarding their effect on pro-
gram comprehension.

• Create an agenda for evaluating FOSD approaches.

• Demonstrate our results with an experiment.

Firstly, we assess the feasibility of comparing FOSD approaches to give an estimate about
how time consuming and costly this is. A problem regarding feasibility emerges from the na-
ture of program comprehension: Since it is an internal problem solving process (KOENEMANN

AND ROBERTSON [KR91]), it consequently has to be assessed empirically. However, experi-
ments can be very time consuming and costly, because lots of parameters need to be considered
to draw sound conclusions (TICHY [Tic98], SHADISH ET AL. [SCC02]). Thus, a sound esti-
mate on feasibility gives directions on how to proceed in comparing FOSD approaches.

Secondly, based on the result of the feasibility assessment, we develop an agenda for as-
sessing the effect of different FOSD approaches on program comprehension. This way, we



CHAPTER 1. INTRODUCTION 3

and other researchers can traverse our agenda to state which FOSD approach has positive,
negative, or no effect on program comprehension under which circumstances.

Thirdly, we demonstrate our results with an experiment. This way, we intend to illus-
trate our explanations regarding feasibility, start to evaluate the effect of FOSD approaches
on program comprehension, and hope to encourage other researchers to join us in this tedious
endeavor.

Structure

This thesis is structured as follows:

Chapter 2 In Chapter 2, we introduce FOSD and program comprehension, which are the
focus of interest in our work. Furthermore, we give an introduction to conducting ex-
periments.

Chapter 3 In Chapter 3, we identify confounding parameters for program comprehension and
show how they can be controlled.

Chapter 4 Based on the results of Chapter 3, we evaluate the feasibility of comparing FOSD
approaches regarding their effect on program comprehension in Chapter 4. Furthermore,
we develop on agenda for creating a body of knowledge regarding understandability of
FOSD approaches based on empirical research.

Chapter 5 We describe our experiment in Chapter 5, in which we assessed the effect of CPP
and CIDE on program comprehension.

Chapter 6, 7 In Chapter 6, we relate our work to others. Eventually, we summarize our work
in Section 7 and show how our work can be continued.



4



CHAPTER 2. BACKGROUND 5

Chapter 2

Background

In this section, we provide the theoretical background that is necessary to understand the rest of
this thesis. Since we evaluate the effect of different FOSD approaches on program comprehen-
sion, we introduce FOSD, its goals, and several approaches in Section 2.1. We continue with
defining program comprehension in Section 2.2. Then, we introduce basic terms for planning,
executing, analyzing, and interpreting experiments in Section 2.3. We regard this as necessary,
because conducting experiments usually does not belong to the curriculum of the School of
Computer Science at the University of Magdeburg, where this thesis is developed. However,
readers familiar with conducting experiments may skip this section or refer to the summary
presented at the end.

2.1 Feature-oriented software development

Since one our goal is to assess the understandability of FOSD approaches, we need to spec-
ify what it is. Thus, we introduce FOSD in this chapter. It describes the design and im-
plementation of applications based on features (APEL ET AL. [ALMK08], KÄSTNER ET

AL. [KTS+09]). A feature is a user-visible characteristic of a software system (CLEMENTS

AND NORTHROP [CN01], p. 114). Currently, almost 20 years later, FOSD provides for-
malisms, methods, languages, and tools for building variable, customizable, and extensible
software (APEL AND KÄSTNER [AK09]). FOSD has three goals: Separation of Concerns
(SoC), the development of SPLs, and stepwise development. We explain all of them in this
section.

2.1.1 Goals of feature-oriented software development

FOSD aims at creating structured and reusable source code. As side effect of structured source
code, different variants based on the same code base can be created, which is referred to as
SPL. In this section, we explain SoC, which suggests how software should be structured in
order to create reusable source code. Then, we introduce SPLs, which benefit from reusable



6 2.1. FEATURE-ORIENTED SOFTWARE DEVELOPMENT

1 p u b l i c c l a s s Stack {
2 p u b l i c vo id main (String [] args){
3 LinkedList elements =
4 new LinkedList();
5 p r i v a t e String element1 = "e1";
6 p r i v a t e String element2 = "e2";
7 p r i v a t e String element3 = "e3";
8 elements.addFirst(element1);
9 elements.addFirst(element2);

10 elements.addFirst(element3);
11
12 System.out.println(
13 elements.getFirst());
14
15 System.out.println(
16 elements.removeFirst());
17 System.out.println(
18 elements.removeFirst());
19 System.out.println(
20 elements.removeFirst());
21
22 System.out.println(
23 elements.size());
24 }
25 }

(a) Tangled

1 p u b l i c c l a s s Stack {
2 LinkedList elements =
3 new LinkedList();
4 p u b l i c vo id push (Element element) {
5 elements.addFirst(element);
6 }
7 p u b l i c Element pop () {
8 i f (elements.getSize() > 0)
9 re turn elements.removeFirst();

10 }
11 p u b l i c Element top () {
12 i f (elements.getSize() > 0)
13 re turn elements.getFirst();
14 }
15 }
16
17 p u b l i c c l a s s Element {
18 p r i v a t e String content;
19 p u b l i c Element(String content) {
20 t h i s.content = content;
21 }
22 p u b l i c String getContent() {
23 re turn t h i s.content;
24 }
25 }

(b) Object-oriented

Figure 2.1: Tangled and object-oriented implementation of the stack example.

source code. Finally, we explain stepwise development, which aims at reducing the complexity
of a program.

2.1.1.1 Separation of concerns

A first goal of FOSD is SoC. SoC is an important concept in software engineering, which aims
at increasing readability and maintainability of software systems (PARNAS [Par72], DIJKSTRA

[Dij76]). In order to illustrate SoC, we show a preliminary version of a stack implementation
in Java in Figure 2.1a, without SoC. Such a version could be a first test, e.g. to see if the idea
of how to implement the stack works at all. In this version, it is relatively hard to identify
different concerns.

In contrast to the preliminary version, we present the object-oriented implementation in
Figure 2.1b. Now, several concerns can be more easily identified: The stack consists of the
methods push, pop, and top. The method push puts an element on the stack, pop removes
an element from a non-empty stack, and top returns an element from a non-empty stack with-
out removing it. Different concerns of the stack are now reflected by the methods. Thus,
the concerns are separated. In addition, there is a class Element, which assures that only
elements of a certain type can be stored in the stack. Hence, we have the stack, which encap-
sulates the operations of the stack, and the class Element, which encapsulates the elements



CHAPTER 2. BACKGROUND 7

that can be stored on a stack.
However, conventional software engineering paradigms like OOP fail to modularize a spe-

cial kind of concerns, called crosscutting concerns. A typical example for a crosscutting con-
cern is logging. If we extend our stack so that every access of the stack is logged, we would
have to add an according statement after every piece of source code that accesses the stack, i.e.
in Lines 5, 8, 9, 12, and 13 (cf. Figure 2.1b). However, this would mean that everything that
has to do with logging is scattered all over the class Stack. This is called code scattering.
As a consequence, if we wanted to alter the behavior of logging, we would have to consider
every statement that contains logging source code. This is a tedious task and is referred to as
the feature traceability problem (ANTONIOL ET AL. [AMGS05]).

In order to avoid the feature traceability problem, we could encapsulate everything that
has to do with logging in one class. However, everything that accesses the stack would also
be included in that class. Hence, the logging class now contains not only source code for
logging, but is also tangled with source code that accesses the stack. This problem is called
code tangling (KICZALES ET AL. [KLM+97]).

Thus, no matter how we modularize the source code of the stack, there is always code
scattering and tangling. This is referred to as tyranny of the dominant decomposition (TARR

ET AL. [TOHS99]). The concern that is modularized, e.g. logging, forbids other concerns to
be modularized at the same time.

Of course, in this small example, code scattering and tangling are manageable. However,
in a larger application, in which one concern is implemented by several classes and one class
consists of several hundred Lines of Code (LOC), it is impossible to keep an overview of all
scattered concerns or all concerns that one class is tangled with. Examples for larger applica-
tions could be an embedded data base management systems or a web server, with logging as
crosscutting concern. We chose the small stack example, because the benefits and shortcom-
ings of the FOSD approaches can be demonstrated concisely on this small implementation.

A further benefit of modularizing concerns besides improving comprehension and main-
tainability is that different products can be created by simply omitting one or more concerns.
For example, if it is not necessary to log every access of the stack, the logging module can
be omitted. Then, there are two variants of the stack that emerge from the same code base:
one with logging and one without logging. This kind of software is referred to as SPLs and
constitutes the second goal of FOSD, which we explain in the next section.

2.1.1.2 Software product lines

An SPL can be defined as ”[...] a set of software-intensive systems that share a common, man-
aged set of features satisfying the specific needs of a particular market segment or mission and
that are developed from a common set of [...] assets in a prescribed way.” (CLEMENTS AND

NORTHROP [CN01], p. 5). The ”particular market segment” or domain the SPL is developed
for has to be agreed on by the stakeholders of the domain, e.g. managers, developers, or cus-
tomers. Examples of domains are software for diesel engines, satellite ground control system,



8 2.1. FEATURE-ORIENTED SOFTWARE DEVELOPMENT

or software for mobile phones1. Assets can be understood as the modules that encapsulate
different concerns.

Since managers and developers have a different view of the same SPL, a way of com-
municating features between the different stakeholders has to be found. One way are feature
models. A feature model can be defined as hierarchically organized set of features (KANG

ET AL. [KCH+90], p. 37). It describes commonalities and differences of products. A feature
diagram is a visualization of a feature model. The elements of a feature diagram are depicted
in Figure 2.2. A feature can be mandatory (filled circle) or optional (empty circle). If features
are connected by and, it means that all features have to be selected. From features linked with
or, at least one has to be selected, whereas from features that are linked with alternative, ex-
actly one has to be selected. Products that are composed from the same SPL, but with different
features, are referred to as variants.

Figure 2.2: Elements of a feature diagram.

In order to make this clearer, we show the feature model of the stack example as SPL
in Figure 2.3. We decomposed the object-oriented stack into four features: Base, Safe, Top,
and Element. Base is a mandatory feature that implements the methods push and pop. The
optional feature Safe assures that no elements can be popped or returned from an empty stack.
The optional feature Top implements the method top, which returns the first element from a
stack without removing it. Last, the optional feature Element specifies the type of the elements
that can be stored on the stack. All features are linked by or, which means that at least one
feature has to be selected. Furthermore, the feature Base needs to be part of every stack variant.
For example, a valid variant could consist just of the feature Base or of the features Base and
Safe.

The generation of variants can be done automatically. After the selection of features, the
product can be assembled without further effort of the developer. Of course, if a customer re-
quests a feature that is not implemented yet, this feature needs to be developed. The automatic
generation of a product distinguishes SPLs from components (HEINEMANN AND COUNCILL

[HC01]). Using components, the source is separated into modules (like for SPLs), however
the final product needs to be assembled manually.

The development of SPLs can be regarded as a special case of stepwise or change based
development, which we explain next.

1http://www.sei.cmu.edu/productlines/spl case studies.html



CHAPTER 2. BACKGROUND 9

Figure 2.3: Feature diagram of the stack example.

2.1.1.3 Stepwise development

Stepwise development constitutes the third goal of FOSD. Similar to SoC, an application
is split into several modules, thus reducing its complexity. This allows us building complex
and powerful applications without having to manage the complexity of a large application.
However, the kind of modularization in stepwise development differs from SoC.

In stepwise development, a small program is incrementally refined with details, resulting
in a complex program (DIJKSTRA [Dij76], BATORY ET AL. [BSR04]). This supports the
development of software, e.g., that after every refinement the program can be proven correct
or its execution can be tested. Due to the incremental increase in complexity, the proofs and
tests can also be incrementally refined, starting from simple and growing more complex as the
program is increased in complexity.

In order to fulfill the goals of FOSD, a large number of approaches and tools were devel-
oped, which include:

• FOP (PREHOFER [Pre97])

• AOP (KICZALES ET AL. [KLM+97])

• Frameworks (JOHNSON AND FOOTE [JF88])

• Hyper/J (TARR AND OSSHER [TO01])

• Components (HEINEMANN AND COUNCILL [HC01])

• CaesarJ (ARACIC ET AL. [AGMO06])

• Aspectual Feature Modules (APEL ET AL. [ALS08])

• CPP2

• CIDE (KÄSTNER ET AL. [KAK08])

2http://www.ansi.org



10 2.1. FEATURE-ORIENTED SOFTWARE DEVELOPMENT

• XVCL (JARZABEK ET AL. [JBZZ03])

• FEAT (ROBILLARD AND MURPHY [RM03])

• pure::variants (BEUCHE ET AL. [BPSP04])

• GEARS (KRUEGER [Kru08])

Each of those approaches focuses on one or more goals of FOSD.
Since in our work we want to evaluate the effect of several FOSD approaches on com-

prehension, we introduce those approaches in the next sections. We start by explaining ap-
proaches for physical SoC, which physically separate different modules encapsulating differ-
ent concerns. Then, we continue with approaches for virtual SoC, which annotate source code
belonging to concerns and thus virtually separating them.

2.1.2 Physical separation of concerns

In this section, we explain physical SoC. Using physical SoC, modules encapsulating one
concern are physically separated, e.g. in different files or folders. In contrast to physical SoC,
in virtual SoC source code for several concerns is not physically separated, but only annotated
according to the concern it belongs to.

Well known approaches that use physical SoC are – among others – FOP (PREHOFER

[Pre97]), AOP (KICZALES ET AL. [KLM+97]), Hyper/J (TARR AND OSSHER [TO01]),
and CaesarJ (ARACIC ET AL. [AGMO06]), and aspectual feature modules (APEL ET AL.
[ALS08]). Since we are interested in the program comprehension of FOP and AOP, we in-
troduce them in the next sections. We chose FOP and AOP, because they are well known
and their advantages and disadvantages with respect to readability and maintainability are dis-
cussed extensively (e.g., MEZINI AND OSTERMANN [MO04], and LOPEZ-HERREJON ET AL.
[LHBC05], APEL ET AL. [AKT07]). After introducing FOP and AOP, we introduce further,
related approaches for physical SoC in order to have a more complete overview.

2.1.2.1 Feature-oriented programming

The idea of FOP was first discussed by Prehofer in 1997 (PREHOFER [Pre97]). It is an ex-
tension to OOP and is designed to modularize crosscutting concerns. In FOP, concerns are
encapsulated in units, called feature modules. In our example, the source code for each of the
features Base, Safe, Top, and Element would be encapsulated in one feature module per fea-
ture. If the feature Log, which logs every access to the stack, was introduced, it would also be
encapsulated in one feature module. This way, code scattering would be avoided, because ev-
erything that has to do with logging is encapsulated in one feature module. Furthermore, there
is no code tangling, because only source code that handles logging is in this feature module.

How are feature modules implemented to provide a modular structure? There are several
tools supporting FOP, e.g. AHEAD (BATORY ET AL. [BSR04]), FeatureC++ (APEL ET AL.



CHAPTER 2. BACKGROUND 11

[ALRS05]), and FeatureHouse (APEL ET AL. [AKL09]). We explain the approach AHEAD
uses, because its mechanism is easily understandable. We do not explain further approaches,
because we only want to give an impression on the implementation of feature modules and the
other tools work similarly. Hence, it suffices to explain how one of those tools works. We use
Java examples to explain AHEAD, however the concepts can be applied to other programming
languages, too.

In AHEAD, feature modules are stored in folders. For every feature module, one folder
exists. In the stack example, there would be the folders Base, Safe, Top, and Element. Each
folder contains only those parts of source code that implement the according feature. This way,
the modularization is also visible to the user. AHEAD uses the concept of classes supported
by Java for modularization. In order to enable the separation of crosscutting concerns, one
class is separated into several roles and stored in different feature modules. Each role contains
only source code that belongs to the feature module it is stored in.

In order to make this clearer, we show a collaboration diagram and according source code
of the stack implementation in Figure 2.4. The solid lines denote the classes Stack and
Element. The dashed lines denote the feature modules Base, Safe, Top and Element. The
dotted lines constitute the roles that contain the implementation of a feature module of a class.
All roles belonging to one feature module are referred to as collaboration.

Figure 2.4: Collaboration diagram of the stack example.

Since the classes are now split into several roles, they have to be composed to build an
executable program. In order to compose a program, the features that should be contained in



12 2.1. FEATURE-ORIENTED SOFTWARE DEVELOPMENT

the stack have to be selected. For example, the features Base and Safe could be selected for the
stack, or the features Base, Top, and Element. The selection of features must not violate the
conditions stated in the feature model, e.g. that Base has to be selected for every stack variant.

In AHEAD, the technical realization of the composition is enabled by the Jak language,
which extends Java by a few keywords (BATORY ET AL. [BLS98]). For example, in the role
of the class Stack in the collaboration Safe, the keyword refines is used. This means that
this role extends the class Stack of the collaboration Base. In the same role, the keyword
Super is used, which refers to the method pop of the super class. When composing a pro-
gram, AHEAD builds inheritance chains of the roles, resulting in the program according to the
selected features (SMARAGDAKIS AND BATORY [SB98]).

FOP supports the creation of SPLs, because a program is composed of different feature
modules, according to the selected features. Furthermore, the complexity of a program can be
increased incrementally, supported, e.g., by the inheritance mechanism of AHEAD. This way,
stepwise development is enabled (BATORY ET AL. [BSR04]).

To summarize, FOP divides source code into feature modules and thus allows modularizing
(crosscutting) concerns. There are several tools supporting FOP, e.g. AHEAD. FOP is one
approach we are interested in that uses physical SoC. A further approach is AOP, which we
explain next.

2.1.2.2 Aspect-oriented programming

AOP was introduced by Kiczales et al. in 1997 (KICZALES ET AL. [KLM+97]). The primary
goal for AOP is SoC. Recently, some researchers examine if AOP is also suitable for the
development of SPLs (FIGUEIREDO ET AL. [FCM+08]). Like FOP, AOP was designed to
modularize crosscutting concerns and thus avoid code scattering and tangling. However, the
mechanism it uses to achieve this aim is different.

In AOP, concerns are encapsulated in aspects. An aspect contains source code that allows
us to alter the behavior of a base program during runtime. There are three different kinds
of source code in an aspect: inter-type declarations, pointcuts, and advice. An inter-type
declaration adds a method to the base source code. An advice implements the new behavior
that should be applied to the base program. In a pointcut, the events of the base source code at
which the new behavior should be applied are specified. Events occurring during the execution
of a program are referred to as joint points. Examples are the initializing of a variable or the
call to a method.

In order to make those terms clearer, we implemented the stack example in AspectJ, a
language supporting AOP for Java (KICZALES ET AL. [KHH+01]). We chose AspectJ, be-
cause it is one of the most sophisticated languages for AOP and has well developed tool sup-
port (STEIMANN [Ste06]). In Figure 2.5, we show the source code of an aspect implementing
the feature Safe and Top. The implementation of the feature Base remains the same (cf. Fig-
ure 2.4).

In Lines 1–5, the feature Top is implemented. It adds the method top via inter-type dec-
laration (Stack.top; Line 3) to the class Stack.



CHAPTER 2. BACKGROUND 13

1 p u b l i c a s p e c t Top {
2 p u b l i c Element Stack.top() {
3 re turn elements.getFirst();
4 }
5 }
6 p u b l i c a s p e c t Safe {
7 p o i n t c u t safePop(Stack stack): e x e c u t i o n(Element pop()) && t h i s(stack);
8 Element around(Stack stack): safePop(stack) {
9 i f (stack.items.size() > 0) re turn proceed(stack);

10 re turn n u l l;
11 }
12 }

Figure 2.5: Aspect-oriented implementation of Safe and Top of the stack example.

The feature Safe is implemented in Lines 7–16. In Line 8, the pointcut is defined that
describes the execution of the methods pop and top. The keyword execution means that
this pointcut is activated, when the methods pop or top are starting to be executed. Using
||, the two join points for the execution of the methods pop and top are grouped. In Lines
10–15, the advice is defined, which ensures that no elements can be popped or topped from
an empty stack. The keyword thisJoinPoint allows us to access all information that is
relevant during the execution of the join point, e.g. the instance of the stack that calls the
method pop or top. Then, we check if the stack is empty and proceed (proceed(), Line
13), if this is not the case.

An aspect weaver weaves the source code of an aspect into the base source code. This
weaving can be statically, i.e., at compile time, or dynamically, i.e., at runtime. However,
dynamic weaving is only possible if the underlying language supports changing the behavior
of a program during runtime. Since Java alone does not allow such a dynamic change, the
weaving in AspectJ is static and the compiled program can then be executed.

The small stack example showed that AspectJ allows us to extend a base program at far
more point than FOP languages. Furthermore, AspectJ provides much more ways than the
few we showed to alter a base program. Due to the numerous ways to extend a program, AOP
languages are rather complex and take time to learn. A further problem is that there are no
restrictions on how to structure an aspect. In our example, we defined for the features Safe
and Top one aspect, each. However, this way of modularizing is left to the discipline of the
programmer. It is also possible to encapsulate the source code for all features in one aspect.
In Figure 2.6, we show this version of the aspect, which is now tangled with the two concerns
Top and Safe.

Those problems of AOP do usually not occur in FOP. A modular structure is enforced, e.g.,
that for every feature a feature module exists. Furthermore, FOP does not provide so many
ways to extend a base program like AOP, thus limiting the complexity. Some approaches of
FOP even allow a composition without introducing new keywords, e.g., FeatureHouse (APEL

AND LENGAUER [AL08]). However, this leads to restricted possibilities to extend a base
program, i.e., extensions are only possible for a limited number of events in the base program.

With expressiveness and modularity, we addressed two of the issues that are discussed



14 2.1. FEATURE-ORIENTED SOFTWARE DEVELOPMENT

1 p u b l i c a s p e c t Features {
2 p u b l i c Element Stack.top() {
3 re turn elements.getFirst();
4 }
5 p o i n t c u t safePop(Stack stack): e x e c u t i o n(Element pop()) && t h i s(stack);
6 Element around(Stack stack): safePop(stack) {
7 i f (stack.items.size() > 0) re turn proceed(stack);
8 re turn n u l l;
9 }

10 }

Figure 2.6: Tangled version of the aspect-oriented implementation of Safe and Top.

when FOP and AOP are compared. A detailed evaluation of both approaches can be found
in APEL [Ape07]. Researchers still disagree on what approach is better under which circum-
stances, especially regarding subjective issues like program comprehension or maintainabil-
ity (e.g., MEZINI AND OSTERMANN [MO04], and LOPEZ-HERREJON ET AL. [LHBC05],
APEL ET AL. [AKT07]). In our thesis, we want to provide the first step in concluding this
discussion.

With FOP and AOP, we presented two approaches for physical SoC that we are inter-
ested in this thesis. For a more complete overview of physical SoC, we present some further
approaches in the next section.

2.1.2.3 Other approaches for physical separation of concerns

Further approaches for physical SoC are, for example, aspectual feature modules (APEL ET

AL. [ALS08]), Hyper/J (TARR AND OSSHER [TO01]), CaesarJ (ARACIC ET AL. [AGMO06]),
frameworks (JOHNSON AND FOOTE [JF88]), and components (HEINEMANN AND COUNCILL

[HC01]).
Aspectual feature modules can be seen as combination of FOP and AOP (APEL ET AL.

[ALS08]). They support SoC into feature modules like in FOP, but also the flexibility for
extending a base program, like in AOP.

Hyper/J supports multi-dimensional SoC for Java (TARR AND OSSHER [TO01]). It pro-
vides a complex composition mechanism similar to AHEAD (BATORY ET AL. [BLS03]),
however the focus lies on dimensions, to which SoC should be applied. In addition to one-
dimensional SoC, multi-dimensional SoC allows to have different modularizations of the same
software system at the same time. This way, the modularization that is needed, e.g. according
to classes or to features, can be produced. This allows us to structure the software system
according to the need of the development task (TARR ET AL. [TOHS99]).

For realizing multi-dimensional SoC, hyperslices are defined. Hyperslices encapsulate
concerns in different dimensions and can consist of overlapping content. They can be com-
posed to new hyperslices or hypermodules, which themselves can be composed to new hyper-
slices or hypermodules. The composition can be defined as needed by rules. Subject-oriented
programming is one paradigm realizing this kind of multi-dimensional SoC. It decomposes
source code according to subjects, which are equivalent to hyperslices. A subject is under-



CHAPTER 2. BACKGROUND 15

stood as collection of software units, providing a specific view on a domain (HARRISON AND

OSSHER [HO93]). Hence, the composition of software units to different subjects provides
different views on the same domain, without implementing for every view a new software
module.

CaesarJ is a Java-based aspect-oriented programming language. It is designed to support
the reuse of software (ARACIC ET AL. [AGMO06]). The benefit compared to AOP is that
CaesarJ provides better support for modularity. For example, several classes implementing
one concern can be grouped to new a class. For this new class, one or more interfaces can be
defined. Then, in another module, the binding of the new class to a software application can
be defined. This improves modularity and reusability, since the behavior of the component is
decoupled from a software application. For another application, another binding of the same
group of classes with the same set of interfaces can be defined.

There are several further approaches that aim at SoC, e.g. frameworks (JOHNSON AND

FOOTE [JF88]) and components (HEINEMANN AND COUNCILL [HC01]). Both approaches
are typical in praxis, e.g. for Eclipse (www.eclipse.org). However, all those concepts are not
able to modularize crosscutting concerns, which is why we do not explain them further.

This concludes the introduction of physical SoC. We give an overview of all approaches
presented in this section in Table 2.1 on page 20. In the next section, we present approaches
for virtual SoC, where different concerns are not physically separated, but virtually by using
annotations.

2.1.3 Virtual separation of concerns

In the last section, we explained physical SoC, where concerns are physically separated, e.g.,
in different feature modules. This approach is suitable for the development of new software.
However, if a legacy application should be refactored into features, e.g. in order to create a
software product line, alternatives have been discussed. The problem with using physical SoC
is that it influences the existing code base and development process (KÄSTNER AND APEL

[KA08]). Hence, approaches for virtual SoC were developed, because they allow to refactor
source code without changing the actual code base.

Like for physical SoC, there are several approaches that aim at virtual SoC, including
CPP3, CIDE (KÄSTNER ET AL. [KAK08]), XVCL (JARZABEK ET AL. [JBZZ03]), FEAT
(ROBILLARD AND MURPHY [RM03]), pure::variants (BEUCHE ET AL. [BPSP04]), and
GEARS (KRUEGER [Kru08]). We first present CPP and CIDE in detail like FOP and AOP,
since those are the two approaches we are interested in. We choose the CPP, because a large
number of applications, especially for embedded systems, is implemented in C or C++ (BARR

[Bar99]). CIDE is an interesting approach, because colors are recognized easily by hu-
mans (GOLDSTEIN [Gol02], p. 165) and thus can aid the comprehension of programs. For
completeness, we conclude with a short overview of the other approaches.

3http://www.ansi.org



16 2.1. FEATURE-ORIENTED SOFTWARE DEVELOPMENT

2.1.3.1 C/C++ preprocessor

The CPP is part of the C programming language.4 It is executed before the compiler. It
can be used to define constants, include files, or allow conditional compiling, which is sup-
ported by several macros. Conditional compiling is used to create SPLs, one of the goals of
FOSD (KÄSTNER ET AL. [KAK08]). CPP is a generic term for several preprocessors, for
example Munge5 and Antenna6, which constitute preprocessors for Java.

In order to define constants, the macro #define can be used. For example, in C there
is no boolean data type. However, using #define, True and False can be defined by the
programmer, e.g. #define True = 1 and #define False = 0. Then, both constants
can be used.

Next, there is an #include, which is used to include further files. This is useful for
modular source code, because source code implementing different concerns can be stored in
different files. For example, we could store the implementation of the feature Base in a file
called base, and the implementation of the feature Top in a file called top. In the base file,
we would have to add the statement #include top. When the preprocessor is called, it
replaces this statement with the content of the according file, in this case the implementation
of the method top.

Finally, there are macros that are used for conditional compiling of source code, i.e., #if,
#ifdef, #ifndef, #else, #elif, and #endif. Conditional compiling can be used to
create different configurations of a program. For example, we could use those macros for our
stack to create different variants of the stack, e.g. one variant that contains all features, or a
variant that only contains the features Base, Safe, and Top.

In order to aid understanding of those macros, we show our stack example in C and with the
CPP statements in Figure 2.7. The implementation of the class Element remains unaltered
(cf. Figure 2.1b).

In Lines 13–18, the method top is defined, surrounded by #if TOP and #endif. This
means that the method top would only be compiled, if the feature Top was selected. The
feature Safe is implemented in the Lines 7–9 and 14–16. If the feature Safe was selected, those
lines would be compiled, otherwise they would be deleted by the CPP.

The CPP is not based on the specification of C or C++, but parses the directives line based.
Hence, the CPP can also be used for other languages, e.g. Java. However, as a further conse-
quence, the CPP allows to annotate everything, e.g., an opening bracket, but not the according
closing one. Thus, the CPP does not enforce disciplined annotation, which is often criticized
and made responsible for obfuscated source code (ERNST ET AL. [EBN02]). The ways of
creating obfuscated yet functional source code are so numerous that there even is a yearly
competition to create the most obfuscated C program7.

Because of the undisciplined annotation approach, further approaches were developed,

4http://www.ansi.org
5http://weblogs.java.net/blog/tball/archive/munge/doc/Munge.html
6http://antenna.sourceforge.net/wtkpreprocess.php
7http://www.ioccc.org



CHAPTER 2. BACKGROUND 17

1 p u b l i c c l a s s Stack {
2 LinkedList<Element> elements = new LinkedList<Element>();
3 p u b l i c vo id push(Element element) {
4 elements.addFirst(element);
5 }
6 p u b l i c Element pop() {
7 // #ifdef SAFE
8 i f (elements.size == 0) re turn n u l l;
9 // #endif

10 re turn elements.removeFirst();
11 }
12 // #ifdef TOP
13 p u b l i c Element top() {
14 // #ifdef SAFE
15 i f (elements.size == 0) re turn n u l l;
16 // #endif
17 re turn elements.getFirst();
18 }
19 // #endif
20 }

Figure 2.7: CPP implementation of the stack example (Antenna).

e.g., CIDE. In addition to enforcing disciplined annotations, CIDE is also language indepen-
dent and uses colors instead of macros. We explain the underlying concepts of CIDE in the
next section.

2.1.3.2 Colored Integrated Development Environment

CIDE was developed at the University of Magdeburg (KÄSTNER ET AL. [KAK08]). Orig-
inally, it was designed for annotating Java programs. For better applicability, a language-
independent extension also exists (KÄSTNER ET AL. [KAT+09]). Using CIDE, SoC and the
development of SPLs is supported.

Instead of textual macros like with the CPP, in CIDE, features are annotated in a tool
infrastructure and are represented with colors. CIDE provides a source code editor, in which
software developers can select source code from a file and associate this source code with a
feature. Then, the chosen source code is highlighted in the editor with a background color that
is associated with the feature. If a source code belongs to two features, then the background
color of this source code is the color that results when blending the two colors. For example, if
one feature is annotated with red, the other with blue, then the source code belonging to both
features is annotated with violet.

For internal representation, CIDE uses the abstract syntax tree of the according source
code file. Only optional nodes of the abstract syntax trees can be marked. This assures that not
arbitrary text, but only classes, methods, or statements can be annotated. This is in contrast to
the CPP, which allows to annotate everything.

For creating a program, the software developer chooses the features that should be con-
tained in the program. Then, CIDE creates a copy of the project and removes the source
code of all features that are not selected. The removal of the source code is implemented as



18 2.1. FEATURE-ORIENTED SOFTWARE DEVELOPMENT

1 c l a s s Stack {
2 LinkedList elements = new LinkedList();
3 void push (Element element) {
4 elements.addFirst(element);
5 }
6 Element pop () {

7 if (elements.getSize() == 0) return null;
8 re turn elements.removeFirst();
9 }

10 Element top () {return elements.getFirst();}
11 }

Figure 2.8: CIDE implementation of the stack example.

operation on the according abstract syntax trees.
In order to make this clearer, we present the stack example with the features Base, Safe ,

and Top in Figure 2.8. Since the feature Base must be part of every stack variant, it is not
colored and thus never deleted during creating a program. Now, if, e.g., the features Base and
Safe would be selected, the implementation of the method top would be removed from the
class, leaving only the field elements and the two methods push and pop.

One of the most often discussed problems of the CPP is the possibility to annotate every-
thing, leading to obfuscated source code (ERNST ET AL. [EBN02]). With CIDE, a disciplined
annotation of source code is enforced, e.g. when an opening bracket is annotated, the closing
bracket has to be annotated, too. Hence, it is assumed that the approach of CIDE increases the
comprehension of a program. A further assumed benefit is the use of colors instead of macros.
This is based on the fact that colors are processed by the brain preattentive, whereas text based
statements take more time to process (GOLDSTEIN [Gol02], p. 165).

However, problems with CIDE occur if there are feature interactions. For example, when
a red and a blue annotated feature interact, source code belonging to both features is annotated
with violet, the color resulting when blending red and blue. What if three, four, or ten features
interact? The resulting color of the blending process would become grey. This makes the
identification of all interacting features very difficult. Hence, the advantage of colors compared
to textual annotations would vanish. In our thesis, we want to evaluate if CIDE indeed provides
the claimed benefits compared to the CPP regarding program comprehension and to what
degree of feature interactions this benefit holds.

The CPP and CIDE are the two concepts for virtual SoC we are concerned with in this
thesis. In contrast to CPP, in CIDE annotations are realized with colors and it is only possible
to annotate elements of the AST, which restricts the ways to produce obfuscated and hence
badly comprehensible source code. In order to have a more complete overview, we present
some further approaches for virtual SoC in the next section.



CHAPTER 2. BACKGROUND 19

2.1.3.3 Other approaches for virtual separation of concerns

Further approaches for virtual SoC include, XVCL (JARZABEK ET AL. [JBZZ03]), FEAT
(ROBILLARD AND MURPHY [RM03]), pure::variants from pure::systems (BEUCHE ET AL.
[BPSP04]), and GEARS from BigLever (KRUEGER [Kru08]).

XVCL aims at increasing reusability and maintainability (JARZABEK ET AL. [JBZZ03]).
It represents recurring software artifacts in a generic form. The according source code of those
artifacts is annotated by an x-frame. From the generic representation of source code, concrete
instances can be generated according to specified requirements. Furthermore, mechanisms like
#ifdefs are supported.

Another tool is called FEAT and was developed to locate concerns in Java programs
(ROBILLARD AND MURPHY [RM03]). For the localization, FEAT provides a Graphical
User Interface (GUI). In FEAT, concerns are described as a graph, called Concern Graph.
Classes, methods, or fields belonging to one concern can be annotated and are then added to
the Concern Graph (ROBILLARD AND MURPHY [RM02]). This supports developers in locat-
ing source code belonging to a certain concern and maintaining the according source code.

Pure::variants and GEARS are both commercial tools for the development of software
product lines (BEUCHE ET AL. [BPSP04], KRUEGER [Kru08]). Like for CPP and CIDE, their
annotation approach is language independent. The typical way of annotating source code is
similar to the CPP, however both tools use a generic preprocessor that is not restricted to source
code written in C or C++. All approaches and tools, except FEAT, support the development of
SPLs.

Further approaches supporting virtual SoC include explicit programming (BRYANT ET AL.
[BCVM02]), software plans (COPPIT AND COX [CC04]), and Spoon (PAWLAK [Paw06]). In
the next section, we summarize the FOSD approaches we presented here.

2.1.4 Summary

All approaches we discussed are depicted in Table 2.1. In the column in this thesis, we present
those approaches that we are concerned with in our work. The approaches we mentioned
for completeness are shown in the column other. We selected FOP and AOP, because their
benefits and shortcomings regarding subjective factors like comprehensibility are theoretically
discussed for several years now (MEZINI AND OSTERMANN [MO04], or LOPEZ-HERREJON

ET AL. [LHBC05], APEL ET AL. [AKT07]). However, except for some case studies (e.g.,
LOPEZ-HERREJON ET AL. [LHBC05] or APEL AND BATORY [AB06]), we found no papers
reporting systematical empirical evidence. Although case studies suffice to prove the con-
cept of something, they are unsuitable as sole empirical evidence, because they constitute just
one example. Experiments with several subjects and several replications, on the other hand,
provide the base for drawing reliable and valid conclusions.

The CPP is of interest, because today most of the applications, especially for embedded
systems, are implemented in C or C++ ( BARR [Bar99]), yet there are some concerns when
using the CPP (ERNST ET AL. [EBN02]). As for CIDE, it is assumed that it overcomes



20 2.2. PROGRAM COMPREHENSION

SoC Approaches in this thesis Further approaches

Physical AOP frameworks
FOP Hyper/J

components
CaesarJ
aspectual feature modules

Virtual CPP XVCL
CIDE FEAT

GEARS
pure::variants
explicit programming
software plans
Spoon

Table 2.1: Overview of physical and virtual SoC.

some shortcomings of the CPP, especially the chance of producing obfuscated source code.
However, empirical evidence about the advantage regarding comprehensibility is lacking – at
least to the best of our knowledge.

We presented the other approaches, because we want to give an impression on the variety
of FOSD approaches. Comprehensive overviews on tools and languages supporting SoC can
be found in APEL [Ape07], KÄSTNER ET AL. [KAK08], or APEL ET AL. [AKGL09].

In this section, we explained several approaches we are interested in. In the next section, we
introduce program comprehension, because we are interested in the effect of FOSD approaches
on program comprehension. In order to soundly analyze the effect on program comprehension,
we need to be clear on what it is.

2.2 Program comprehension

Program comprehension is a hypothesis-driven problem solving process that can be defined as
‘the process of understanding a program code unfamiliar to the programmer’ (KOENEMANN

AND ROBERTSON [KR91]). The concrete specification of this process depends on how much
knowledge a programmer can apply to understand a program. The more knowledge of a pro-
gram’s domain a programmer has, the more he can apply. There are numerous models that
explain the process of understanding, depending on the domain knowledge of a programmer.
They can be divided into three different groups: top-down models, bottom-up models, and in-
tegrated models. In order to understand program comprehension, we need to understand how
the process of program comprehension can be influenced by domain knowledge. Hence, we
take a closer look at those models.



CHAPTER 2. BACKGROUND 21

2.2.1 Top-down models

If a programmer is familiar with a program’s domain, the process of understanding the program
is a top-down process. Top-down comprehension means that first, a general hypothesis about
a program’s purpose is derived. This can only be done if a programmer is familiar with a
program’s domain, because otherwise he has no knowledge of examples and properties of that
domain. Hence, he could not compare the current program with programs he know, at least
not without closely examining what a program does. During deriving this general purpose
hypothesis, the programmer neglects details, but only concentrates on relevant aspects for
building his hypothesis.

Once a hypothesis of the general purpose of a domain is stated, a programmer evaluates his
hypothesis. Now, he starts to look at details and refines his hypothesis stepwise by developing
subsidiary hypotheses. These subsidiary hypotheses are refined further, until the programmer
has a low level understanding of the source code, such that he can verify, modify, or reject
his hypotheses. An example of how a top-down process looks like can be found in SHAFT

AND VESSEY [SV95]. They let programmers think aloud while they were understanding a
program, which made the process of understanding visible for the experimenters.

Based on top-down comprehension in general, several examples of top-down models ex-
ist: BROOKS [Bro78] introduces the term beacons, which are defined as ‘sets of features that
typically indicate the occurrence of certain structures or operations in the code’ (BROOKS

[Bro83]). Programmers search beacons to verify their hypotheses. Similar to beacons, pro-
gramming plans (‘program fragments that represent stereotypic action sequences in program-
ming’) are used to evaluate hypotheses about programs (SOLOWAY AND EHRLICH [SE84]).

If a programmer is not familiar with a program’s domain, the process of understanding the
program is bottom up, which we explain next.

2.2.2 Bottom-up models

Without domain knowledge a programmer cannot look for beacons or programming plans,
because he does not know how they look. Hence, he needs to examine the code closely to be
able to state hypotheses of a program purpose. In this case, a programmer starts to understand
a program by examining details of a program first: the statements or control constructs that
comprise the program. Statements that semantically belong together are grouped into higher
level abstractions, which are called chunks. If enough chunks are created, a programmer can
leave the statement level and integrate those chunks to further higher level abstractions.

For example, a programmer examines several methods of a program. If we finds out that
some of those methods have a higher level purpose (e.g., sorting a list of data base entries), he
groups them to chunks. Now, he does not think of these methods as single entities anymore,
but as the chunk that ‘sorts data base entries’. He examines the program further and discovers
further chunks (e.g., inserting entries in a database, deleting entries from a database). Now,
these chunks are integrated in a larger chunk, which the programmer refers to as ‘data base
manipulating’ chunk. This process continues until the programmer has a high level hypotheses



22 2.2. PROGRAM COMPREHENSION

of a program’ purpose.
Examples of bottom-up theories differ on the kind of information that is integrated to

chunks. PENNINGTON [Pen87] states that control constructs (e.g., sequences or iterations) are
used as base for chunking, whereas SHNEIDERMAN AND MAYER [SM79] claim that chunking
begins on the statements of a program. Now, what if a programmer has little knowledge about
a program’s domain, so that neither bottom-up nor top-down models can explain program
comprehension? The answer to this question can be found in integrated models.

2.2.3 Integrated models

A solely top-down or bottom-up approach is often insufficient to explain program compre-
hension. Hence, integrated models were developed, which combine both approaches. For
example, if a programmer has domain knowledge about a program, he forms a hypothesis
about its purpose. During the comprehension process, he encounters several fragments he can-
not explain using his domain knowledge. Hence, he starts to examine the program statement
for statement, and integrates the newly acquired knowledge in his hypotheses about the source
code. Usually, programmers use top-down comprehension where possible, because it is more
efficient than examining the code statement by statement (SHAFT AND VESSEY [SV95]).

One example for integrated models can be found in MAYRHAUSER AND VANS [vMV93].
They divide the process of comprehension into four processes, where three of them are com-
prehension processes that construct an understanding of the code and the fourth provides the
knowledge necessary for the current comprehension task. All four processes are necessary to
understand an unfamiliar program.

Why is it important to deal with different models of program comprehension? It is nec-
essary because they explain the process of understanding differently. If we do not take this
into account, we cannot soundly assess the effect of different FOSD approaches on program
comprehension: It could be possible that one FOSD approach has a positive effect on one
model and a negative effect on the other model. Since we have no empirical knowledge about
the understandability of FOSD approaches on program comprehension, we need to carefully
consider the models of program comprehension when designing experiments. Otherwise, we
cannot draw sound conclusions from our result.

For the same reasons it is necessary to know how program comprehension measured, which
we discuss in the next section.

2.2.4 Measuring program comprehension

Program comprehension is an internal process or latent variable (i.e., we cannot observe it
directly), but have to find indicator variables to measure it (COHEN AND COHEN [CC83], p.
374). One technique that was developed in cognitive psychology is called introspection or
think-aloud protocol (WUNDT [Wun74]), in which individuals say their thoughts out loud.



CHAPTER 2. BACKGROUND 23

This way, the comprehension process can be observed. Usually, think-aloud sessions are
recorded on audio- or videotape, which are used to analyze the comprehension process.

In order to ensure an objective analysis of the data, several mechanisms were developed:
The analysis can be done by persons that do not know what we expect from the results so
that they are not influenced (intentionally or unintentionally) to interpret statements in favor
or against our expectations. Furthermore, we could let several persons analyze the think-aloud
protocols and compare their answers. Another way is to state specific rules on how to analyze
the data. Examples of rules can be found in SHAFT AND VESSEY [SV95] and LANG AND

MAYRHAUSER [LvM97].
One major problem with think-aloud protocols is that they are time consuming and costly

(SOMEREN ET AL [SBS94], p. 45): sessions of subjects can audio- and videotaped, subjects’
statements need to be analyzed carefully according to rules and/or by different persons to
ensure objective analysis of the data. Hence, they can only be applied if we have the according
resources for our experiment or we restrict our sample to only a few subjects.

Due to the effort in applying think-aloud protocols, other techniques for assessing compre-
hension processes have developed. An overview of such measures as well as their reliability
is reported in DUNSMORE AND ROPER [DR00]. They found four techniques: maintenance
tasks, mental simulation, static, and subjective rating.

In maintenance tasks, subjects are asked to add or remove statements or debug source code.
In mental simulation, pen-and-paper execution of source code or optimization tasks is used.
Static techniques include grouping code fragments to bigger fragments in a stepwise manner,
labeling/explaining code fragments, and call graphs. Subjective rating requires subjects to esti-
mate how well they understand source code. According to DUNSMORE AND ROPER [DR00],
mental simulation and certain maintenance tasks are reliable measures, whereas static tech-
niques are either unreliable or very hard to develop.

Secondly, after subjects worked with source code, we have to assess whether and how
subjects understood source code. Since program comprehension is an internal process, also
called latent variable, we cannot directly assess it, but we have to find measured variables
or indicators (SHADISH [SCC02], p. 400). Typical measures for program comprehension
usually are completeness, correctness, or time subjects needed to solve a task (DUNSMORE

AND ROPER [DR00]).
The tasks and measures for program comprehension determine the analysis methods that

can be applied. This is an important decision, because depending on the hypotheses of the
experiment, certain analysis methods have to be applied in order to be able to verify or reject
hypotheses.

2.2.5 Summary

In this section, we introduced program comprehension as hypothesis-driven problem solving
process. The nature of this process depends on the amount of domain knowledge and can be
top down, bottom up, or a mixture of both. In order to draw sound conclusions from experi-
mental results, it is necessary to consider those different models. Furthermore, we introduced



24 2.3. CONDUCTING EXPERIMENTS

think-aloud protocols, maintenance tasks, mental simulation, static tasks, and subjective rating
as techniques to measure program comprehension.

Having defined our variables of interest, we can start to design experiments. We intro-
duce necessary terms for conducting experiments in the next section. Readers familiar with
conducting experiments may skip this section.

2.3 Conducting experiments

In this section, we introduce basic terms regarding experiments. We regard this as necessary,
because this work was developed at the School of Computer Science at the University of
Magdeburg, where conducting experiments is not part of the curriculum. However, readers
familiar with conducting experiments may skip this section or refer to the summary at the end.

An experiment can be described as a systematic research study in which the investigator
directly and intentionally varies one or more factors while holding everything else constant and
observes the results of the systematic variation (WUNDT [Wun14], WOODWORTH [Woo39]).

From this definition, three criteria for experiments can be derived (WUNDT [Wun14]).
Firstly, experiments must be designed in a way that other researchers can replicate the exper-
iment. This way, researchers can control each other. Secondly, the variations of the factors
must be intended by the investigator. This is necessary to allow replications, because random
variations cannot be replicated. Thirdly, it is important that factors can be varied. Otherwise,
an effect on the result cannot be observed depending on the variations of the factors. Although
those criteria can be deduced from the definition, it is important to state them explicitly, be-
cause every good experiment should fulfill them in order to build a body of knowledge with
the help of experimental research (WUNDT [Wun14]).

In order to conduct experiments that fulfill the above introduced criteria, the process of
conducting experiments is divided into five stages (JURISTO AND MORENO [JM01], p. 49).
Firstly, the variables and hypotheses of the experiment need to be specified. Secondly, a de-
tailed plan for conducting the experiment needs to be developed. Thirdly, the experiment needs
to be run according to the developed plan. Fourthly, the data collected during the execution
needs to be analyzed. Finally, the results need to be interpreted and their meaning for the
hypotheses evaluated. For better overview, we visualize this process in Figure 2.9.

Figure 2.9: Stages of an experiment.

In this section, we traverse these stages and introduce relevant terms for each stage. We
apply the information to our objective: assessing the understandability of FOSD approaches.



CHAPTER 2. BACKGROUND 25

We start with objective definition in the next section. Then, we discuss the design stage in
Section 2.3.2 and methods for analyzing the results in Section 2.3.3. We conclude with inter-
preting the results in Section 2.3.4. We omit the execution stage, because we do not need to
introduce specific terms.

2.3.1 Objective definition

During objective definition, the variables of interest are defined (JURISTO AND MORENO

[JM01], p. 49). After defining the variables, we need to develop hypotheses about the relation-
ship between our variables. This is important so that we can choose a suitable experimental
design and analysis methods. If we developed our hypotheses after we ran the experiment, we
might discover that our material, tasks, or subjects were not suitable to test our hypotheses,
leaving us with useless data. The process of defining variables and hypotheses is also referred
to as operationalization, because a set of operations is defined with which we measure our
variables and test our hypotheses ( BRIDGMAN [Bri27]).

In this section, we introduce independent and dependent variables in Sections 2.3.1.1 and
2.3.1.2, respectively. Then, we explain how hypotheses for experiments should be stated in
Section 2.3.1.3.

2.3.1.1 Independent variable

An independent variable is intentionally varied by the experimenter and influences the out-
come of an experiment (JURISTO AND MORENO [JM01], p. 60). It is also referred to as
predictor (variable) or factor. Each independent variable has at least two levels or alterna-
tives.

In our case, the independent variable is the set of FOSD approaches. The levels of our
independent variable are the different approaches we presented in Chapter 2. For example, if
we would conduct an experiment regarding understandability of AOP, FOP, CPP, and CIDE,
our independent variable had four levels. We would evaluate the effect of each approach on
program comprehension by varying the approach. Any variations in program comprehension
can then be attributed to variations of the FOSD approach.

2.3.1.2 Dependent variable

A dependent variable is the outcome of an experiment (JURISTO AND MORENO [JM01], p.
59). It depends on variations of the independent variable. It is also referred to as response
variable.

The dependent variable in this thesis is program comprehension, because we want to ex-
amine its variation depending on variations of the FOSD approach.



26 2.3. CONDUCTING EXPERIMENTS

2.3.1.3 Hypotheses

Having decided on the variables of interest and their measurement, the hypotheses that should
be evaluated with the experiment need to be specified. It is important to specify the hypotheses
during the objective definition for several reasons: Firstly, they influence the decisions of the
remaining stages of the experiment, e.g., the subjects we recruit and the analysis methods we
need to apply (BORTZ [Bor00], [p. 2]). Secondly, since we define beforehand what we want
to answer with our experiment, we prevent us from fishing for results in our data and thus
discovering random relationships between variables (EASTERBROOK ET AL. [ESSD08]).

One important criterion for a scientific hypothesis is its falsifiability (POPPER [Pop59]).
This means that a hypothesis should be specified so that it can be empirically tested and re-
jected, if it is wrong. Hypotheses that are continually resistant to be falsified are assumed to
be true, yet it is not proven that they are. The only claim we can make is that we found no
evidence to reject our hypotheses. In order to be falsifiable, a hypothesis needs to be as clear
and specific as possible. The variables need to be defined exactly, as well as the expected
relationships between them. Otherwise, the same result can be used to reject and falsify a
hypothesis, depending on the specification of variables and their relationship.

Example. In order to make this clearer, we give an example hypothesis and refine it in a
stepwise manner. A statement like:

• Some FOSD approaches provide more benefit on program comprehension than others.

is not a suitable hypothesis, because it is not specific enough. The first problem is the word
some, because it does not say which or how many. Hence, if our results would be that three,
four, or five approaches are better, then all those results either verify or falsify our hypothesis,
depending on the definition of some. In addition, we did not specify which approaches are
more understandable. Thus, a result showing that AOP is better understood than FOP can be
used for verifying and falsifying our result. The first refinement could be:

• FOP provides more benefit on program comprehension than AOP.

because now we specified the approaches.
Secondly, we take a closer look at program comprehension. In section 2.3.1.2, we intro-

duced several models for program comprehension, which are applied by programmers depend-
ing on their domain knowledge. We also stated that top-down comprehension is more efficient
than bottom-up comprehension. Hence, we need to specify the model we use or explicitly state
that we refer to all models at once. Our refined hypothesis could be:

• FOP provides more benefit on bottom-up program comprehension than AOP.

Thirdly, we need to clarify provide more benefit. This means that we have to specify how
we measure program comprehension. Otherwise, if we obtained the result that there are no
differences in response times, but in correctness of the answers, we could interpret them both
in favor and against our hypothesis. Thus, we have to refine our hypothesis further:



CHAPTER 2. BACKGROUND 27

• With FOP compared to AOP, subjects are faster and make fewer errors while maintain-
ing a program of an unfamiliar domain (forcing them to understand a program bottom
up).

This hypothesis can be tested, because we specified the levels of our independent variable,
defined our dependent variable, and specified the technique and measure that we use to assess
program comprehension. We could refine our hypothesis further, e.g., by stating that subjects
are at least five minutes faster or make at least three error less. However, in this case, we need
to have some preliminary results about the magnitude of the effects, which we could obtain by
literature research or prior experiments.

With defining our variables of interest and stating our hypotheses, we finished defining our
objective. The next step is to design our experiment so that we can test our hypotheses.

2.3.2 Design

Based on our independent and dependent variables as well as the hypotheses, we can design a
plan for running our experiment. Our plan must ensure that our experiment is valid (2.3.2.1),
which requires that we eliminate the influence of all variables we are not interested in (2.3.2.2).
This includes choosing an appropriate experimental design (Section 2.3.2.3).

2.3.2.1 Validity

There are two kinds of validity we are concerned with in this thesis: internal and external
validity. Further kinds of validity include construct, discriminant, convergent, and ecological
validity, but their importance rather lies in the development of tests (e.g., intelligence tests)
than for conducting experiments (MOOSBRUGGER AND KELAVA [MK07]).

Internal validity describes the degree to which the value of the dependent variable can be
assigned to the manipulation of the independent variable (SHADISH ET AL. [SCC02]). In order
to assure that the result can be attributed to the independent variable, confounding factors need
to be controlled, because they also influence our dependent variable. Examples of confounding
parameters are noise and light conditions during the experiment, experience of subjects, etc.
Without controlling the influence of confounding factors, we cannot be sure that our result can
solely be attributed to our variation of the independent variable. As a consequence, we can
neither reject nor confirm our hypotheses, since other parameters that are not included in our
hypotheses could as well influence our result.

The degree to which the results gained in one experiment can be generalized to other
subjects and settings is referred to as external validity (SHADISH ET AL. [SCC02]). The more
realistic an experimental setting is, the higher its external validity is. Hence, we could conduct
our experiment in a company under real working conditions with employees of the company.
Now, however, our internal validity is threatened, because we have no influence on the light
and noise level and the experience of our subjects.

How do we deal with this dilemma? Either we can attribute the variations in program
comprehension to the FOSD approach, or we can generalize our result. One way is to conduct



28 2.3. CONDUCTING EXPERIMENTS

both types of experiments (SHADISH ET AL. [SCC02]): First, if we have no knowledge about
how an FOSD approach affects program comprehension, we design an experiment with high
internal validity, allowing us to examine the influence of FOSD on program comprehension
under controlled conditions. Second, if we have gained knowledge about the influence, we can
design experiments with lower internal, but high external validity, which allows us to test our
knowledge under real conditions and thus generalizing our results.

2.3.2.2 Controlling confounding parameters

In order to have a high degree of internal validity, we need to control the influence of confound-
ing parameters. A confounding parameter is a variable that influences the depending variable
besides variations of an independent variable (GOODWIN [Goo99], p. 143). Examples of con-
founding parameters for program comprehension are programming experience, intelligence,
or programming language.

Since there is a large number of confounding parameters on program comprehension, we
discuss all of them not in this section, but in Chapter 3. Here, we describe several methods for
controlling the influence of confounding parameters.

Several techniques were developed to control the influence of confounding parameters,
which we explain in this section:

• Randomization (GOODWIN [Goo99])

• Matching (GOODWIN [Goo99])

• Keep confounding parameter constant (MARKGRAF ET AL. [MMW+01])

• Use confounding parameter as independent variable (MARKGRAF ET AL. [MMW+01])

• Analyze influence of confounding parameter on result (SHADISH ET AL. [SCC02], p.
62)

Since it is hard to explain the techniques in an abstract way, we use programming experi-
ence as example parameter in this section. A detailed description of programming experience
can be found in the next chapter.

Randomization

The first technique is called randomization. It can be applied when our sample, i.e., the set
of persons that take part in our experiment (ANDERSON AND FINN [AF96], p. 18), have
to be split in two or more groups. With this technique, we randomly assign our subjects
or experimental unit (JURISTO AND MORENO [JM01]) to the experimental groups. Due to
randomization, it assumed that we create homogeneous groups according to programming
experience, which means that our groups do not differ in their programming experience.



CHAPTER 2. BACKGROUND 29

This assumptions is based on the fact that statistical errors even out with a large amount of
replication (BORTZ [Bor00], p. 8). For example, if a coin is flipped four times, chances are
that we receive ‘heads’ four times. However, flipping a coin hundred times, the error evens
out, so that the results ‘heads’ and ‘tails’ occur about fifty times each. Hence, the statistical
error only evens out, if our sample is large enough.

Unfortunately, there is no specification on what large means – at least to the best of our
knowledge. In BORTZ [Bor00], p. 103, a large sample is defined as at least 30 subjects.
However, if our independent variable had five levels, we would have six subjects per level,
which is defined as small in other references (e.g., GOODWIN [Goo99], p. 174). Hence, we
cannot give an advice on how large our sample should be to be able to apply randomization.
The only advice we can give is that if we want to apply randomization, the sample should be
as large as possible. Otherwise, we need other group assignment techniques.

Matching

For the case that our sample is too small, matching was developed. This process requires that
the confounding variable is measured. Then, subjects are ranked according to the measure and
assigned to two groups, for example stratifying the sample (SHADISH ET AL. [SCC02]): The
first subject is assigned to the first group. The second and third subjects are assigned to the
second group, and the fourth subject is again assigned to the first group. This is continued, until
all subjects are assigned. Another group assignment technique creates subset of subjects based
on the ranking (e.g., four subsequent subjects are assigned to one subset) and then randomly
assigns the subjects of each subset to one of the experimental groups. Both techniques assure
that both experimental groups are homogeneous regarding programming experience.

There are further randomization variants for generating experimental groups, e.g., strati-
fied, cluster, or staged sampling, which can be applied depending on the hypotheses as well as
human and financial resources of the experiment (ANDERSON AND FINN [AF96], p. 639).

Keep confounding parameter constant

Another way to deal with a confounding parameter is to keep it constant in our sample. We can
accomplish this by selecting only subjects with a certain level in the confounding parameter.
This requires a pretest, so that all persons not matching this criterion can be excluded before-
hand. As a shortcoming, more effort in acquiring subjects is necessary, because we exclude
several individuals and thus need to contact more in order to create our sample. Furthermore,
the population of the sample is diminished to persons with the level of the confounding param-
eter we used for our experiment, reducing the external validity of our experiment. In addition,
the selection of subjects is more prone to bias than usual, because we use a stricter selection
criterion (MARKGRAF ET AL. [MMW+01]).



30 2.3. CONDUCTING EXPERIMENTS

Use confounding parameter as independent variable

A further way is to declare a confounding parameter as independent variable in our objective
definition. In this case, we have to adapt our hypotheses. Since we already have one inde-
pendent variable, the FOSD approach, we now have to vary two independent variables. If we
chose to use two levels for both independent variables, we had to consider every combination
of those levels, resulting in four conditions to test.

In addition to more effort in varying the independent variable, the analysis of the data
would also get more complicated. Without programming experience as independent variable,
we could use a simple t test to evaluate the difference (STUDENT [Stu08]). However, with two
independent variables, we need to conduct a two-factorial ANOVA (ANDERSON AND FINN

[AF96]), thus consider two main effects and analyze possible interactions between our two
independent variables.

Analyze influence of confounding parameter on result

If we have to deal with a fixed sample, e.g., from a company or a programming course at the
university, we cannot randomize our sample. In this case, programming experience can be
measured and its influence on program comprehension can be analyzed afterwards. This way,
we can evaluate the influence on programming experience on our results and include it in our
interpretation (SHADISH ET AL. [SCC02]).

So, which of these techniques should be applied? Unfortunately, there is no general answer
to this question. It depends on the hypotheses of our experiment as well as the human and
financial resources. In Chapter 3, we discuss for each parameter how the presented techniques
can be applied and give some examples under which circumstances which technique to apply.
In the next section, we present some typical experimental designs that can be applied to control
typical confounding parameters that occur in nearly all experiments.

2.3.2.3 Experimental designs

Experimental designs define how levels of the independent variables are applied to subjects
(JURISTO AND MORENO [JM01]). Usually, designs are grouped into one-factorial (one inde-
pendent variable) and two-factorial (two independent variables) designs. It is possible to have
three and more factorial designs, however they are time consuming and costly, because they
require a large sample and specific analysis methods. First, we describe some one-factorial
designs. Then, we present a two-factorial design to show how complexity increases with two
independent variables instead of one.

One-factorial designs. In one-factorial designs, we have one independent variable with two
or more levels. We have to decide what we do with our sample: We could apply all levels to all
subjects or split our sample into groups according to the number of levels of our independent



CHAPTER 2. BACKGROUND 31

FOSD Group

AOP 1
FOP 2

Table 2.2: Simple one-factorial design.

Group Trial 1 Trial 2

1 AOP FOP
2 FOP AOP

Table 2.3: One-factorial design with repeated measures.

variable (GOODWIN [Goo99], p. 237). A simple design is shown in Table 2.2 with AOP and
FOP as example levels. In this case, we have to make sure that both groups are comparable,
e.g., that they are homogeneous according to program comprehension. Furthermore, we cannot
exclude that the order of the application of the approaches influences program comprehension
(referred to as ordering effect). For example, subjects could comprehend an FOP program
better, because they do not need to get used to it, whereas AOP needs some time to get used
to, but then outperforms FOP.

In order to avoid the problems, we extend this design as shown in Table 2.3, which is
referred to as repeated measures. We conduct two trials, i.e., a further the measurement, but
inversing the levels of our independent variable. This way, we can check for ordering effects
and have a more accurate measurement of program comprehension, because we have two
measurements instead of one (cf. Table 2.2). The problem with a repeated measure is that test
effects can occur, i.e., that subjects learn from their first program. In order to avoid test effects,
we either can create two different tasks for each level (and make sure that they are comparable)
or let a sufficient time interval pass between both trials. The greater the time interval is, the
smaller test effects are, but the higher mortality is, i.e., that subjects drop out (SHADISH ET

AL. [SCC02], p. 59).
One-factorial designs can also be applied for more than two levels of an independent vari-

able, however the analysis methods are different in those cases (BORTZ [Bor00]). Depending
on the hypotheses and resources of the experiment, one of those designs can be chosen. In our
experiment, which we describe in Chapter 5, we chose the simple one-factorial design because
of our limited resources.

Two-factorial designs. In order to show how complexity increases if we choose to include a
confounding parameter as independent variable, we show a two-factorial design. An example
with programming experience is shown in Table 2.4. This design looks similar to the one in
Table 2.3, however in the current design, we have four groups and still do not control the order
effect (which we could do by conducting a second trial with a different order). In addition
to the more complicated design, the analysis methods are more complicated, too (BORTZ



32 2.3. CONDUCTING EXPERIMENTS

AOP FOP

little programming experience group 1 group 2
much programming experience group 3 group 4

Table 2.4: Two-factorial design.

[Bor00]).
Carefully designing experiments is crucial for drawing sound conclusions from our data.

It helps to decide whether our data are valid and thus the evaluation of our hypotheses is
unbiased. A further step is to choose the right analysis method for our data, which we explain
next. We omit the execution stage, because no psychological concepts or terms need to be
explained.

2.3.3 Analysis

Having defined the objectives and design for our experiment, we can collect and analyze the
data. During analysis, several methods can be applied. First, we explain scale types of variable
in Section 2.3.3.1, because the decision for an analysis method for a variable depends on its
scale type. Then, we present some descriptive statistics for describing our data and sample
in Section 2.3.3.2. Finally, we introduce significance tests in Section 2.3.3.3, which can be
applied to test our hypotheses.

2.3.3.1 Scale types

In order to be able to choose the right analysis method, we have to know the scale type of a
variable. There are four common scale types: nominal, ordinal, interval, and ratio (FENTON

AND PFLEEGER [FPG94]).
Nominal scales are classification of values. A typical example is the coding of gender with

numbers, e.g., male with 0 and female with 1. The numbers have no qualitative or quantitative
meaning.

Ordinal scales are used to describe a ranking. An example is the order of subjects according
to their response time. The ranks have no quantitative meaning, but indicate the order of
subjects.

On interval scales, numbers have a quantitative meaning. The difference between two
consecutive numbers is constant for each pair of numbers. There is no absolute zero, in contrast
to ratio scales, which include an absolute zero. Both scales are often referred to as metric. It
is important to know the scale type of a variable, because most analysis methods require a
certain scale type. To clarify scale types, we present an overview in Table 2.5, in which we
show allowed operations for each scale type (BORTZ [Bor00], p. 23).



CHAPTER 2. BACKGROUND 33

Computations
Scale type Frequencies Ordering Differences Quotient

Nominal yes no no no
Ordinal yes yes no no
Interval yes yes yes no
Ratio yes yes yes yes

Table 2.5: Scale types and operations (adapted from BORTZ [Bor00], p. 23).

2.3.3.2 Descriptive statistic

Descriptive statistics are important to understand our data and support other researchers in
replicating our experiments.

Central tendency

If we have a series of measure for our subjects, we look for a value that describes the distribu-
tion of our measures best (BORTZ [Bor00], p. 35). Depending on the scale type of our data,
different measures can be used, which are referred to as measures for central tendency. The
two most frequent measures are the median and the arithmetic mean.

The median splits a frequency distribution in half. The sum of the absolute values of the
deviation from the median is minimal. For example, if we have the ordered list of numbers
1, 5, 5, 6, 10, the median of those numbers is 5, because it lies in the middle of this list. It
requires that data are at least ordinal scaled.

Second, there is the arithmetic mean, which divides the sum of all values by the number of
values and assumes that data have at least interval scale type:

x =

∑n
i=1 xi
n

Further values include mode, geometric mean, and harmonic mean, which are sometimes
more suitable to describe the data. An overview including application and requirement for
those further measures can be found in (BORTZ [Bor00], p. 38).

Dispersion

While different distributions can have similar central tendency, they can still look very differ-
ent. For example, compare the series 99, 100, 101 with the series 0, 100, 200. Both have the
same median and arithmetic mean, yet their distributions are rather different. Hence, central
tendency measures are not sufficient to describe our data, but we need information about the
distribution. Two commonly used measures are variance and standard deviation, which both
require the data to be metric.



34 2.3. CONDUCTING EXPERIMENTS

Variance describes the sum of squared deviations from the arithmetic mean divided by the
number of all measures:

s2 =

∑n
i=1(xi − x)2

n

The deviations have to be squared, because otherwise the sum would add up to zero. Fur-
thermore, the larger the deviation, the higher the influence of this value on the variance is.

One problem is that the underlying unit of our data (e.g., second for response time) is
also squared, which makes it hard to interpret (BORTZ [Bor00], p. 41). Hence, the square
root of the variance is often used, which is called standard deviation (s). For interpreting
the standard deviation, it is necessary to know that between x − s and x + s, 68% of the
values can be found, assumed that our data are normally distributed (i.e., they can be described

with f(x) = 1√
2π·s2

· e−
x−x2

2s2 ). Hence, the larger the standard deviation, the more widely
spread our values are. This also counts for not normally distributed data, but the probability
that a value deviates from the mean by one standard deviation depends on the underlying
distribution (BORTZ [Bor00], p. 43).

If our data are not metric, we have to use other measures to describe dispersion, for
example the interquartile range, which is the difference between the first and third quar-
tiles (ANDERSON AND FINN [AF96], p. 110). A quartile divides a series of measurement
in to quarters (ANDERSON AND FINN [AF96], p. 75) (similar to the median, which divides a
series of measurement in halves).

Further measures for dispersion are series range and mean deviation (BORTZ [Bor00], p.
40). Next, we show a commonly used technique to visualize central tendency and dispersion
of our data, which does not require a metric scale type of our data.

Box plots

Box plots were developed in 1977 (TUKEY [Tuk77]). A box plot displays the median, ex-
tremes, and interquartile range of a series of measurement. In Figure 2.10, an example is
shown. The median and interquartile range are depicted as box, which contains 50% of the
data, whereas all other values are depicted as ‘whiskers’. Instead of depicting the minimum
and maximum observed value, the length of the whiskers can be defined depending on the
interquartile range (e.g., one and a half times) (ANDERSON AND FINN [AF96], p. 126). This
allows us to identify outliers in the data, because they are depicted as extra data points and not
as part of the whiskers.

From boxplots, the following information about the data can be derived: Firstly, the median
as measure for central tendency is depicted by the line that splits the box in halves. Secondly,
the position of the median provides information about the skewness of the data: The more
unequal the halves of the box are, the more our data are skewed, which gives us a hint that our
data might not be normally distributed. Additionally, the whiskers also provide information
about skewness: The longer one whisker is compared to the other, the more the data are
skewed in direction of the longer whisker. Thirdly, dispersion of our data can be derived



CHAPTER 2. BACKGROUND 35

Figure 2.10: Box plot.

from the interquartile range, because the larger the range is, the higher the dispersion of our
data is (BORTZ [Bor00], p. 40).

Having described our data sufficiently, we can start to test our hypotheses with significance
tests, which we explain next.

2.3.3.3 Significance tests

In order to test our hypotheses, we need to transform them into statistical hypotheses. Fur-
thermore, we have to know the errors we can make in statistical decisions. Then, we need
to know which significance test we can apply depending on the scale type and distribution of
our data. We explain some significance tests in detail, because understanding their mechanism
helps to understand why hypotheses are confirmed or rejected. Readers already familiar with
the mechanism of significance tests may refer to Figure 2.11 on page 43, in which we present
an overview of significance tests and their application.

Statistical hypotheses

In order to be able to test our hypotheses, we have to transform them into statistical hypotheses,
because significance tests test those statistical hypotheses. We have to make sure that our
hypotheses are represented as accurately as possible by one or more statistical hypotheses.

There are two kinds of statistical hypotheses: alternative hypotheses and null hypothesis.
An alternative hypothesis, also called H1, states that there is a difference between values.

For example, we transform our hypothesis of Section 2.3.1.3

• With FOP compared to AOP, subjects are faster and make fewer errors while maintain-



36 2.3. CONDUCTING EXPERIMENTS

H0 is valid H1 is valid

Decision for H0 correct type 2 error
Decision for H1 type 1 error correct

Table 2.6: Cases in statistical decisions.

ing a program of an unfamiliar domain (forcing them to understand a program bottom
up).

into several alternative hypotheses. We split our two measures for program comprehen-
sion into two hypotheses (we omit several specifications of our hypotheses to concentrate on
relevant aspects):

• H11: Subjects are faster with an FOP program.

• H12: Subjects make fewer errors with an FOP program.

In contrast to H1, the null hypothesis, also called H0, states that there is no difference. For
every alternative hypothesis, an according null hypothesis can be stated. For our example, they
are

• H01: Subjects with an FOP program are as fast as subjects with an AOP program.

• H02: Subjects with an FOP program make the same amount of errors as subjects with
an AOP program.

Next, we discuss the errors we can make when we reject or confirm H0 or H1.

Kinds of errors

With statistical decisions, four cases can occur:
The first error we can make is to reject H0, although it is true. This is also referred to as α

error or type 1 error. The second kind of error, called β error or type 2 error, is to reject H1

although it is true, or in other words, confirm H0, although it is false.
Which of the errors is easier to live with? Both lead to problems: When a type 1 error is

made, we incorrectly assume that our null hypothesis is wrong and that the variation of our
independent variable indeed has an effect on our dependent variable. If we took consequences
from our result and started eliminating the FOSD approach that negatively affects program
comprehension according to our result, this effort would be wasted, because it actually makes
no difference for comprehension how a program is developed.

On the other hand, if we make a type 2 error, we incorrectly assume that our alternative
hypothesis is wrong and that the variation of our independent variable has no effect. As a



CHAPTER 2. BACKGROUND 37

consequence, we could support both FOSD approaches we tested in our experiment, because
it makes no difference on program comprehension according to our result. However, since
program comprehension actually is influenced by the FOSD approach, we would support an
approach that negatively affects program comprehension, which could lead to higher main-
taining costs than necessary (because comprehending a program is required for maintaining
it).

Depending on the possible consequences of our result, we have to decide which error is
more acceptable. In order to provide comparability and quality of statistical decisions, the
probability of the type 1 error has become a standard for making statistical decisions (BORTZ

[Bor00], p. 113). The probability of the type 1 error is referred to as significance level or α.
It denotes the probability that our outcome occurred under the assumption that H0 is valid.
Hence, it is a conditional probability.

If the probability that an observed result under the assumption that H0 is valid is smaller
than 5%, a result is called significant, if it is smaller than 1%, very significant. In that case, we
reject our null hypothesis and assume that our alternative hypothesis is true.

Having introduced relevant terms for significance tests, we discuss some frequently used
significance test depending on the scale type of our data. Generally, significance tests compute
a test statistic and compare it with a theoretical value, i.e., one from an underlying distribution
function (depending on the concrete significance test). The theoretical value of the function
depends on the significance level. We start by introducing the χ2 test in the next section.

Nominal scale

Data with nominal scale type allow only to compare frequencies (cf. Table 2.5). The most
commonly used test for this case is the χ2 test, which checks whether observed frequencies
significantly deviate from the expected frequencies. The underlying distribution function is
the χ2 distribution (BORTZ [Bor00], p. 817).

In order to apply the χ2 test, some requirements need to be fulfilled (BORTZ [Bor00], p.
177):

• The observations must be independent from each other.

• Every experimental unit must be unambiguously assigned to one level of the independent
variable.

• The expected frequencies should not be smaller than ten.

We have to make sure that those requirements are fulfilled before we conduct the test.
Otherwise, the χ2 test could incorrectly confirm or reject the null hypothesis. In case one of
the requirements is not met, we cannot apply the χ2 test, but have to adjust it or use other
tests (BORTZ [Bor00], p. 177)

For the case that our independent variable has two levels (e.g., male and female), the ex-
pected frequencies are calculated according to:



38 2.3. CONDUCTING EXPERIMENTS

AOP FOP

Observed 7 14
Expected 10.5 10.5

Table 2.7: Example of observed and expected frequencies.

fe(1) = fe(2) =
fo(1) + fo(2)

2

where fe(1/2) denotes the expected frequencies and fo(1/2) the observed frequencies. Based on
both frequencies, the χ2 value is calculated according to

χ2 =
2∑
j=1

(fo(j) − fe(j))
2

fe(j)

where j describe the levels of our independent variable.
This calculated value is compared with a value of the χ2 distribution, which depends on the

specified significance level and the degrees of freedom (df). The df is one less than the number
of categories of our variable we are analyzing. Hence, it is 1 in our case, since our dependent
variable has two categories (e.g., male and female). If we specify our significance level with
5%, the according χ2 value from the distribution is χ2

(α=.05;df=1) = 3.84 (BORTZ [Bor00], p.
817). If our calculated value is larger than the value from the distribution, we reject our null
hypothesis, because the probability that our result occurred if H0 is valid is smaller than 5%.

Example. In order to clarify the mechanism of the χ2 test, we use an example. We assume
that we conducted an experiment with forty subjects, whereas twenty got an AOP program,
the other twenty an FOP program. Our H0 states that there are no differences in the number
of errors between both programs. In Table 2.7, we show the observed number of errors (row
Observed) and the expected number of errors (row Expected), which are calculated according
to

fe(AOP ) = fe(FOP ) =
fo(AOP ) + fo(FOP )

2
=

7 + 14

2
= 10.5

If we take a first look on the observed frequencies, we can see that they differ between the
AOP and FOP group. However, is this difference statistically significant or random? In order
to answer this question, we compute the χ2 value:

χ2 =
2∑
j=1

(fb(j) − fe(j))
2

fe(j)
=

(7− 10.5)2

10.5
+

(14− 10.5)2

10.5
= 2.33

If we compare our observed value, χ2
α=.05;df=1 = 1.32 with the χ2 value of the χ2 distri-



CHAPTER 2. BACKGROUND 39

bution, χ2
α=.05;df=1 = 3.84, we can see that the observed value is smaller than the theoretical

value. Hence, we confirm our H0, which means that we can conclude that the difference in our
sample occurred randomly.

As this example showed, although a difference in the number of errors occurred in our
sample, it most probably occurred randomly. This demonstrated the necessity of significance
tests.

For more than two levels for our independent variable and/or more than one independent
variable, variants of the χ2 test also exist (ANDERSON AND FINN [AF96]).

In the next section, we introduce the Mann-Whitney-U test, one representative significance
test for ordinal scaled data.

Ordinal

For ordinal data, the Mann-Whitney-U test was developed to compare central tendency of
our data (BORTZ [Bor00], p. 150). It compares the rankings of two groups according to a
characteristic and checks whether they significantly differ.

The application of the Mann-Whitney-U test requires that the data have ordinal scale and
that both samples are independent. For dependent samples (e.g., if we recruit couples for our
experiment and assign the female to one group and the according male to the other), we need
to apply other tests (e.g., the Wilcoxon test (BORTZ [Bor00], p. 153)).

The first step is to order our complete sample according to a variable we measured (e.g.,
time to finish a task). Then, we compute the sum of ranks for each group by adding the ranks
of all subjects per group:

T =
n∑
i=1

ri

where n is the number of subjects in the group and r the rank of a subject.
Then, we compute U according to:

U = n1 · n2 +
n1 · (n1 + 1)

2
− T1

where n1 and n2 denotes the number of subjects per group. Since the U values are symmet-
rically distributed around their mean, it suffices to use either T1 or T2 (BORTZ [Bor00], p.
151). The next step is to determine the U value with which we compare our computed value
by using according tables (e.g., BORTZ [Bor00], p. 826). The U value depends on the sizes of
both groups, for example, if we have ten subjects per group, the according U value is 23.

Example. As example, assume we collected response times in an experiment. We assume we
had ten subjects per level of our independent variable (e.g., AOP and FOP), with the response
times shown in Table 2.8. The table contains the response time in seconds, as well as the
rank of the response time in our complete sample. For example, 84 seconds is the third fastest



40 2.3. CONDUCTING EXPERIMENTS

reaction time, after 78 and 81.

AOP FOP
Time (s) Rank Time (s) Rank

85 4 96 8
106 13 105 12
118 17 104 11
81 2 108 15
138 20 86 5
90 6 84 3
112 16 99 9
119 18 101 10
107 14 78 1
95 7 124 19

Rank sums: T1 = 117 T2 = 93

Table 2.8: Example response times for Mann-Whitney-U test.

Now, if one group is slower than the other, the sum of ranks must be larger in that group.
We can see that for the AOP group the sum of rank is 117 and for the FOP group 93. In order
to check if this difference is significant, we compute the test statistic, U:

U = n1 · n2 +
n1 · (n1 + 1)

2
− T1 = 10 · 10 +

10 · (10 + 1)

2
− 117 = 38

and compare this value with the theoretical value, which is in our case U = 23. Since
our computed value U = 38 is larger than the expected value U = 23, we reject H0 that the
response times do not differ and confirm H1 that there is a difference. Hence, we can assume
that the observed difference did not occur randomly.

Metric

If we want to compare the arithmetic means of metric data, we apply the t test (ANDERSON

AND FINN [AF96], p. 468). It tests whether the means of two groups significantly differ. The
null hypothesis for the t test is that there is no difference between both means.

The application of the t test requires that our data are normally distributed (except if our
sample is larger than 50 subjects) and that both samples are independent. We can check
whether our data are normally distributed with several tests, for example a Shapiro-Wilk
test (SHAPIRO AND WILK [SW65]). If a normal distribution cannot be confirmed and our
sample is too small, we cannot apply the t test, but have to use other tests (e.g., the Mann-
Whitney-U test). If we have dependent samples, we need to apply a t test for dependent sam-
ples (or a Wilcoxon test, if our sample is too small and the data are not normally distributed).

As for the other significance tests, we compute a test statistics, in this case a t value, and



CHAPTER 2. BACKGROUND 41

compare our computed value with the theoretical value of a t distribution. The t value is
calculated according to:

t =
x1 − x2

σ̂(x1−x2)

where

σ̂(x1−x2) =

√∑n1

i=1 (xi1 − x1)2 +
∑n2

i=1 (x2i − x2)2

(n1 − 1) + (n2 − 1)
·
√

1

n1

+
1

n2

Like for the χ2 test, we need to compute the df for our t test, in this case according to
df = (n1 − 1) + (n2 − 1).

Example. As example, we use the reaction times in Table 2.8. The arithmetic means are
xAOP = 105.1 and xFOP = 98.5. We assume that the response times are normally distributed,
so that we can apply the t test. Now, we can compute σ̂(x1−x2) according to:

σ̂(x1−x2) =

√∑n1

i=1 (xi1 − x1)2 +
∑n2

i=1 (x2i − x2)2

(n1 − 1) + (n2 − 1)
·
√

1

n1

+
1

n2

=

√
(85− 105.1)2 + (106− 105.1)2 + ...+ (96− 98.5)2 + (105− 98.5)2 + ...

(10− 1) + (10− 1)

·
√

1

10
+

1

10
= 7.05

The t value is :

t =
x1 − x2

σ̂(x1−x2)

=
105.1− 98.5

7.05
= 0, 94

Now, we compare our computed value with the according value of the t-distribution,
tα=.05,df=18 = 1.73. Since our computed value is smaller, we confirm our null hypothesis
that there are no differences in response times.

This result may sound surprising, because with the Mann-Whitney-U test, we confirmed a
difference on the same data. However, since we did not confirm that our response times are
normally distributed, we should not have applied the t test in the first place. We did it anyway,
because we could show the necessity of confirming the requirements for the application of a
significance test. Furthermore, the underlying mechanism of the t test should be demonstrated,
for which it is not necessary to test the requirements.

The three significance tests we introduced (i.e., χ2, Mann-Whitney-U, and t test) usually
suffice to reject or confirm most hypotheses. In more complex design or hypotheses, however,



42 2.3. CONDUCTING EXPERIMENTS

they cannot be applied, but more sophisticated techniques have to be used. In the next section,
we give an overview of some further tests.

More sophisticated techniques

We shortly discuss three further groups of tests to evaluate hypotheses, to give a more com-
plete, but still not exhaustive overview.

One-way ANOVA. What if we want to compare the means of an independent variable with
more than two levels? Of course, we could compare the levels pairwise with a t test. However,
the type one error cumulates if we conduct more than one test (BORTZ [Bor00], p. 127).
Hence, we have to use other methods, for example an ANOVA (analysis of variances), which
splits the variances of our sample into several components and uses them for computing the
test statistics (ANDERSON AND FINN [AF96]).

Two-way ANOVA. If we have two independent variables in our experiment, we have to use
a two-way ANOVA to analyze our data. We can check whether main effects occur, i.e., whether
each of our independent variables has an effect. In addition, we can look for an interaction
between our independent variables, i.e., whether a certain combination of levels affects our
dependent variable (BORTZ [Bor00], p. 289).

Factorial & cluster analysis. Factorial and cluster analysis are explorative, which means
that they are used to look for relationships in a large number of variables. The factorial analysis
tries to find latent factors that explain correlations between several variables. The cluster anal-
ysis also looks for correlations, but groups experimental units, not variables. Hence, if want
to explore relationships between different variables, we can use one of those methods (BORTZ

[Bor00]).
In Figure 2.11, we present an overview of analysis methods and when they can be applied.8

2.3.4 Interpretation

Since for interpreting results, no psychological terms are necessary, the discussion is rather
short. Applying inference tests to evaluate statistical hypotheses is an instrument to analyze
the data. Once we have confirmed or rejected our statistical hypotheses, we have to draw
conclusions for our hypotheses stated during objective definition. Furthermore, if we have ob-
tained unexpected results, we have to search for possible explanations. In this case, exploring
our data set for supporting our explanations is a valid approach. Additionally, searching for
similar results in the literature could help explain our outcome. In any case, those unexpected
results must be elaborated further, depending on their importance for future experiments.

8http://www.vislab.ch/Lehre/EST/est.html



CHAPTER 2. BACKGROUND 43

Figure 2.11: Overview of significance tests.

Usually, reporting results is strictly separated from interpreting them (AMERICAN PSY-
CHOLOGICAL ASSOCIATION [Ass09]). This way, results can be presented objectively, which
gives the reader the chance to understand our interpretations and consequences we draw from
our results.

2.3.5 Summary

In this section, we explained five stages of conducting experiments: objective definition, de-
sign, execution, analysis, and interpretation. For every stage, we introduced relevant terms and
methods, which are necessary for creating unbiased results and drawing sound conclusion. In
Table 2.9, we present an overview of those terms and methods, ordered according to experi-
mental stages. In the column Stage, the experimental stage is denoted, in column Term, a term
relevant for that stage, and in column Meaning the explanation of this term is shown. We omit
the stages execution and interpretation, because we did not need to introduce relevant terms.

In the next chapter, we discuss confounding parameters on program comprehension. We do
this in an extra chapter, because the number of confounding parameters is large and controlling
their influence crucial for designing experiments from which we can draw sound conclusion.



44 2.3. CONDUCTING EXPERIMENTS

Stage Term Meaning

objective
definition

independent variable intentionally varied by the experimenter; in-
fluences the outcome of an experiment; has at
least two levels or alternatives

dependent variable outcome of an experiment; depends on varia-
tions of the independent variable

hypothesis describes the expected relationship between in-
dependent and dependent variable; must be fal-
sifiable

design internal validity degree to which the value of the dependent
variable can be assigned to the manipulation of
the independent variable

external validity degree to which the results gained in one exper-
iment can be generalized to other subjects and
settings

confounding variable influences the depending variable besides vari-
ations of an independent variable; poses threat
to internal validity; must be controlled

analysis descriptives describe the data, e.g., arithmetic mean, stan-
dard deviation

inference tests evaluate hypotheses, e.g., χ2-, Mann-Whitney-
U, and t test

Table 2.9: Summary of relevant terms for experiments.



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 45

Chapter 3

Confounding Variables for Program
Comprehension

In order to properly design experiments and be able to draw sound conclusions from results, it
is necessary to control the influence of confounding parameters. Otherwise, we would obtain
biased results, such that we cannot explain why we observed a certain outcome (cf. Sec-
tion 2.3.2.2). Controlling the influence of confounding parameters constitutes the main effort
in designing experiments. Hence, in order to be able to evaluate the feasibility of experiments
that assess the effect of different FOSD approaches on program comprehension, we have to
identify all confounding parameters and discuss how we can control their influence.

For illustrating the influence of confounding parameters on program comprehension, we
use a scenario, which we introduce in Section 3.1. After introducing our scenario, we discuss
how we identified confounding parameters in Section 3.2. This is an important step, because
we only can control the influence of those parameters that we identified.

In order to structure our discussion and get a better overview, we classify confounding
parameters in four groups: personal, environmental, task-related, and programming-language-
related parameters, which we discuss in Section 3.3, 3.4, 3.5, and 3.6, respectively. In Sec-
tion 3.7, we summarize the results of this chapter.

3.1 Example scenario

In order to clarify how confounding parameters affect program comprehension, we use a sce-
nario in the remainder of this chapter, which we explain in this section. Our scenario is:

A small company releases an Operating System (OS). Shortly thereafter, a severe bug of
the paging module is found, which leads to a deadlock under certain circumstances and
requires a reboot. Unfortunately, the programmer who implemented the paging source
code, Howard, is on vacation. Hence, the task to fix the bug has to be delegated to
persons that are available: Penny, Sheldon, and Leonard.



46 3.2. SELECTION OF THE VARIABLES

Penny has programmed GUIs for about 10 years, visited a technical school, studied
computer science, and has an above average IQ. Sheldon has also 10 years of program-
ming experience, however in the domain of OSs. He visited a normal school, studied
business informatics, and has a normal IQ. The third programmer, Leonard, just fin-
ished his education as programmer and has no practical programming experience. He
visited a technical school, like Penny.

None of the three programmers is familiar with the program. Thus, all have to under-
stand the paging source code, before they can fix the bug.

Our scenario is summarized in Table 3.1. All three programmers differ in some of the
personal parameters we identified. Each parameter influences program comprehension and
the probability with which a programmer succeeds first in fixing the bug. Does Penny fix the
bug before Sheldon, because she is more intelligent? Is Leonard faster than Penny, because he
visited a technical school? Or is Sheldon successful because of his experience with OSs?

Parameter Penny Sheldon Leonard

Programming
experience

10 years 10 years none

Domain
knowledge

GUI OS none

Education Waldorf high school,
computer science

normal high school,
business informatics

technical high school, edu-
cation as programmer

Intelligence above normal normal above normal

Gender female male male

Table 3.1: Characteristics of programmers in scenario.

In the following sections, we explain how those parameters can influence program com-
prehension. We pick each one of the parameters and compare two of our programmers. We
discuss how the according parameter could influence the understanding of the source code.

Having introduced our scenario, we start explaining how we identified confounding pa-
rameters and how they can affect program comprehension.

3.2 Selection of the variables

In this section, we explain how we identified confounding variables on program comprehen-
sion. The process of identification is important, because unidentified parameters cannot be
controlled, which would lead to biased results (Chapter 2.3). In order to discover all confound-
ing parameters on program comprehension, we proceed in two steps: review of the literature
and consulting experts.



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 47

3.2.1 Review of the literature

In order to get an overview of the current state of the art, our first step is to review the literature
of experiments measuring program comprehension. The results can be summarized as follows:

1. A large number of confounding parameters exists.

2. Some parameters are more often taken into account than others, which counts especially
for programming experience. Other important parameters include experience with a
certain programming language, domain knowledge, and intelligence.

We present a summary of confounding parameters of all our reviewed papers in Table 3.2.
In column Parameter, the confounding parameter is stated. In column Reference, the papers
reporting the parameter are presented in chronological order. Since we only have a limited
amount of resources for this thesis, we could select only few papers. In order to have a rep-
resentative selection despite our limitation, we selected papers from different conferences,
journals, and years. This way, we intend to include different views on program comprehension
and thus have wide focus on program comprehension and confounding parameters. If we had
focused on one conference, journal, or small time interval, our focus might have been too small
and thus we might have neglected relevant parameters. In order to extend our literature review
for confounding parameters on program comprehension, a sound meta analysis with a larger
set of papers describing an experiment on program comprehension is necessary. However, due
to our limited resources, we have to postpone a meta analysis for future work.

Extracting confounding parameters from the papers was not straightforward, since there is
no common agreement on how to report them. In addition, current guidelines (JEDLITSCHKA

ET AL. [JCP08], AMERICAN PSYCHOLOGICAL ASSOCIATION [Ass09]) do not advice where
to describe confounding parameters in a report. Hence, we thoroughly examined the sections
that most likely contain the information of confounding parameters, i.e., the description of the
experiment, analysis of the data, and interpretation of the data. If we found no conclusive
information in those sections, we also considered the remaining sections.

In order to confirm the parameters and identify further, we conducted an expert survey,
which we explain in the next section.

3.2.2 Consultation of experts

Our second step was to consult programming experts about their opinions on what affects
program comprehension. This way, we confirm the relevance of confounding parameters found
in the literature. In addition, we can identify further parameters that we did not encountered
so far.

3.2.2.1 Development of expert questionnaire

In order to asses the opinions of experts, we developed a questionnaire with closed questions,
despite their shortcomings (e.g., that subjects are restricted in their answers (LARZARSFELD



48 3.2. SELECTION OF THE VARIABLES

Parameter Reference

Programming experience BOYSEN [Boy80], SOLOWAY AND EHRLICH [SE84], HENRY

ET AL. [HHL90], KOENEMANN AND ROBERTSON [KR91],
SHAFT AND VESSEY [SV95], BASILI ET AL. [BSL99], DUN-
SMORE AND ROPER [DR00], PRECHELT ET AL. [PUPT02],
KO AND UTTL [KU03], HUTTON AND WELLAND [HW07]

Experience with a certain
programming language

KOENEMANN AND ROBERTSON [KR91], SHAFT AND

VESSEY [SV95], HUTTON AND WELLAND [HW07]

Domain knowledge SHAFT AND VESSEY [SV95], KO AND UTTL [KU03], HUT-
TON AND WELLAND [HW07]

Education DALY ET AL. [DBM+95], SHAFT AND VESSEY [SV95]

Intelligence MAYRHAUSER AND VANS [vMV93], PRECHELT ET AL.
[PUPT02], KO AND UTTL [KU03]

Gender SHAFT AND VESSEY [SV95], KO AND UTTL [KU03]

Training of subjects PRECHELT ET AL. [PUPT02]

Motivation of subjects BASILI ET AL. [BSL99]

Attitude to experiment KO AND UTTL [KU03]

Ordering effect PRECHELT ET AL. [PUPT02]

IDE vs. text editor HUTTON AND WELLAND [HW07]

Test effects DALY ET AL. [DBM+95], HUTTON AND WELLAND [HW07]

Drop out HUTTON AND WELLAND [HW07], DALY ET AL. [DBM+95]

Structure of source code PRECHELT ET AL. [PUPT02], SHAFT AND VESSEY [SV95],
FLEMING ET AL. [FSD07]

Coding conventions SOLOWAY AND EHRLICH [SE84]

Table 3.2: Confounding parameters in literature.



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 49

[Lar44], SCHUMAN AND PRESSER [SP96])). We decided against open questions, because
preliminary tests with programming experts revealed that they were not sure how to answer
them, despite several attempts to clarify our concern.

For our questionnaire, we used all parameters found in the literature (cf. Table 3.2). In
order to assess the relevance of each parameter, we used a three point Likert scale with the
levels ‘no’, ‘little’, and ‘considerable’, for each parameter (LIKERT [Lik32]). The experts
were asked to state ‘no’, if they think that the according parameter does not influence program
comprehension. If a parameter has little influence, experts should select ‘little’. Last, if a
parameter has strong influence, experts should select ‘considerable’. For a better overview,
we grouped the confounding parameters into three categories: personal, environmental, and
task-related parameters.

A standard procedure to assure that subjects think about questions and answer them hon-
estly is to use distractors (LIENERT AND RAATZ [LR98]). In our expert survey, we included
some distractors, which have no obvious influence on program comprehension, e.g., size of
shoes, font of the source code, and OS of the computer that is used. The expected answers for
those questions are ‘no’. If few experts selected one of the other two choices, the genuineness
of all answers needs to be checked. However, if most of the experts chose ‘little’ or ‘consid-
erable’, it can be assumed that the according parameter indeed is considered by our experts as
confounding.

In addition to the closed questions, experts were given the chance to enter further parame-
ters that we did not mention, but in their opinion affect program comprehension. This way, we
intend to alleviate disadvantages of closed questions.

In order to give an impression of the questionnaire, we show a sample page in Figure 3.1,
which assesses personal parameters. The pages for task-related and experimental parameters
were designed similarly with the according parameters. At the beginning of the questionnaire,
we introduced the experts to the purpose of our survey.

3.2.2.2 Criteria for being a programming expert

After developing the questionnaire, we invited experts to complete our survey. Hence, we had
to decide which persons are regarded as experts and which not. We selected programming
experts according to three criteria:

1. Education in computer science.

2. Five or more years of practical programming experience.

3. At least one project with 40,000 LOC or more.

We chose those three criteria, because they were most commonly used when measuring
programming experience and distinguishing experts from novices (e.g., SHAFT AND VESSEY

[SV95], HUTTON AND WELLAND [HW07]). Persons who rated themselves as experts ac-
cording to these criteria were included in our expert survey. Besides those three criteria, it



50 3.2. SELECTION OF THE VARIABLES

Figure 3.1: Sample page of the expert survey.

was not necessary to collect any further personal information from the experts, since we do
not analyze any relation between personal parameters and responses. We contacted several
software development companies and freelance developers to recruit our experts, resulting in
18 experts that completed our questionnaire.

3.2.2.3 Results of expert consultation

The high level results of our survey can be described as follows:

• All of the parameters we encountered in the literature are confirmed by our experts.

• Some of our distractors are rated with ‘considerable’ (e.g., dexterity), whereas others
revealed the expected rating (e.g., athleticism).

• Several additional parameters were mentioned by our experts (e.g., state of subjects)

The detailed analysis of the questionnaire can be found in Table 3.3. The column Param-
eter contains the parameter the experts should rate. The numbers in the table indicate the



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 51

number of experts who state that a parameter has no influence (column No), little influence
(column Little), or considerable influence (column Consid.). In some cases, the number does
not sum up to 18, because one or two experts did not estimate the influence of a parameter.
The columns Mean and Std contain the mean and standard deviation of the parameters, respec-
tively. In order to compute both values, we coded ‘no influence’ with one, ‘little influence’
with two, and ‘considerable influence’ with three. Hence, a value close to three indicates a
considerable influence of the parameter.

The results confirm the parameters we found in the literature. Furthermore, several param-
eters were additionally mentioned by one or two experts:

• state of the subjects (e.g., stressed, burnt out, happy, relaxed)

• opinion of the subjects (e.g., convinced of FOP, but not of AOP)

• workplace environment (comfort, distractions)

• degree of domain representation as reflected in the programming language

• usage of standardized algorithm/data structure patterns or libraries that provide them

We include those parameters in our discussion and start with personal parameters in the
next section.

3.3 Personal parameters

In this section, we discuss personal parameters, i.e., variables related to the individual, which
we obtained by our review of the literature and consultation of experts. In order to explain how
a confounding factor can influence the understanding of a program, we pick a certain aspect
of our scenario (cf. Section 3.1). In order to keep our discussion simple, we consider only the
influence of one parameter per section and neglect the influence of all other parameters in this
section.

After explaining the influence of a parameter in our scenario, we generalize our discussion.
After stating the problem, we discuss possible solutions and their benefits and shortcomings.

We follow the parameters identified in Section 3.2 top down:

Programming experience (Section 3.3.1)

Domain knowledge (Section 3.3.2)

Intelligence (Section 3.3.3)

Education (Section 3.3.4)

Gender (Section 3.3.5)



52 3.3. PERSONAL PARAMETERS

Group Parameter No Little Consid. Mean Std

Personal Programming experience 0 2 16 2.89 0.32
Domain knowledge 1 6 11 2.56 0.62
Intelligence 0 9 8 2.47 0.51
Education 0 10 8 2.44 0.51
Gender 18 0 0 1.00 0.00

Dexterity 10 3 5 1.72 0.90
Size of shoe 15 2 0 1.12 0.33
Athleticism 17 1 0 1.11 0.47

Environ-
mental

Training of the subjects 1 5 12 2.61 0.61
Noise during experiment 2 3 13 2.61 0.70
Motivation of the subjects 2 5 10 2.47 0.72
IDE vs. text editor 2 6 10 2.44 0.71
Ordering effect 10 6 16 2.38 0.50
Position effect 1 10 6 2.29 0.59
Code on screen vs. paper 5 11 2 1.83 0.62

Payment for solved tasks 6 11 0 1.65 0.49
Kind of monitor 11 5 2 1.50 0.71
Operating system 11 5 2 1.50 0.71

Task-
related

Structure 0 0 18 3.00 0.00
Coding conventions 0 3 15 2.83 0.39
Difficulty 0 6 12 2.67 0.49
Comments 1 7 10 2.50 0.62
Syntax highlighting 0 9 9 2.50 0.51
Documentation 3 8 7 2.22 0.73

Font of the source code 7 8 3 1.78 0.73
Color of syntax highlighting 8 9 1 1.61 0.61

Coding: No = 1, Little = 2, Considerable = 3

Table 3.3: Number of experts that rated a parameter as no, little, & considerable influence.



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 53

1 p r i v a t e LinkedList<IPagingErrorListener> pagingErrorListeners =
2 new LinkedList<IPagingErrorListener>();
3
4 p u b l i c vo id addPagingErrorListener(IPagingErrorListener listener) {
5 i f (!pagingErrorListeners.contains(listener))
6 pagingErrorListeners.add(listener);
7 }
8
9 p u b l i c vo id removePagingErrorListener(IPagingErrorListener listener) {

10 pagingErrorListeners.remove(listener);
11 }
12
13 p u b l i c vo id firePagingErrorOccured(PagingErrorException e1) {
14 for (IPagingErrorListener listener : pagingErrorListeners)
15 listener.pagingErrorOccured(e1);
16 }

Figure 3.2: Sample implementation of observer pattern.

3.3.1 Programming experience

The first confounding variable of category personal parameters is programming experience.
Nearly all experiments we reviewed measured programming experience of the subjects (e.g.,
SOLOWAY AND EHRLICH [SE84] and BOYSEN [Boy80], cf. Table 3.2). In addition, our
experts confirmed the influence of programming experience. Hence, its influence cannot be
neglected. First, we explain how programming experience affects program comprehension,
then we discuss possible solutions. Since it is the first parameter, we explain the problem and
possible solutions thoroughly in this section. In the next sections, the discussions are briefer,
because most of the knowledge we present here can be easily applied to the other parameters.
Furthermore, as we mentioned above, we consider only the influence of programming experi-
ence in this section, while all other parameters, e.g., education or intelligence, are neglected.

Problem statement

How could the programming experience of Penny and Leonard influence their understanding
the source code? Penny worked for ten years in this company, whereas Leonard just started.
Hence, Penny knows the coding conventions of her company, how to debug a program, sources
of information to help her understand a program, etc., because she dealt with source code for
ten years. Leonard, on the other hand, has no practical experience. Maybe he implemented
and maintained some small programs during his education, but it is the first time for him to
understand and debug a larger program.

Due to her experience, Penny has an advantage compared to Leonard. For example, she
encounters a code fragment like the one in Figure 3.2, which is part of the module that handles
paging errors. Without having to examine the methods, she immediately knows that they imple-
ment the observer pattern (GAMMA ET AL. [GHJV95], p. 289ff). Leonard, at best, heard of
design patterns, but never actually implemented one. Hence, he has to examine every method
and needs to understand what happens statement by statement.



54 3.3. PERSONAL PARAMETERS

From those explanations it is clear how programming experience helps to understand a
program. In general, knowledge that is acquired during programming can be applied for future
programming tasks. The longer a person has programmed, the greater his knowledge base is.
Hence, the greater the chance is that a person has experienced a problem similar to a current
one.

What are the consequences for experiments? The chance that an expert programmer has
dealt with a program similar to a task defined for an experiment is considerably higher than
for a novice programmer. In the case an expert knows the kind of problem, but a novice does
not, the cognitive processes for understanding the source code of the task are not the same.
While the expert uses his knowledge to solve a task, the novice acquires knowledge. Both,
expert and novice, may succeed in solving the task, however the cognitive processes are not
the same. This means that different aspects are measured, leading to results that cannot be
compared. Hence, our results would be biased and we would not measure that one program
is more understandable than another, but rather the effect of programming experience on pro-
gram comprehension, which is not our intention. Consequently, controlling the influence of
programming experience is crucial for obtaining unbiased results.

Solutions

How do we deal with the influence of programming experience? In Section 2.3, we described
five techniques to control the influence of confounding parameters:

• Use confounding parameter as independent variable

• Randomization

• Pseudo randomization

• Keep confounding parameter constant

• Analyze influence of confounding parameter on result

Firstly, we could declare programming experience as independent variable in our experi-
mental design (2.3). Hence, we would have groups with and without programming experience,
and groups that test our two different programming languages. Thus, we would have two inde-
pendent variables and four groups. For clarification, we show the resulting design in Table 3.4.
In addition to a more complex design, the analysis of the data would also get more compli-
cated: With programming language and programming experience as independent variables,
we need to conduct a two-factorial ANOVA (ANDERSON AND FINN [AF96]), considering
two main effects and one interaction.

Secondly, using randomization, we simply assign subjects randomly to groups and assume
that programming experience is equally distributed.

Thirdly, we can use matching, if our sample is too small. In this case, randomization cannot
be applied, because the probability that groups are homogeneous according to programming



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 55

FOSD approach 1 FOSD approach 2

With programming experience group 1 group 2
Without programming experience group 3 group 4

Table 3.4: Two-factorial design.

experience is too small. In this case, we can use matching, which means that we have to
measure programming experience of our subjects in advance. Then, subjects are assigned to
two groups according depending on their programming experience. This assures homogeneous
groups regarding programming experience.

Fourthly, in order to keep programming experience constant, we have to select subjects
with a certain level of programming experience. This also requires measuring programming
experience in advance, so that all persons not matching this criterion can be excluded before-
hand.

Fifthly, we can analyze the effect of programming experience on our results. This is advis-
able when we have to deal with a fixed sample, because we cannot exclude subjects, maybe
even not assign our subjects to experimental groups. In this case, programming experience can
be measured and its influence on program comprehension can be analyzed afterwards.

Except when using randomization as controlling technique, we have to measure program-
ming experience. In order to reliably measure programming experience, a standardized or
questionnaire is a good choice. However, we did not encounter any such measurement instru-
ment in our review of the literature, but the opposite is the case: Researchers use different
indicators for programming experience, e.g., number of programming courses (HUTTON AND

WELLAND [HW07]) or years of practical programming experience (SHAFT AND VESSEY

[SV95]). The problem with different measures is that they are not comparable: A subject hav-
ing programmed for twenty years has different programming experience than a subject having
heard a couple of courses at the university. Hence, both subjects differ in their cognitive pro-
cesses when understanding a program. Thus, reliably measuring programming experience re-
quires considerable effort at the current state of the art. However, once a reliable questionnaire
exists, measuring programming experience is relatively easy.

Which controlling technique should we use? The optimal solution depends on the kind of
questions the experiment should answer and on the circumstances. For example, if we easily
can recruit subjects (e.g., we use students from an introductory course, which are usually
attended by few hundred students), then randomization is a good choice, since our sample is
large enough for most probably creating homogeneous groups. On the other hand, if assessing
programming experience can be done by simply administering a five minutes questionnaire,
then matching or keeping programming experience constant is more advisable, because it is
assured that the influence is controlled.

Thus, the decision to use one of the techniques depends on the circumstances of our experi-
ment, for example financial and human resources, availability of test instruments, or population
from which subjects can be drawn.



56 3.3. PERSONAL PARAMETERS

In our experiment (cf. Chapter 5), we use a carefully designed questionnaire to assess
programming experience of our subjects and create homogeneous groups by matching. We
elaborate this decision (and all others for controlling confounding parameters) more detailed
in Chapter 5, because we only want to give an impression in the current chapter.

In this section, we explained the influence of programming experience and solutions to
deal with it in detail. We described how the five techniques for controlling the influence of
a parameter we introduced in Section 2.3 can be applied to programming experience. Since
for the other confounding parameters the application of those methods is straight forward, we
do not repeat this detailed description. Instead, we focus on how to measure a confounding
parameter, because for all techniques (except randomization), a sound measurement is neces-
sary to control the influence of a confounding parameter. Furthermore, for nearly all solutions,
a measurement of the parameter is necessary. Even for randomization we could measure a
parameter in order to confirm that we have indeed created homogeneous samples.

3.3.2 Domain knowledge

Another parameter influencing program comprehension is domain knowledge, as our literature
review and expert survey revealed (cf. Tables 3.2 and 3.3). A domain is a particular market seg-
ment, e.g., satellite ground control system or software for mobile phones (cf. Section 2.1.1.2).
We first show how knowledge of a program’s domain can influence comprehension, then ex-
plain how the influence can be dealt with.

Problem statement

We compare the domain knowledge of Penny and Sheldon. Penny has experience with GUIs for
ten years, whereas Sheldon implemented source code for several different OSs. Hence, Sheldon
most certainly has seen some source code for handling paging. Since the bug is a deadlock
in the paging algorithm in an OS, Sheldon can benefit from his experience: He knows how
different strategies work, e.g. FIFO or Round Robin (TANENBAUM [Tan01]). Furthermore,
he knows their typical implementation and potential reasons for a deadlock.

In contrast to Sheldon, Penny never had contact with paging strategies or deadlocks. She
needs to analyze every statement and examine the control flow in order to understand the pro-
gram and locate the bug. This takes much more time than comparing a typical implementation
of, e.g., FIFO, with the current implementation, which produces an error.

The advantage of Sheldon compared to Penny can be explained with the models of program
comprehension we presented in Chapter 2.3. If a subject has domain knowledge of a program’s
domain, then he uses a top-down approach to understand a program. Without domain knowl-
edge, a program has to be analyzed bottom up, which is much more inefficient (MAYRHAUSER

AND VANS [vMV93]).
If we do not consider the influence of domain knowledge in our experiment, we could

be accidentally measuring that subjects with domain knowledge understand a program better
than subjects without domain knowledge, when our original intent was to assess the under-



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 57

standability of two different programs, programming languages, or FOSD approaches. Hence,
our results would be biased by the existence or non-existence of domain knowledge in our
subjects.

Solutions

Ways to deal with the influence of domain knowledge are: use domain knowledge as inde-
pendent variable, randomization, matching, keep domain knowledge constant, and analyze
influence of domain knowledge on result. Except for randomization, we need to measure do-
main knowledge to control it. So, how can we measure domain knowledge? Fortunately, we
could simply ask persons whether or not they are familiar with a certain domain. In this case,
we have to make sure that participants know what a domain is.

If we have a fixed sample, e.g., from a certain company, we could use other ways to control
domain knowledge. Firstly, we could choose a domain for which we know that our sample is
familiar or unfamiliar with. For example, if we have subjects from a company providing
software for mobile devices, we could use programs of this domain, if a top-down approach
for program comprehension should be measured, or chose an unfamiliar domain, e.g. satellite
ground control systems, if we want to measure bottom-up program comprehension.

Secondly, we could enforce a bottom-up approach by excluding all information of a domain
from a program, e.g., naming classes and methods not according to their purpose, but Class
1 to Class n and method 1 to method m. Without assessing the domain of our subjects,
it is assured that all subjects use a bottom-up approach, because no domain knowledge can be
applied.

Last, we could enforce a bottom-up approach for program comprehension, if we recruit
subjects that have no programming experience at all. This also assures that subjects are not
familiar with a domain and thus use a bottom-up approach. In this case, we have to make sure
that subjects are able to solve a task, e.g., by giving them a short introduction or keeping the
task rather simple.

Which way is the best? Unfortunately, as for programming experience, there is no optimal
way for dealing with domain knowledge. Depending on available resources and the hypotheses
of the experiment, one of our proposed ways can be chosen. Since this counts for all remaining
confounding parameters, we do not mentioned this anymore, but only present several ways to
deal with the according parameter. In our experiment described in Section 5, we enforce our
subjects to use a bottom-up approach by choosing a program of an unfamiliar domain, which
we assessed by a preliminary questionnaire.

3.3.3 Intelligence

Intelligence is known to be related to success in school, university, and the job (e.g., HUNTER

AND HUNTER [HH84], RIDGELL AND LOUNSBURY [RL04]). Hence, an influence on pro-
gram comprehension can be assumed, as well, as our literature review and experts confirmed
(cf. Tables 3.2 and 3.3).



58 3.3. PERSONAL PARAMETERS

Problem statement

We compare the intelligence of Penny and Sheldon. Penny’s intelligence being above average
could mean that she has better analyzing skills or a better memory than Sheldon. Thus, she can
better analyze the program and fix the bug. A better memory helps her to memorize relevant
or irrelevant code pieces. Thus, she does not have to search the code base as often as Sheldon,
because her memory capacity is larger.

Hence, the more intelligent a person is, the more advantage he can have in understanding
a program. Better analyzing skills help to understand an algorithm, or better memory could
mean that a person does not have to look up so much information. In an experiment, the
influence of intelligence could be problematic, because the more intelligent a subject is, the
higher the probability is that he understands a program better. However, in this case, we would
not only measure the understandability of a program, but also the intelligence of subjects.
Hence, our results could be biased, so that we do not solely measure program comprehension,
but a mixture of program comprehension and intelligence, rendering our results useless.

Solutions

Controlling the influence of intelligence means in most cases that we have to measure it: using
intelligence as independent variable, matching, keeping intelligence constant, and analyzing
influence of intelligence on results all require a measurement. The problem with measuring
intelligence is that the understanding and, consequently, tests measuring intelligence are very
diverse. Hence, to answer how intelligence can be measured, we first have to take a closer look
at the meaning of intelligence.

For over hundred years now, researchers try to measure intelligence (BINET [Bin03]). As a
result, there are many different tests measuring intelligence today, e.g., the Berlin Intelligence
Structure Test (JÄGER ET AL. [JSB97]), the Wechsler Adult Intelligence Scale (WECHLSER

[Wec50]), or Raven’s Progressive Matrices (RAVEN [Rav36]). Every test has a different un-
derstanding about the essence of intelligence: Depending on the test, higher intelligence can
mean better analyzing skills, memory, or creativity (e.g., Berlin Intelligence Structure Test),
better practical or verbal intelligence (e.g., Wechsler Adult Intelligence Scale), or better pic-
torial intelligence (e.g., Raven’s Progressive Matrices). In addition to the diversity, measuring
intelligence is usually time consuming (conducting and analyzing take up to several hours per
subject) and costly (purchasing a test can cost several hundred dollars).

The right test has to be chosen depending on the hypotheses of the experiment. For exam-
ple, high verbal intelligence helps in understanding comments and documentation. If the effect
of different comment styles on program comprehension should be measured (PRECHELT ET

AL. [PUPT02]), then a test for verbal intelligence is a good choice. On the other hand, if the
amount of source code memorized by subjects is used as indicator for comprehensibility (e.g.,
SHNEIDERMAN [Shn77], PENNINGTON [Pen87]), then the memory capacity of subjects needs
to be taken into account. An example for analyzing the influence of verbal intelligence on pro-
gram comprehension can be found in KO AND UTTL [KU03].

These explanations show that controlling the influence of intelligence is tedious: choosing



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 59

the appropriate test, purchasing the test, administer it and evaluate the results. In order to
avoid this effort, other, more easily accessible measures could be used. As we mentioned
earlier, academic or job-related success correlates with intelligence. Hence, we could use
the average grade of students or the position in the hierarchy of a company as indicator for
intelligence. Of course, this makes our sampling less accurate, because there are other factors
that influence academic success, e.g., motivation. If no surrogate measure is available, we
could still randomize our sample. Hence, cost and benefit have to be carefully considered.

In our experiment (cf. Section 5), we had no resources to measure intelligence and we
found no suitable surrogate measure, which is why we use randomization as control technique.

3.3.4 Education

In this section, we discuss the influence of education on program comprehension, because
our literature review and expert consultation confirms and effect of education on program
comprehension (cf. Tables 3.2 and 3.3). How can the effect described?

Problem statement

Sheldon visited a Waldorf high school and then studied business informatics. Hence, he had
first contact with a programming language during his education at the university. This even
does not necessarily mean he can implement a program, because he could have teamed up
with a fellow student who did most of the implementing work.

Leonard, on the other hand, visited a technical oriented high school and finished an ed-
ucation as programmer. Hence, for Leonard, programming was part of his education since
he was young. Thus, he formally learned how to debug a program, had experience with sev-
eral programming languages, and knows how to implement some algorithms. He extended his
knowledge during his education as programmer. Due to the different education, Leonard has
a head start compared to Sheldon in fixing the deadlock in the OS.

Hence, persons visiting different schools have different experiences. In a technical oriented
high school, the curriculum focuses mainly on topics like mathematics, physics, and computer
science. In contrast, a Waldorf high school aims at thriving and prospering the individual as
a whole and encourages pupils to explore themselves (EASTON [Eas97]). As a consequence,
persons with an according education know better how to understand a program and fix a bug.
They learned the kind of thinking necessary for programming since they were little and thus
are accustomed to it. Those persons benefit from their education, in contrast to persons that
never were taught how to program.

Thus, the effect of education cannot be neglected, because that could lead to biased results.
Instead of assessing understandability of a program, we would also measure the influence of
education. However, this would bias our results, such that we do not know to what extend
program comprehension was influenced by the understandability of a program and/or the in-
fluence of education.



60 3.3. PERSONAL PARAMETERS

Solutions

If we chose to control the influence of education by using education as independent variable,
matching, keeping education constant, or analyzing influence of education on result, we need
to measure education of our subjects. Like for domain knowledge, we could ask our subjects
about their education, e.g., which school they visited or which college courses they were en-
rolled. However, the measurement of education is not as easy at it might seem on first sight,
because different schools or courses have different curriculums. Even the contents of the same
course at the same school can significantly differ, if held by different teachers.

Hence, we need to examine the education of our subjects carefully. However, it is tedious
to assess all information relevant information, for example, curriculum during education, con-
tents, or final grade of subjects as indicator for what they have learned. For decreasing our
effort, other ways are possible, e.g., include only subjects from schools with certain profiles
or certain kind of finished school/university courses, assess the curriculum of subjects and
analyze their influence on program comprehension afterwards, or use professionals that have
programmed for most of their lives, so that the influence of education becomes negligible.

In our experiment (cf. Section 5), we use college students that are enrolled in the same
course, which required the students to have finished certain basic programming courses. Since
all students have completed the same basic courses at the same University, we assume to
control the effect of education.

3.3.5 Miscellaneous

In this section, we shortly discuss further personal parameters that affect program comprehen-
sion, i.e., gender and cultural background.

Gender

The influence of gender on program comprehension may not be obvious. However, there are
several studies analyzing the effect of gender on numerous parameters, e.g., mental rotation
abilities QUAISER-POHL ET AL. [QPGL05] or academic success (ZOHAR [Zoh03]). We could
not find any studies showing an effect of gender on program comprehension. In addition, none
of our experts think that gender affects program comprehension. Despite those findings, we
cannot neglect gender as confounding parameter, because differences in gender regarding sev-
eral cognitive abilities are proven (e.g., MACCOBY AND JACKLIN [MJ74], KIMURA [Kim92],
or HALPERN [Hal86]). Hence, gender could directly or indirectly influence program compre-
hension.

Fortunately, the gender of individuals can be easily assessed by asking them or deciding
on the basis of their first names. In our experiment (cf. Section 5), we asked the subjects about
their gender and created homogeneous groups.



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 61

Cultural differences

A further confounding parameter describes cultural differences. The effect of cultural dif-
ferences is well known in intelligence research, which is why special tests exist to assess
intelligence (e.g. RAVEN [Rav36], CATTELL ET AL. [CFS41]). Those tests exclude verbal
and numerical aspects of tasks, so that only logical skills are assessed. Since implementing a
program is connected with verbal information, cultural differences in programming skills and
program comprehension can be assumed.

Like for gender, assessing the cultural background can be done easily, for example with a
simple questionnaire. In order to control the influence of cultural differences in our experiment
(cf. Section 5), we took our complete sample from the University of Passau of an advanced
programming course, which required certain other courses to be completed. Since the enrolled
students studied for several semesters in Germany, the influence of cultural differences should
be decreased.

In the next section, we discuss the influence of parameters that are related to the experi-
mental setting.

3.4 Environmental parameters

In this section, we consider the influence of environmental parameters, i.e., parameters of the
experimental setting. For every environmental parameter, we explain with our scenario and
sample experiment, how it can influence the comprehension of a program. Then, we explain
how the influence can be controlled.

In contrast to personal parameters, parameters of this category can be manipulated by the
experimenter, because they are known in advance. Hence, controlling these parameters can be
included in the planning phase. Personal parameters, however, can only be controlled when we
start to recruit subjects, since we usually do not know the attributes of our subjects in advance.

We explain the parameters identified in Section 3.2 top down:

• Training of the subjects (Section 3.4.1)

• Motivation of the subjects (Section 3.4.2)

• Tool support (Section 3.4.3)

• Position and ordering effects (Section 3.4.4)

• Effects due to the experimenter (Section 3.4.5)

• Hawthorne effect (Section 3.4.6)

• Test effects (Section 3.4.7)

• Noise level (Section 3.4.8)



62 3.4. ENVIRONMENTAL PARAMETERS

As in the previous section, we consider only the influence of one parameter at a time, while
neglecting all other parameters.

3.4.1 Training of the subjects

In this section, we explain how training of subjects can influence their program comprehension.
Training in the context of experiments means the preparation of subjects before they start to
work on a task (MARKGRAF ET AL. [MMW+01]). The effect of training can be compared
with the training of a professional long distance runner, who shows better performance on
a ten kilometer race than an untrained person, despite the same potential both runners have.
In the same way, trained subjects have an advantage in program comprehension compared to
untrained subjects.

Problem statement

If Howard has explained to Penny how he implemented the paging algorithm before he left,
Penny already has an understanding of how the program works. Thus, when Penny and
Leonard start to work on fixing the bug, Penny has a head start. She knows the purpose of
several classes and methods and thus can use a top-down approach on several source code
fragments, whereas Leonard has to use a bottom-up approach all the time.

Hence, we have to make sure that all subjects receive the same training before an ex-
periment. Otherwise, some of our subjects have a head start in completing our task. As a
consequence, some subjects might be better able to deal with a task than other subjects, but
not because the task is simpler or the program more understandable, but because they were
prepared better. Hence, we need to control the influence of training, so that our results are not
biased by differences in the training.

Solutions

In order to avoid differences in training, we have to make sure that both groups get the same
training. There several ways to do so, e.g., instruct the experimenters on how to train subjects,
use the same experimenter for all trials, or conduct one training session for all subjects at once.
We explain those methods next.

Firstly, we can train our experimenters. If we do not instruct our experimenters how to
conduct the training, we cannot be sure to have the same training effect. Thus, we have to give
detailed instructions to both experimenters and make sure they use the instructions properly.

Secondly, we could use the same experimenter for all trials. This reduces variations due
to the person of the experimenter. In order to further minimize that subjects receive different
trainings, we should train our one experimenter on how to use standardized instructions.

Thirdly, we can simply omit training. Thus, we do not have to deal with assuring the same
training effect for all subjects.



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 63

Last, we could give one training session for all subjects in one room. In this case, we have
to make sure that the time difference between the training and when subjects start to work on
a task is comparable. Hence, we cannot conduct a single training session, when part of the
subjects have the experiment right after the training session, while others wait one week for
the experiment.

Depending on the resources and hypotheses of the experiment, one of these ways has
to be chosen. For example, if we have to test all groups at the same time, we need to use
several experimenters and make sure that they give the same instructions. Of course, this is
only possible we have the according financial and human resources. In our experiment (cf.
Section 5), we give our introduction in a single room for our complete sample.

3.4.2 Motivation of the subjects

In Section 3.3.3, we mentioned that motivation is an important parameter for academic success.
Persons that are motivated to achieve a goal work hard to succeed, in contrast to persons who
are forced to do something or do not care about the outcome of their work. The same counts
for the performance in experiments.

Problem statement

Sheldon works in the same department as Howard. Hence, he does not want that his depart-
ment looses its good reputation. Thus, he is motivated to fix the bug in the paging algorithm
and thus works overtime. As a consequence, he spends much time and effort in understanding
Howard’s program. Penny is assigned to the task, because she is one of the persons with the
most programming experience in the company. She does not really care whether she gets to fix
the bug, or whether Sheldon succeeds. Hence, she just spends some of her working hours on
the problem. Finally, Leonard dislikes Howard, because Howard voted against Leonard’s em-
ployment in the company. Thus, he might even wish that Howard gets fired for his mistake and
thus claims – without trying – that he cannot understand the source code due to bad coding
and commenting style.

Since Sheldon is the most motivated of the three, he fixes the bug first. In contrast to
Sheldon, Leonard rather sabotages the attempt to fix the bug and does not succeed. Penny,
whose attitude towards fixing the bug can be described as neutral, eventually fixes the bug, but
needs more time than Sheldon.

Generally, motivation can affect our behavior and accomplishments (MOOK [Moo96]).
If we are highly motivated to achieve a goal, we work hard to succeed. On the other hand,
if we do not care for the outcome of our work, we spent only as much time on a project
as we can spare. The same counts for subjects in experiments: Highly motivated subjects
tend to perform better than subjects that are not motivated. Hence, we have to control the
influence of motivation, otherwise, we would not measure understandability, but a combination
of understandability and motivation. This would produce useless results.



64 3.4. ENVIRONMENTAL PARAMETERS

Solutions

From our scenario it is clear that a low motivation diminishes the effort of subjects. In addition,
motivation to sabotage the experiment produces unusable results. Hence, all subjects must be
motivated at least a little to perform well. In order to increase motivation, several ways are
possible: pay subjects for participation or reward subjects for good performance.

Firstly, all subjects could get paid for participation in the experiment. However, this as-
sumes that there are enough financial resources. A further problem is that payment does
not necessarily increase motivation to perform well, but can even diminish the effort of sub-
jects (FESTINGER AND CARLSMITH [FC59]).

Secondly, subjects could be rewarded for good performance, e.g., one dollar for each cor-
rect response, paying the first subject to finish, or subtract one dollar for each false response.
If students are used, the performance in the experiments can be considered for the final grade
of their course. With limited financial resources, rewards could be raffled (e.g., tickets for
theater), whereas subjects with good performance could have a higher chance of receiving the
reward.

In our experiment (cf. Chapter 5), subjects were required to take part to finish their course.
In addition, we raffled a gift certificate. In order to check the influence of motivation on our
results, we asked subjects for each task how motivated they were to solve it.

3.4.3 Tool support

Different tools provide different support for creating and analyzing source code, which can
have different effects on program comprehension. Our experts confirmed that tool support is
a confounding parameter. In this section, we explain how this can influence program compre-
hension.

Problem statement

Penny uses usually uses Eclipse1 for implementing source code, because it provides several
useful features, like outline view, code assist, and code folding (CLAYBERG AND RUBEL

[CR06]). Sheldon and Howard also like the comfort provided by Integrated Development
Environments (IDEs), but prefer Microsoft Visual Studio2, because the support for C++ is
more sophisticated (NAYYERI [Nay08]).

Unfortunately, Penny’s computer broke down, so she has to use Howard’s computer with
Microsoft Visual Studio instead. In addition to understanding Howard’s program, Penny now
has to get used to a new IDE. Hence, Sheldon has a head start compared to Penny and thus
most likely succeeds first.

Since Leonard is new to the company, he has not decided for an IDE yet and works with
a text editor. Besides syntax highlighting, no other functionality is provided. Compared to

1http://www.eclipse.org/
2http://msdn.microsoft.com/



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 65

Sheldon and Penny, he has no tool supporting him in navigating through the source code, e.g.,
open the definition of a method when the call is encountered somewhere in the source code.

There are further tools that help to analyze source code beyond the support integrated in
a standard IDE, for example, FEAT (ROBILLARD AND MURPHY [RM03]), StackAnalyzer
(EVSTIOUGOV-BABAEV [EB01]), or SeeSoft (EICK ET AL. [ESEES92]). The use of such a
tool would further influence how a program is understood.

In general, tools can support program comprehension. Even after an equal amount of
time, persons can use different sets of features of the same IDE. Hence, letting persons use
the same IDE does not control the influence of tool support sufficiently: either some subjects
need to familiarize with it, or do not know how to use a certain functionality, etc. Letting
subjects use their preferred IDE prevents that subjects have to familiarize with an unknown
tool, but introduces variations in tool support. Hence, in order to obtain unbiased results in an
experiment, the influence of tool support needs to be carefully considered.

Solutions

In order to control the influence of tool support, several ways are possible: define one tool all
subjects are familiar with, let subjects use their preferred tool, or let all subjects work with the
same editor.

Firstly, all subjects could be restricted to use the same tool, e.g., Eclipse. In this case, we
have to make sure that all subjects are familiar with Eclipse in a comparable degree. As further
restriction to control tool support, the allowed features that subjects can use could be defined.
This way, we know exactly which support subjects have.

Secondly, we could let the subjects decide about the tool they use. This way, every subject
can use the preferred tool. This approach is advisable, if it should be measured how well
students understand a new programming language after a certain course, because they are
familiar with it.

Thirdly, we let all subjects work with the same text editor. Furthermore, we could only
include those subjects that are used to implement source code with an IDE, so that none of our
subjects is familiar with a text editor. This way, we do not give any subject a head start and we
have comparable results, because the provided support is the same.

Which way to choose depends on the focus of the experiment: If the comprehensibility of
two languages should be compared, tool support would confound the result, because not the
comprehensibility of the language alone, but also how the language is supported by the tool
is measured. On the other hand, if skills of subjects should be measured, then letting them
use their preferred tool is more advisable, because they do not have to familiarize with a new
one. One example of controlling the influence of tool support can be found in HUTTON AND

WELLAND [HW07]. In their experiments, subjects were allowed to use their preferred text
editor, so that tool support was eliminated, but subjects could use a familiar editor. However,
before features of a tool can be used, persons need to familiarize with it. In our experiment
(cf. Chapter 5), we eliminate all tool support by displaying the source code as HTML files and
forbid the search feature of the browser.



66 3.4. ENVIRONMENTAL PARAMETERS

3.4.4 Position and ordering effect

Position effect refers to the influence of position of the task relative to the beginning of an
experiment. Usually, subjects are more tired at the end of the experiment than at the beginning.
Ordering effect means that the order in which tasks are applied influences the result. Hence,
the result differs depending on the order of the applied tasks. Since both effects are very
similar, we discuss only the position effect in detail and make few statements for the ordering
effect.

Problem statement

Penny starts to work on the source code after several hours of work. Since she already feels
fatigue when starting to fix the bug, she finds it harder to concentrate and focus on the work.
Hence, she uses only a fraction of her cognitive resources, which negatively affects the success
of her work.

Leonard, on the other hand, starts to work on the bug first thing in the morning. Since he
is rested, he does not feel fatigue, can focus on his task, and thus make more progress than
Penny in the same time.

Sheldon finishes implementing a different program, which takes him half an hour, before he
starts to work on Howard’s program. Thus, compared to Leonard, Sheldon is already warmed
up and does not need to get used to the way of thinking that is necessary for understanding
and maintaining a program.

The same problems can be observed in experiments. First, subjects have to get used to
the experimental context, e.g., the room, the tasks, and the material. After getting used to the
situation, the actual performance of subjects can be assessed. The longer the experiment lasts,
the more fatigue subjects get, and performance decreases again. Hence, the performance of
subjects depends to some extent on the position of a task in the experiment. If this effect is not
considered, results could be biased.

The ordering effect is very similar. It describes the influence due to the ordering of the task.
For example, if subjects that are familiar with Java first work with a program implemented in
C, they have to familiarize with the syntax and with the program. If subjects then work with
a Java version of the same program, they already are familiar with both the syntax and the
problem. If we switched the order of tasks, then subjects would first familiarize with the
problem (Java version), then familiarize with the C syntax (C version). Consequently, we
would obtain different results for each task depending on the order in which we apply them.
Hence, we have to carefully decide on the order of the task.

Solutions

In order to control for the position and ordering effect, several ways are possible: use a within-
subject design, randomize the order of the tasks, or assess subject’s opinion.

Firstly, a within-subject design can be used if we have only two or three tasks (Table 3.5).
We have two groups, A and B, which both complete both tasks, but in a different order. The



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 67

Group Trial 1 Trial 2

A task 1 task 2
B task 2 task 1

Table 3.5: Design for controlling position effect.

time interval between both trials can be five minutes or several days, depending on how long
each trial is. The effect of position or order can then be analyzed, e.g., by comparing the results
of both groups in each trial, the overall performance, or the performance for each task.

Secondly, if the number of tasks is too large, a within-subject design is not feasible, because
every permutation of tasks needs to be included. For example, for three tasks we need six
groups, because there are six permutations. If we have four tasks, we already need 24 groups.
In this case, we can randomize the order of the tasks for every subject, so that position and
ordering effects vanish.

Thirdly, we could ask subjects at certain stages of the experiment whether they feel fatigue,
stressed out, or they think if their performance would have differed if the task were applied in
a different order. The correlation of the answers with the performance can be used to analyze
position and ordering effects. In our experiment (cf. Chapter 5), we used a warming up task
and task with approximately ascending levels difficulty.

3.4.5 Effects due to experimenter

The experimenter can influence the results of the experiments due to his behavior, intentionally
or unintentionally. Since this is a problem of all experiments involving subjects, we did not ask
our experts. Examples for effects due to the experimenter can be found in GOODWIN [Goo99].
We explain in this section, how the experimenter can affect program comprehension.

Problem statement

Sheldon, Leonard, and Penny manage to contact Howard on his vacation. Howard and Shel-
don work in the same department and both know each other. Since Howard wants that the bug
is fixed by his department, he helps Sheldon to understand the program.

Howard voted against Leonard’s employment, because he thinks that Leonard is not skilled
enough for the company. In addition, Howard developed an antipathy against Leonard, be-
cause Leonard got the job, anyway. Thus, the willingness to support Leonard in fixing the bug
is rather low, leaving Leonard on his own.

In an experiment, the experimenter can introduce a bias to our results. This bias can occur
during conducting, analyzing, or interpreting the results. The reasons are diverse, e.g., he likes
one group of subjects more, he noted in a former trial that with several tips subjects are happier
or perform better, he is attracted to one of the subjects, he prefers a certain outcome, etc. The
experimenter can even unintentionally behave different in different trials, because he favors



68 3.4. ENVIRONMENTAL PARAMETERS

a certain hypothesis or simply has a better day. Unintentional differences in experimenter
behavior that lead to different performances of subjects are referred to as Rosenthal effect
(ROSENTHAL AND JACOBSON [RJ66]).

Solutions

Effects due to the experimenter can be controlled in several ways: clear or standardized in-
structions for the experimenter, training of the experimenter, or single blind trials.

Firstly, we could give the experimenters clear instructions on what they should or should
not say. In order to nearly delete the influence, experimenters could get a standardized script
and just read it to the subjects. Questions of the subjects occurring during the task could be
answered with a standardized reply. However, this leaves experimenter with no way to react
to unexpected questions or behavior of the subjects.

Secondly, in order to allow experimenters to flexibly react to subjects during the experiment
without biasing the result, experimenters could be trained. Of course, this negatively affects
time and financial resource of our experiment. Hence, we have to compare cost and benefit of
well trained experimenters versus the bias on our result.

Thirdly, especially to control the Rosenthal effect, we could let the experimenter unclear
about the intentions and hypotheses of our experiment. This prevents subconscious shift of the
behavior, since the experimenter does not know which the preferred outcome is. One example
of standardization during analysis of data can be found in SHAFT AND VESSEY [SV95], where
a coder’s manual to objectively classify recorded statements from think aloud protocols. In our
experiment (cf. Chapter 5), we carefully designed the instructions, answered only questions
concerning the tasks, and cross checked our analysis of the answers of subjects.

3.4.6 Hawthorne effect

The Hawthorne effect describes that subjects do not show their usual behavior, because they
take part in an experiment (ROETHLISBERGER [Roe39], LANDSBERGER [Lan58]).

Problem statement

Since Leonard is new to the company, he is on probation for the first month. Hence, if his
performance is not good, he will be let go. Thus, Leonard is highly motivated to fix the bug,
because a good performance in the first month is beneficial for his job. Penny, on the other
hand, has worked for ten years in this company. Hence, a bad performance for fixing the
bug does not endanger her job. Due to the pressure, Leonard tries harder to succeed with his
assignment, while Penny can begin her task more relaxed.

The Hawthorne effect was discovered during experiments in the Hawthorne company, in
which the influence of the light level on working efficiency was assessed (ROETHLISBERGER

[Roe39]). It was discovered that subjects performed better, simply because they knew they
were observed. Hence, the effect is especially problematic in social sciences, where natural



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 69

behavior should be assessed (HEWSTONE AND STROEBE [HSJ07]). In experiments that mea-
sure behavioral aspects of program comprehension, e.g., efficiency of solving a task, behavior
during a maintenance task, the Hawthorne effect could bias the results. In addition, if attitudes
towards FOSD approaches should be assessed, subjects could hide their real opinion, render-
ing our results useless. Hence, the Hawthorne effect needs to be taken into account when
planning an experiment in order to obtain useful results.

Solutions

In order to control the influence of the Hawthorne effect, there are three ways: either let all
subjects know that they participate in an experiment, hide the real intentions of the experiment,
or let all subjects unaware that they take part in an experiment.

Firstly, all subjects could be made aware that they take part in an experiment. This solution
can be applied, if, e.g., two groups should be compared regarding their performance, because
an increase in performance due to the Hawthorne effect occurs in both groups.

Secondly, we could hide the real intentions of our experiment. This approach is usually
applied in social sciences (HEWSTONE AND STROEBE [HSJ07]). In this case, the Hawthorne
effect occurs, however the behavior that should be measured remains unaffected.

Thirdly, we could let subjects unaware that they take part in an experiment. The second
and third way are referred to as single-blind trials. In both cases, it is imperative that the
experiments are ethically approved, because we cannot get the subjects consent before the
experiment. In Germany, ethics committees have developed, which can be consulted for de-
termining whether subjects are exploited or planned interventions are unreasonable (WIESING

[Wie03]).
An extension to single-blind trials are double-blind studies, which means that both, the sub-

jects and the experimenter, are ‘blinded’ regarding the experiment or its intention. This way,
both the Hawthorne and Rosenthal effect can be controlled simultaneously. In our experiment
(cf. Chapter 5), we let all subjects know that they participated in an experiment.

3.4.7 Test effects

Test effects occur usually with repeated measurement and similar tasks (SHADISH ET AL.
[SCC02]). In this case, subjects learn information in the first trial that affect performing in
following trials.

Problem statement

Since Sheldon works in the same department as Howard, he had to deal with Howard’s source
code a couple of times. Hence, Sheldon is familiar with Howard’s coding style. On the other
hand, Leonard has first contact with Howard’s coding style, which means that he has a harder
time understanding the source code.



70 3.4. ENVIRONMENTAL PARAMETERS

For experiments, this problem occurs when having a design with repeated measures, i.e.,
using the same subjects again for another trial. If the trials are very similar, then subjects
profit from the first trial. This would confound the results of the second trial, because they also
depend on the first trial. Hence, we cannot reliably compare the results of the first with the
second trial. Thus, carefully considering test effects is essential for useful results.

Solutions

In order to avoid test effects, we could let a large time interval pass between two trials or
administer different tests.

Firstly, we could wait a considerable amount of time between to trials, e.g., one year.
However, we then have to deal with mortality, i.e., that subjects drop out of our experiment for
whatever reason (SHADISH ET AL. [SCC02]). Test effects diminish with a larger time interval,
whereas mortality increases with the time interval.

Secondly, for avoiding mortality, we can administer different tests. This way, we do not
need to let a large time interval pass. However, we have to make sure that both tests are
comparable in their difficulty. This could be done by letting equally skilled subjects conduct
both tests. If our tests have an equal level of difficulty, then the performance of all subjects
should be nearly the same. As another way, we could ask subjects about their perception of
the difficulty of the conducted tests.

In our experiment (cf. Chapter 5), we avoid repeated measures by creating two homoge-
neous groups that worked on different versions of the source code.

3.4.8 Miscellaneous

In this section, we discuss some further environmental parameters. We explain them altogether
in this section, since their influence and ways to control can be shortly explained.

Parameters related to the computer system, for example, CRT vs. TFT, keyboard, mouse,
or OSs, should be kept constant or varied according to the preference of the subjects (cf. Sec-
tion 3.4.3). Especially in the context of measuring program comprehension, these parameters
need to be considered. In our experiment (cf. Chapter 5), we used the same configuration of
the working stations for all subjects.

The same noise level during the complete experiment should be maintained. Otherwise, if
one group hears the lawn-mower outside the whole time, while the other group gets to work in
silence, the results would be biased. As for light, it is not advisable to let one group of subjects
work in daylight, while the other group has to work in darkness, just having the lights from
their monitors. We conduct our experiment (cf. Chapter 5) in one room, so that all subjects
have the same noise and light level.

In the next section, we explain the influence of those parameters that are related to the task
itself, i.e., task-related parameters.



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 71

3.5 Task-related parameters

In this section, we discuss the influence of variables that are related to the tasks subjects should
perform. For experiments measuring program comprehension, those parameters are mostly
related to source code. Programming language can be understood as task-related parameter,
however we describe its influence in an additional section, because there are many ways in
which it can influence program comprehension. Hence, this section would become too large
or the importance of programming language neglected. Like for the environmental parameters,
the influence of those parameters can be included in the planning phase of the experiment.

We discuss parameters in the following order:

• Structure of the source code (Section 3.5.1)

• Coding conventions (Section 3.5.2)

• Difficulty of the task (Section 3.5.3)

• Comments and documentation (Section 3.5.4)

In Section 3.7, we summarize all parameters, we discussed, including personal and en-
vironmental parameters.

3.5.1 Structure of the source code

In Section 2.1.1, we discussed the necessity for SoC and compared two differently structured
implementation of our stack (cf. Figure2.1 on Page 6). In this section, we show how the
structure affects program comprehension.

Problem statement

Howard has implemented several programs before. Hence, he knows that well structured
source code increases its readability. Thus, he divided his source code into several modules,
all of the methods fit on the screen without scrolling, and none of his classes exceeds five
hundred LOC. Due to this structuring, he helps Penny, Sheldon, and Leonard to understand
his program.

In contrast, if Howard implemented his source code in just one class, the class would be
very complex. Hence, it would be rather difficult to understand the program.

If we are not careful in our sample experiment when designing the different versions of
our program, then we could create one well structured and one badly structured version. This
would lead to an advantage for the group that analyzes the well structured source code. Thus,
we would not measure that one programming language is more understandable, but that one
implementation is better structured than the other.



72 3.5. TASK-RELATED PARAMETERS

Solutions

How can we assure that different implementations have comparable structure?
One way is to let programming experts review the different versions. Since experts have

programmed for several years, they know different ways to structure source code. They have a
feeling for which different versions of source code are comparable regarding their structuring.
If we do not have access to experts, we could ask subjects afterwards how they perceived the
structure of the source code and if two versions are comparable.

A further way is to conduct a pretest, in which we compare two versions. If we assume
that two version do not differ in their structuring (and any other aspects), then we can expect
the same response from our pretest subjects. However, if we obtain a significant difference in
the performance, then we must assume that the two versions are not comparable. A similar
solution is discussed in Section 3.4.7, in which we explained how test effects can be controlled.

In our experiment (cf. Section 5), we use a program that is code reviewed by experts. This
way, we control all task-related parameters except difficulty of a task. Hence, we only mention
how we control difficulty in our experiment (Section 3.5.3). All other task-related parameters
are controlled by using a code reviewed program.

3.5.2 Coding conventions

Coding conventions were developed to standardize coding styles of different programmers.
Coding conventions suggest, e.g., how text should be indented or how methods, variables, and
classes should be named.

Problem statement

Howard likes to have as much source code on the screen as possible. Hence, his statements
often exceed the suggested eighty columns. Furthermore, since text indentation takes up place,
all of his statements begin in the first column. In addition, he does not like to name meth-
ods according their purpose, but after Star Trek characters. Usually, that is not a problem,
because Microsoft Visual Studio has an autoformat feature, which formats the text according
to specified conventions, e.g., statements shorter than eighty columns and two white space as
indentation. With the refactor feature, method names can be changed, so that every method is
named according to its purpose. However, Howard forgot to restructure his source code, so
his colleagues have to work with a source code in which most of the coding conventions are
violated.

The first thing that Penny and Sheldon do is to use the auto format feature of their IDE,
so that the source code is formatted as they are used to. What about method names? Naming
a method according to its purpose, without knowing its purpose, is impossible. Hence, Penny
and Sheldon have to find out the purpose of methods by analyzing what they are doing, which
increases the effort in understanding the program.

An important result on the influence of coding conventions on experts and novices was



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 73

found by SOLOWAY AND EHRLICH [SE84]: The performance of experts was identical with
the performance of novices, if the coding conventions were violated. Otherwise, the experts
clearly outperformed novices. Hence, the influence of coding conventions needs to be carefully
controlled, otherwise our results would be biased and useless.

Solutions

We can control this parameter the same way we can control the influence of structure of the
source code: consult experts, conduct pretests, or assess the opinion of subjects. In addition,
we could disrespect coding conventions intentionally.

3.5.3 Difficulty of the task

The difficulty of the task does not directly affect program comprehension. However, since we
use tasks to measure how well programs are understood, the difficulty of the task influences
our result and thus needs to be controlled.

Problem statement

What if the bug in Howard’s program was not a deadlock, but a wrong background color
in several conditions? Changing the color of an output is easier than resolving a deadlock.
Supposedly, Sheldon would be the only programmer assigned to fix the bug and would probably
be finished within half an hour, because displaying the right color is rather easy.

If we do not design the tasks for our sample example careful enough, we could end up with
easy tasks for one group, and difficult tasks for the other group. Although both groups under-
stand the program well, the group with the difficult tasks shows worse performance. However,
we would assume that the programming language of group two is less comprehensible.

Solutions

Hence, we have to make sure that the tasks we use to measure program comprehension have
comparable levels of difficulty. Like for controlling the influence of coding conventions, we
could consult experts, ask our subjects’ opinion, or do not use tasks at all to measure program
comprehension.

In the latter case, we have to use other indicators for program comprehension, e.g. ask the
subjects how well they have understood a program. However, relying on a subjective measure
solely is not advisable, because the reliability of this procedure is rather low (DUNSMORE AND

ROPER [DR00]). Potential reasons are that subjects could be wrong in their estimate, or simply
lie, since they do not want to admit having understood less than they expected or because of
social desirability, i.e., behaving in a way that is viewed as favorably by others (CROWNE

AND MARLOWE [CM60]). Hence, subjective rating should only be used in addition to other
measures, e.g. maintenance tasks.



74 3.5. TASK-RELATED PARAMETERS

In our experiment (cf. Section 5), we use the same tasks for different source code versions
to assess program comprehension of subjects.

3.5.4 Comments and documentation

On the one hand, useful comments and good documentation can help to understand a pro-
gram (MCCONNELL [McC04]). On the other hand, badly commented source code or chaotic
documentation has a negative effect on program comprehension.

Problem statement

Howard is usually too lazy to write comments or documentation and since nobody in his com-
pany forces him, Howard’s source code is usually uncommented and without documentation.
This makes the job harder for Penny, Sheldon, and Leonard. If we consider the source code
implementing the observer pattern (cf. Figure 3.2 on page 53), then comments that actually
describe this code fragment as observer pattern helps understanding it, being familiar or un-
familiar with the observer pattern. Penny and Sheldon can simply check whether everything is
implemented correctly, and Leonard can look up the observer pattern.

One experiment comparing different commenting styles was conducted by PRECHELT ET

AL. [PUPT02]: They developed one commented version of source code, which implements
several design patterns. The second version was identical to the first, but had additional com-
ments that reveal when code fragments implemented a certain design pattern. Due to the high
degree of similarity between both versions, the observed differences in performance of sub-
jects in favor of the version that contained design pattern comments can only be attributed to
the additional comments.

An interesting observation regarding documentation was made by KOENEMANN AND

ROBERTSON [KR91]: Their subjects should maintain an unknown program and were recorded
using think aloud protocols. Subjects looked at documentation of source code only as last re-
sort. This unwillingness to use documentation should be taken into to account when designing
an experiment, in which the documentation of source code plays an important role.

Hence, if for an experiment different versions of a program exist, it has to be made sure
that all versions are commented and documented in a comparable way. Otherwise, we would
not only measure the understandability of a source code, but also the quality of comments and
documentation, leaving us with biased results.

Solutions

For controlling the influence of comments or documentation, we could use the same means as
for controlling the influence of the structure of source code: consult experts, conduct pretests,
or assess the opinion of subjects. In addition, we could simply omit all comments and docu-
mentation. Then, neither can influence program comprehension.



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 75

This concludes our discussion on task-related parameters. Next, we discuss how the un-
derlying programming language of source code can influence program comprehension.

3.6 Programming language

In this section, we explain how understanding a program can be influenced by its program-
ming language. We do not discuss, however, the effect of different subjects knowing different
programming languages on program comprehension, because we consider this to be part of
programming experience.

One might argue that programming language is not a confounding parameter on program
comprehension, but rather an independent variable. However, in our thesis we want to assess
whether we can measure the understandability of different FOSD approaches, not different
programming languages. Since one FOSD approach can include several programming lan-
guages, they can be considered as independent variable depending on the hypotheses of an
experiment. For example, CPP can not only be applied to C or C++, but to any other pro-
gramming languages, like Java. Hence, for assessing the understandability of CPP, other
programming languages need to be considered as well.

Due to its importance, we discuss programming language in a separate section and not
as part of task-related parameters. Furthermore, the influence of a programming language
itself can be split into several facets. We consider the underlying programming paradigm
and syntax as the most influential facets, because they cause differences between programs of
different programming languages. Additionally, programming languages can influence task-
related parameters.

Problem statement

We start with the underlying programming paradigm and syntax of a programming language.
Then, we discuss the influence on task-related parameters.

Programming paradigm. Programming languages can look very different depending on the
programming paradigm they represent. Well known paradigms (and according languages) in-
clude logical (Prolog), functional (Haskell (HUDAK ET AL. [HPJW+92])), and object-oriented
(Java) programming paradigms. All paradigms have different underlying concepts. Logical
programming is based on mathematical logic and represents information declaratively. The
functional paradigm is based on mathematical functions. OOP uses objects that have a modi-
fiable state for expressing information.

In order to demonstrate the difference between different programming paradigms, we show
two implementations of the quicksort algorithm in Figure 3.3. One is implemented in Haskell,
the other in Java. Although both implement the same algorithm, both programs differ con-
siderably due to the underlying programming paradigm: The Haskell implementation needs
few lines (Figure 3.3a), whereas the Java implementation needs much more statements (Fig-



76 3.6. PROGRAMMING LANGUAGE

ure 3.3b). The Haskell version works recursively, the Java version has recursive and imperative
elements. The ‘=’ sign in Haskell is used to define functions, in Java to assign values. The
definition of functions/methods differs. All these differences result from the underlying pro-
gramming paradigm, which shows that different programming paradigms can make a feasible
comparison hard. Nevertheless, we have to consider this difference, because otherwise we
would not measure the effect of different FOSD approaches on program comprehension, but
also the effect of different underlying programming paradigms.

Syntax. Different programming languages even in the same paradigm have a different syn-
tax. If we do not consider the influence of different syntax, our results would be biased, such
that we not only measure the influence of FOSD approaches on program comprehension, but
also differences in syntax. For example, in the C++ example, the address of the variable arr
is used (Line 2), whereas in the Java example, the reference of the according variable (Line 1).
The according operator in the C++ example, &, is not only used to get the address of a param-
eter, but also as bitwise and operator. Hence, it is overloaded, which is not possible in Java.
Besides overloading operators and using the reference or address of a parameter as needed,
there are further differences between C++ and Java, for example destructors, explicit memory
allocation and deallocation, multiple inheritance in C++, but not in Java. Hence, although C++
and Java look similar, they have considerable differences on a closer look. Those differences
have to be taken into account because otherwise, we do not know what differences in syntax
caused differences in program comprehension. An interesting approach is proposed by APEL

ET AL. [ALMK08], who developed an algebra that describes the composition of features. The
algebra abstracts from programming languages and thus eliminates the effect of syntax.

Influence on task-related parameters. Besides different programming paradigms and syn-
tax, programming languages can induce differences in task-related parameters. For example,
for different languages, different conventions for naming variables or structuring source code
exist. For example, in C++, private class variables should have an underscore suffix, but not in
Java. Now, when comparing a C++ and Java program, this produces a conflict, because either
we can name our variables accordingly and thus introduce a difference in our program, or we
can decide for one convention and thus violate the other. Hence, we have to carefully consider
the influence of programming languages on task-related parameters, because otherwise, our
results would be biased.

An example of comparing maintainability of an object-oriented with a procedural version
of a program was conducted by (HENRY ET AL. [HHL90]). They used C and Objective-C
as programming languages, which helps making the programs comparable, since Objective-C
is an extension of C, allowing object-oriented programming. Due to the similarity of both
programming languages, differences in maintainability can be explained by the different un-
derlying programming paradigms.



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 77

1 qsort :: Ord a => [a] -> [a]
2 qsort [] = []
3 qsort (x:xs) = qsort less ++ [x] ++ qsort greater
4 where
5 less = [y | y <- xs, y < x]
6 greater = [y | y <- xs, y >= x]

(a) Haskell

1 p u b l i c vo id qsort ( i n t[] arr, i n t left, i n t right) {
2 i n t low = left, high = right;
3 i f (high > low) {
4 i n t mid = arr[(low + high) / 2];
5 whi le (low <= high) {
6 whi le (low < right && arr[low] < mid)
7 ++low;
8 whi le (high > left && arr[high] > mid)
9 --high;

10 i f (low <= high) {
11 swap(arr, low, high);
12 ++low;
13 --high;
14 }
15 }
16 i f (left < high)
17 qsort (arr, left, high);
18 i f (low < right)
19 qsort( arr, low, right);
20 }
21 }
22 p u b l i c vo id quickSort ( i n t[] array) {
23 qsort (array, 0, array.length - 1);
24 }

(b) Java

1 template < c l a s s T>
2 void qsort(array<T>& arr, i n t left, i n t right) {
3 i f (left < right) {
4 i n t left_aux(left), right_aux(right);
5 T aux = arr[left];
6 whi le (left_aux != right_aux) {
7 whi le (arr[left_aux] < aux && right_aux > left_aux) ++left_aux;
8 whi le (aux < arr[right_aux] && left_aux < right_aux) --right_aux;
9 swap(arr[left_aux], arr[right_aux]);

10 }
11 qsort(arr, left, left_aux - 1);
12 qsort(arr, left_aux + 1, right);
13 }
14 }
15 template < c l a s s T>
16 void quicksort(array<T>& v) {
17 qsort(v, 0, v.size() - 1);
18 }

(c) C++

Figure 3.3: Implementation of quicksort algorithm in Haskell, Java, and C++.



78 3.7. SUMMARY

Solutions

How can we make sure that programs in different programming languages differ only to a
small degree, such that observed differences can only be explained by different underlying
FOSD approaches?

In order to deal with this problem, we can use the same methods as for most of the task-
related parameters: consult experts, conduct pretests, or assess the opinion of the subjects (cf.
Section 3.5). However, it is still difficult to assure that different versions of the same algorithm
are comparable, which the Haskell and Java comparison demonstrated.

Hence, comparing different programming languages is a very tedious endeavor, because
there are so many aspects that need to be controlled. Furthermore, interpreting results and
drawing conclusions is limited and has to be done very carefully. This problem gets larger,
the more different the according programming languages are, e.g. Haskell vs. Java. The more
programming languages have in common, the easier it is to create comparable programs.

In order to feasibly design experiments that control the influence of programming lan-
guage, we have to start with small comparisons, for example compare a quicksort implemen-
tation in programming languages that have much in common (e.g., C and C++). If sound
conclusions can be drawn from the experiment, then more complex programs can be taken
into account. This is a useful application for stepwise development: A simple program can
be developed and after sound tests and results extended (WIRTH [Wir71]). This allows to test
complex programs and draw sound conclusions, because simpler versions of the same pro-
grams already lead to reasonable results. A similar idea has be proposed by FLEMING ET AL.
[FSD07], who suggest letting subjects implement program families in several experiments,
such that with increasing number of experiments, the program families get more complex.

A further useful technique to control the influence of different programming languages are
think-aloud protocols, because they can help to interpret our results. Using think-aloud proto-
cols, the way subjects think during understanding a program can be analyzed. This can reveal,
how different programming languages are perceived and dealt with by different subjects. How-
ever, think aloud protocols are very time consuming and costly, since for every subject, several
hours for testing, analyzing and interpreting are necessary (cf. Section 2.2).

In our experiment (cf. Section 5), we compared CPP and CIDE based on the same Java
program, so that the only difference of the programs was the kind of annotation. A next step
would be to replicate the experiment with a different Java program, different programming
language, or a different sample in order to confirm our results.

3.7 Summary

Confounding parameters influence the results of experiments. Hence, it is necessary to identify
and control them. Otherwise, results are biased, which leads to wrong conclusions. In order
to identify confounding parameters on program comprehension, we consulted the literature
and programming experts. Using a scenario, we outlined how the parameters can influence
program comprehension.



CHAPTER 3. CONFOUNDING VARIABLES FOR PROGRAM COMPREHENSION 79

Parameter How controllable? How much influence?

Programming experience depends 2.89
Domain knowledge easy 2.56
Intelligence hard 2.47
Education depends 2.44
Miscellaneous easy -

Training depends 2.61
Motivation depends 2.47
Tool support easy 2.44
Ordering depends 2.38
Position depends 2.29
Experimenter depends -
Hawthorne depends -
Test effects depends -
Miscellaneous easy -

Structure depends 3.00
Coding Conventions depends 2.83
Difficulty depends 2.67
Comments depends 2.50
Documentation depends 2.22

Programming language hard -
How controllable: estimate about effort for controlling a parameter, How much influence:
arithmetic mean of the expert survey (cf. Table 3.3).

Table 3.6: Overview of confounding parameters.

After showing the need to control the according parameters, we presented several ways to
deal with the parameters. There is no optimal way in general, because it depends on several
factors, for example, human and financial resources as well as goals and hypotheses of the
experiment. In Table 3.6, we show all confounding parameters with a subjective estimate
on the difficulty of controlling (column How controllable?) and importance (column How
much influence?) of each parameter. The estimate of the difficulty of controlling depends
on how easy the measurement of a parameter can be accomplished. For example, domain
knowledge can be assessed by simply asking subjects (easy), whereas intelligence requires
time-consuming tests (hard). Usually, controlling parameters depends on the hypotheses and
goals of experiments, which can make it easy or hard, such that we cannot give an estimate
(resulting in depends). The column How much influence? has some missing values, because
we either summarized several parameters in one row (Miscellaneous) or did not include them
in our expert survey (because the influence was due to experiments in general, not program
comprehension). In the next chapter, we apply the results of this section to an evaluation of
feasibility of comparing FOSD approaches regarding their effect on program comprehension.



80 3.7. SUMMARY



CHAPTER 4. FEASIBLE SCOPE OF COMPARING FOSD APPROACHES 81

Chapter 4

Feasible Scope of Comparing FOSD
Approaches

In this chapter, we evaluate the feasibility of measuring the effect of different FOSD ap-
proaches on understandability. This is necessary to give an estimate about how time con-
suming and costly this is and to create an agenda for continuing our work. As the previous
chapter showed, designing experiments measuring the effect of different FOSD approaches
on program comprehension can get very complicated because of the number of confounding
parameters and diversity of FOSD approaches.

We show that it is nearly impossible to state which of the approaches is the most compre-
hensible. Firstly, we point out the effort of generating a rank list according to understandability
in Section 4.1. Secondly, we show in Section 4.2, that the effort for comparing two approaches,
even two programming languages, is lower, yet still not manageable within reasonable time
and resources. Eventually, in Section 4.3 we show how small the scale is on that statements
regarding understandability can feasibly and soundly be made.

4.1 Comparing four approaches

If we want to create a ranking of four FOSD approaches regarding comprehensibility (cf.
Section 2.1), our independent variable has four levels: AOP, FOP, CPP, and CIDE. In order to
assess the effect on program comprehension, we have to create one program for each FOSD
approach and test the understandability of them. An example discussion on how to empirically
compare AOP and FOP can be found in APEL ET AL. [AKT07], in which the authors suggest to
let programmers implement a graph product line LOPEZ-HERREJON AND BATORY [LHB01]
with one AOP and FOP language. However, this approach is too naive, as we show in this
section.



82 4.1. COMPARING FOUR APPROACHES

4.1.1 Creating a program for each FOSD approach

How can we create one program for every FOSD approach? We could choose one program-
ming language of every FOSD approach, for example AspectJ for AOP, AHEAD for FOP, C
for CPP, and Java for CIDE. However, we now would not consider AOP, FOP, CPP, and CIDE
in general, but one specific programming language for every approach. Hence, in order to
compare not only one aspect of an FOSD approach, but the complete approach, we have to
include all programming languages (or at least a representative set) for each approach. There
are numerous programming languages to which each approach can be applied, for example
Jak (BATORY ET AL. [BSR04]), Java, JavaCC, Haskell, C, C#, XML APEL ET AL. [AKL09],
and C++ (APEL ET AL. [ALRS05]) for FOP or FeatherweightJava, Java, C, C#, or Haskell for
CIDE (KÄSTNER [KTA08]).

In this section, we optimistically assume that for each approach five programming lan-
guages can be selected as representative. This simplifies our discussion, but still suffices to
demonstrate the problems. For five programming languages per FOSD approach, we have to
create five · four = twenty programs. The first problem lies in creating twenty programs that
are comparable regarding all task-related parameters (e.g., structure, comments, documenta-
tion). We have to conduct a lot of pretests and/or expert consultations in order to be sure that
all 20 programs have a comparable structure, comparable comments and documentation. Fur-
thermore, we have to consider how we deal with rules of programming discourse, for example
different naming conventions of variables between Java and C. Should we stick with conven-
tions for the according programming language or should we decide for one of them and thus
violate the other?

4.1.2 Recruiting and managing a sufficient number of subjects

Creating twenty comparable programs is not the only problem. Given that we were able to
create twenty different but comparable programs, the second problem is to recruit enough
subjects to conduct our experiment. If we choose a simple one-factorial design (cf. Table 2.2
on page 31), we have twenty groups. All groups should be large enough, such that we control
the influence of confounding parameters like intelligence or education. Since the number of
subjects that defines large enough is not specified, (cf. Section 2.3.2.2), we optimistically
assume that ten subjects per group are enough. Hence, we would have to recruit 200 subjects
for our experiment. If we use students as subjects, we could recruit them via an introductory
lecture to computer science, which can easily be addressed to several hundred students (at least
in larger universities like the University of Magdeburg). Recruiting 200 experts requires more
effort, because we have to contact companies and most certainly pay them for participation,
which is very tedious and costly.

However, creating twenty comparable programs and recruiting 200 subjects are not the
only problems. Given that we solved both problems somehow, we have to organize conducting
the experiment for 200 subjects. For example, if we conduct the experiment using computers,
we have to find one room in which all subjects fit in order to control training effects, noise
and light level. Furthermore, we have to train and include enough experimenters to control



CHAPTER 4. FEASIBLE SCOPE OF COMPARING FOSD APPROACHES 83

that subjects are working properly and that everything is according to our experimental plan.
Instead of conducting our complete experiment in one session, we could split our experiment to
several sessions, such that we can use a smaller room and need lesser experimenters. However,
the chance that we introduce more bias due to different noise levels, training, or some randomly
occurring event (e.g., power failure), increases this way.

In addition to the effort in conducting our experiment, we have a lot of effort in analyzing
the data. We have to check the responses of every subject, evaluate whether the solutions are
correct or incorrect, etc. The more manual effort has to be put into the analysis, the longer it
takes to evaluate the data of one subject. However, the higher the degree of automated data
collection and analysis is, the lower our flexibility about the tasks of subjects. For example,
we could let subjects draw a control flow diagram of a program, but evaluating whether it
correctly represents the control flow is very time consuming. Think-aloud protocols may be
nice to analyze cognitive processes, however they are not feasible for 200 subjects. Hence, the
techniques and measures for program comprehension we can feasibly apply for 200 subjects
are rather limited.

4.1.3 Reducing number of required subjects (and introducing test ef-
fects)

In order to increase feasibility for our comparison, we could decide to use a design with re-
peated measures (cf. Table 2.3 on page 31). For every FOSD approach, we create one group,
so that every subject is required to work with five different programs. If we assume that for
each program, subjects need about half an hour, and additionally some time for introduction
and breaks, our subjects would need three hours to complete our experiment. During the com-
plete period, we need to keep our subjects motivated. Furthermore, we need to make sure that
all subjects are familiar with all programming languages they have to work with. Neverthe-
less, we now can complete our experiment with about forty subjects (assuming ten subjects
per group). Forty subjects and three hours sounds manageable, because they probably all fit
in one room, such that we control several confounding parameters and are able to conduct our
experiment with few experimenters, but no we introduced test effects.

One problem with repeated measures is that test effects can occur. For dealing with them,
we could define a time period between our trials (e.g., several weeks), but then we have to deal
with mortality (cf. Section 3.4). In addition, we have not controlled the influence of position
and ordering effects. If we want to do so, we need to introduce different orders of the tasks,
which means that we need more subjects again. For example, if we create every possible order
of our five programs for every FOSD approach, we have 5! = 120 order for every FOSD
approach, which cannot be tested feasibly. However, for continuing our argumentation, we
assume we have controlled test, position, and ordering effects somehow.



84 4.1. COMPARING FOUR APPROACHES

4.1.4 Assuring generalizability of our results

Creating twenty comparable programs and design our experiment such that 40 subjects suffice
and test, ordering, and position effects are controlled somehow, are not the only problems, be-
cause we still have not considered external validity in our design. If we keep all confounding
parameters constant, our internal validity is maximized, yet our results would not be gener-
alizable. In order to increase our external validity without diminishing our internal validity,
we have to include the influence of all confounding parameters in our experimental design (cf.
Section 2.3.2.2). We pick some of our confounding parameters identified in the last chapter
and show why they are problematic to be included in our design. The remaining parameters
and according problems are summarized in Table 4.1.

Firstly, we discuss programming experience. In our evaluation, we have only considered
students as subjects. Hence, possible results can only be generalized to students, not to profes-
sional programmers. In order to increase our external validity, we have to include professional
programmers as subjects as well. Professionals are problematic because they cannot be moti-
vated to participate by giving them a bonus for their final exam (because unlike students, they
already passed it), but they usually need to get paid. Furthermore, parameters like education
and domain knowledge are hard to control, because we have to find persons that have a cer-
tain level of programming experience, visited a specific college or university, and are equally
experienced with a certain domain. The more requirements we specify, the lesser the num-
ber of persons is that meet those requirements. Hence, finding 40 or even 200 appropriate
programming experts and motivating them to participate in our experiment is difficult.

Secondly, we consider domain knowledge. Since different program comprehension mod-
els depend on the amount of domain knowledge, we have to include different levels of domain
knowledge. Otherwise, our results could only be applied to the model of program comprehen-
sion we tested in our experiment (e.g., bottom-up program comprehension). Hence, we have
to find subjects with no domain knowledge to test bottom-up program comprehension, and
with enough domain knowledge to test top-down program comprehension. Additionally, we
should integrate a mediocre level of domain knowledge to test integrated models of program
comprehension as well. The problem here is to define the amount of domain knowledge such
that we can be sure to measure all three different program comprehension models. Otherwise,
we could end up with top-down comprehension, although we intended to assess integrated
program comprehension.

Thirdly, we discuss tool support. Since tools can support program comprehension, we
have to include them in our experiment. Firstly, we could simply include commonly used
IDEs in our experiment, for example Eclipse, Microsoft Visual Studio, or JDeveloper1. This
way, we would assess the influence of those IDEs on program comprehension. However, the
functionality those IDEs provide must not necessarily be the same. Hence, we can restrict
the features that subjects are allowed to use for program comprehension, however we have to
confirm that only the allowed features are used. Besides IDEs, tools like FEAT provide help
for comprehending a program and should also be included. We have to make sure that subjects

1http://www.oracle.com/technology/products/jdev/index.html



CHAPTER 4. FEASIBLE SCOPE OF COMPARING FOSD APPROACHES 85

are familiar with according tools, otherwise the results would be confounded with getting used
to a new tool or functionality.

The remaining parameters and their problems are summarized in Table 4.1. The column
Levels contains a suggestion of which levels of the confounding parameter to include in the
experimental design. Results from our experiment could be generalized to those levels.

Based on our assumptions before considering external validity (i.e., we have twenty com-
parable programs, forty subjects and sufficiently controlled the influence of test, position, and
ordering effects), we include levels of confounding parameters in our design. If we include
only two levels for each confounding parameter, we suddenly have exponentially more exper-
imental conditions to test. For example, we have to test our FOSD approaches with novices
and experts, combined with bottom-up and top-down program comprehension, combined with
easy and difficult tasks, and so on. For every confounding variable with two levels we include
in our experiment, the possible combinations are doubled. Including all 15 confounding pa-
rameters (cf. Table 4.1) and four FOSD approaches (because we use repeated measures), we
would end up with 215 · 4 = 131, 072 combinations, which means that we have to recruit and
handle 1,310,720 subjects in our experiment. Since over one million subjects it is impossible
to handle, we cannot compare four FOSD approaches and have generalizable results.

If we consider the naive proposal to compare FOSD approaches (i.e., let programmers
implement a graph product line with one language per approach), we now see why it most
probably will not work: only one programming language per approach is considered, no con-
founding parameters are mentioned (e.g., programming experience), only one program is con-
sidered, and no work to generalize results is discussed. In order to obtain useful results, we re-
strict ourselves to comparing two programming languages of two different FOSD approaches,
which we discuss in the next section.

4.2 Comparing two programming languages

How can we compare two programming languages regarding understandability? In this sec-
tion, we show that even this seemingly simple question, compared to comparing four FOSD
approaches, has no trivial answer. For illustrating problems with comparing two program-
ming languages, we use AspectJ and AHEAD as example, because they are the most common
programming languages for AOP and FOP, respectively (cf. Section 2.1.2). Furthermore, we
neglect all other confounding parameters, because they are irrelevant for the discussion in
this section. Instead focus on the problem of creating two comparable programs of different
programming languages.

Before running our experiment, we need to create two programs that are comparable. In
Section 2, we showed one AspectJ and AHEAD example (cf. Figure 2.4 on page 11 and 2.5 on
page 13). Those examples showed that AspectJ and AHEAD differ considerably, for example
regarding the keywords, structure of source code, composition mechanism, etc. Furthermore,
there are numerous ways of implementing the same solution in AspectJ and AHEAD (cf. 2.5,
page 13 and 2.6, page 14). We have to consider all of them in order to make sound conclu-



86 4.2. COMPARING TWO PROGRAMMING LANGUAGES

Parameter Levels Problems

Programming
experience

novices, experts experts are expensive; personal param-
eters of experts are harder to control
than for students

Domain knowledge no, little, much assess domain knowledge such that in-
tended program comprehension mod-
els are used

Intelligence different IQs soundly measure intelligence
Education different elementary school,

high school or college; dif-
ferent age with which sub-
jects started to program

curriculum during education; knowl-
edge subjects gained during education

Gender male, female draw representative sample: percent-
age of males and females?

Training of subjects no, little, intense keep training constant; specify little
and intense training

Noise level quiet, noisy specify kind of noise
Motivation of sub-
jects

motivated to sabotage, not
motivated, highly motivated

ensure intended level of motivation

Tool support no tool support, use text ed-
itor, restricted functionality
of different IDEs

define set of IDEs to be used, restrict
functionality, familiarize subjects

Position and order-
ing effect

every possible order of tasks
and/or program

define small number of tasks/programs
to have manageable number of permu-
tations

Code on screen vs.
paper

TFT, paper ensure that subjects are used to code
on paper

Structure unusual, usual ensure comparable structure in differ-
ent programs

Coding conven-
tions

violated, ensured different coding conventions for differ-
ent programming languages

Difficulty easy, difficult ensure intended levels of difficulty
Comments confusing, none, helpful ensure intended nature of comments
Documentation confusing, no, helpful ensure intended nature of documenta-

tion; make sure subjects use documen-
tation

Table 4.1: Overview of problems with confounding variables.



CHAPTER 4. FEASIBLE SCOPE OF COMPARING FOSD APPROACHES 87

sions, otherwise we probably picked a badly understandable implementation in AspectJ, while
the given AHEAD implementation is easier to comprehend. With another implementation of
the same problem, the effect could be reversed. In this case, we would not compare AspectJ
and AHEAD, but the kind of implementation, which would render our results useless. Addi-
tionally, we only would compare the implementation of one problem. Maybe for some other
problems, the outcome would be reversed?

Hence, comparing even two programming languages regarding their understandability is
not trivial. We have to be sure to have comparable programs and we do not measure the effect
of something not intended, for example different structuring, comments, or coding conven-
tions. Creating two comparable programs in different programming languages is harder the
more both programming languages differ. Although AspectJ and AHEAD both have Java as
underlying programming language and thus much in common, they still differ considerably.

We could implement a problem in the most understandable way for both programming
languages. In order to determine which the most understandable implementation is, we can let
experts of a programming language implement a problem with the requirement that it should
be the most understandable. We can compare the implementations of all experts and choose
the most frequent one. We could also let experts rate several implementations of one prob-
lem regarding understandability. Instead of letting experts create or rate a program regarding
understandability, we can test other criteria, for example that an implementation should be
the most simple one in experts’ opinion or shortest in terms of LOC. In any case, we know
that both programs have something in common (understandable, simple, or shortest), which is
specific for each programming language. Hence, observed differences in program comprehen-
sion cannot be attributed to those criteria, but to other differences of the programs. However,
we cannot isolate which of the numerous other differences caused a difference in program
comprehension.

Having demonstrated the comparing even two programming languages is difficult, we dis-
cuss feasible comparisons regarding FOSD approaches.

4.3 Realistic comparison

The previous explanations showed that a high degree of external validity requires a large num-
ber of subjects. Hence, in realistic comparisons, we have to abandon the goal of creating
generalizable experiments. Only if we are sure how several parameters influence program
comprehension, we can create experiments with higher external validity. At the current time,
however, the influences of most parameters in relation to FOSD approaches on program com-
prehension are unknown, so that we have to start from scratch. Thus, we need focus on internal
validity for creating our experiments.

First of all, we restrict our experimental design to one independent variable with two lev-
els. This reduces the number of subjects we need. Then, we keep all personal parameters
constant, which diminishes our external validity, but also the number of subjects we need.
Next, we choose two levels of our independent variable that are rather similar. For example,



88 4.3. REALISTIC COMPARISON

1 p u b l i c c l a s s Stack {
2 /* ... */
3 // #ifdef TOP
4 p u b l i c Element top() {
5 re turn elements.getFirst();
6 }
7 // #endif
8 }

(b) CPP

1 p u b l i c c l a s s Stack {
2 /* ... */

3 Element top() {

4 return elements.getFirst();}

5 }
6 }

(a) CIDE

Figure 4.1: CPP and CIDE implementation of the stack example.

CPP and CIDE can be applied to several programming languages, so that we can simply use
the same program, but with different annotations when comparing the effect of CPP and CIDE.
In Figure 4.1 we show the implementation of the method top of the stack example (cf. Sec-
tion 2.1.3). We can see that both implementations only differ in their kind of annotation, but
everything else is identical. Hence, any observed difference in program comprehension can
solely be caused by the different kind of annotation.

Of course, we still have to make sure that our results can be generalized (e.g., by testing
more than one implementation of the same algorithm or confirm results with larger programs).
Nevertheless, being able to use the same programming language helps us to create two versions
of source code that differ only in few aspects, such that we know that observed differences
in program comprehension are caused by those few aspects. The more different aspects we
include in our comparison, the lesser we know why we observed a difference, because the
difference could be caused by one, some, all, or a mixture of those aspects.

As another example for similar levels we consider the effect of a few keywords on under-
standability, for example an inter-type declaration in AspectJ vs. method introductions with
class refinements in AHEAD, whereas everything else is kept constant. In Figure 4.2, we show
how two such comparable programs can look like with the stack example. The difference is
that in AspectJ, the keyword aspect is used, whereas in AHEAD, refines class. Fur-
thermore, the aspect is called Top, while the refinement Stack. Additionally, the way of
specifying that the method top belongs to the class Stack differs (AspectJ: Stack.top,
AHEAD: class designator is Stack). Hence, both source code fragments provide the same
amount of information. Now, any observed differences in program comprehension could now
be attributed to the small differences of both source code fragments. However, we cannot be
sure whether this is caused by the different keywords, designators, or specifying the belonging
of the method top. We could modify the method definition in AHEAD in line two to public
Element Stack.top(), such that observed differences in program comprehension can
only be caused by different keywords and designators.

Now, the scope of our hypotheses is rather small, but we can design experiments with-
out needing a tremendous amount of resources to realize them. Furthermore, due to the high
degree of internal validity, we can draw sound conclusions from our results. Those sound



CHAPTER 4. FEASIBLE SCOPE OF COMPARING FOSD APPROACHES 89

1 a s p e c t Top {
2 p u b l i c Element Stack.top() {
3 re turn elements.getFirst();
4 }
5 }

(b) AspectJ

1 r e f i n e s c l a s s Stack {
2 p u b l i c Element top() {
3 re turn elements.getFirst();
4 }
5 }

(a) AHEAD

Figure 4.2: AspectJ and AHEAD implementation of the stack example.

conclusions can then be used to broaden the scope of our hypotheses and create a body of
knowledge, which helps us to understand the relationship between FOSD approaches, con-
founding parameters, and program comprehension.

4.4 Agenda

The consequence we can draw from our explanations is that the scope of feasible and sound
comparisons is rather small. Hence, it could take decades until we have gathered enough infor-
mation to make a sound statement about the effect of different FOSD approaches on program
comprehension. In order to considerably reduce the amount of time, it is necessary to estab-
lish a research community to combine our resources. Based on the results of experiments with
high internal validity, we can generalize our results by conducting experiments with a higher
degree of external validity, which allows us to develop a theory about the understandability of
FOSD approaches.

In summary, we suggest the following proceeding in order to gather a sound and exhaustive
knowledge base about the effect of different FOSD approaches on program comprehension in
a reasonable amount of time:

• Establish a research community.

• Design experiments with a small scope and high degree of internal validity.

• Confirm hypotheses of experiments by replication.

• Increase external validity of experiments.

• Integrate results of experiments in a theory about the effect of FOSD approaches on
program comprehension.



90 4.5. SUMMARY

4.5 Summary

In this chapter, we showed that comparing all FOSD approaches at once is practically impos-
sible due to the large number of confounding parameters. Comparing even two programming
languages is very tedious and could take years of empirical research. However, since we have
no knowledge about the effect of FOSD approaches on program comprehension, we have to
start with experiments that have a high degree of internal validity. This allows us to draw sound
conclusions about effects on program comprehension. Having established some basic knowl-
edge about the effect of FOSD approaches on program comprehension, we can design exper-
iments with greater external validity. Since this could take decades with only one researcher
group, it is imperative to develop a community, such that we can combine our resources and
considerably speed up the process.

In the next chapter, we demonstrate our explanations on an experiment, in which we com-
pare the effect of CPP and CIDE on program comprehension of a Java program.



CHAPTER 5. EXPERIMENT 91

Chapter 5

Experiment

In this chapter, we present an experiment that illustrates the small scope of feasible compar-
isons of FOSD approaches we derived in the last chapter. The objective of this experiment is to
assess the effect of different annotations on program comprehension. We start this chapter with
a summary of our experiment and results to give an overview of the most important aspects.
Readers not interested in details can skip the rest of this chapter. After this overview, we de-
scribe our experiment according to the experimental stages we introduced in Chapter 2.3: First,
we define our independent and dependent variables as well as our hypotheses in Section 5.2.
We continue in Section 5.3 with the design stage, in which we explain how we controlled con-
founding parameters. In Section 5.4, we report how we executed the experiment. We analyze
our data in Section 5.5. In Section 5.6, we interpret the meaning of the results for our hypothe-
ses, discuss threats to validity and present some ideas for future work based on our results. We
summarize this chapter in Section 5.7.

5.1 The experiment in a nutshell

In this section, we present the important aspects of our experiment. This helps to get a quick
overview of the experiment.

Objective. The goal of our experiment is to assess whether the kind of annotation (text, as
provided by CPP vs. colors, as provided by CIDE) has an effect on program comprehension.
We restrict our comparison to a single programming language in order to design a feasible
experiment within the limits of our resources. We choose Java as programming language,
because it is common to two both, CPP and CIDE. Furthermore, we keep most of the con-
founding parameters constant (e.g., we eliminate tool support), which maximizes our internal
validity, such that we can draw sound conclusions from our result.

We evaluate the kind of annotation by comparing program comprehension of two exper-
imental groups: one group works with CPP annotations, the other group with CIDE annota-
tions. This allows us to explain observed differences between both groups with the different



92 5.1. THE EXPERIMENT IN A NUTSHELL

kind of annotations.

Subjects. As subjects, we decided to use students of the University of Passau that were
enrolled in the course Modern Programming Paradigms (German: Moderne Programmier-
paradigmen), because students learned about FOSD approaches and how to work with some
of them (including CPP (Munge) and CIDE). This assures that subjects are equally skilled
regarding FOSD approaches in general.

A few weeks before the actual experiment, we measured programming experience of sub-
jects with a carefully designed questionnaire. We assessed the experience subjects had with
several programming languages and asked for familiar domains. Based on the answers sub-
jects provided, we created homogeneous groups regarding programming experience, decided
to use Java as programming language (because all subjects were at least moderately familiar
with it), and decided to use mobile devices as unfamiliar domain (because none of the subjects
were familiar with it).

Source code. Having specified the programming language and domain for our experiment,
we looked for existing SPLs (i.e., Java as programming language, mobile devices as domain),
so that we can test the effect of different annotations. We decided to use the MobileMedia
SPL described in (FIGUEIREDO ET AL. [FCM+08]), because, beside fulfilling our criteria,
it is code reviewed by programming experts, uses CPP annotations to realize variability, and
is neither too small nor to large (28 classes, 3800 LOC). It handles multi media on mobile
devices. For creating a CIDE version of this SPL, we deleted all CPP comments and annotated
source code belonging to features with according background colors. Since the CPP and CIDE
version are identical except for the kind of annotation, we can explain possible differences in
program comprehension with the kind of annotation.

In Figure 5.1, we show one class of (a) the CPP version and the equivalent class of (b) the
CIDE version.

Tasks. A further advantage of using identical programs is that we could use the same tasks
for measuring program comprehension for both versions. Besides a warming up task, in which
subjects should familiarize with the experimental setting, we created two different kinds of
tasks. Firstly, subjects should locate feature code, which we assessed by (1) letting them
complete a collaboration diagram template of the source code and (2) locate statements that
described feature interactions. Secondly, we created four maintenance tasks introducing bugs
into the program, which subjects should fix. The bugs in the program were introduced by us
and located in feature code (which was necessary for assessing the effect of different annota-
tions, because only feature code is annotated).

Results. We measured the response time of subjects and whether a solution of a task was
correct. Three main results can be described. Firstly, for locating feature code, subjects with



CHAPTER 5. EXPERIMENT 93

Figure 5.1: Comparison of CPP (left) and CIDE (right) version of SPL in our experiment.

colors were significantly faster than subjects with text based annotations (on average by 30 %),
because they could benefit from preattentive perception of colors (cf. Section 2.1.3.2).

Secondly, we found no differences in response time between text-based and color-based
annotation for maintenance tasks, except for the last task, in which subjects with the text-
based version were significantly faster (by 37 %). Since in maintenance tasks, source code
needs to be analyzed on a textual basis regardless of the annotations, it is not surprising that
response times did not differ for three of the four maintenance tasks. The problem with the last
task was that the according class was entirely annotated with red, which was hard to look at for
a certain amount of time (according to some subjects). This could explain the faster response
time for subjects that worked with the text based version.

For the number of subjects that provided a correct solution for a task, we found no differ-
ences for any tasks between both groups, indicating that the kind of annotation has no effect
on correctness of program comprehension. Besides those results, we showed how a feasible
experiment can be designed. After this overview, we describe our experiment in detail in the
next section. We start with the process of objective definition.



94 5.2. OBJECTIVE DEFINITION

5.2 Objective definition

Before we can start to design our experiment, we need to define our variables of interest and our
hypotheses. First, we explain our independent (Section 5.2.1) and dependent (Section 5.2.2)
variables. Then, we present our hypotheses in Section 5.2.3.

5.2.1 Independent variable

As we discussed in Chapter 2.3, our independent variable is the FOSD approach. For our
experiment, we choose two levels, CPP and CIDE. We choose both levels, because the effect
of colors for annotations is controversially discussed and thus would be interesting to evalu-
ate (KASTNER ET AL. [KTA08]). Furthermore, CPP and CIDE are language independent and
can be applied to various programming languages. This helps us to create comparable pro-
grams, because we can choose one programming language to which both approaches can be
applied. However, we do not assess CPP and CIDE in general, but focus only on few aspects.
Firstly, we decided to include only one programming language in our experiment, because
more would not be feasible. Secondly, we use Antenna as representative for CPP, which con-
stitutes a preprocessor for Java ME1. Furthermore, we eliminate tool support, so that we do
not test CIDE, but only its annotations (cf. Section 5.3.2). However, for convenience, we use
CPP and CIDE to refer to the levels of our independent variable.

The decision of the concrete programming language depends on two aspects: Firstly, of
course, CPP and CIDE must be applicable to this programming language. Secondly, our sub-
jects should be familiar with the programming language, so that they can concentrate on the
experimental tasks and do not have to learn a new programming language, additionally.

5.2.2 Dependent variable

We decided to measure bottom-up program comprehension, because it is easier to find an
unfamiliar domain for all subjects than a domain all subjects are familiar with. This restricts
our external validity, but we control the influence of domain knowledge and thus increase our
internal validity.

In order to measure program comprehension, we used static and maintenance tasks, be-
cause they are reliable measures (cf. Section 2.2). Furthermore, for the maintenance tasks we
created bugs that occurred during runtime, with which we intended to force mental simulation
of the program. This way, we intend to further increase accuracy of our measurement (cf.
Section 2.2). We measured the correctness of answers and time to complete the tasks (referred
to as response time). We decided against think-aloud protocols, because they are not feasible
for our thesis, because they are very time consuming and costly (cf. Section 2.2). A detailed
description of the tasks can be found in Section 5.3.

Having defined our variables and how we plan to measure them, we can specify in our
hypotheses the expected results.

1http://java.sun.com/javame



CHAPTER 5. EXPERIMENT 95

5.2.3 Hypotheses

In this section, we discuss our hypotheses. We state every hypothesis and explain, why we
expect the specified relationship between our variables.

For static tasks, CIDE annotation speeds up bottom-up program comprehension com-
pared to CPP annotation.

In our static tasks, subjects have to locate feature code (Section 5.3), which is annotated
either text based (CPP) or with background colors (CIDE). In order to locate feature code in
CPP, subjects have to locate #ifdef statements analyze their content. For locating feature code
in CIDE, subjects have to locate background colors, which means that every statement that
has a different background color than white, is feature code. Since colors constitute basic fea-
tures, they are processed preattentively and thus faster than the meaning of text (GOLDSTEIN

[Gol02], p. 165). Hence, we assume that for the static tasks, CIDE annotation has a positive
effect on response time.

For maintenance tasks, there are no differences in response time between CIDE annota-
tion and CPP annotation with bottom-up program comprehension.

For maintaining software, subjects have to analyze source code on a textual basis. A pro-
grammer has to understand why a certain problem occurs and how it can be solved or how
he can extend a program with a required functionality. This includes locating code fragments
and analyzing source code on a textual basis. In the previous tasks, subjects already located
feature code and got an overview of the program. Hence, the main part of a maintenance task
is analyzing textual information. Thus, it should be irrelevant how source code is annotated,
which is why we assume that there are no differences in response times for maintenance tasks.

There are no differences in the number of correctly solved tasks between CPP annotated
and CIDE annotated source code with bottom-up program comprehension.

Since both kinds of annotation provide information about feature code and the feature
to which it belongs, it should make no difference for successfully completing a task. Both
kinds of annotation provide the same amount of information, the only difference is how it is
represented. Hence, we assume that there is no influence on successfully completing a task,
although it might take more time to complete a task.

Subjects that worked with the CPP version estimate their performance with the CIDE
version better than subjects that worked with the CIDE version and estimate their per-
formance with the CPP version.

This hypothesis is based on observations made by HENRY ET AL. [HHL90] and DALY

ET AL. [DBM+95]. Although subjects performed better with OOP, they estimated that OOP
decreased the performance. We assume a similar effect, because colored annotations provide



96 5.3. DESIGN

different colors for each feature and a better separation of feature code at first sight. In CPP,
the annotations have to be analyzed text based before an according feature can be identified.
Hence, we assume that both groups differ in their performance with the other source code
version.

In the next section, we show how we designed our experiment so that we can test our
hypotheses.

5.3 Design

In this section, we explain how we controlled the influence of confounding parameters. We
start with personal parameters in Section 5.3.1, continue with environmental parameters in
Section 5.3.2 and task-related parameters in Section 5.3.3, and conclude with programming
language in Section 5.3.4. Secondly, we describe the tasks we created to assess program
comprehension in Section 5.3.5.

5.3.1 Controlling personal parameters

We explain for every parameter, how we plan to control its influence. We traverse the list of
personal parameters in the same order as in the previous chapter.

Programming experience. Programming experience influences program comprehension,
because the more experience a programmer has, the more he can profit from his experience
when understanding a program (cf. Section 3.3.1). The understanding of programming experi-
ence is rather diverse in the literature (PRECHELT ET AL. [PUPT02], KO AND UTTL [KU03],
HUTTON AND WELLAND [HW07]). We found no commonly used definition or questionnaire
to assess it. Hence, we developed and tested a questionnaire that measures programming expe-
rience according to aspects we found in the literature (e.g., years of programming, number of
large projects). We tested this questionnaire with students of the University of Magdeburg and
improved it according to the results. The complete questionnaire we used for our experiment
and the coding of questions can be found in Tables A.1 (page 135) and A.2 (page 136) in the
appendix. We used a five point Likert scale (LIKERT [Lik32]) to assess the answers of our
subjects. We summed up all answers of subjects, such that the larger the sum is, the higher
programming experience is.

Although we carefully designed and tested this questionnaire, we do not know for certain
that it accurately measures programming experience. However, we are sure that we measured
all relevant aspects for our experiment, such that we assume that for our purpose the question-
naire suffices. Nevertheless, it is an interesting issue for future work to create a questionnaire
that measures programming experience, so that we do not need to design one ourselves for
every experiment we conduct.

We applied this questionnaire six weeks before the actual experiment. In order to assure
anonymity of the subjects and to be able to match the programming experience score to the



CHAPTER 5. EXPERIMENT 97

answers of subjects in our experiment, we let subjects generate a code word. This code word
consists of six letters and was created by six personal questions like ‘What is the first letter
of your mother’s first name’. This way, only a subject knows his code word, but not the ex-
perimenters. In order to create homogeneous groups according to programming experience,
we used matching as control technique according to the score in our questionnaire (cf. Sec-
tion 2.3.2.2).

Domain knowledge. The amount of domain knowledge influences the process of program
comprehension, such that the more domain knowledge a programmer has, the more likely it
is that he uses a top-down approach to understand a program, which is more efficient than a
bottom-up approach (cf. Section 3.3.2). We decided to measure bottom-up program compre-
hension, since we can easier determine a domain all subjects are unfamiliar with than a domain
with which all subjects are equally familiar with. In order to determine unfamiliar domains,
we asked subjects to list all domains they have experience with. We did this at the same time
as we measured programming experience. We then selected the domain of mobile devices,
because none of our subjects mentioned it.

Intelligence. Intelligence can influence program comprehension, because of a larger mem-
ory capacity or better analyzing skills (cf. Section 3.3.3). Unfortunately, we had no resources
to measure intelligence and we found no substitute measure we could use. For example, the
average grade of the high school diploma as is not suitable, because the time intervals to the
high school diploma varied for our subjects. Hence, we used randomization as control tech-
nique: We assumed that our sample was large enough, so that with matching according to
programming experience our samples are homogeneous according to intelligence and thus this
threat to internal validity is eliminated.

Education. Different schools can have different focus of interest in their curriculum, so some
subjects may have learned several programming languages, whereas others only learned one
on a rudimentary level (cf. Section 3.3.4). Our subjects either studied Computer Science or
Internet Computing at the University of Passau. All were enrolled in the course Modern Pro-
gramming Paradigms (German: Moderne Programmierparadigmen), an advanced program-
ming course. Several other basic programming courses should have been completed to enroll
in this course (i.e., Programming I and II, Software Engineering). Hence, we can assume that
all subjects have about the same education regarding programming.

Miscellaneous. In our sample, we had four females and one color blind subject. Matching
according to programming experience assigned two females to each group and the colorblind
subject to the CPP version. Hence, our groups are homogeneous according to gender and we
eliminated one threat to internal validity by letting the colorblind subject not work with the
CIDE annotation.

In the next section, we show how we controlled the influence of environmental parameters.



98 5.3. DESIGN

5.3.2 Controlling environmental parameters

For explaining how we controlled the influence of environmental parameters, we proceed the
same way as in the last section.

Training of subjects. Well prepared subjects can outperform unprepared subjects just be-
cause of their preparation (cf. Section 3.4.1). In order to control the effect of training, we
refreshed subjects’ knowledge of CPP and CIDE with familiar source code examples they
learned in the course they were enrolled in. Specifically, we used the class Edge of a graph
product line (LOPEZ-HERREJON AND BATORY [LHB01]), which was used running example
in the lecture. We demonstrated the implementation of a feature Weighted, which enables
weighted edges, with CPP and CIDE. In the same way, we explained feature interactions, for
which we additionally used the feature ShortestPath, which implements finding a shortest path
between two nodes and requires the feature Edge. The introduction was held in one room for
all subjects. The slides we used can be found at http://www.fosd.de/exp cppcide. Furthermore,
we can assume that all subjects are equally skilled with FOSD, SPLs, the use of CPP (Munge,
a preprocessor2 for Java that works like any other preprocessor) and CIDE, etc., because they
all attended the same programming course.

Noise during experiment. Since the noise level can influence program comprehension, we
conducted the experiment in one room, so that all subjects were exposed to the same normal
noise level.

Motivation of the subjects. Highly motivated subjects tend to perform better than subjects
that are not motivated at all (cf. Section 3.4.2). Subjects were required to participate in our
experiment to complete the course they are enrolled in. This could negatively affect motivation.
In order to motivate our subjects for participating in our experiment, we raffled an Amazon
gift card (30 Euros, sponsored by METOP GmbH). Additionally, we asked subjects for each
task how motivated they were on a five point Likert scale. In order to analyze the effect of
motivation, we check whether there is a significant difference between CPP annotations and
CIDE annotations. If we kept motivation in both groups comparable, we should obtain no
significant differences.

Tool support & source code on screen vs. paper. Tool support can benefit program com-
prehension, such that subjects that are allowed to use an IDE can better comprehend a program
than subjects that have to use a text editor (cf. Section 3.4.3). In our experiment, we elimi-
nated tool support to solely compare the kind of annotations. One way to do so would be to
present the source code on paper. However, since colors on screen look differently than colors
on paper and CIDE uses colors for annotation, we chose to display the source code on screen.
Due to the elimination of tool support (and restriction to one programming language), we do
not test CPP and CIDE, but only the annotations both approaches use (cf. Section 5.2.1).

2http://weblogs.java.net/blog/tball/archive/munge/doc/Munge.html



CHAPTER 5. EXPERIMENT 99

In order to control the influence of tool support, we created HTML pages of every source
code file. Subjects used the Mozilla browser3 to display the source code and were forbid to
use the search features (otherwise, CPP subject would have an advantage, because they could
search for feature names). Links to all HTML files were displayed on the left of the screen
(similar to the package explorer in Eclipse). This way, we could exclude the influence of tool
support, however at the cost of external validity, because we further stripped down CPP and
CIDE to the kind of annotation, not to kind of annotation mixed with tool support. An example
of the HTML files subjects worked with is shown in Figure 5.2.

Position & ordering effect. Position and order of tasks can influence a subjects’ perfor-
mance, because he has to get used to the experimental setting or becomes fatigue after several
hours (cf. Section 3.4.4). We used a warming up task, in which subjects counted the number of
features. This way, subjects had to look at every source code file and could familiarize with the
experimental setting, so that subjects are warmed up when starting to work at the actual tasks
and our measurement would not be biased with subjects getting familiar with the experimental
setting. Our sample was too small to create different orders of the tasks. Instead, we presented
the tasks in ascending order according to difficulty for both source code versions, which we
defined by evaluating our tasks before the experiment with students from the University of
Magdeburg. If position or ordering effects occur, they affect both groups similarly.

Effects due to experimenter. The experimenter can influence the behavior of subjects and
thus the results of our experiment (cf. Section 3.4.5). In order to control for these effects, we
kept our introduction neutral and communication with the subjects to a minimum.

Hawthorne. The Hawthorne effect describes that behavior of subjects is influenced simply
by the fact that subjects know that they are observed (3.4.6). Since the Hawthorne effect is
especially problematic for measuring behavior, but our focus was measuring performance, we
let all subjects know they participated in an experiment. Hence, the performance of all subjects
is influenced by their participation in the same way.

Test effect. We chose a simple design (cf. Table 2.2 on page 31). Since we had no repeated
measure, no test effects could occur.

Miscellaneous. The experiment was conducted on Linux systems with 19” TFT displays for
all subjects. Subjects were instructed to use the Mozilla browser.

5.3.3 Controlling task-related parameters

Since we used one technique for controlling the influence of most of the task-related parame-
ters, we proceed differently than in the last sections. First, we explain how we controlled the

3http://www.mozilla.org



100 5.3. DESIGN

Figure 5.2: Sample HTML file with preprocessor statements in Lines 12 and 15.



CHAPTER 5. EXPERIMENT 101

influence of structure, coding conventions, difficulty, comments, and documentation. Then,
we discuss how we assured that we have comparable tasks.

Structure, coding conventions, difficulty, comments, documentation. In order to control
task-related parameters, we used a code reviewed Java SPL for mobile devices (FIGUEIREDO

ET AL. [FCM+08]). The authors developed the source code of this SPL with eight scenarios,
while with every scenario, more features were added. We used the source code resulting from
the sixth scenario. We decided to use this SPL and scenario for several reasons:

• All subjects are unfamiliar with the domain (mobile devices), which ensures bottom-up
program comprehension.

• The SPL was implemented in Java, which was the most familiar programming language
for all subjects.

• The SPL was implemented with Antenna, a preprocessor developed for wireless Java
applications, which is one level of our independent variable.

• The SPL was code reviewed, which helped us to control most of the task-related param-
eters.

• We decided to use the sixth of eight scenario, because the size of the SPL in terms of
LOC and number of features seems suitable, so that subjects neither got lost in numerous
files nor understood the complete SPL after completing the first task.

The SPL describes applications that modify photos, music, and video on mobile devices.
In the sixth scenario, it consists of four features. For a better overview, we show the feature
diagram of this version in Figure 5.3. The Sms feature (Send/Receive Photo via SMS) allows
to send and receive multi media via SMS. The Favourites feature (Favourites) allows to set
multi media as favorites. The CopyPhoto feature (Copy Photos) handles copying multi media,
for example in different albums, and CountViews (Count Views of Photo) counts the number
of views of a media.

Figure 5.3: Feature diagram of the MobileMedia SPL in the sixth scenario.

By using a code reviewed program, we assured that structure, coding conventions, diffi-
culty, comments, and documentation do not violate rules of programming discourse. Since



102 5.3. DESIGN

the version of the SPL described in FIGUEIREDO ET AL. [FCM+08] was already annotated
with CPP statements, we could easily create CIDE annotations by deleting all lines that de-
scribed CPP statements and annotate all code that was between those statements with colors
accordingly4.

Difficulty of the task. Since we used one program, but with different kinds of annotation,
we could use the same tasks for both versions, thus controlling the effect of difficulty. In order
to analyze whether subjects perceived difficulty differently, we let subjects estimate the dif-
ficulty of each task on a five point Likert scale. Similar to subjects’ motivation, an observed
difference between both groups could indicate an influence on subjects’ program comprehen-
sion. Although the tasks are identical, they could be perceived as more difficult in conjunction
with one version of the source code, which is why we need to consider this influence.

5.3.4 Programming language

Controlling the influence of programming language posed no problem, because we decided to
include only one programming language in our experiment. Hence, the influence of program-
ming language is kept constant. In the next section, we describe how we developed the tasks
to measure program comprehension.

5.3.5 Tasks

Since program comprehension is a latent variable, we need to find indicators to assess it.
DUNSMORE AND ROPER [DR00] have evaluated the reliability of several measures for pro-
gram comprehension, on which we base the selection of tasks. In this section, we describe the
measures we used for assessing program comprehension.

We created one warming up task, two static tasks (i.e., tasks regarding structural analysis,
cf. Section 2.2), and four maintenance tasks (i.e., fixing bugs or improving a program, cf.
Section 2.2). We tested the tasks in a preliminary test, in order to assess the difficulty and to
estimate the time subjects need to complete the task. We describe the resulting tasks in the
same order as we applied them in the experiment: warming up task, static tasks, maintenance
tasks.

In the warming up task, subjects should count the number of different features, which
required them to look at every source code file. This way, subjects could familiarize with the
source code and the experimental setting (e.g., navigating between files). Hence, when starting
with the subsequent tasks, subjects could concentrate on the tasks solely, not on getting used
to the experimental setting additionally. Since program comprehension is confounded with
familiarizing with the experimental setting for the warming up task, we did not include it in
our analysis (cf. Section 3.4.4).

4The CPP variant can be found at http://www.metop.de/experiment/cpp/MainUIMidlet.java.html, the CIDE
variant at http://www.metop.de/experiment/cide/MainUIMidlet.java.html.



CHAPTER 5. EXPERIMENT 103

Static tasks. In the second task (S1)5, subjects should identify the roles of classes in each
feature and mark them in a template of a collaboration diagram (cf. Section 2.1.2.1), which
was printed on paper. We show an excerpt of this template for both annotations in Figure 5.4.
The complete collaboration diagram with the correct solution can be found in Figure A.1 on
page 137 in the appendix. We analyzed three different measures: (1) the number of correctly
identified roles, (2) the number of incorrectly identified roles, and (3) the number of missed
roles. We created this task, so that subjects had to deal with annotated source code. This way,
we can attribute differences in the number of correct solutions or response times to the kind of
annotation. For the same, reason, we created the next task.

In the third task (S2), subjects should locate feature interactions, which describe that
a source code fragment belongs to more than one feature. They occurred between the
two features CopyPhoto and SmsFeature in three different classes: PhotoController,
PhotoViewController, and PhotoViewScreen. In Figure 5.5, we show the feature
interaction in class PhotoController. For identifying both features correctly, one point
was given. For identifying the correct classes, one point per class was given, so that the max-
imum number of points was four. Subjects naming the correct classes but the wrong features
did not receive any points, because we cannot be sure that they indeed identified feature inter-
actions.

Maintenance tasks. The next four tasks were maintenance tasks, for which we introduced
bugs into the program. We tested several bugs with students from the University of Magdeburg
and found that certain bugs, for example a deleted statement within a method that consisted
of numerous statements or an infinite loop, were very hard for subjects to find. In the end, we
created four bugs, which took subjects from our preliminary test about one hour to complete,
such that we knew that tasks were not too difficult. All bugs occurred in feature code, so we
can test the effect of different annotations. All variants in which the bug occurred were part of
the bug description, so that subjects knew the features in which to look. Furthermore, all bugs
occurred during runtime, not compile time, which forced subjects to examine the control flow
of the program.

The resulting four tasks were used for our experiment, because they fulfill the previously
described requirements: (1) the bugs are located in feature code, (2) the bugs occur during
runtime, and (3) the tasks are not too difficult for subjects to find in a reasonable amount of
time. This assures that we soundly assess program comprehension of our subjects.

For each task, subjects got a bug description, and should locate the bug (i.e., name class and
method), explain why it occurs, and suggest a solution. We used all three pieces of information
to rate whether a task was successfully completed or not. This way, we had more information
to rely on in case we were not sure whether subjects identified the problem. We analyzed
the solutions of each subject and consulted a programming expert, who evaluated whether the
answers of the subjects were correct (i.e., fixed the bug).

In the first maintenance task (M1), subjects got the following bug description: ‘If pictures
should be sorted by views, they are displayed unsorted anyway. Feature, in which the bug

5We use those abbreviations for all further tasks. S means static, M means maintenance.



104 5.3. DESIGN

(a) CPP template

(b) CIDE template

Figure 5.4: Collaboration diagram of the stack.



CHAPTER 5. EXPERIMENT 105

1 p u b l i c c l a s s PhotoController{
2 /* ... */
3 //#if includeCopyPhoto || includeSmsFeature
4 PhotoViewController controller = new PhotoViewController(midlet, getAlbumData(),

getAlbumListScreen(), name);
5 controller.setNextController(nextcontroller);
6 canv.setCommandListener(controller);
7 nextcontroller = controller;
8 //#endif
9 /* ... */

10 }

Figure 5.5: Feature interaction (shared code) in the class PhotoController.

occurs: CountViews’. The bug was located in the class PhotoListController, in which
the method bubbleSort existed, but was not implemented. We show the bug in Figure 5.6,
in which we show the according CPP annotated source code (Lines 6–8).

1 p u b l i c c l a s s PhotoListController{
2 /* ... */
3 //#ifdef includeCountViews
4 /* ... */
5 p u b l i c vo id bubbleSort(ImageData[] images) {
6 System.out.print("Sorting by BubbleSort...");
7 // TODO implement bubbleSort
8 System.out.println("done.");
9 }

10 //#endif
11 }

Figure 5.6: Bug for M1: bubbleSort is not implemented.

In the second maintenance task (M2), the bug description was: ‘When a picture is dis-
played, the variable that counts the views is not updated. Feature, in which the bug occurs:
CountViews’. The problem was that the method increaseNumberOfViews in the class
ImageData had no content. In Figure 5.7, the according source code is shown to clarify the
bug (Line 5).

1 p u b l i c c l a s s ImageData{
2 /* ... */
3 //#ifdef includeCountViews
4 p u b l i c vo id increaseNumberOfViews() {
5
6 }
7 /* ... */
8 //#endif
9 }

Figure 5.7: Bug for M2: increaseNumberOfViews is not implemented.

The bug description for the third maintenance task (M3) was: ‘Although several pictures
are set as favorites, the command to view favorites is not displayed in the menu. However,



106 5.3. DESIGN

the developer claims having implemented the according actions. Feature, in which the bug
occurs: Favourites’. The bug was located in the class PhotoListScreen in the method
menuItem. The according command is initialized in the class, but not added to the menu. In
Figure 5.8, the according source code is shown (Line 10).

1 p u b l i c c l a s s PhotoListScreen{
2 /* ... */
3 //#ifdef includeFavourites
4 p u b l i c static final Command favoriteCommand = new Command("Set Favorite",Command.ITEM,1);
5 p u b l i c static final Command viewFavoritesCommand = new Command("View

Favorites",Command.ITEM,1);
6 // #endif
7 /* ... */
8 p u b l i c vo id initMenu() {
9 /* ... */

10 // #ifdef includeFavourites
11 t h i s.addCommand(favoriteCommand);
12
13 //#endif
14 /* ... */
15 }
16 }

Figure 5.8: Bug for M3: viewFavoritesCommand is not added.

In the fourth maintenance task (M4), the bug description was: ‘If during sending a picture
the according picture is not found, a NullPointerException is thrown. Feature, in which the
bug occurs: SmsFeature’. The problem was that if a picture during sending was not found,
an exception was thrown, but after the exception was caught, the program continued. How-
ever, the variable holding the picture was not initialized, but a method was called on it, so
a NullPointerException occurred. The according method is handleCommand in the class
SmsSenderController. In Figure 5.9, the according source code is shown (Line 11).

1 //#if includeSmsFeature
2 p u b l i c c l a s s SmsSenderController{
3 /* ... */
4 p u b l i c boolean handleCommand(Command c) {
5 /* ... */
6 ImageData ii = n u l l;
7 byte[] imageBytes = n u l l;
8 t r y {
9 ii = getAlbumData().getImageAccessor().getImageInfo(selectedImageName);

10 imageBytes =
getAlbumData().getImageAccessor().loadImageBytesFromRMS(ii.getParentAlbumName(),
ii.getImageLabel(), ii.getForeignRecordId());

11 } catch (ImageNotFoundException e) {/* ... */}
12 /* ... */
13 System.out.println("SmsController::handleCommand - Sending bytes for image

" + ii.getImageLabel() + " with length: " + imageBytes.length);
14 /* ... */
15 }
16 }
17 //#endif

Figure 5.9: Bug for M4: potential null pointer access (Line 11)



CHAPTER 5. EXPERIMENT 107

Having decided how to control the confounding parameters and developed our tasks, we
can conduct our experiment, which we explain in the next section.

5.4 Execution

In this section, we describe how we conducted our experiment. We start with how we collected
the data in Section 5.4.1. Then, we describe how we recruited our subjects in Section 5.4.2.
Finally, we describe all deviations from our plan that occurred during the experiment in Sec-
tion 5.4.3.

5.4.1 Data collection

For collecting the data, presenting the tasks and programming experience questionnaire, we
used Globalpark Enterprise Feedback Suite Survey (EFS Survey)6. It is a Web-based software
system for organizing, conducting, and analyzing online surveys. We decided to use EFS
Survey, because it allowed us to define the format of the data and export the collected data
as SPSS data set, which we used to compute the descriptive statistics and inference tests. In
addition, it captured the time that each page was displayed.

Unfortunately, EFS Survey did not support displaying HTML files with font colors (which
is necessary to display source code files). Hence, we used the METOP server for displaying the
HTML files. In order to assess the time subjects spend looking at an HTML source code file,
we implemented a PHP script, which saves the absolute timestamp each time a HTML page
was requested in a log file. Although we cannot determine whether subjects indeed looked at
a HTML page the whole time and how long the last page in our experiment was displayed, we
can use those files in order to have an idea what subjects did during our experiments. Since
examining the log files is not feasible for our thesis, we postpone this for future work.

5.4.2 Conducting

When we started to plan our experiment, we contacted Sven Apel and Jörg Liebig, held the
course contemporary programming paradigms at the University of Passau. Both agreed to
make participation in our experiment mandatory for the students in order to complete the
course. This way, we were sure to have enough subjects for our experiment. The curriculum
of the course contained FOSD approaches and their application for developing SPLs. In order
to motivate subjects for our experiment, we raffled a 30 Euro Amazon gift card, sponsored
by METOP GmbH. Six weeks before the experiment, all students that were enrolled in this
course were given a link to the questionnaire that measured programming experience as well
as familiar domains and were given one week to complete it. The questionnaire itself took
about fifteen minutes to complete (cf. Tables A.1 and A.2 in the appendix).

6http://www.globalpark.de/



108 5.4. EXECUTION

The experiment was conducted at the end of June 2009 between 10 am and 12 am, instead
of a regular exercise session of that course. We started with an introduction to CPP and CIDE,
which lasted about fifteen minutes. After our introduction, subjects could ask questions. When
all questions were answered, each subject was seated at a computer and started to work on the
tasks on his own. Each task had the same structure: firstly, the task was introduced and it
was explained what we expect from the subject; secondly, when subjects were clear on the
instructions, they displayed the next page with the concrete task. An example of such a task
description is shown in Figures A.2 and A.3 on pages 138 and 139 in the appendix.

We handed out the template of the collaboration diagram in the second task, so that subjects
could not see the number of features for the warming up task (in which they should count the
number of features). Subjects were instructed to request the templates when they were ready
to begin with the second task. Since subjects kept the collaboration diagram template, but
the roles should only be marked in the second task, we instructed subjects to use a different
colored pencil from the third task on. This way, we saw if subjects made corrections to the
collaboration diagram after the second task. Subjects had sheets of paper to make notes during
working on the tasks and were encouraged to enter comments and critique at the end of the
experiment.

We estimated the duration of the experiment to about two hours, whereas ninety minutes
were planned for the completion of the tasks, fifteen minutes for the introduction and fifteen
minutes for unforeseen events (e.g., later arriving subjects). Subjects were allowed to leave as
soon as they had completed all tasks, and none of the subjects stayed longer in the room than
the estimated two hours. We had three experimenters, who regularly checked that subjects
worked as planned (e.g., did not use the search function or used the right pencil color for each
task).

Despite all careful planning, deviations occur, which we discuss in the next section.

5.4.3 Deviations

A few subjects arrived later and got a personal introduction, in which the important points
were mentioned again. We could not wait for all subjects to arrive, because we could use
the room, in which we conducted our experiment, only for two hours. Furthermore, some
subjects were seated in another room, because there were not enough working stations. All
experimenters regularly checked how those subjects were doing, however we cannot be sure
that they were exposed to the same noise level. For one subject, we had no CIDE template
of the collaboration diagram, so he had to use a CPP template. In order not to jeopardize the
anonymity of subjects, we decided not to note which subjects were in the other room and which
got the wrong collaboration diagram template. We assume that our sample is large enough to
compensate for these deviations.

In addition, for assessing the opinion of subjects (motivation, difficulty, and version), we
forgot to include the seventh task, because we had only six tasks in our preliminary test. As
soon as we noticed that, we asked subjects to evaluate the seventh task on the sheet of paper.
Unfortunately, some of the subjects had already left the room at that time, so we did not have



CHAPTER 5. EXPERIMENT 109

the opinion of all subjects for that task.
We refer to these deviations when we interpret our data in Section 5.6. We mentioned them

here because they occurred during this experimental stage. Having conducted the experiment,
we can analyze our data, which we explain in the next section.

5.5 Analysis

In this section, we describe our data analysis. We do not interpret our data here, in order to
present our results as objectively as possible (cf. Section 2.3). For the analysis, we prepared
our data set by excluding subjects who did not complete both, the programming experience
questionnaire (four subjects) and the experiment (seven subjects). Furthermore, we excluded
one subject that did not answer the programming experience questionnaire genuinely, which
we recognized by the comments he left on the questionnaire. That left us with 43 data sets to
analyze. We refer to subjects that worked on the CPP version as CPP subjects, and subjects
that used the CIDE version as CIDE subjects.

For analyzing the data, we used SPSS7, which provides a large set of descriptives, sig-
nificance tests, and graphs to analyze data sets. First, we describe our sample and data in
Section 5.5.1. Then, we test our hypotheses in Section 5.5.2.

5.5.1 Descriptive statistics

In Tables 5.1 and 5.2, we describe our complete sample and both groups. We can see that
gender (CPP: 19 males, 2 females, CIDE: 20 males, 2 females) and course of study (CPP: 12
Computer Science, 9 Internet Computing, CIDE: 10 Computer Science, 9 Internet Comput-
ing) are about equally distributed in both groups. We can see that the mean of programming
experience (metric scale type) is similar in both groups (CPP: 39.29, CIDE: 38.64), which also
counts for age (CPP: 24.62, CIDE: 24.23) and the number of years that subjects are studying
(years of study, CPP: 3.19, CIDE: 3.71). In order to visualize the data in Table 5.2, we present
histograms with plotted normal distributions for the complete sample in Figure 5.10. Since the
variables in Table 5.1 have only two levels, we omit a histogram. The data in Table 5.1 have a
nominal scale type, while the data in Table 5.2 an interval scale type (which is why we present
the information in separate tables).

Next, we describe the answers our subjects gave. In Table 5.3, we show the response times
for each task in seconds. EFS Survey saved relative time stamps for each page when a page
was submitted, and the time stamp for the beginning of the questionnaire. Since for every
task, we had one page that prepared the subjects and a following page with the actual task, the
difference of the timestamp of both pages denotes the time subjects needed to complete a task.
We can see that the differences in response time are the largest for the first (CPP: 728 seconds,
i.e., 12 minutes, CIDE: 424 seconds, i.e., 7 minutes) and last task (CPP: 883 seconds, i.e., 15
minutes, CIDE: 1,404 seconds, i.e., 23 minutes). Furthermore, we can see that the last task

7http://www.spss.com/



110 5.5. ANALYSIS

Figure 5.10: Histrograms for programming experience, age, and years since subjects study.

Variable Level CPP CIDE Total

Gender Male 19 20 39
Female 2 2 4

Subject Computer Science 12 12 24
Internet Computing 9 10 19

Table 5.1: Descriptives of sample by group for nominal scaled variables.



CHAPTER 5. EXPERIMENT 111

Variable Group N Min Max Mean Std

Programming Experience CPP 21 26 63 39.29 10.39
CIDE 22 19 61 38.64 10.28
Total 43 19 63 38.95 10.22

Age CPP 21 21 38 24.62 3.65
CIDE 22 21 30 24.23 2.47
Total 43 21 38 25.42 3.07

Years of study CPP 21 0 6 3.19 1.12
CIDE 21 1 9 3.71 1.98
Total 42 0 9 3.45 1.61

N: number of subjects, Min/Max: smallest/largest observed value, Mean: arithmetic
mean, Std: standard deviation

Table 5.2: Descriptives of sample by group for metric scaled variables.

took the longest time to complete. In Figure 5.11, we visualize the results for reaction times
in box plots.

In Table 5.4, we show the opinion of subjects, which we assessed with a five point Likert
scale (LIKERT [Lik32]). For motivation (Table 5.4), we can see that it increased until M1 (CPP:
3.95, CIDE: 4.00), and then decreased again (M4: CPP: 3.63, CIDE: 3.38). For difficulty, we
see that for the maintenance tasks, the perceived difficulty increased (M1: CPP: 2.15, CIDE:
2.05, M4: CPP: 3.47, CIDE: 3.47). For the version, we can see that the opinion depending on
the group differs more than for motivation and difficulty (M2: CPP: 3.10, CIDE: 2.23).

Having described our sample and data, we can continue our analysis with testing our hy-
potheses.

5.5.2 Hypotheses testing

In order to test our hypotheses, we have to transform them into statistical hypotheses. We tra-
verse our hypotheses, explain the statistical hypotheses we tested with an according inference
test, and state whether we confirmed or rejected it. In this section, we only report our results,
whereas we interpret them in the next section (cf. Section 2.3.4).

Response time for static tasks. Our first hypothesis is:

For static tasks, CIDE annotation speeds up bottom-up program comprehension com-
pared to CPP annotation.

Since we have two static tasks, we state for each task a null hypothesis:



112 5.5. ANALYSIS

●

●

●

●

S1−CPP S1−CIDE S2−CPP S2−CIDE

0
5

10
15

20
25

m
in

(a) S1 – S2

●

●

●

●

●

M1−CPP M1−CIDE M2−CPP M2−CIDE M3−CPP M3−CIDE M4−CPP M4−CIDE

0
10

20
30

40

m
in

(b) M1 – M4

Figure 5.11: Box plots for response times.



CHAPTER 5. EXPERIMENT 113

Task Group N Min (s) Max (s) Mean (s) Std Diff (m) Diff (%)

S1 CPP 21 45 1,681 738.90 351.76 5.3 43
CIDE 22 83 722 424.50 210.27

S2 CPP 21 120 606 369.33 135.70 1.5 24
CIDE 22 85 486 281.23 112.27

M1 CPP 21 75 1,589 434.24 326.25 0.4 5
CIDE 22 110 889 412.36 204.18

M2 CPP 21 16 1,140 351.10 280.95 0.2 3
CIDE 22 77 756 341.36 191.87

M3 CPP 21 169 812 395.86 171.84 1.2 16
CIDE 22 136 1,454 470.64 320.94

M4 CPP 21 197 2,070 882.76 529.13 8.7 37
CIDE 22 230 2,509 1,404.14 575.91

Task: task designator, Group: experimental group, N: number of subjects, Min/Max (s):
largest/smallest observed value in seconds, Mean (s): arithmetic mean in seconds, Std: stan-
dard deviation, Diff (m/%): difference between groups in minutes/percent

Table 5.3: Descriptives of response times.

H01: For S1, there is no difference in response times between CPP subjects and CIDE
subjects.

H02: For S2, there is no difference in response times between CPP subjects and CIDE
subjects.

Since our sample is smaller than fifty subjects and the response times were not normally
distributed, as revealed the Shapiro-Wilk test (SHAPIRO AND WILK [SW65]), we conducted
Mann-Whitney-U tests to evaluate our hypotheses. In Table 5.5, we show the results of the
tests. Since CIDE subjects are faster than CPP subjects (cf. Table 5.3) and the difference is
significant (S1: p < .001, S2: p < .027) for both tasks, we reject our null hypotheses. Hence,
we confirmed our hypothesis stated in the objective definition that the kind of annotation ben-
efits the response time of CIDE subjects.

Response time for maintenance tasks. Or next hypothesis describes the effect of different
annotations on maintenance tasks:

For maintenance tasks, there are no differences in response time between CIDE annota-
tion and CPP annotation with bottom-up program comprehension.

Our according statistical null hypotheses are:



114 5.5. ANALYSIS

Motivation Difficulty Version
Task Group N Mean N Mean N Mean

S1 CPP 20 2.79 [1, 5] 20 2.35 [1, 4] 20 4.05 [3, 5]
CIDE 22 3.45 [1, 5] 22 1.86 [1, 4] 22 2.23 [1, 3]

S2 CPP 20 3.05 [1, 5] 20 2.25 [1, 4] 20 4.05 [2, 5]
CIDE 22 3.55 [2, 5] 22 2.27 [1, 4] 22 2.59 [1, 5]

M1 CPP 20 3.95 [1, 5] 20 2.15 [1, 5] 20 3.05 [2, 4]
CIDE 22 4.00 [3, 5] 22 2.05 [1, 3] 22 2.18 [1, 3]

M2 CPP 20 4.15 [1, 5] 20 2.30 [1, 4] 20 3.10 [2, 5]
CIDE 22 3.64 [2, 5] 22 2.14 [1, 4] 22 2.23 [1, 3]

M3 CPP 20 3.85 [1, 5] 20 2.75 [1, 4] 20 3.05 [2, 5]
CIDE 21 3.62 [1, 5] 21 2.91 [1, 5] 22 2.23 [1, 3]

M4 CPP 16 3.63 [1, 5] 16 3.47 [2, 5] 13 3.08 [2, 4]
CIDE 16 3.38 [1, 5] 16 3.69 [2, 5] 16 2.44 [1, 3]

Group: group of the subjects, N: number of subjects, Mean: mean [min, max] of
subjects’ opinion; Coding: Motivation: 1: very unmotivated, 2: unmotivated, 3:
neither, 4: motivated 5: very motivated; Difficulty: 1: very easy, 2: easy, 3: neither,
4: difficult, 5: very difficult; Version: 1: clearly worse, 2: worse, 3: no difference,
4: better, 5: clearly better

Table 5.4: Descriptives of subjects’ opinion.

H03: For M1, there is no difference in response times between CPP subjects and CIDE
subjects.

H04: For M2, there is no difference in response times between CPP subjects and CIDE
subjects.

H05: For M3, there is no difference in response times between CPP subjects and CIDE
subjects.

H06: For M4, there is no difference in response times between CPP subjects and CIDE
subjects.

In Table 5.6, we show the results of the Mann-Whitney-U test, which we applied because
of our sample size and non normal distribution of our data (cf. Section 2.3.3.3).

The results mean that for tasks M1-M3, the observed differences in response time are
random and we confirm H03−H05. For M4, the p value is smaller than .05, which means that
the observed difference in response time is significant. Hence, we reject this null hypothesis
(H06). Consequently, we have to reject our hypothesis stated during objective definition (i.e.,
that there are no differences in response time for maintenance tasks).



CHAPTER 5. EXPERIMENT 115

Task Group N Mean Rank Sum of Ranks U p

S1 CPP 21 28.76 604.0 89.0 .001
CIDE 22 15.55 342.0

S2 CPP 21 26.33 553.0 140.0 .027
CIDE 22 17.86 393.0

Mean Rank/Sum of Ranks: statistical values for the significance test, U: test
statistic, p: significance level

Table 5.5: Mann-Whitney-U test for response times of S1 and S2.

Task Group N Mean Rank Sum of Ranks U p

M1 CPP 21 21.52 452.0 221.0 .808
CIDE 22 22.45 494.0

M2 CPP 21 21.55 452.5 221.5 .817
CIDE 22 22.43 493.5

M3 CPP 21 21.26 446.5 215.5 .706
CIDE 22 22.70 499.5

M4 CPP 21 16.67 350.0 119.0 .007
CIDE 22 27.09 596.0

Mean Rank/Sum of Ranks: values for the significance test, U: test statistic,
p: significance level

Table 5.6: Mann-Whitney-U test for response times of M1 - M4.



116 5.5. ANALYSIS

Number of completed tasks. Our next hypothesis concerns the number of completed tasks:

There are no differences in the number of correctly solved tasks between CPP annotated
and CIDE annotated source code with bottom-up program comprehension.

The according statistical null hypotheses we evaluate are:

H07: For S1, there is no difference in the number of false positives between CPP subjects
and CIDE subjects.

H08: For S1, there is no difference in the number of false negatives between CPP sub-
jects and CIDE subjects.

H09: For S1, there is no difference in the number of right positives between CPP subjects
and CIDE subjects.

H010: For S2, there is no difference in number of successfully correctly solved tasks
between CPP subjects and CIDE subjects.

H011: For M1, there is no difference in number of successfully correctly solved tasks
between CPP subjects and CIDE subjects.

H012: For M2, there is no difference in number of successfully correctly solved tasks
between CPP subjects and CIDE subjects.

H013: For M3, there is no difference in number of successfully correctly solved tasks
between CPP subjects and CIDE subjects.

H014: For M4, there is no difference in number of successfully correctly solved tasks
between CPP subjects and CIDE subjects.

Since we want to compare frequencies with these hypotheses, we conduct a χ2 test (cf.
Section 2.3.3.3). The result is shown in Table 5.7. We can see that for all tasks, there is no sig-
nificant difference in the number of completed tasks. Hence, we confirm our null hypotheses
and thus our hypothesis stated during objective definition.

Opinions of subjects. Our last hypothesis stated that subjects of different groups estimate
their performance with the other source code version differently:

Subjects that worked with the CPP version estimate their performance with the CIDE
version better than subjects that worked with the CIDE version and estimate their per-
formance with the CPP version.

The according null hypotheses are:



CHAPTER 5. EXPERIMENT 117

Task χ2 df p

FP 7.66 7 .36
FN 8.18 9 .52
RP 7.60 9 .58
S2 1.61 4 .81
M1 .41 1 .52
M2 .41 1 .52
M3 .00 1 .95
M4 .56 1 .45
χ2: test statistic, df: degrees of
freedom, p: significance level

Table 5.7: χ2 test for number of correct tasks.

H015: For S1, there is no difference in estimation of performance between CPP subjects
and CIDE subjects.

H016: For S2, there is no difference in estimation of performance between CPP subjects
and CIDE subjects.

H017: For M1, there is no difference in estimation of performance between CPP subjects
and CIDE subjects.

H018: For M2, there is no difference in estimation of performance between CPP subjects
and CIDE subjects.

H019: For M3, there is no difference in estimation of performance between CPP subjects
and CIDE subjects.

H020: For M4, there is no difference in estimation of performance between CPP subjects
and CIDE subjects.

Since those data have ordinal scale type, we conduct a Mann-Whitney-U test for evaluating
these hypotheses. The results, presented in Table 5.8, show the difference of this estimation is
very significant for all tasks. Hence, CPP subjects thought they would have performed better
with the CIDE version, and CIDE subjects thought they would have performed worse with the
CPP version. Thus, we reject our null hypotheses and confirm our hypotheses stated during
objective definition (i.e., there is a difference in the estimation of the performance with the
other source code version).

Analyzing influence of motivation and difficulty. Next, we compare the opinion of sub-
jects according to motivation and difficulty. Although we did not state any hypotheses during
objective definition, we have to check whether they differ significantly, because we assessed



118 5.6. INTERPRETATION

Task Group N Mean Rank Sum of Ranks U p

S1 CPP 19 31.50 630.0 20.0 .00
CIDE 22 12.41 273.0

S2 CPP 20 29.00 580.0 70 .00
CIDE 22 14.68 323.0

M1 CPP 20 28.88 577.5 72.5 .00
CIDE 22 14.80 325.5

M2 CPP 20 28.43 568.5 81.5 .00
CIDE 22 15.20 334.5

M3 CPP 20 27.78 555.5 94.5 .00
CIDE 21 15.80 347.5

M4 CPP 16 18.65 242.5 56.5 .01
CIDE 16 12.03 192.5

Mean Rank/Sum of Ranks: values for the significance test, U: test statistic,
p: significance level

Table 5.8: Mann-Whitney-U test for version.

these opinions in order to analyze the influence of motivation. In order to be sure that moti-
vation and perceived difficulty influenced both groups in the same way, we should obtain no
significant difference. Since our according null hypotheses are similar to the null hypotheses
for the estimation of version and to save space, we do not state the according null hypotheses
explicitly.

Since those data are ordinal, we conduct a Mann-Whitney-U test. The results are shown in
Tables 5.9 and 5.10. Except for M2, both groups were motivated to the same amount for the
tasks. Subjects estimated the difficulty of both tasks equally for both groups. Hence, we can
be sure, that we controlled the influence of motivation (except for M2) and difficulty.

Having evaluated our statistical hypotheses, we have to discuss what this means for our
hypotheses we derived during the objective definition. Furthermore, next steps can be derived
based on our results.

5.6 Interpretation

Based on the data and our rejected and confirmed statistical hypotheses, we need to draw
conclusions from our results for future research on understandability of FOSD approaches. In
order to do so, we first evaluate what our results mean for our hypotheses in Section 5.6.1.
Then, we discuss threats to validity of our experiment in Section 5.6.2, which could have
biased our results. Eventually, in Section 5.6.3 we give some ideas for future work that can be



CHAPTER 5. EXPERIMENT 119

Task Group N Mean Rank Sum of Ranks U p

S1 CPP 19 17.42 331.0 141 .06
CIDE 22 24.09 530.0

S2 CPP 20 19.40 388.0 178 .27
CIDE 22 23.41 515.0

M1 CPP 20 21.75 435.0 215 .89
CIDE 22 21.27 468.0

M2 CPP 20 25.23 504.5 145.5 .04
CIDE 22 18.11 398.5

M3 CPP 20 22.10 442.0 188 .54
CIDE 21 19.95 419.0

M4 CPP 16 17.63 282.0 110 .67
CIDE 16 15.38 246.0

Mean Rank/Sum of Ranks: values for the significance test, U: test statistic,
p: significance level

Table 5.9: Mann-Whitney-U test for motivation.

Task Group N Mean Rank Sum of Ranks U p

S1 CPP 20 24.23 484.5 165.5 .15
CIDE 22 19.02 418.5

S2 CPP 20 21.33 426.5 216.5 .92
CIDE 22 21.66 476.5

M1 CPP 20 21.70 434.0 216 .91
CIDE 22 21.32 469.0

M2 CPP 20 22.43 448.5 201.5 .63
CIDE 22 20.66 454.5

M3 CPP 20 21.03 420.5 210.5 .80
CIDE 22 21.93 482.5

M4 CPP 17 16.09 273.5 120.5 .56
CIDE 16 17.97 287.5

Mean Rank/Sum of Ranks: values for the significance test, U: test statistic,
p: significance level

Table 5.10: Mann-Whitney-U test for difficulty.



120 5.6. INTERPRETATION

derived from our results.

5.6.1 Evaluation of results and implications

Having tested our statistical hypotheses, we need to interpret what this means for our hy-
potheses stated during objective definition. We traverse the hypotheses as we stated them in
objective definition and discuss the implications of our according statistical hypotheses for
each of them.

Response time for static tasks. Our hypothesis is:

For static tasks, CIDE annotation speeds up bottom-up program comprehension com-
pared to CPP annotation.

Since the observed difference is significant according to the Mann-Whitney-U test, we have
confirmed this hypothesis. We can explain this difference by the preattentive color perception,
compared to attentive text perception (5.2.3). The consequence we can draw from this result
is that colors can help a programmer to understand a program, when he does static tasks like
locating feature code. Hence, we could support program comprehension by using background
colors to annotate source code. However, before we can generalize this result, we should con-
firm it and increase external validity, for example by using programming experts as subjects,
testing top-down program comprehension, other programming languages, or programs with
more LOC or feature to check scalability of our results.

Response time for maintenance tasks. Our hypothesis is:

For maintenance tasks, there are no differences in response time between CIDE annota-
tion and CPP annotation with bottom-up program comprehension.

Since this did not hold for the last maintenance task (M4), we cannot confirm this hypoth-
esis. Now, we have to look for an explanation for the difference in the last task. In this task,
CIDE subjects were significantly slower than CPP subjects. Hence, the preattentive color per-
ception cannot be responsible for the difference. Furthermore, subjects already identified the
roles of all classes and marked them in the collaboration diagram template in S1, so locating
according feature code should not have been the main part of this task. Hence, we take a closer
look at the location of the bug of M4: the class SmsSenderController. Since it com-
pletely belongs to the SmsFeature, it is entirely annotated with red in the CIDE version. This
could be hard for the eyes to look at when searching for the bug. In order to explore this ex-
planation, we look through the comments subjects were encouraged to enter at the end of our
experiment. We found indeed some comments in which subjects criticized the annotation with
red, which is one evidence for our explanation. In future experiments, we can try to confirm
this explanation.



CHAPTER 5. EXPERIMENT 121

The consequence we can draw from the difference in response time for both static and
maintenance tasks is that we could enable programmers to adjust the intensity of background
color to their needs. For example, when searching for feature code, intense colors pose no
problem, but can reduce the time it takes to locate feature code. On the other hand, if a class is
analyzed for a bug, colors are not helpful or even can disturb a programmer. For this case, the
background color should be faded out. We can test whether our assumption holds in further
experiments.

Number of completed tasks. Our hypothesis concerning the number of completed tasks is:

There are no differences in the number of correctly solved tasks between CPP annotated
and CIDE annotated source code with bottom-up program comprehension.

We confirmed this hypothesis with a χ2 test. Since both kind of annotations provide infor-
mation about feature code and the feature to which it belongs, subjects are enabled to correctly
solve our tasks, independently of the kind of annotation. Hence, we showed that the kind of
annotation has no effect on a solution of a task. Only the response time of subjects is influ-
enced. Thus, future experiments could estimate the magnitude of response time benefit for
subjects. This way, we would be able to estimate whether CIDE is worth the effort to use
compared to CPP, or whether the performance benefit is so small that the costs for learning
CIDE are higher than our benefit.

Opinions of subjects. Our last hypothesis stated that subjects of different groups estimate
their performance with the other source code version differently:

Subjects that worked with the CPP version estimate their performance with the CIDE
version better than subjects that worked with the CIDE version and estimate their per-
formance with the CPP version.

For the estimation of performance with the other version of the source code, we found
a very significant difference for all tasks. When looking through the comments of subjects,
we find that some CIDE subjects were happy to get to work with the CIDE version, whereas
some CPP subjects wished they had worked with the CIDE version. This could explain the
difference in estimating the performance, because some subjects liked the CIDE version better,
which they reflected to their performance and thus estimated that they would have performed
better with the CIDE version or worse with the CPP version. One might argue that this also
could affect motivation, yet we did not find any differences in motivation between both groups
(except for M2, in which CPP subjects were more motivated). Hence, despite no differences
in correct solutions, subjects thought that they perform differently with a different annotation.
Consequently, we could use colors more often in programming, because it could make subjects
happier.



122 5.6. INTERPRETATION

Subjects opinion. We assessed the opinion of subjects in order to control the influence of
motivation and difficulty of tasks. For difficulty, we observed no significant differences be-
tween CPP and CIDE subjects. The same counts for motivation, except for M2. Hence, we
can assume that we sufficiently controlled the effect of difficulty and motivation.

However, for M2, we have to take a closer look at subjects’ motivation. For finding an
explanation, we looked at subjects’ comments, but did not find any clues that could be re-
sponsible for the difference in especially this task. If the position or ordering effect influenced
subjects’ performance, both groups should be affected the same way. Maybe the experimenters
influenced subjects especially in this task, because more subjects communicated for this task
with one of the experimenters than for other tasks. Or, CIDE subjects noticed that the advan-
tage in response time for S1 and S2 did not hold anymore, which influenced their motivation.
However, those are only speculations, and we found no information that could explain why this
difference occurred. Depending on the importance of this difference, we can either explore it
further in future experiments or accept that it occurred.

Having interpreted our results, we discuss threats to validity.

5.6.2 Threats to validity

Threats to validity are important to mention, because they can render our results useless. Fur-
thermore, we can learn from these threats and avoid them in subsequent experiments. First,
we discuss threats to internal validity, then threats to external validity.

Threats to internal validity

A first problem is that, despite all our effort, we could have not been careful enough for con-
trolling confounding parameters. For example, some subjects could have forgot to mention
that they are experienced with the domain of mobile devices, one group could be more in-
telligent than the other or some could have visited a technical high school, whereas others a
Waldorf high school. We could have unintentionally influenced our subjects or not motivated
them well enough. Problems like this could always occur despite all effort. However, we are
sure to have managed those problems due to our careful preparation.

Further threats occur due to the deviations we described. Firstly, some subjects sat in
another room and had an individual introduction (because they were late). This could introduce
a different noise level, lighting conditions, and training for subjects. Therefore, we tried to
keep those parameters constant, so that we can assume that the influence of those parameters is
negligible. Secondly, for one subject, we had no CIDE template of the collaboration diagram,
so he had to use a CPP template. This could have affected his speed, because he had to map
from colors to textual annotation for completing the task. However, to assure anonymity, we
did not evaluate whether it had an effect. Thirdly, since for assessing the opinion of subjects
we forgot the seventh task, several opinions were missing. We do not know how this could
have affected the results.

Furthermore, the source code we used could have influenced the performance of subjects:



CHAPTER 5. EXPERIMENT 123

Although it was reviewed according to conventions, some unusual formatting styles and in-
dentations occurred, in addition to some confusing comments. However, we decided to leave
the source code as it was for two reasons: Firstly, it helps replicating our results, because the
versions we created can be unambiguously reproduced (by deleting scenario-related comments
and #ifdef statements for the CIDE version). Secondly, besides those problems, the source
code is not too small or too big (3,800 LOC) and implemented an unfamiliar domain. Creat-
ing such a program of our own or further searching for such a program would not have been
feasible for us.

Finally, one threat emerges from our programming experience questionnaire. In order to
check whether our questionnaire measures programming experience, we analyzed the relation-
ship of the programming experience with the response time and number of correctly solved
task, because more experienced programmers should be faster and more correct in fixing a bug.
Thus, a relationship between our programming experience value and response time/number of
correctly solved tasks would indicate that we indeed measured programming experience with
our questionnaire.

In Figure 5.12, we show the relationship between programming experience and response
time for M4 as example to illustrate our analysis. The vertical axis denotes the response time in
seconds, the horizontal axis the programming experience value. The line in this figure denotes
the relationship between programming experience and response time. The less the data points
deviate from this line, the stronger is the relationship.

20 30 40 50 60

50
0

10
00

15
00

20
00

25
00

progExp

Z
ei

tA
7

Figure 5.12: Relationship between programming experience and response time for M4.

Since all data points are widely scattered, the relationship between response time and pro-



124 5.6. INTERPRETATION

gramming experience is rather low for M4. This counts for all other tasks and relationship with
correctly solved tasks as well. Hence, we could not validate that we measured programming
experience with our questionnaire. This does not necessarily mean that our programming ex-
perience questionnaire is useless, but several other reasons could be responsible for this result.
For example, the differences in programming experience of our subjects could be too small or
programming experience may have nothing to do with response time or number of correctly
solved tasks in our experiment. In the worst case, this result could mean that we did not con-
trol the effect of programming experience at all and that our results are biased by programming
experience and useless. We plan to explore this result in future experiments.

Threats to external validity

In our experiment, we have maximized our internal validity in order to feasibly and soundly
measure the effect of different annotations on program comprehension. Thus, we have ne-
glected external validity. For example, we used students as subjects (no expert programmers),
tested only bottom-up program comprehension (not top-down or both), had only one program-
ming language for CPP and CIDE, and excluded tool support. Hence, our results are only
applicable to the subjects and setting we used in our experiment. For generalizing our results,
we need to include those parameters we kept constant, for example expert programmers, top-
down program comprehension, further programming languages, different source code, more
features and feature interactions, or different granularity of annotations. This is an important
step for future work based on our experiment, which we discuss in the next section.

5.6.3 Next steps

Obvious next steps are to replicate our experiment to confirm our results and increase external
validity in following experiments by using other programming languages (e.g., C++), testing
top-down program comprehension, expert programmers, etc.

As example, we discuss how we can carefully include tool support in our evaluation. In
CIDE, tool tips show the feature names for annotated source code. We did not used tool tips
in our experiment, because otherwise, CIDE subjects had the information of color in addition
to the textual information. This would have provided them with more information than our
CPP subjects and thus would have biased our results. Based on the observation that for most
maintenance task there is no difference in response time between CPP and CIDE version,
we could test whether there is a difference between textual information (CPP) and color plus
textual information (CIDE).

One interesting result is the differences in response times. For static tasks, in which it
suffices to scroll through the code, colors provided a performance benefit. On the other hand,
in maintenance tasks, in which the code needed to be analyzed text based, our results indicate
that colors have – at best – no effect (or a very small effect). An idea for future work could be
to enable programmers to adjust the intensity of background color to their needs. For example,
when searching for feature code, intense colors pose no problem, but can reduce the time it



CHAPTER 5. EXPERIMENT 125

takes to locate feature code. On the other hand, if a class is analyzed for a bug, colors are not
helpful or even can disturb a programmer. For this case, the programmer could be enabled to
adjust the intensity of the background color or to switch between text and color annotations.
Before extending CIDE by this feature, we could test in an experiment if adjusting the intensity
of colors really benefits program comprehension.

Several subjects mentioned that they found it hard to identify the #ifdef statements,
because they were highlighted like other ordinary comments and not at the beginning of a line.
We could investigate these issues by comparing the CPP version we used with one in which
we use a different color for the #ifdef statements and/or putting them at the beginning of a
line. A significant difference in response time would prove subjects’ statements. In addition,
we could compare the newly created CPP version with the CIDE version, where no significant
differences in response times would prove subjects’ comments.

Another way to continue our work is to analyze our programming experience questionnaire
further. Since we found no relationship between the results of our questionniare and our exper-
iment, it could mean that we did not measure programming experience with our questionnaire.
For exploring why we found no relationship, we can examine the log files for the HTML files
of the source code and check whether single items in our programming experience question-
naire have more influence than others or whether some have a reverse effect for programming
experience.

Hence, there are several interesting steps for future work that can be derived from our
results and which can be chosen depending on the focus of interest. In the next section, we
summarize this chapter.

5.7 Summary

In this chapter, we described our experiment, in which we compared the effect of CPP and
CIDE on program comprehension. We showed how we controlled confounding parameters,
which we explained in Chapter 3. We revealed differences in response times in favor of CIDE,
if we have static tasks. For maintenance tasks, in which subjects have to analyze the source
code on a textual basis, we obtained either no differences in response times or differences in
favor of CPP. A further difference was found in subjects’ opinion regarding the source code
version: CIDE subjects estimated the effect of colors on their performance more positive as
CPP subjects the effect of #ifdef statements on their version.

With this experiment, we demonstrated the small scope of hypotheses that feasibly mea-
sure the effect of different FOSD approaches on program comprehension: We choose Java as
programming language, because it is common to two FOSD approaches, CPP and CIDE. We
kept a lot of confounding parameters constant, which maximized our internal validity, but re-
duced our external validity. However, due to the high degree of internal validity, we can draw
sound conclusions from our experiments, on which we can base future research.

In the next section, we discuss relate our thesis to the work of other researchers.



126 5.7. SUMMARY



CHAPTER 6. RELATED WORK 127

Chapter 6

Related Work

In this section, we related work. Firstly, we discuss work on reading comprehension, which is
similar but more general than program comprehension, because in both cases, text has to be
processed. The functionality that such tools provide can be used and adapted for FOSD ap-
proaches. Secondly, we present objective measures to assess program comprehension, because
they show another way to assess program comprehension. Thirdly, we discuss some reviews
of the literature of empirical software engineering, because they provide us with an overview
of the status of empirical software engineering in general. Finally, we discuss approaches that
aim at supporting program comprehension beyond programming paradigms.

Reading comprehension

Program comprehension is related to reading comprehension, since for both processes, verbal
information needs to be perceived and understood. Numerous studies are concerned with
reading comprehension and its measurement, for example MCKEOWN ET AL. [MBOP83],
MEZYNSKI [Mez83], or WATERS [Wat96]. There are several studies that evaluated the validity
of reading comprehension measures, for example FUCHS ET AL. [FFM88] or ANDERSON ET

AL. [ABPC91]. Based on those numerous studies, several attempts are made to efficiently
teach children how to read (summarized in PRESSLEY [Pre98]). It would be interesting to see
if some of those ideas can also be applied to program comprehension or teaching programmers
how to implement an algorithm so that other programmers can understand it better.

For example, GOUGH [Gou65] and SLOBIN [Slo66] found that reading comprehension
depends on how a sentence is stated. Specifically, they examined the effect of voice (ac-
tive vs. passive), truth (true vs. false), and affirmation (affirmative vs. negative). Results are
that active, true, and/or affirmative stated sentences were processed significantly faster than
according passive, false, and/or negative sentences, respectively. For example, the sentence
‘Leonard hit Howard’ is processed faster than ‘Howard was hit by Leonard’, although they
have the same content. For program comprehension, the result regarding affirmation is inter-
esting, because they can be applied to programming, in the sense that affirmative statements
are processed faster than negative statements. For example, instead of while(!(i==42 &&



128

j==23)), the statement while(i<42 && j<23) could be processed faster and should
thus be preferred to increase program comprehension.

Another experiment is described in BOYSEN [Boy77] and assessed the effect of logical
connectives of sentences, for example and and or. The results indicated that sentences con-
nected with and are better understood than sentences connected with or. This can be applied to
statements in source code, in the sense that statements connected with and should be preferred
to statements connected with or, because programmers can understand them better.

Furthermore, several tests exist that measure reading comprehension, for example the
GAP (MCLEOD [McL89]). Similar, a test measuring program comprehension could be an
interesting way to reduce the effort of designing experiments measuring program comprehen-
sion, because we would not have to worry about finding the right technique and measure for
program comprehension, but we could simply use an existing test. For example, we could
create a program and let subjects solve predefined tasks. This way, we would not have to
worry about how reliable our tasks measure program comprehension and whether they are
comparable, but we know that they are because they were carefully designed and exhaustively
evaluated during the development of the test.

Objective measures for program comprehension

Since measuring program comprehension is very tedious, other measures have been suggested
that can simply be derived from the source code without consulting subjects. The first primitive
measures, based on the physical size of a software project (e.g., LOC or number of statements),
are not sufficient as complexity measures, because they neglect other relevant facets of source
code, for example, the number of control paths (MCCABE [McC76]). Hence, McCabe devel-
oped a measure for program complexity based on the number of independent control paths,
which he called cyclomatic complexity (MCCABE [McC76]). The number of independent
path are based on the program control graph, which is a directed graph that represents blocks
of source code with sequential control flow as nodes and branches as edges. The smaller the
number of independent path in the program control graph is, the better the understandability
of a program should be.

Another example is the measure developed by GORDON [Gor77], based on Halstead’s
software science measures HALSTEAD [Hal77]. It describes the mental effort to understand
the program and depends on the total number of operators and operands as well as the unique
operators and operands of a program.

The benefit of those measures is that they can be computed based on properties of the
source code without consulting subjects. However, as BOYSEN [Boy80] showed, those mea-
sures are not sufficient as comprehension measure, because they focus only on one facet of a
program. Hence, they alone cannot be used as program comprehension measures, but rather
in conjunction with empirical assessment of program comprehension.



CHAPTER 6. RELATED WORK 129

Review of literature

Numerous studies were conducted to provide an overview of empirical software engineer-
ing in general, for example TICHY ET AL. [TLPH95], ZELKOWITZ AND WALLACE [ZW97],
GLASS ET AL. [GVR02], SJOBERG [SHH+05], or KAMPENES ET AL. [KDHS09]. The results
are that the status is improving, however experiments are too often conducted with students
as subjects and not generalized with experts. This poses a serious threat to external validity
(cf. Section 2.3.2.1), which we discussed in our work and included in our agenda (cf. Chap-
ter 4). Furthermore, researchers are often restricted to their discipline and do not relate their
work to other areas, for example cognitive psychology or behavioral sciences (GLASS ET AL.
[GVR02]). However, those disciplines faced and solved similar problems, for example how to
measure internal cognitive processes or behavior, so that empirical software engineering could
profit from this experience. For example, we discussed think-aloud protocols as technique to
measure program comprehension, which were developed in cognitive psychology (WUNDT

[Wun74]).
To the best of our knowledge, there are no literature reviews focusing on program com-

prehension. However, conducting a sound review or meta analysis regarding experiments that
measure program comprehension is an interesting approach for future work (cf. Section 3.2).
One way to support future meta analyses is to provide guidelines for reporting experiments in
the area of software engineering. There are several suggestions and evaluations, for example
by JEDLITSCHKA ET AL. [JP05] or JEDLITSCHKA AND PFAHL [JCP08]. However, according
to KITCHENHAM ET AL. [KAKB+08], they are not accurate enough (e.g., ambiguous section
names or contents) and thus need to be improved before being widely accepted.

Enhancing program comprehension beyond programming paradigms

The focus of our work is understandability of programming paradigms within the scope of
FOSD. Besides that, several other approaches exist to support program comprehension. IDEs
like Eclipse, Microsoft Visual Studio, or FeatureIDE, which was developed to meet specific re-
quirements of FOSD (KÄSTNER ET AL. [KTS+09]), support the programmer in understanding
and developing a program by syntax highlighting, call hierarchies, outline views, etc.

Several tools exist for the visualization of the contents of a project, for example
SeeSoft (SEESOFT [ESEES92]), which represents files as rectangles and source code lines
as colored pixel lines, whereas the color is an indicator of the age of the according source code
line. SeeSoft is interest for program comprehension, because it abstracts from the statement
level of source code and thus helps to get an overview of a project.

Other approaches focus on supporting program comprehension during the maintenance
process. We discuss two of them as example. One interesting approach aims at finding the
right developer for a maintenance task, based on commits of software systems’ version control
repositories (KAGDI ET AL. [KHM08]). Since a developer familiar with a software system is
identified, the comprehension process can be speeded up and the cost reduced.

A further idea is to automatically update documentation on source code (HAMMAD ET



130

AL. [HCM09]). Based on the change history of current code, design documents are adjusted
to the current version of the code. An according tool, HippoDraw, outperforms manual up-
date. This saves a lot of time and costs, because fewer errors are produced during maintenance
and software developers can focus on updating source code without having to manually ad-
just according design documents. This way, program comprehension is enhanced, because
design documents, one source of information for understanding a program (KOENEMANN

AND ROBERTSON [KR91]), are automatically updated. This could be adapted for FOSD ap-
proaches.

For all approaches, it would be interesting to test their effect on program comprehension in
conjunction with different FOSD approaches. Results could help to reduce the semantic gap
between human and computerized way of thinking.

This concludes our discussion of related work. In the next section, we summarize our work
and present some starting points for future work.



CHAPTER 7. CONCLUSION 131

Chapter 7

Conclusion

The difference between human way of thinking and computerized way of thinking, referred
to as semantic gap, impairs program comprehension. This is problematic, because program
comprehension is necessary for software maintenance, a critical factor for costs of software
development. In order to keep maintenance costs low, it is imperative to minimize the semantic
gap, for which paradigms like OOP and FOSD were developed. In this thesis, we have set out
the effect of different FOSD approaches on program comprehension. Specifically, we defined
three goals for our work:

• Evaluate the feasibility of comparing FOSD approaches regarding their effect on pro-
gram comprehension.

• Create an agenda for evaluating FOSD approaches.

• Demonstrate our results with an experiment.

Firstly, measuring program comprehension has to be done empirically, because it is an
internal problem solving process. Since this can be a very tedious endeavor, we need to eval-
uate the feasibility in order to know how to proceed. For evaluating feasibility, we identified
confounding variables for program comprehension by literature review and expert consulta-
tion and explained how we can control their influence. We showed that due to the number of
confounding parameters, it impossible to conduct a feasible and sound experiment in which
all FOSD approaches are compared. By stepwise reducing the complexity of the comparison,
we showed the small scope of sound and feasible experiments.

Based on our analysis, we developed an agenda for evaluating which FOSD approach pro-
vides the most benefit on program comprehension under which circumstances: design exper-
iments with high degree of internal validity and stepwise increase complexity of comparison
to increase external validity. This proceeding produces sound results, however it may take
decades until we have an exhaustive body of knowledge about the effect of different FOSD
approaches on program comprehension. Hence, it is necessary to build a research community,
such that we have more resources to answer our question. We hope to have encouraged other
researchers to join us.



132

In order to demonstrate our explanations, we presented an experiment that compared the
effect of different annotations (text based á la CPP vs. color based á la CIDE) on a Java
program. The results showed that annotating colors benefits identifying relevant code, but has
at best no effect on fixing bugs, for which source code needs to be examined on a textual
basis. Furthermore, it demonstrated the small scope of feasible experiments measuring the
effect of different FOSD approaches on program comprehension. So, how can our work can
be continued?

Future work

A first starting point to continue our work is based on the results of our experiment. We found
that colors, compared to text based annotation, had a positive effect on response time, when
subjects had to locate annotated source code. For maintaining tasks, in which source code
had to be examined on a textual basis, we found no effect or a negative effect of colors on
response time, respectively. This lead to the idea of adjustable intensity of background color
to a programmer’s needs. Thus, when a programmer tries to locate source code fragments or
get an overview of a program, intense background colors can support him to succeed. On the
other hand, if a programmer tries to understand an algorithm, background colors are irrelevant,
because the programmer has already located relevant source code and now has to process it
on a textual basis. For this case, he can fade the background color to a lower level. A further
idea is to combine textual and color based annotations, such that we can benefit from the
combination of textual and color based annotations. In future experiments, we plan to test the
effect of adjustable intensity of the background color in an experiment and providing textual
and color information about feature source code.

Second, in our review of the literature for identifying confounding parameters on pro-
gram comprehension, we had a rather small selection of papers regarding experimental re-
search on program comprehension. However, a larger number of papers was not feasible for
our work. Furthermore, there is no consensus on where to describe confounding parameters,
which means that we thoroughly had to examine every section. Firstly, it would be interesting
to conduct a sound meta analysis with a representative selection of papers. This way, we can
get a better overview about empirical research on program comprehension and refine our list of
confounding parameters. Secondly, we can evaluate and extend the guidelines of how to report
experiments provided for example by JEDLITSCHKA AND PFAHL [JCP08]. For this process,
we could include the guidelines provided by the American Psychological Association, because
they are constantly evaluated and improved since 1957 (AMERICAN PSYCHOLOGICAL ASSO-
CIATION [Ass57]) and currently available in the sixth edition AMERICAN PSYCHOLOGICAL

ASSOCIATION [Ass09]. Hence, we can profit from over fifty years of experience.
Based on the results of a sound meta analysis, we can adjust our programming experience

questionnaire we developed for our experiment (cf. Section 5.3.1) to a valid and reliable test
instrument. This is important for two reasons: Firstly, we cannot be sure whether our question-
naire indeed measures programming experience, because we found no relationship to response
time or number of correctly solved task for our experiment (cf. Section 5.6.2). Secondly, a



CHAPTER 7. CONCLUSION 133

valid and reliable test instrument would allow us to simply administer a questionnaire which
we know measures programming experience, instead of carefully designing it for every ex-
periment we conduct. Steps for developing a sound questionnaire include thorough research
of literature concerning programming experience, recruiting a large sample of subjects to test
different versions of our questionnaire, and find measures with which we can compare the
answers of our questionnaire (MOOSBRUGGER AND KELAVA [MK07]). The last step is nec-
essary in order to be sure to measure programming experience and not something else. For
example, the results of our questionnaire should not have much in common with a test mea-
suring personality traits (referred to as discriminant validity), but rather with response times or
correctness in a programming task (referred to as convergent validity, MOOSBRUGGER AND

KELAVA [MK07]).
In Section 3.4.3, we pointed out the difficulty of controlling the influence of tool support

properly, because different IDEs provide different functionalities that can be differently used.
One way to deal with this problem is to implement a tool that can be adapted as necessary for
an experiment. This way, we can simply switch on or off functionalities we want to include
or exclude in an experiment. Furthermore, all subjects would be familiar with this tool to an
equal level, because we only use it for our experiment. In training sessions, we can familiarize
subjects with functionalities we intend to use in our experiment. Hence, we could reduce the
effort of controlling the influence of tool support.

A further interesting for future work is based on results of comparing OOP with procedu-
ral programming languages. Some studies showed a positive effect on performance in favor
of OOP, yet subjects were not satisfied with OOP compared to procedural programming lan-
guages (e.g., HENRY ET AL. [HHL90] or DALY ET AL. [DBM+95]). An interesting idea
would be to check how subjects’ neurological response depends on FOSD approach he is
working with. For this case, functional magnetic resonance imaging is an interesting ap-
proach (BUXTON [Bux01]). It measures the extent to which brain regions are supplied with
blood. Regions that are more active than other regions are supplied with more blood. This
allows us to identify active regions compared to inactive regions. Based on this, we could
check whether regions are more active depending on the program and task at hand. Since spe-
cific brain regions are responsible for specific reactions, we could test, for example, whether
colored source code produces more positive emotion than text based annotations or whether
AspectJ – due to its complexity – requires brain regions to be more active than AHEAD. These
are interesting questions, because if a programmer is happier or needs fewer resources to solve
a task, his performance can also be positively influenced.



134



APPENDIX A. ADDITIONAL MATERIAL 135

Appendix A

Additional Material

In this appendix, we present some details that are relevant for replicating our experiment, but
not necessary to understand our thesis. We show the items of our programming experience
questionnaire and explain how we coded them in order to calculate one value indicating pro-
gramming experience (with metric scale type). Then, we show the correct solution for the
collaboration diagram for one of our experimental tasks. Last, show the task description for
one task.

We applied our programming experience questionnaire six weeks before our experiment
(cf. Section 5.3.1). In Tables A.1 and A.2, we show all items of our questionnaire. Table A.1
contains parameters we did not include in the programming experience score, but we assessed
for other reasons (column Purpose). For example, the code word was necessary in order to
assure anonymity for our subjects and to match the answers of the programming experience
questionnaire to responses in our experiment.

Variable Scaletype Purpose

Code word nominal assure anonymity and match responses in question-
naire and experiment

Age metric describing our sample
Gender nominal creating homogeneous groups according to gender
Course of study nominal creating homogeneous groups according to study
Color blindness nominal assign colorblind subjects to CPP
Familiar domains nominal determine domains all subjects are unfamiliar with

Table A.1: Questions of programming experience questionnaire used for diverse purposes.

Table A.2 contains all variables that were assessed to measure programming experience.
The column Coding describes how we coded the answers of our subjects in order to obtain a
value for programming experience. The sum of all coded values yields the value we used to
match our experimental groups regarding programming experience.



136

Variable Scaletype Coding

Enrollment year metric number of years until 2009
Years of programming metric number of years
Number of program-
ming courses

ordinal number of courses

Java ordinal (Likert scale from 1-5) value of the checked level
C ordinal (Likert scale from 1-5) 1, if checked level is >= 3
Haskell ordinal (Likert scale from 1-5) 1, if checked level is >= 3
Prolog ordinal (Likert scale from 1-5) 1, if checked level is >= 3
Further programming
languages (with expe-
rience >= 3)

metric number of further program-
ming languages

Functional paradigm ordinal (Likert scale from 1-5) 1, if checked level is >= 3
Imperative paradigm ordinal (Likert scale from 1-5) 1, if checked level is >= 3
Object-oriented
paradigm

ordinal (Likert scale from 1-5) 1, if checked level is >= 3

Worked in a company ordinal (yes or no) no: 1, yes: two
Number of years in a
company

metric number of years

Size of projects (LOC) ordinal (< 900; 900-40,000; >
40,000)

< 900: 1; 900-40,000: 2; >
40,000: 3

Programming experi-
ence compared to stu-
dents of this course

ordinal (Likert scale from 1-5) value of the checked level

Programming experi-
ence compared to pro-
gramming experts

ordinal (Likert scale from 1-5) value of the checked level

Meaning of Likert scale levels for programming languages and paradigms: 1: very inexperienced 2: inex-
perienced 3: mediocre 4: experienced 5: very experienced; Meaning of Likert scale levels for comparison
with students/programming experts: 1: clearly worse 2: worse 3: identical 4: better 5: clearly better

Table A.2: Questions and their coding of programming experience questionnaire.



APPENDIX A. ADDITIONAL MATERIAL 137

Fi
gu

re
A

.1
:C

or
re

ct
ly

m
ar

ke
d

co
lla

bo
ra

tio
n

di
ag

ra
m

te
m

pl
at

e.



138

Next, we show the correct solution for the collaboration diagram subjects had to create in
one the first experimental task in Figure A.1 (S2, cf. Section 5.3.5). The roles of each class in
a collaboration are marked with an ‘x’.

Finally, we show the task description for the first maintenance task (M1, cf. Section 5.3.5)
in Figures A.2 and A.3. In Figure A.2, the introduction to the task is depicted, which prepares
subjects about what to expect. The task itself is described in Figure A.3, which shows the bug
description and the three subtasks subjects had to complete. Additionally, the feature diagram
and explanation of features of the MobileMedia SPL is depicted. For CIDE subjects, the
explanation of features additionally contained the according background colors of the features
in the source code. Furthermore, in the left upper screen, a link to the source code is displayed.
The task descriptions are German, because our subjects were enrolled at a German university
and course, such that we can be sure that all are experienced with the German language to
understand our tasks. A translation for the text in Figure A.3 can be found in Section 5.3.5.

Translation: In the next task you have to work with the source code closely. You get a bug description and
should locate the bug, explain, why it occurs and suggest a solution.
Time to solve this task: about 10 Minutes.

Figure A.2: Introduction to task M2.



APPENDIX A. ADDITIONAL MATERIAL 139

Figure A.3: Task description for M2.



140



BIBLIOGRAPHY 141

Bibliography

[AB06] Sven Apel and Don Batory. When to Use Features and Aspects? A Case Study.
In GPCE ’06: Proceedings of the 5th International Conference on Generative
Programming and Component Engineering, pages 59–68. ACM, 2006.

[ABPC91] Neil J. Anderson, Lyle Bachman, Kyle Perkins, and Andrew Cohen. An Ex-
ploratory Study into the Construct Validity of a Reading Comprehension Test:
Triangulation of Data Sources. Language Testing, 8(1):41–66, 1991.

[AF96] Theodore W. Anderson and Jeremy D. Finn. The New Statistical Analysis of
Data. Springer, 1996.

[AGMO06] Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An
Overview of CaesarJ. In Transactions on Aspect-Oriented Software Develop-
ment I, pages 135–173. Springer, 2006.

[AK09] Sven Apel and Christian Kästner. An Overview of Feature-Oriented Software
Development. Journal of Object Technology, 8(4):1–36, 2009.

[AKGL09] Sven Apel, Christian Kästner, Armin Größlinger, and Christian Lengauer. Fea-
ture (De)composition in Functional Programming. In SC ’09: Proceedings of the
8th International Conference on Software Composition, pages 9–26. Springer,
2009.

[AKL09] Sven Apel, Christian Kästner, and Christian Lengauer. FeatureHouse: Lan-
guage-Independent, Automatic Software Composition. In ICSE ’09: Proceed-
ings of the 31th International Conference on Software Engineering, pages 221–
231. IEEE Computer Society, 2009.

[AKT07] Sven Apel, Christian Kästner, and Salvador Trujillo. On the Necessity of Em-
pirical Studies in the Assessment of Modularization Mechanisms for Crosscut-
ting Concerns. In ACoM ’07: Proceedings of the 1st International Workshop
on Assessment of Contemporary Modularization Techniques, pages 1–7. IEEE
Computer Society, 2007.

[AL08] Sven Apel and Christian Lengauer. Superimposition: A Language-Independent
Approach to Software Composition. In SC ’08: Proceedings of the 7th Interna-
tional Symposium on Software Composition, pages 20–35. Springer, 2008.



142 BIBLIOGRAPHY

[ALMK08] Sven Apel, Christian Lengauer, Bernhard Möller, and Christian Kästner. An
Algebra for Features and Feature Composition. In AMAST ’08: Proceedings
of the 12th International Conference on Algebraic Methodology and Software
Technology, pages 36–50. Springer, 2008.

[ALRS05] Sven Apel, Thomas Leich, Marko Rosenmüller, and Gunter Saake. FeatureC++:
On the Symbiosis of Feature-Oriented and Aspect-Oriented Programming. In
GPCE ’05: Proceedings of the 4th International Conference on Generative Pro-
gramming and Component Engineering, pages 125–140. Springer, 2005.

[ALS08] Sven Apel, Thomas Leich, and Gunter Saake. Aspectual Feature Modules. IEEE
Transactions on Software Engineering, 34(2):162–180, 2008.

[AMGS05] Giuliano Antoniol, Ettore Merlo, Yann-Gaël Guéhéneuc, and Houari Sahraoui.
On Feature Traceability in Object-Oriented Programs. In TEFSE ’05: Proceed-
ings of the 3rd International Workshop on Traceability in Emerging Forms of
Software Engineering, pages 73–78. ACM, 2005.

[Ape07] Sven Apel. The Role of Features and Aspects in Software Development. PhD
thesis, School of Computer Science, University of Magdeburg, 2007.

[Ass57] American Psychological Association. Publication Manual of the American Psy-
chological Association. American Psychological Association, 1957.

[Ass09] American Psychological Association. Publication Manual of the American Psy-
chological Association. American Psychological Association, sixth edition,
2009.

[Bar99] Michael Barr. Programming Embedded Systems in C and C++. O’Reilly &
Associates, Inc., 1999.

[BBB+57] John W. Backus, Robert J. Beeber, Sheldon Best, Richard Goldberg, Lois M.
Haibt, Harlan L. Herrick, Robert A. Nelson, David Sayre, Peter B. Sheridan,
H. Stern, Irving Ziller, R. A. Hughes, and Roy Nutt. The FORTRAN Automatic
Coding System. In IRE-AIEE-ACM ’57: Western Joint Computer Conference:
Techniques for Reliability, pages 188–198. ACM, 1957.

[BCVM02] Avi Bryant, Andrew Catton, Kris De Volder, and Gail C. Murphy. Explicit Pro-
gramming. In AOSD ’02: Proceedings of the 1st International Conference on
Aspect-Oriented Software Development, pages 10–18. ACM, 2002.

[Bin03] Alfred Binet. L’étude Expérimentale De l’Intelligence [The Experimental Study
of Intelligence]. Editions L’Harmattan, 1903.

[BLS98] Don Batory, Bernie Lofaso, and Yannis Smaragdakis. JTS: Tools for Implement-
ing Domain-Specific Languages. In ICSR ’98: Proceedings of the 5th Interna-
tional Conference on Software Reuse, pages 143–153. IEEE Computer Society,
1998.



BIBLIOGRAPHY 143

[BLS03] Don Batory, Jia Liu, and Jacob Neal Sarvela. Refinements and Multi-
Dimensional Separation of Concerns. In ESEC/FSE-11: Proceedings of the 9th
European Software Engineering Conference held jointly with 11th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering, pages
48–57. ACM, 2003.

[Bor00] Jürgen Bortz. Statistik: für Human- und Sozialwissenschaftler. Springer, sixth
edition, 200.

[Boy77] John P. Boysen. Factors Affecting Computer Program Comprehension. PhD
thesis, Iowa State University, 1977.

[Boy80] John P Boysen. Measuring Computer Program Comprehension. In SIGCSE ’80:
Proceedings of the 11th SIGCSE Technical Symposium on Computer Science
Education, pages 92–102. ACM, 1980.

[BPSP04] Danilo Beuche, Holger Papajewski, and Wolfgang Schröder-Preikschat. Vari-
ability Management with Feature Models. Science of Computer Programming,
53(3):333–352, 2004.

[Bri27] Percy W. Bridgman. The Logic of Modern Physics. Macmillan, 1927.

[Bro78] Ruven E. Brooks. Using a Behavioral Theory of Program Comprehension
in Software Engineering. In ICSE ’78: Proceedings of the 3rd International
Conference on Software Engineering, pages 196–201. IEEE Computer Society,
1978.

[Bro83] Ruven E. Brooks. Towards a Theory of the Comprehension of Computer Pro-
grams. International Journal of Man-Machine Studies, 18(6):543–554, 1983.

[BSL99] Victor R. Basili, Forrest Shull, and Filippo Lanubile. Building Knowledge
through Families of Experiments. IEEE Transactions on Software Engineering,
25(4):456–473, 1999.

[BSR04] Don Batory, Jacob Neal Sarvela, and Axel Rauschmayer. Scaling Step-Wise
Refinement. IEEE Transactions on Software Engineering, 30(6):355–371, 2004.

[Bux01] Richard B. Buxton. Introduction to Functional Magnetic Resonance Imaging:
Principles and Techniques. Cambrigde University Press, 2001.

[CC83] Jacob Cohen and Patricia Cohen. Applied Multiple Regression: Correlation
Analysis for the Behavioral Sciences. Addison Wesley, second edition, 1983.

[CC04] David Coppit and Benjamin Cox. Software plans for separation of concerns. In
ACP4IS ’04: Proceedings of the 3rd AOSD Workshop on Aspects, Components,
and Patterns for Infrastructure Software, pages 26–31. ACM, 2004.



144 BIBLIOGRAPHY

[CDFW80] William E. Carlson, Larry E. Druffel, David A. Fisher, and William A. Whitaker.
Introducing Ada. In ACM ’80: Proceedings of the ACM 1980 Annual Confer-
ence, pages 263–271. ACM, 1980.

[CFS41] Raymond B. Cattell, S. Norman Feingold, and Seymour B. Sarason. A Culture-
free Intelligence Test: II. Evaluation of Cultural Influence on Test Performance.
Journal of Educational Psychology, 32(2):81–100, 1941.

[CM60] Douglas P Crowne and David Marlowe. A New Scale of Social Desirability
Independent of Psychopathology. Journal of Consulting Psychology, 24(4):349–
354, 1960.

[CN01] Paul Clements and Linda Northrop. Software Product Lines: Practice and Pat-
terns. Addison Wesley, fifth edition, 2001.

[CR06] Eric Clayberg and Dan Rubel. Eclipse: Building Commercial-Quality Plug-ins.
Addison Wesley, second edition, 2006.

[Cza98] Krzysztof Czarnecki. Generative Programming Principles and Techniques of
Software Engineering Based on Automated Configuration and Fragment-Based
Component Models. PhD thesis, Technical University of Ilmenau, 1998.

[DBM+95] John W. Daly, Andrew Brooks, James Miller, Marc Roper, and Murray Ian
Wood. The Effect of Inheritance on the Maintainability of Object-Oriented Soft-
ware: An Empirical Study. In ICSM ’95: Proceedings of the 11th International
Conference on Software Maintenance, pages 20–29. IEEE Computer Society,
1995.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice Hall, 1976.

[DR00] Alastair Dunsmore and Marc Roper. A Comparative Evaluation of Program
Comprehension Measures. Technical Report EFoCS 35-2000, Department of
Computer Science, University of Strathclyde, Glasgow, UK, 2000.

[Eas97] Freda Easton. Educating the Whole Child, ”Head, Heart, and Hands”: Learning
from the Waldorf Experience. Theory into Practice, 36(2):87–94, 1997.

[EB01] Alexander A. Evstiougov-Babaev. Call Graph and Control Flow Graph Visu-
alization for Developers of Embedded Applications. In Revised Lectures on
Software Visualization, International Seminar, pages 337–346. Springer, 2001.

[EBN02] Michael D. Ernst, Greg J. Badros, and David Notkin. An Empirical Analysis of
C Preprocessor Use. IEEE Transactions on Software Engineering, 28(12):1146–
1170, 2002.

[ESEES92] Stephen G. Eick, Joseph L. Steffen, and Jr. Eric E. Sumner. SeeSoft – A Tool for
Visualizing Line Oriented Software Statistics. IEEE Transactions on Software
Engineering, 18(11):957–968, 1992.



BIBLIOGRAPHY 145

[ESSD08] Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela Damian.
Selecting Empirical Methods for Software Engineering Research. In Guide to
Advanced Empirical Software Engineering, pages 285–311. Springer, 2008.

[FC59] Leon Festinger and James M. Carlsmith. Cognitive Consequences of Forced
Compliance. Journal of Abnormal Psychology, 58(2):203–210, 1959.

[FCM+08] Eduardo Figueiredo, Nelio Cacho, Mario Monteiro, Uira Kulesza, Ro Garcia,
Sergio Soares, Fabiano Ferrari, Safoora Khan, Fernando Filho, and Francisco
Dantas. Evolving Software Product Lines with Aspects: An Empirical Study on
Design Stability. In ICSE ’08: Proceedings of the 30th International Conference
on Software Engineering, pages 261–270. ACM, 2008.

[FFM88] Lynn S. Fuchs, Douglas Fuchs, and Linn Maxwell. The Validity of Informal
Reading Comprehension Measures. Remedial and Special Education, 9(2):20–
28, 1988.

[FPG94] Norman Fenton, Shari L. Pfleeger, and Robert L. Glass. Science and Substance:
A Challenge to Software Engineers. IEEE Softwar, 11(4):86–95, 1994.

[FSD07] Scott D. Fleming, Kurt Stirewalt, and Laura K. Dillon. Using Program Families
for Maintenance Experiments. In ACoM ’07: Proceedings of the 1st Interna-
tional Workshop on Assessment of Contemporary Modularization Techniques,
pages 9–10. IEEE Computer Society, 2007.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-oriented Software. Addison-Wesley, fifth
edition, 1995.

[Gol02] Bruce E. Goldstein. Sensation and Perception. Cengage Learning Services, fifth
edition, 2002.

[Goo99] C. James Goodwin. Research in Psychology: Methods and Design. Wiley Pub-
lishing, Inc., second edition, 1999.

[Gor77] Ronald D. Gordon. A Measure of Mental Effort Related to Program Clarity.
PhD thesis, Purdue University, 1977.

[Gou65] Philip B. Gough. The Verification of Sentences. Journal of Verbal Learning &
Verbal Behavior, 4(2):107–111, 1965.

[GVR02] Robert L. Glass, Iris Vessey, and Venkataraman Ramesh. Research in Software
Engineering: An Analysis of the Literature. Journal of Information and Software
Technology, 44(8):491–506, 2002.

[Hal77] Maurice H. Halstead. Elements of Software Science. Elsevier Science Inc., 1977.



146 BIBLIOGRAPHY

[Hal86] Diane F. Halpern. Sex Differences in Cognitive Abilities. Lawrence Erlbaum,
1986.

[HC01] George T. Heineman and William T. Councill. Component-Based Software En-
gineering: Putting the Pieces Together. Addison Wesley, 2001.

[HCM09] Maen Hammad, Michael L. Collard, and Jonathan I. Maletic. Automatically
Identifying Changes that Impact Code-to-Design Traceability. In ICPC ’09:
Proceedings of the 17th International Conference on Program Comprehension,
pages 20–29. IEEE Computer Society, 2009.

[HH84] John E. Hunter and Ronda F. Hunter. Validity and Utility of Alternative Predic-
tors of Job Performance. Psychological Bulletin, 76(1):72–93, 1984.

[HHL90] Sallie Henry, Matthew Humphrey, and John Lewis. Evaluation of the Main-
tainability of Object-Oriented Software. In TENCON ’90: IEEE Region 10
Conference on Computer and Communication Systems, pages 404–409. IEEE
Computer Society, 1990.

[HO93] William Harrison and Harold Ossher. Subject-oriented Programming: A Cri-
tique of Pure Objects. In OOPSLA ’93: Proceedings of the 8th Conference
on Object-Oriented Programming Systems, Languages, and Applications, pages
411–428. IEEE Computer Society, 1993.

[HPJW+92] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbair,
Joseph Fasel, Marı́a M. Guzmán, Kevin Hammond, John Hughes, Thomas
Johnsson, Dick Kieburtz, Rishiyur Nikhil, Will Partain, and John Peterson. Re-
port on the Programming Language Haskell: A Non-Strict, Purely Functional
Language Version 1.2. ACM SIGPLAN Notices, 27(5):1–164, 1992.

[HSJ07] Miles Hewstone, Wolfgang Stroebe, and Klaus Jonas. Introduction to Social
Psychology. Wiley Publishing, Inc., fourth edition, 2007.

[HW07] Alistair Hutton and Ray Welland. An Experiment Measuring the Effects of
Maintenance Tasks on Program Knowledge. In EASE ’07: Proceedings of 11th
International Conference on Evaluation and Assessment in Software Engineer-
ing, pages 1–10. British Computer Society, 2007.

[JBZZ03] Stan Jarzabek, Paul Bassett, Hongyu Zhang, and Weishan Zhang. XVCL: XML-
based Variant Configuration Language. In ICSE ’03: Proceedings of the 25th
International Conference on Software Engineering, pages 810–811. IEEE Com-
puter Society, 2003.

[JCP08] Andreas Jedlitschka, Marcus Ciolkowski, and Dietmar Pfahl. Reporting Ex-
periments in Software Engineering. In Guide to Advanced Empirical Software
Engineering, pages 201–228. Springer, 2008.



BIBLIOGRAPHY 147

[JF88] Ralph. E. Johnson and Brian Foote. Designing Reuseable Classes. Journal of
Object-Oriented Programming, 1(2):22–35, 1988.

[JM01] Natalia Juristo and Ana M. Moreno. Basics of Software Engineering Experi-
mentation. Kluwer, 2001.

[JP05] Andreas Jedlitschka and Dietmar Pfahl. Reporting Guidelines for Controlled Ex-
periments in Software Engineering. In ISESE ’05: International Symposium on
Empirical Software Engineering, pages 95–104. IEEE Computer Society, 2005.

[JSB97] Adolf O. Jäger, Heinz-Martin Süß, and Andre Beauducel. Berliner Intelligenz-
struktur-Test. Hogrefe, 1997.

[KA08] Christian Kästner and Sven Apel. Integrating Compositional and Annotative
Approaches for Product Line Engineering. In McGPLE ’08: Proceedings of
the GPCE Workshop on Modularization, Composition and Generative Tech-
niques for Product Line Engineering, pages 35–40. Department of Informatics
and Mathematics, University of Passau, 2008.

[KAB07] Christian Kästner, Sven Apel, and Don Batory. A Case Study Implementing
Features Using AspectJ. In SPLC ’07: Proceedings of the 11th International
Software Product Line Conference, pages 223–232. IEEE Computer Society,
2007.

[KAK08] Christian Kästner, Sven Apel, and Martin Kuhlemann. Granularity in Software
Product Lines. In ICSE ’08: Proceedings of the 30th International Conference
on Software Engineering, pages 311–320. ACM, 2008.

[KAKB+08] Barbara Kitchenham, Hiyam Al-Khilidar, Muhammed Ali Babar, Mike Berry,
Karl Cox, Jacky Keung, Felicia Kurniawati, Mark Staples, He Zhang, and Lim-
ing Zhu. Evaluating Guidelines for Reporting Empirical Software Engineering
Studies. Empirical Software Engineering, 13(1):97–121, 2008.

[KAT+09] Christian Kästner, Sven Apel, Salvador Trujillo, Martin Kuhlemann, and Don
Batory. Guaranteeing Syntactic Correctness for all Product Line Variants: A
Language-Independent Approach. In TOOLS EUROPE ’09: Proceedings of the
47th International Conference Objects, Models, Components, Patterns, pages
174–194. Springer, 2009.

[KCH+90] Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E. Novak, and
A. Spencer Peterson. Feature-Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report CMU/SEI-90-TR-021, Software Engineering Institute,
1990.

[KDHS09] Vigdis B. Kampenes, Tore Dybra, Jo E. Hannay, and Dag I. K. Sjoberg. A
Systematic Review of Quasi-Experiments in Software Engineering. Information
and Software Technology, 51(1):71–82, 2009.



148 BIBLIOGRAPHY

[KHH+01] Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An Overview of AspectJ. In ECOOP ’01: Proceedings
of the 15th European Conference on Object-Oriented Programming, pages 327–
353. Springer, 2001.

[KHM08] Huzefa Kagdi, Maen Hammad, and Jonathan I. Maletic. Who Can Help Me with
this Source Code Change? In ICSM ’08: Proceedings of the 24th International
Conference on Software Maintenance, pages 157–166. IEEE Computer Society,
2008.

[Kim92] Doreen Kimura. Sex Differences in the Brain. Scientific American, 267(9):118–
125, 1992.

[KLM+97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Mae-da, Christina
Lopez, Jean-Marc Loingtier, and John Irwin. Aspect-Oriented Programming. In
ECOOP ’97: Proceedings of the 11th European Conference on Object-Oriented
Programming, pages 220–242. Springer, 1997.

[KR91] Jürgen Koenemann and Scott P. Robertson. Expert Problem Solving Strategies
for Program Comprehension. In CHI ’91: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, pages 125–130. ACM, 1991.

[Kru08] Charles W. Krueger. The Software Product Line Lifecycle Framework, 2008.
White Paper.

[KTA08] Christian Kästner, Salvador Trujillo, and Sven Apel. Visualizing Software Prod-
uct Line Variabilities in Source Code. In ViSPLE ’08: Proceedings of the 2nd
International SPLC Workshop on Visualisation in Software Product Line Engi-
neering, pages 303–312. Lero, 2008.

[KTS+09] Christian Kästner, Thomas Thüm, Gunter Saake, Janet Feigenspan, Thomas Le-
ich, Fabian Wielgorz, and Sven Apel. FeatureIDE: Tool Framework for Feature-
Oriented Software Development. In ICSE ’09: Proceedings of the 31th Inter-
national Conference on Software Engineering, pages 611–614. IEEE Computer
Society, 2009.

[KU03] Andrew Jensen Ko and Bob Uttl. Individual Differences in Program Comprehen-
sion Strategies in Unfamiliar Programming Systems. In IWPC ’03: Proceedings
of the 11th IEEE International Workshop on Program Comprehension, pages
175–184. IEEE Computer Society, 2003.

[Lan58] Henry A. Landsberger. Hawthorne Revisited. Cornell University, 1958.

[Lar44] Paul F. Larzarsfeld. The Controversy over Detailed Interviews – An Offer for
Negotiation. Public Opinion Quarterly, 8(1):38–60, 1944.



BIBLIOGRAPHY 149

[LHB01] Roberto E. Lopez-Herrejon and Don Batory. A Standard Problem for Evaluat-
ing Product-Line Methodologies. In GCSE ’01: Proceedings of the 3rd Interna-
tional Conference on Generative and Component-Based Software Engineering,
pages 10–24. Springer, 2001.

[LHBC05] Roberto E. Lopez-Herrejon, Don Batory, and William Cook. Evaluating Support
for Features in Advanced Modularization Technologies. In ECOOP ’05: Pro-
ceedings of the 19th European Conference on Object-Oriented Programming,
pages 169–194. Springer, 2005.

[Lik32] Rensis Likert. A Technique for the Measurement of Attitudes. Archives of
Psychology, 22(140):1–55, 1932.

[LR98] Gustav A. Lienert and Ulrich Raatz. Testaufbau und Testanalyse. BeltzPVU,
sixth edition, 1998.

[LvM97] Steve Lang and Anneliese von Mayrhauser. Building a Research Infrastructure
for Program Comprehension Observations. In IWPC ’97: Proceedings of the
5th International Workshop on Program Comprehension, pages 165–169. IEEE
Computer Society, 1997.

[MBOP83] Margaret G. McKeown, Isabel L. Beck, Richard C. Omanson, and Charles A.
Perfetti. The Effects of Long-Term Vocabulary Instruction on Reading Compre-
hension: A Replication. Journal of Reading Behavior, 15(1):3–18, 1983.

[McC76] Thomas J. McCabe. A Complexity Measure. pages 308–320, 1976.

[McC04] Steve McConnell. Code Complete. Microsoft Press, second edition, 2004.

[McL89] J. McLeod. GAP Reading Comprehension Test. Heinemann Publishers, 1989.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, second
edition, 1997.

[Mez83] Karen Mezynski. Issues Concerning the Acquisition of Knowledge: Effects of
Vocabulary Training on Reading Comprehension. Review of Educational Re-
search, 53(2):253–279, 1983.

[MJ74] Eleanor E. Maccoby and Carol Nagy Jacklin. The Psychology of Sex Differences.
Stanford University Press, 1974.

[MK07] Helfried Moosbrugger and Augustin Kelava. Testtheorie und Fragebogenkon-
struktion. Springer, Berlin, 2007.

[MMW+01] Jutta Markgraf, Hans-Peter Musahl, Friedrich Wilkening, Karin Wilkening, and
Viktor Sarris. Studieneinheit Versuchsplanung, 2001. FIM-Psychologie Model-
lversuch, Universität Erlangen-Nürnberg.



150 BIBLIOGRAPHY

[MO04] Mira Mezini and Klaus Ostermann. Variability Management with Feature-
Oriented Programming and Aspects. In FSE ’04: Proceedings of the 12th Inter-
national Symposium on Foundations of Software Engineering, pages 127–136.
ACM, 2004.

[Moo96] Douglas G. Mook. Motivation: The Organization of Action. W.W. Norton &
Co., second edition, 1996.

[Nay08] Keyvan Nayyeri. Professional Visual Studio Extensibility. Wiley Publishing,
Inc., 2008.

[Neu45] John von Neumann. First Draft of a Report on the EDVAC, 1945.

[Par72] David Lorge Parnas. On the Criteria To Be Used in Decomposing Systems into
Modules. Communications of the ACM, 15(12):1053–1058, 1972.

[Paw06] Renaud Pawlak. Spoon: Compile-time Annotation Processing for Middleware.
IEEE Distributed Systems Online, 7(11):1, 2006.

[PBvdL05] Klaus Pohl, Günter Böckle, and Frank van der Linden. Software Product Line
Engineering: Foundations, Principles, and Techniques. Springer, 2005.

[Pen87] Nancy Pennington. Stimulus Structures and Mental Representations in Expert
Comprehension of Computer Programs. Cognitive Psychologys, 19(3):295–341,
1987.

[Pop59] Karl Popper. The Logic of Scientific Discovery. Routledge, 1959.

[Pre97] Christian Prehofer. Feature-Oriented Programming: A Fresh Look at Objects. In
ECOOP ’97: Proceedings of the 11th European Conference on Object-Oriented
Programming, pages 419–443. Springer, 1997.

[Pre98] Michael Pressley. Reading Instruction That Works: The Case for Balanced
Teaching. The Guildford Press, 1998.

[PUPT02] Lutz Prechelt, Barbara Unger, Michael Philippsen, and Walter F. Tichy. Two
Controlled Experiments Assessing the Usefulness of Design Pattern Documen-
tation in Program Maintenance. IEEE Transactions on Software Engineering,
28(6):595–606, 2002.

[QPGL05] Claudia Quaiser-Pohl, Christian Geiser, and Wolfgang Lehmann. The Relation-
ship between Computer-Game Preference, Gender, and Mental-Rotation Ability.
Personality and Individual Differences, 40(3):606–619, 2005.

[Rav36] John C. Raven. Mental Tests Used in Genetic Studies: The Performances of Re-
lated Individuals in Tests Mainly Educative and Mainly Reproductive. Master’s
thesis, University of London, 1936.



BIBLIOGRAPHY 151

[RJ66] Robert Rosenthal and Lenore Jacobson. Teachers’ Expectancies: Determinants
of Pupils’ IQ Gains. Psychological Reports, 19(1):115–118, 1966.

[RL04] Susan D. Ridgell and John W. Lounsbury. Predicting Academic Success: Gen-
eral Intelligence, ”Big Five” Personality Traits, and Work Drive. College Student
Journal, 38(4):607–619, 2004.

[RM02] Martin P. Robillard and Gail C. Murphy. Concern Graphs: Finding and De-
scribing Concerns Using Structural Program Dependencies. In ICSE ’02: Pro-
ceedings of the 24th International Conference on Software Engineering, pages
406–416. ACM, 2002.

[RM03] Martin P. Robillard and Gail C. Murphy. FEAT: A Tool for Locating, Describing,
and Analyzing Concerns in Source Code. In ICSE ’03: Proceedings of the
25th International Conference on Software Engineering, pages 822–823. IEEE
Computer Society, 2003.

[Roe39] Fritz J. Roethlisberger. Management and the Worker. Harvard University Press,
1939.

[Sal92] David Salomon. Assemblers and Loaders. Ellis Horwood, 1992.

[SB98] Yannis Smaragdakis and Don Batory. Implementing Layered Designs with
Mixin Layers. In ECCOP ’98: Proceedings of the 12th European Conference
on Object-Oriented Programming, pages 550–570. Springer, 1998.

[SBS94] Maarten W. Van Someren, Yvonne F. Barnard, and Jacobijn A. C. Sandberg.
The Think Aloud Method: A Practical Guide to Modelling Cognitive Processes.
Academic Press, 1994.

[SCC02] William R. Shadish, Thomas D. Cook, and Donald T. Campbell. Experimental
and Quasi-Experimental Designs for Generalized Causal Inference. Houghton
Mifflin Company, 2002.

[SE84] Elliot Soloway and Kate Ehrlich. Empirical Studies of Programming Knowl-
edge. IEEE Transactions on Software Engineering, 10(5):595–609, 1984.

[SHH+05] Dag I. K. Sjoberg, Jo E. Hannay, Ove Hansen, Vigdis By Kampenes, Amela
Karahasanovic, Nils-Kristian Liborg, and Anette C. Rekdal. A Survey of Con-
trolled Experiments in Software Engineering. IEEE Transactions on Software
Engineering, 31(9):733–753, 2005.

[Shn77] Ben Shneiderman. Measuring Computer Program Quality and Comprehension.
International Journal of Man-Machine Studies, 9(4):465–478, 1977.

[Slo66] Dan I. Slobin. Grammatical Transformations and Sentence Comprehension in
Childhood and Adulthood. Journal of Verbal Learning & Verbal Behavior,
5(3):219–227, 1966.



152 BIBLIOGRAPHY

[SM79] Ben Shneiderman and Richard Mayer. Syntactic/Semantic Interactions in Pro-
grammer Behavior: A Model and Experimental Results. International Journal
of Parallel Programming, 8(3):219–238, 1979.

[SP96] Howard Schuman and Stanley Presser. Questions and Answers in Attitude Sur-
veys: Experiments on Question Form, Wording, and Context. SAGE Publica-
tions, 1996.

[Ste06] Friedrich Steimann. The Paradoxical Success of Aspect-Oriented Programming.
In OOPSLA ’06: Proceedings of the 21st Conference on Object-Oriented Pro-
gramming Systems, Languages, and Applications, pages 481 – 497. ACM, 2006.

[Stu08] Student. The Probable Error of a Mean. Biometrika, 6(1):1–25, 1908.

[SV95] Teresa M. Shaft and Iris Vessey. The Relevance of Application Domain Knowl-
edge: The Case of Computer Program Comprehension. Information Systems
Research, 6(3):286–299, 1995.

[SW65] Samuel S. Shapiro and Martin. B. Wilk. An Analysis of Variance Test for Nor-
mality (Complete Samples). Biometrika, 52(3/4):591–611, 1965.

[Tan01] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, second edi-
tion, 2001.

[Tic98] Walter F. Tichy. Should Computer Scientists Experiment More? Computer,
31(5):32–40, 1998.

[TLPH95] Walter F. Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A. Heinz. Experimen-
tal Evaluation in Computer Science: A Quantitative Study. Journal of Systems
and Software, 28(1):9–18, 1995.

[TO01] Peri Tarr and Harold Ossher. Hyper/J: Multi-Dimensional Separation of Con-
cerns for Java. In ICSE ’01: Proceedings of the 23rd International Conference
on Software Engineering, pages 729–730. IEEE Computer Society, 2001.

[TOHS99] Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton. N Degrees
of Separation: Multi-Dimensional Separation of Concerns. In ICSE ’99: Pro-
ceedings of the 21st International Conference on Software Engineering, pages
107–119. ACM, 1999.

[Tuk77] John W. Tukey. Exploratory Data Analysis. Addison Wesley, 1977.

[vMV93] Anneliese von Mayrhauser and A. Marie Vans. From Program Comprehension
to Tool Requirements for an Industrial Environment. In IWPC ’93: Proceed-
ings of 2nd IEEE Workshop on Program Comprehension, pages 78–86. IEEE
Computer Society, 1993.



BIBLIOGRAPHY 153

[Wat96] Gloria S. Waters. The Measurement of Verbal Working Memory Capacity and
Its Relation to Reading Comprehension. The Quarterly Journal of Experimental
Psychology Section A, 49(1):51–79, 1996.

[Wec50] David Wechsler. The Measurement of Adult Intelligence. American Psycholog-
ical Association, third edition, 1950.

[Wie03] Urban Wiesing. Die Ethik-Kommissionen – Neuere Entwicklungen und Richtlin-
ien. Deutscher Ärzte-Verlag, 2003.

[Wir71] Niklaus Wirth. Program Development by Stepwise Refinement. Communica-
tions of the ACM, 14(4):221–227, 1971.

[Woo39] Robert Sessions Woodworth. Experimental Psychology. Henry Holt, 1939.

[Wun74] Wilhelm Wundt. Grundzüge der Physiologischen Psychologie. Engelmann,
1874.

[Wun14] Wilhelm Wundt. Grundriß der Psychologie. Kröner, 1914.

[Zoh03] Anat Zohar. Her Physics, His Physics: Gender Issues in Israeli Advanced Place-
ment Physics Classes. International Journal of Science Education, 25(2):246–
268, 2003.

[ZW97] Marvin V. Zelkowitz and Dolores Wallace. Experimental Validation in Software
Engineering. Information and Software Technology, 39(11):735–743, 1997.



154

Selbstständigkeitserklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig und nur mit erlaubten Hilfs-
mitteln angefertigt habe.

Magdeburg, den August 3, 2009
Janet Feigenspan


	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Background
	Feature-oriented software development
	Goals of feature-oriented software development
	Physical separation of concerns
	Virtual separation of concerns
	Summary

	Program comprehension
	Top-down models
	Bottom-up models
	Integrated models
	Measuring program comprehension
	Summary

	Conducting experiments
	Objective definition
	Design
	Analysis
	Interpretation
	Summary


	Confounding Variables for Program Comprehension
	Example scenario
	Selection of the variables
	Review of the literature
	Consultation of experts

	Personal parameters
	Programming experience
	Domain knowledge
	Intelligence
	Education
	Miscellaneous

	Environmental parameters
	Training of the subjects
	Motivation of the subjects
	Tool support
	Position and ordering effect
	Effects due to experimenter
	Hawthorne effect
	Test effects
	Miscellaneous

	Task-related parameters
	Structure of the source code
	Coding conventions
	Difficulty of the task
	Comments and documentation

	Programming language
	Summary

	Feasible Scope of Comparing FOSD Approaches
	Comparing four approaches
	Creating a program for each FOSD approach
	Recruiting and managing a sufficient number of subjects
	Reducing number of required subjects (and introducing test effects)
	Assuring generalizability of our results

	Comparing two programming languages
	Realistic comparison
	Agenda
	Summary

	Experiment
	The experiment in a nutshell
	Objective definition
	Independent variable
	Dependent variable
	Hypotheses

	Design
	Controlling personal parameters
	Controlling environmental parameters
	Controlling task-related parameters
	Programming language
	Tasks

	Execution
	Data collection
	Conducting
	Deviations

	Analysis
	Descriptive statistics
	Hypotheses testing

	Interpretation
	Evaluation of results and implications
	Threats to validity
	Next steps

	Summary

	Related Work
	Conclusion
	Additional Material
	Bibliography

