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Abstract. A graph is 1-gap planar if it admits a drawing such that each
crossing can be assigned to one of the two involved edges in such a way
that each edge is assigned at most one crossing. We show that K3,14,
K4,10 and K6,6 are not 1-gap planar.

1 Introduction

A graph is 1-gap planar if it admits a drawing such that each crossing can be
assigned to one of the two involved edges in such a way that each edge is assigned
at most one crossing. The motivation comes from edge casings, where one creates
a small gap in one of the edges involved in each crossing to increase the readability.
In a 1-gap planar drawing each edge receives at most one such gap. This notion
was introduced in GD’17 by Bae et al. [1]. Among others they showed that a
1-gap planar graph on n vertices has at most 5n − 10 edges and this is tight.
They further show that that the complete graph Kn is 1-gap planar if and only if
n ≤ 8. An important observation of Bae et al. is that every 1-gap planar graph G
satisfies cr(G) ≤ |E| (since each crossing is assigned to one of the edges). For
complete bipartite graphs, they gave 1-gap planar drawings for K3,12, K4,8 and
K5,6, whereas they exclude K3,15, K4,11 and K6,7 by observing that their crossing
number is strictly greater than their edge number. They leave the remaining
complete bipartite graphs as an open problem. We show the following theorem.

Theorem 1. The graphs K3,14, K4,10 and K6,6 are not 1-gap planar.

This shrinks the open cases to K3,13 and K4,9. We note that for all the graphs
we exclude, the crossing number equals the edge number [2]. Thus, we know that
in a 1-gap planar drawing of such a graph each edge has at least one crossing.

2 Proof Strategy

Our proof strategy is an extension of the one of Bae et al., who encountered a
similar situation when treating the case of K9, which has 36 edges and whose
crossing number is 36. For convenience, we briefly sketch their argument. Assume
for the sake of contradiction that Γ is a 1-gap planar drawing of K9, and consider
the planarization Γ ? of this drawing, where all crossings are replaced by dummy
vertices. Observe that Γ has precisely cr(K9) = |E(K9)| = 36 crossings [1]. If two



vertices of K9 share a face in Γ ?, we can reroute the edge between them without
crossings in this face, thus obtaining a drawing with fewer crossings, which is
not possible. Thus, for any two original vertices their incident faces of Γ ? are
disjoint. This gives a lower bound of 72 faces. On the other hand, from Euler’s
formula it follows that Γ ? has only 65 faces; a contradiction.

In contrast, for complete bipartite graphs, vertices may share a face of the
planarization if they are independent. Let G = (R

.
∪B,E) be a complete bipartite

graph with cr(G) = |E| = |R| · |B|. The vertices in R and B are red and blue,
respectively. As before, we consider a hypothetical 1-gap planar drawing Γ of G,
for which we know that it has cr(Γ ) = cr(G) = |E| crossings, and we denote the
planarization by Γ ?. Let F denote the set of faces of Γ ? and let FR, FB ⊆ F be
the faces that are incident to a red and a blue vertex, respectively. If FR∩FB 6= ∅,
then there is a face in F that is incident to both a red and a blue vertex. We can
route the edge between them without crossings and thus reach a contradiction as
in the case ofK9. By assumption, Γ ? has |R|+|B|+|E| vertices and |R|·|B|+2·|E|
edges, and hence |F | = 2 · |R| · |B| − |R| − |B|+ 2 faces.

Consider the auxiliary bipartite graph GR = (R ∪ FR, ER) where a face
and a vertex are adjacent if and only if they are incident in Γ ?. The graph
GB = (B ∪ FB , EB) is defined analogously. Observe that |ER| = |EB | = |R| · |B|
since each vertex in R has degree |B| and vice versa. We argue that either GR

and GB are both trees, or one of them, say GR, is a cycle decorated with leaves
in FR and the other one, GB , is a forest with two connected components.

In the former case, we obtain |ER| = |R| + |FR| − 1, which gives |FR| =
|R| · |B| − |R|+ 1 and likewise |FB | = |R| · |B| − |B|+ 1. Hence |FB |+ |FR| =
2 · |B| · |R| − |R| − |B|+ 2 = |F |. In the latter case, the number of faces in FR

decreases by 1, but the number of faces in FB increases by 1. In all cases we
find that |FR| + |FB | = |F |, i.e., each face of Γ ? is either in FR or in FB. A
contradiction is reached by showing that there exists at least one white face of Γ ?

that is not incident to any red or blue vertex.
First it follows from the fact that each edge has a gap that there is a cycle C

in Γ ? that only contains dummy vertices. This can be seen as follows. We start
in any dummy vertex and follow the edge that does not have its gap there to
its own gap. Repeating this step eventually produces the desired cycle C. If all
red and blue vertices lie inside (outside) C, then C contains a white face in its
exterior (interior). Otherwise it separates a component of GR from a component
of GB. Further analysis yields a contradiction. The details vary depending on
whether G is K3,14, K4,10 or K6,6 as well as on the size and structure of the
components that are separated by C.

3 Conclusion

We have shown that K3,14, K4,10 and K6,6 are not 1-gap planar. We leave open
the cases of K3,13 and K4,9. It seems difficult to adapt our proof technique to
these cases since their crossing numbers are strictly smaller than their edge
number, which results in additional freedom for possible 1-gap planar drawings.
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