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Abstract. Planarity is an important concept in graph drawing. It is gen-
erally accepted that planar drawings are well understandable. Recently,
several variations of planarity have been studied for advanced graph con-
cepts such as k-level graphs [6,10–16] and clustered graphs [5,7]. In k-level
graphs, the vertices are partitioned into k levels and the vertices of one
level are drawn on a horizontal line. In clustered graphs, there is a re-
cursive clustering of the vertices according to a given nesting relation. In
this paper we combine the concepts of level planarity and clustering and
introduce clustered k-level graphs. For connected clustered level graphs
we show that clustered k-level planarity can be tested in O(k|V |) time.

1 Introduction

Many structures in real life applications cannot be represented appropriately by
standard graphs. In biochemical pathways, for example, substances and reactions
can be modelled as vertices and (hyper) edges. But often it is also desirable to
visualise the cell compartments containing distinct substances and reactions.
These compartments define different components (clusters) of the graph and are
recursively nested. This leads to an extended graph model: A clustered graph
G = (V,E, Γ ) is a directed or undirected graph with an additional recursive
nesting relation Γ = (VΓ , EΓ ) with VΓ = C∪V . Γ is a rooted tree of the clusters
C as inner nodes and the leaves V . Each cluster c ∈ C represents a subgraph
Gc = (Vc, Ec) of G induced by its descendant leaves Vc. It can be assumed that
each cluster has at least two children. Thus the number of clusters |C| is linear.
Clustered graphs are drawn such that the clusters are simple closed curves that
define closed regions of the plane. The region of each cluster contains exactly the
clustered drawing of the subgraph induced by its vertices. Regions are nested
recursively according to Γ . A clustered graph is c-planar if it has a drawing
without edge crossings, region intersections, or crossings between an edge and a
region. An edge crosses a region if it crosses its border at least twice. It is an
open problem, see e. g. [5,7,9], whether c-planarity can be tested efficiently. Here
connectivity plays a crucial role. It can be done in linear time if the clustered
graph is c-connected, i. e., if each subgraph induced by a cluster is connected,
see [5, 7].
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For drawing clustered graphs there are different approaches. See [2] for an
overview. If the underlying graph is directed, then Sander’s extension of the
Sugiyama algorithm [17–19] can be used. The first step of this algorithm is to
distribute the vertices to k levels. Then it uses heuristics to reduce the number
of edge crossings, see also [8], because the minimisation problem is NP-hard. It
does not even guarantee a planar drawing if one is possible. Since in this case it
is especially desirable to avoid crossings we analyse this problem called clustered
level planarity. This is the combination of c-planarity and level planarity.

A k-level graph G = (V,E, φ) is a directed or undirected graph with a level
assignment φ : V → {1, 2, . . . , k}, 1 ≤ k ≤ |V |, that partitions the vertex set into
V = V 1

.
∪ V 2

.
∪ · · ·

.
∪ V k, V i = φ−1(i), 1 ≤ i ≤ k, such that φ(u) 6= φ(v) for each

edge (u, v) ∈ E. A k-level graph G is k-level planar if it is possible to draw it
in the Cartesian plane such that all vertices v ∈ V i of the i-th level are placed
on a single horizontal line li = { (x, i) | x ∈ R } and the edges are drawn as
vertically strictly monotone curves without crossings. A clustered k-level graph
G = (V,E, Γ, φ), or short cl-graph, is a k-level graph with a recursive clustering.
For every cluster c ∈ C denote the minimum and maximum levels with vertices
in c by φmin(c) and φmax(c). A clustered k-level graph G is clustered k-level
planar or short cl-planar if it has a level planar embedding in the plane such
that the following restrictions are satisfied:

R1 Each intersection of a level line and a cluster region is a single interval, i. e.,
the vertices on each level that belong to the same cluster are placed next to
each other with no other vertices in between.

R2 Clusters do not cross each other, i. e., the relative position of two clusters is
the same on all levels.

R3 Edges do not cross clusters, i. e., no edge intersects the border of a cluster
region twice.

See Fig. 1 for a visualisation of R1–R3. These restrictions ensure that any
cl-planar graph can be drawn without crossings such that all cluster regions are
convex. They can even be drawn as rectangles by using Sander’s algorithm.

Lemma 1. If G = (V,E, Γ, φ) is a clustered k-level graph, then obviously

1. G is cl-planar ⇒ (V,E, φ) is level planar ⇒ (V,E) is planar.
2. G is cl-planar ⇒ (V,E, Γ ) is c-planar ⇒ (V,E) is planar.

Note that a level planar and c-planar cl-graph is not necessarily cl-planar.
Figure 2 is a counter-example. Without loss of generality we consider only simple
graphs without self loops and parallel edges. Because of Lemma 1 a simple input
graph with |E| > 3|V | − 6 is rejected as not cl-planar and we can assume that
the number of edges is linear in the number of vertices.

We give an O(k|V |) time algorithm based on the previous work of Di Bat-
tista and Nardelli [6]. It solves cl-planarity for cl-graphs that are proper, level
connected, and hierarchies: A hierarchy is a level graph with a single source and
an arbitrary number of sinks, where a source is a vertex having only edges to a
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Fig. 1. Violations of the cl-planarity restrictions
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Fig. 2. A cl-graph that is level planar and c-planar but not cl-planar

higher level and a sink is defined analogously. Note that hierarchies should not be
confused with the hierarchical clustering Γ . A (clustered) k-level graph is proper
if |φ(u)−φ(v)| = 1 for each edge (u, v) ∈ E. A clustered level graph is level con-
nected if any two consecutive levels of the same cluster are spanned by an edge of
the cluster, i. e., if ∀c ∈ C : ∀i ∈ {φmin(c), . . . , φmax(c)−1} : ∃(u, v) ∈ Ec : φ(u) ≤
i ∧ φ(v) ≥ i + 1. Level connectivity follows directly from c-connectivity.

2 Related Work

There are several algorithms for level planarity testing. The first is from Di Bat-
tista and Nardelli [6]. It is restricted to hierarchies and runs in linear time. Chan-
dramouli and Diwan [3] present a linear time algorithm for triconnected DAGs.
Leipert et al. [13–16], based on the work of Heath and Pemmaraju [11,12], finally
come up with a linear time algorithm for general level graphs. Their algorithm
is based on [6] and it is also able to compute a level planar embedding. Since
this algorithm is rather complex there is a simpler approach of Healy and Ku-
usik which runs in O(|V |2) time on proper graphs and computes an embedding
in O(|V |3) time. Since our algorithm extends the algorithm of [6] we have to
recall some details which are necessary to understand our extensions. We use a
simplified notation.

The basic idea of the algorithm is to perform a top down sweep, processing the
levels in order 1, 2, . . . , k and for every level V i compute a set of permutations of



V i that appear in some level planar embedding of Gi. Gi is the subgraph induced
by V 1 ∪ V 2 ∪ · · · ∪ V i. G is level planar if and only if the set of permutations of
Gk = G is not empty.

In order to represent and store sets of vertex permutations efficiently, a data
structure called PQ-tree, introduced by Booth and Lueker [1], is used. A PQ-tree
represents the permutations of a finite set S in which the members of specified
subsets of S occur consecutively. It is a rooted and ordered tree with leaves and
two types of inner nodes, P- and Q-nodes. In the context of this paper the term
vertex denotes an element of a graph and the term node denotes an element of
a PQ-tree or of a cluster tree. The leaves correspond to the elements of S and
the possible permutations are encoded by the combination of the two types of
inner nodes. The children of a P-node can be permuted arbitrarily, whereas the
children of a Q-node are ordered and this order can only be reversed. If PQ-trees
are used in planarity tests, a P-node always represents a cut vertex and a Q-node
represents a biconnected component of a graph. The leaves represent edges to the
not yet processed part of the graph. If there are no permutations with the given
restrictions, the PQ-tree is empty. The most important operation on PQ-trees
is REDUCE. It restricts the encoded set of permutations such that all elements
of a given set S′ ⊆ S are consecutive in all remaining permutations. During the
reduce phase, PQ-leaves representing elements of S′ are called pertinent. The
minimum subtree containing all pertinent leaves is called the pertinent subtree.
All its nodes are said to be pertinent, too. Its root is called pert-root.

Algorithm 1 describes the LEVEL-PLANARITY-TEST for hierarchies where
T (Gi) is a PQ-tree representing the set of admissible permutations of the ver-
tices in V i that appear in some level planar embedding of Gi. The procedure
CHECK-LEVEL realises a sweep over a single level i. All operations are per-
formed in T (Gi). Define Hi to be the extended form of Gi. It consists of Gi plus
some new virtual vertices and virtual edges. For every edge (u, v) with u ∈ V i

and v ∈ V i+1, a new virtual vertex with label v and a virtual edge connecting it
to u is introduced in Hi. Note that there may be several virtual vertices with the
same label but each with exactly one entering edge. The extension of T (Gi) to
T (Hi) is accomplished by a PQ-tree operation called REPLACE PERT. Since
all PQ-leaves with the same label appear consecutively after the PQ-tree oper-

Algorithm 1: LEVEL-PLANARITY-TEST
Input: A level graph G = (V 1 .

∪ V 2 .
∪ . . .

.
∪ V k, E, φ)

Output: boolean value indicating whether G is level planar

Initialise T (G1)

for i← 1 to k − 1 do
T (Gi+1)← CHECK-LEVEL(T (Gi), V i+1)
if T (Gi+1) = ∅ then return false

end

return true



ation REDUCE in every admissible permutation, each consecutive set of PQ-
leaves is replaced with REPLACE PERT by a P-node. This is the parent of new
leaves representing the adjacent vertices of v in V i+1. Afterwards all PQ-leaves
representing vertices in V i+1 with the same label are reduced to appear as a
consecutive sequence in any permutation stored in the PQ-tree. Ri denotes this
reduced extended form of Hi. Finally in a new sweep over this level all PQ-leaves
representing sinks v in V i+1 are deleted from the PQ-tree reconstructing it such
that it obeys the properties of a valid PQ-tree again. See [1,11–16] for details on
these operations.

3 Algorithm

3.1 Idea

Our algorithm for testing cl-planarity of proper and level connected hierarchies
is based on the PQ-tree method for level planarity testing of hierarchies of [6].
This method already ensures that the calculated embedding is level planar. It
remains to show how the additional properties R1–R3 for cl-planar embeddings
can be maintained. We will see later that R2 and R3 are automatically satisfied
if the graph is level connected, while an extension is necessary for R1.

An analysis of R1 reveals a similarity to the ordering constraints of PQ-trees
because the vertices of one cluster have to be placed next to each other. This
corresponds directly to the semantics of the REDUCE operation which restricts
the set of admissible permutations to those where the PQ-leaves given as an
argument appear consecutively. We obtain the following idea: The level by level
sweep of the level planarity testing algorithm remains the same. The admissible
permutations are stored in a PQ-tree T . We ensure R1 by additional applications
of REDUCE. This is done by an extension of CHECK-LEVEL, see Algorithm 2.
On each level a new method REDUCE-CLUSTERS is called, which ensures that
the interior of each cluster is consecutive.

Algorithm 2: CHECK-LEVEL
Input: PQ-tree T (Gi) of the current level, Vertices V i+1 of the next level

Output: PQ-tree T (Gi+1) of the next level

extend T (Gi) to T (Hi)
reduce T (Hi) to T (Ri)
if T (Ri) = ∅ then return T (Gi+1)← ∅
REDUCE-CLUSTERS(T (Ri), V i+1) // NEW

remove sinks from T (Ri)

return T (Gi+1)← T (Ri)



3.2 Efficient Cluster Reduction

A straightforward implementation of the REDUCE-CLUSTERS method is to
call REDUCE for the PQ-leaves of each cluster. This leads to a running time of
O(k|C||V |), i. e., up to O(k|V |2), since for each of the k levels and for each of
the |C| clusters the whole PQ-tree of size O(|V |) must be traversed. With the
following approach this can be improved to O(k|V |) time.

First consider only two clusters c1 and c2 on the same level. There are two
cases how c1 and c2 can interact, either they are disjoint or they are nested. In
the first case c1 and c2 can be reduced independently. For each cluster only a
subtree of the PQ-tree has to be considered. Because these subtrees are disjoint,
in the worst case the whole PQ-tree has to be traversed once per level. In the
second case suppose that c2 is nested in c1. Then all descendants of c2 are
descendants of c1 and the result of reducing c2 can be used for reducing c1. It is
not necessary to traverse the corresponding PQ-subtree again but we can start
the second REDUCE at the pert-root of c2.

This result can be generalised to the whole cluster tree by using a simulta-
neous bottom up traversal of the cluster tree Γ and the PQ-tree T (Ri). After a
cluster c has been reduced, all PQ-leaves representing vertices contained in c are
consecutive in any permutation stored in T (Ri). They are exactly the leaves of
a pertinent subtree. Pert-root of this subtree can be a single node or a consecu-
tive part of a Q-node. Therefore we temporarily replace the pertinent subtree(s)
by a new PQ-leaf Xc with label c. This avoids calling REDUCE for inner PQ-
nodes which may not be supported by existing PQ-tree implementations. It is
important that the replaced subtrees are reinserted later in the same order as
they had before their removal. For this, reversions of their parent Q-node and
other modifications have to be respected. Fortunately this can be done easily by
remembering which sibling pointer of Xc represents the direction, w. l. o. g. the
first stored pointer. This is similar to the direction indicators of [4].

Algorithm 3 shows the method REDUCE-CLUSTERS. The cluster tree Γ
is traversed in a similar way as the REDUCE method traverses a PQ-tree. The
cluster nodes are processed bottom up using a queue to ensure that nodes cannot
be processed before their children on the same level have been processed. This can
be tested by comparing the number of processed children with child count(c, i+
1), the number of children of c on level i + 1.

3.3 Correctness

Theorem 1. Algorithm 1 with the extended CHECK-LEVEL method shown in
Algorithm 2 returns true if and only if the graph is cl-planar.

Proof. “⇒”: Since our algorithm does not modify the level planarity test part, a
positive result ensures that G is level planar. Thus it remains to be shown that
the restrictions R1–R3 imposed by the definition of cl-planarity are satisfied.
The semantics of R1 for the intersection of a cluster c ∈ C and a level line i
are exactly the same as the semantics of a REDUCE operation applied to the



Algorithm 3: REDUCE-CLUSTERS
Input: PQ-tree T (Ri), Vertices V i+1 of the next level

Output: PQ-tree T (Ri)′ with reduced clusters

foreach c ∈ C ∪ V do children leaves[c]← ∅
Initialise Queue Q with V i+1

while Q not empty do
c′ ← delete first(Q)
c← parent(c′) // parent in Γ

// make cluster vertices consecutive

T (Ri)← REDUCE(T (Ri), children leaves[c′])
if T (Ri) = ∅ then

return T (Ri)′ ← ∅
end

// expand children

foreach Y ∈ children leaves[c′] do
replace Y by subtrees[Y ]

end

// contract pertinent subtree(s)

Xc′ ← new PQ-leaf with label c′

if pert-root has only pertinent children then
subtrees[Xc′ ]← {pert-root}

else
subtrees[Xc′ ]← pertinent children of pert-root

end
REPLACE PERT(T (Ri), Xc′)

insert(children leaves[c], Xc′)

// ensure correct processing order

if
∣∣children leaves[c]

∣∣ = child count(c, i + 1) then
insert(Q, c)

end
end

return T (Ri)′ ← T (Ri)



children of c on level i. Since our algorithm explicitly calls REDUCE for every
cluster on every level it is clear that R1 is satisfied. R2 is trivially satisfied for
level connected graphs, because crossing clusters would imply crossing edges
which are prohibited by the level planarity test. See Fig. 3(a). The same is true
for R3. The graph is proper and thus the crossing edge connects two adjacent
levels. Between these two levels there is an edge in the cluster because of the level
connectivity of the graph. Any intersection between these two edges is prohibited
by level planarity. See Fig. 3(b).
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(a) Violation of R2 is
not possible

1

2

(b) Violation of R3 is
not possible

Fig. 3. Correctness of the algorithm

“⇐”: Given a cl-planar graph we have to show that our algorithm returns
true. Suppose the algorithm returns false. This means that a call of REDUCE
failed, either in the level planarity test part or in REDUCE-CLUSTERS. In the
former case the graph is not level planar. In the latter case there is no level planar
permutation respecting R1. In any case this contradicts the assumption. ut

3.4 Complexity

The complexity of Algorithm 3 depends also on the complexity of the child count
operation returning the number of cluster children on a given level. We assume
that the used data structure for clustered level graphs provides O(1) time access
to this information. If this is not true, an additional O(k|V |) size data structure
can be pre-computed in O(k|V |) time. We use a two dimensional matrix Mci =
child count(c, i) with c ∈ C ∪ V and i ∈ {1, . . . , k} as indices. Mci is filled
as shown in Algorithm 4 which traverses the cluster tree Γ in a similar way
as Algorithm 3. Having this efficient child count operation, the complexity of
REDUCE-CLUSTERS derives as follows:

Lemma 2. The time complexity of REDUCE-CLUSTERS described in Algo-
rithm 3 is O(|V |).



Algorithm 4: CHILD-COUNT
Input: G = (V, E, Γ, φ)

Output: Mci

Initialise Mci with zeros
foreach v ∈ V do Mv,φ(v) ← 1
foreach c ∈ C do processed children[c]← 0

Initialise Queue Q with V
while Q not empty do

c′ ← delete first(Q)
c← parent(c′) // parent in Γ

for i← 1 to k do
if Mc′i > 0 then Mci ←Mci + 1

end

processed children[c]← processed children[c] + 1
if processed children[c] = |children(c)| then

insert(Q, c)

end
end

foreach v ∈ V do Mv,φ(v) ← 0

return Mci

Proof. In REDUCE-CLUSTERS every cluster is considered exactly once. Since
Γ is of linear size this can be done in O(|V |) time. Additionally every node of the
PQ-tree is considered only once such that the time complexity of the REDUCE
operations sum up to O(|V |). ut

Theorem 2. There is an O(k|V |) time algorithm for testing cl-planarity of a
level connected and proper hierarchy.

4 Discussion

The given algorithm solves the cl-planarity problem only for a subclass of cl-
graphs. It is desirable to extend it to general cl-graphs, but a straightforward
extension is difficult.

Level planarity testing has been extended to non-hierarchical graphs in [11–
16]. This is realised by the utilisation of multiple PQ-trees, one for each con-
nected component of Gi. If a vertex is common to more than one PQ-tree, these
are merged into one. In a straightforward extension of our algorithm clusters
can span multiple PQ-trees. This means that REDUCE-CLUSTERS cannot be
applied directly. A possible solution would be to additionally merge the PQ-trees
according to the contained clusters. It is not clear, however, how this could be
done because in contrast to vertex merges there is no distinct position in the
higher PQ-tree where the smaller one is to be inserted.



An application of our algorithm to non-proper graphs leads to problems as
well. A priori it is not clear whether long span edges entering or leaving a cluster
have to be routed within or outside of the cluster. In Fig. 4 is not clear whether
the reduction of the cluster nodes on level 2 has to include the dotted edge. When
processing level 3 it becomes clear that this edge has to be routed within the
cluster, but this is too late. On level 2 both routing alternatives would have to be
stored in the PQ-tree. This is not possible, however, without major extensions
of the data structure.
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Fig. 4. Problems with long span edges

The third remaining restriction of our algorithm is the needed level connectiv-
ity. A straightforward idea to extend it to cl-graphs that are not level connected
would be to insert level connecting dummy edges for each cluster. It is difficult,
however, to find the correct places for insertion without violating cl-planarity.
The same problem occurs with c-planarity. There are some advances like in [9]
but the general problem is unsolved. Apparently the connectivity of the graph
plays a major role for the detection of c-planarity and cl-planarity.

5 Conclusion

We have presented an algorithm for detecting clustered k-level planarity of a
level connected proper hierarchy in O(k|V |) time. For this we have enhanced the
linear time algorithm for level planarity detection of [6, 11–16].

The presented extension to level planarity testing can also be used to extend
the level planar embedding algorithm of Sect. 2 to calculate a cl-planar embed-
ding without any major modifications. Such an embedding can be used as a basis
for generating a drawing using for example the algorithm of Sander [17–19]. This
algorithm draws the clusters as nested rectangles, i. e., as convex regions.

It is open, whether our algorithm can be improved to linear time. This would
probably be the case if the nesting relations Γi of each level i can be computed
in linear time, such that each Γi only contains the vertices of level i and clusters
with at least two children in Γi. Further investigations are desired for level graphs
which are not necessarily proper and level connected hierarchies. It is not clear
if this problems can be solved in polynomial time.
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