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Abstract. The Sugiyama framework is the most commonly used con-
cept for visualizing directed graphs. It draws them in a hierarchical way
and operates in four phases: cycle removal, leveling, crossing reduction,
and coordinate assignment. However, there are situations where cycles
must be displayed as such, e.g., distinguished cycles in the biosciences
and scheduling processes which repeat in a daily or weekly turn. This
excludes the removal of cycles. In their seminal paper Sugiyama et al.
introduced recurrent hierarchies as a concept to draw graphs with cycles.
However, this concept has not received much attention in the following
years. In this paper we supplement our cyclic Sugiyama framework and
investigate the coordinate assignment phase. We provide an algorithm
which runs in linear time and constructs drawings which have at most
two bends per edge and use quadratic area.

1 Introduction

The Sugiyama framework [9] is among the most intensively studied algorithms in
graph drawing. It is the standard technique to draw directed graphs, and displays
them in a hierarchical manner. It consists of the four phases of cycle removal,
leveling, crossing reduction, and coordinate assignment. Typical applications are
schedules, UML diagrams, and flow charts.

In its first phase the Sugiyama framework destroys all cycles. However, there
are many situations where this is unacceptable. There are well-known cycles in
the biosciences [7], where it is a common standard to display these cycles as
such. Another inevitable use are repeating processes, such as daily, weekly, or
monthly schedules which define the Periodic Event Scheduling Problem |8].

In their seminal paper [9], Sugiyama et al. proposed a solution for both the
hierarchic and the cyclic style. The latter is called a recurrent hierarchy which
is a level graph with additional edges from the last to the first level. It can be
drawn in 2D where the levels are rays from a common center (see Fig. 1(a))
and each edge e = (u,v) is a monotone counterclockwise poly-spiral segment
from u to v wrapping around the center at most once. An alternative is a 3D
drawing on a cylinder (see Fig. 1(c)). A combination would be the best of both
worlds: an interactive 2D view with horizontal levels. It can be scrolled upwards
and downwards infinitely and always shows a different part of the cylinder, see
Fig. 1(b) for a snap shot, which also represents our intermediate drawing.
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Fig. 1. Example drawings

In cyclic drawings edges are irreversible and cycles are represented in a direct
way. Thus, the cycle removal phase is not needed. This saves much effort, since
the underlying feedback arc set problem is N’P-hard [4]. Further advantages over
hierarchic drawings (see Fig. 1(d)) are shorter edges and fewer crossings.

A planar recurrent hierarchy is shown on the cover of the textbook by Kauf-
mann and Wagner [6]. There it is stated that recurrent hierarchies are “unfortu-
nately |[...] still not well studied”. After investigating the leveling phase [1], we
consider the coordinate assignment phase for the cyclic case. There are several
algorithms for non-cyclic coordinate assignment [6]. We modify the established
algorithm of Brandes and Kopf [3] for cyclic level graphs and provide a linear
time algorithm using quadratic area and with at most two bends per edge.

2 Preliminaries

A cyclic k-level graph G = (V, E, ¢) (k > 2) is a directed graph without self-loops
with a given surjective level assignment of the vertices ¢: V' — {1,2,...,k}. Let
V; C V be the set of vertices v with ¢(v) = i. For two vertices u,v € V let
span(u,v) 1= 6(v) — B(u) if G(u) < B(v) and span(u,v) = 6(v) — G(u) + k
otherwise. For an edge e = (a,b) € E we define span(e) := span(a,b). An edge
e with span(e) = 1 is short, otherwise long. A graph is proper if all edges are
short. Each cyclic level graph can be made proper by adding span(e) — 1 dummy
vertices for each edge e and thus splitting e in span(e) many short edges, which



we call the segments of e. In total, this leads up to O(|E| - k) new vertices.
The first and the last segment of each edge are its outer segments, and all other
segments between two dummy vertices are its inner segments. A proper cyclic
k-level graph G = (V, E, ¢, <) is ordered if < is a total ordering for each V;
(1 <4 < k). In accordance to [3] we say that in an ordered cyclic level graph
there are two conflicting segments if they cross or share a vertex. Conflicts are
of type 0, 1 or 2, if they are induced by 0, 1, or 2 inner segments, respectively.

We represent drawings of cyclic level graphs in an intermediate drawing in
the remainder of the paper assigning each vertex v two coordinates z(v) € R and
y(v) = ¢(v) € N. The a-coordinate increases from left to right, the y-coordinate
increases downwards in edge direction, see Fig. 1(b). All vertices on level 1 are
duplicated on level k + 1 using the same z-coordinates. Each segment s = (u,v)
is drawn straight-line from (z(u),y(u)) to (z(v),y(u) + 1) with slope m
A 2D drawing as in Fig. 1(a) is obtained from an intermediate drawing by
transforming each point p = (z(p), y(p)) of the plane to (z2p(p), y2n(p)) = (r(p)-
cos(a(p)), r(p) - sin(a(p))), with the radius r(p) = (offset, + max,cv (z(v))) —
z(p) - 0, and the angle a(p) = (y(p) — 1) - 2X. The constant offset, defines the
minimum distance of a vertex to the center and J, the minimum distance of
vertices on the same level. A 8D drawing as in Fig. 1(c) uses the coordinates
(z30(P), Y30 (), 23D () = (2(p) - 8z, =7k - sin(a(p)), i - cos(a(p))) where g
is the radius of the cylinder. These equations transform straight lines of the
intermediate drawing to spiral segments in the 2D or 3D drawings.

A drawing is (cyclic level) plane if the edges do not cross except on common
endpoints. A cyclic k-level graph is (cyclic level) planar if such a drawing exists.

3 Layout Algorithm

In this section we describe our coordinate assignment phase for cyclic level
graphs. We adapt the algorithm of Brandes and Kopf [3] and use their nota-
tion. Like them, we also assume that the crossing reduction has avoided type 2
conflicts. These can be avoided even for cyclic level graphs as shown recently [5].

The input to our algorithm is the output of the third phase and thus a proper
ordered cyclic level graph. Note that dummy vertices were introduced after the
leveling. Algorithm 1 consists of three basic steps: block building (lines 4-5),
horizontal compaction (lines 6-12), and balancing (line 14) which reflect the steps
in [3]. The first two steps are carried out four times (runs) for each combination
of left/right with up/down alignment (line 2). The four results are merged by
the balancing step. We describe the left top run only. The other three runs are
realized by flipping the graph horizontally and/or vertically before and after
(lines 3, 13) each run. The computed intermediate drawing can be transformed
into the 2D or 3D drawing, where dummy vertices are replaced by edge bends.

In the cyclic case there may be unavoidable cyclic dependencies in the left-
to-right ordering among vertically aligned paths. Thus, it is impossible to draw
inner segments vertically, in general. We solve this problem by shearing the
drawing of such a cycle s.t. all inner segments have the same slope.



Algorithm 1: cyclicCoordinateAssignment

Input: G = (V, E, ¢, <): An ordered and proper cyclic k-level graph
Output: Coordinates (z(v),y(v)) for each v € V in the intermediate drawing 7

1P—0
2 foreach (h,v) € {left, right} x {up, down} do
3 G’ — flip(G, h,v) // according to current run
4 H «+ buildCyclicBlockGraph(G’)
5 splitLongBlocks(H) // split long and closed blocks
6 S «— computeSCCs(H)
7 foreach complex SCC S € S do
8 S’ «— cutSCC(S) // returns non-cyclic block graph
9 width(S’) « compact(S’) // using two topsorts
10 shear(S’, —(wind(S") - k)/ width(S"))  // shear S’ with given slope
11 S—S\Sus
12 compact(S) // globally all SCCs
13 P — P UAlip(S, h,v)
14 7 — balance(P) // balance four runs

15 return 7

3.1 Block Building

The block building phase is done in the same way as in [3]. We try to align vertices
with its median adjacent vertices to blocks and remove all other segments level
by level until we obtain a cyclic path graph and thus a cyclic block graph.

Definition 1. A cyclic path graph H' = (V, Eiptra, ®, <) is an ordered and
proper cyclic level graph with a plane embedding respecting the ordering <. Each
verter of H' has indegree and outdegree at most one. We call each connected
component of H' a block and all edges e € Ey4y4 intra block edges. A block B is
closed if each vertex of B has indegree and outdegree one or open, otherwise. The
height of B is defined as the number of intra block edges in B. The cyclic block
graph H = (V, Eintra U Einger, @) of H' is obtained by adding an edge e € Ejpter
from each vertex in H' to its consecutive right vertex on the same level (if there
is one), which we call inter block edges.

To create such a graph we first mark outer segments involved in type 1 conflicts
between two levels. Then, we traverse the lower level from left to right and try
to align each vertex with one of its median predecessor vertices. First we try its
upper left median, then its upper right median. An alignment is impossible if
the segment is marked or if it would cross a segment already used for aligning.
The current vertex becomes the top vertex of a new block if both alignments
fail. All inner segments of an edge are aligned and thus lie in the same block.
As each block is drawn with constant slope, this ensures at most two bends per
edge. Fintra is the set of all remaining edges. See Fig. 2 for an example. Vertices
and intra block edges of the same block are framed. The inter block edges lie on
the level lines. The dotted segments were removed in the block building phase.



(a) Left upper run (b) Right upper run

Fig. 2. Block graphs of Fig. 1(a) to (c) as 2D drawings

The cyclic block graph can have closed blocks (with height k) and open blocks
with height > k (spirals) which shall be avoided to simplify the algorithm (line
5). In both cases we split such a block by removing outer segments until each
resulting block has at most height k£ — 1. Such outer segments always exist, as no
edge can span more than k levels. Therefore, the invariant of at most two bends
per edge still holds. Note that an originally closed block will not be sheared like
other blocks in Sect. 3.2 as it cannot be part of a cyclic dependency. See Fig. 2(b)
for an example: The segment (2,4) was removed to open a closed block and the
segment (5,7) was used to split a long block in two shorter ones. The result is a
cyclic block graph with open blocks of height at most k — 1.

3.2 Horizontal Compaction

In this section we compact the cyclic block graph by arranging all blocks as close
to each other as possible minimizing the width of the drawing. Not all blocks
can be drawn vertically as there can be cyclic dependencies in the left-to-right
ordering among blocks, which we call rings.

Definition 2. A block path P in a cyclic block graph H = (V, Eintra U Einter, @)
s a sequence of vertices vy, ...,vs € V s.t. for each pair of consecutive vertices v;
and vip1,1 <1 <8, (vi,vi41) € Eintra 07 (Vi41,0i) € Eingra 07 (03, 0i41) € Einter-
It is simple if all vertices are mutually distinct. A block path is a ring R if vi =
vs. In a simple ring the vertices vy, ...,vs_1 are mutually distinct. The width
of R is the number of inter block edges in R. Let Cqown and cyp be the number of
intra block edges traversed in R in and against their direction, respectively. The
number of windings of R is then defined as wind(R) = (Cqouwn — Cup)/k-

Informally, a ring is a cycle in the block graph where the direction of the inter
block edges is preserved and the intra block edges are used in any direction.



wind(R) counts how often R wraps around the center. As each ring is an ordered
sequence, we count windings along increasing and decreasing levels positive and
negative, respectively. We consider the strongly connected components (SCCs)
connected by block paths of the block graph separately. The simple SCCs consist
of one block. All other complex SCCs contain rings. Figure 2(a) consists of three
simple SCCs ((2,4), (7,9,12) and (13)) and one complex SCC (the remaining
two blocks) in which all simple rings R have width(R) = 2 and wind(R) = 1.

Lemma 1. For each ring R of a cyclic block graph G wind(R) # 0.

Proof. Assume for contradiction that there exists a ring R with wind(R) = 0
in the block graph of G. Unwrapping G several times, i.e., placing multiple
copies of the intermediate drawing one below the other and merging first and
last levels, leads to a block graph of a (non-cyclic) level graph H which contains
R completely. Then, H has a cyclic dependency, which is a contradiction. a

Lemma 2. For each simple ring R of a cyclic block graph |wind(R)| < 1.

Proof. Assume for contradiction that there is a simple ring R with |wind(R)| > 1.
As R wraps around the center in the 2D drawing more than once, each drawing
of R crosses itself. Each cyclic path graph is planar. Further, each drawing of it
respecting its ordering can be extended to a planar drawing of its cyclic block
graph by adding the inter block edges along the level lines. Since R is a subgraph
of the cyclic block graph, this is a contradiction. a

Theorem 1. Let R be the set of all simple rings of an SCC in a cyclic block
graph. For each R € R wind(R) =1 or for each R € R wind(R) = —1.

Proof. According to Lemmas 1 and 2 |wind(R)| = 1 holds for each ring R € R.
Assume for contradiction that there exist two rings Ry, R2 € R with wind(R;) =
1 and wind(Rg) = —1. Let v; and vy be vertices in Ry and Rs, respectively. Let
S be a (not necessarily simple) ring through v, and ve, which always exists as
vy and vy lie in the same SCC. Due to Lemma 1 wind(S) # 0. If wind(S) > 0,
let T be a non-simple ring consisting of S and wind(S) many copies of Ry joined
via ve. Otherwise, let T be a ring consisting of S and — wind(.S) many copies of
R; joined via vy. In both cases wind(7T') = 0, which contradicts Lemma 1. a

Definition 3. Let S be a complex SCC of a cyclic block graph containing a
simple ring R. We define wind(S) = wind(R) and width(S) as the maximum
width of all simple rings in S.

Horizontal Compaction of a complex Strongly Connected Component
It is not possible to draw all blocks of a complex SCC S straight-line and verti-
cally. Therefore, we will draw all blocks of S with the same slope. The slope has
to be chosen s. t. each ring, and thus the resulting curve, in S starts and ends at
the same coordinates. All rings in S have the same number of windings wind(.5),
which is either 1 or —1. Thus, each simple ring spans wind(.S) - k levels. To draw



(c) Sheared drawing (d) Final intermediate drawing

Fig. 3. Drawing of a complex SCC

one simple ring R we could use the slope —(wind(R) - k)/ width(R), which would
result in inter block edges of unit length. In order to draw all blocks in S with
the same slope (line 10 in Algorithm 1) we must use the width of the widest
simple ring of S and the slope —(wind(S) - k)/ width(S). With this slope the
widest ring will fit exactly and use unit length inter block edges. All narrower
rings will have some unused horizontal space in the drawing and thus have inter
block edges which are longer than one unit.

To use this slope we have to determine the width of the widest simple ring in
S. The general problem of finding a longest cycle is NP-hard [4]. However, here
it can be solved in linear time by cutting the SCC. Finding the length and com-
pacting the layout is done simultaneously. To cut an SCC (line 8 in Algorithm 1),
we start at an arbitrary block B and temporarily remove all incoming inter block
edges of B. We then follow the outgoing inter block edge of the topmost vertex
of B to the next block B’. We temporarily remove all incoming inter block edges
of B’ which are above the traversed incoming edge. We repeat this procedure
until the topmost vertex of the current block has no outgoing inter block edge.
Note that this happens before B is visited a second time, as otherwise the SCC
would contain unreachable blocks. Thus, a block path P, from B to a rightmost
vertex in S is found. The same procedure is repeated from starting block B using
the outgoing inter block edge of the lowest vertex to reach B’ and deleting all
incoming inter block edges below the traversed edge until a lowest vertex with
no incoming inter block edge is found, which gives the block path P;.

Combining P, and P, results in a y-monotone path P from a rightmost vertex
through B to a leftmost vertex, using inter block edges in both directions and
preserving intra block edge directions. Due to the removed incoming inter block
edges left of P all rings in S are cut exactly once. We then assign an arbitrary



vertex v € V of B the new coordinate y'(v) = ¢(v). In a traversal of the block
graph we assign each vertex a y’-coordinate: Using an inter block edge we assign
both end vertices the same y'-coordinate. Using an intra block edge in or against
its direction we increase or decrease the y'-coordinate by 1, respectively, without
using a modulo operation. The result is an acyclic block graph, which we compact
(in contrast to [3]) in the following way (line 9 in Algorithm 1): We place each
block which is a source in the acyclic block graph on an imaginary zero line,
treat all other blocks in the topological order and move them as much to the
left as possible preserving unit distance. Afterwards, we fix all sinks on their
positions, treat all other blocks against the topological order and move them as
much to the right as possible. For placing a block as close as possible to the
already placed ones, we traverse its levels. After the compaction each block (and
therefore each vertex v in S) has an assigned z’-coordinate. Let e = (u,v) be a
removed inter block edge. The width of the widest simple ring of S through e is
then z'(u) — 2/(v) + 1. Considering all removed inter block edges and computing
the maximum value gives the width of the widest simple ring width(S) in S.

See Fig. 3 for an example of an SCC S with wind(S) = 1 and k = 6 levels.
Figure 3(a) shows a leftmost intermediate drawing with the black start block B.
Its lowest vertex is already the leftmost vertex on its level. To reach a rightmost
vertex four other blocks have to be visited. The dashed line cuts six inter block
edges. Figure 3(b) shows the resulting compacted horizontal block graph using y’-
coordinates. The widths of the widest rings through each of the six cutted edges
are (from top to bottom): 5, 5, 7, 10, 10, 10. Thus, width(S) = 10. Shearing the
drawing with slope %0'6 results in Fig. 3(c¢). Using the modulo operation for the
y-coordinates gives the final intermediate drawing in Fig. 3(d).

Theorem 2. The intermediate drawing of S uses the coordinates x(v) = ' (v)—
(width(S)/(wind(S)-k))-v'(v) and y(v) = ((y'(v)—1) mod k)+1 = ¢(v) for each
vertex v in S. In the drawing all intra block edges have slope(S) = —(wind(5) -
k)/ width(S). The ordering of vertices on the same level is the one given by the
crossing reduction phase and these vertices have at least unit distance.

Proof. In the compacted drawing of the open block graph all blocks are drawn
vertically. Shearing the drawing results in unchanged y’-coordinates and new
x-coordinates x(v) = z'(v) + 3/ (v)/ slope(S). Now all edges have slope slope(.5).
Using the y-coordinates y(v) = ((¢/(v) — 1) mod k) + 1 = ¢(v) does not affect
the slope of the edges. But now all vertices on the same level have the same y-
coordinate again. Let u and v be two consecutive vertices on the same level. Let
u be left of v according to the crossing reduction. If the inter block edge (u,v)
was not cut before, then u and v have the same 3’-coordinates in the compacted
drawing and w is still the left neighbor of v with at least unit distance between
them. This does not change in the sheared or final intermediate drawing. If (u, v)
was cut, then y'(v) = y'(u) — k - wind(S). There exists a simple block path P
from v to u as we are compacting an SCC. P cannot have been cut as otherwise
P and (u,v) form a simple ring that would have been cut twice. The ring formed
by P and (u,v) is at most width(.S) wide and thus z'(v) > a’(u) — (width(S)—1).



After the drawing is sheared, x(v) > x(u) + 1 holds. Therefore, u is still left of v
and the two vertices are at least unit distance apart. As a result, all consecutive
vertices and thus all vertices on the same level are separated by unit distance
and are in the ordering given by the crossing reduction phase. a

Horizontal Compaction Our next step is to globally compact the set of com-
pacted complex SCCs and simple SCCs (line 12 in Algorithm 1).

Lemma 3. In a drawing that respects the order of the crossing reduction phase
all vertices of an SCC on the same level are consecutive.

Proof. Let u,v be two vertices of an SCC on the same level s.t. u is left of v.
Note that there is a block path from v to u. Also, there is a horizontal path from
u to v using inter block edges only. Therefore, all vertices between v and v lie
on a ring containing u and v and thus belong to the same SCC. O

This means that no SCCs can interleave. We interpret the SCCs as super vertices
and perform a topological sorting on the resulting DAG. We then compact the
SCCs as we compacted the blocks of a (non-cyclic) block graph before.

3.3 Balancing

In this phase (line 14 in Algorithm 1) the four results are balanced by computing
one x-coordinate for each vertex out of the four x-coordinates computed by the
four runs. The only difference to the algorithm of Brandes and Kopf [3] is that
we do not use the average median of the four x-coordinates for each vertex,
since this can induce additional bends in the cyclic case. The reason is that on
lines with different slopes the median changes at crossings, i. e., it is a non-linear
function. Hence, we use the average of all four x-coordinates for each vertex.

Proposition 1. Using the average of the x-coordinates of the four runs for each
vertex does not change the ordering of the vertices on a level and preserves at
least unit distance. Additional bends can occur since the blocks of the four runs
may differ. However, the invariant of at most two bends per edge e in the final
drawing still holds, as the y-coordinates of the bends located at the topmost and
lowest dummy vertex of e are identical in each drawing.

Note that it is possible that some vertices in one run belong to a block of an
SCC although they do not belong to an SCC or even one block in another run.
Thus, balancing can lead to more different slopes than in each of the four runs
alone. See Fig. 2 for two different block graphs of two runs of the same graph.

4 Algorithm Analysis

Theorem 3. Let G = (V, E, ¢, <) be a proper ordered cyclic k-level graph. The
width of the intermediate drawing of G is O(|V|?/k) and the area is O(|V|?). For
the 3D drawing the same bounds hold. The 2D drawing has a width and height
of O(|V|?/k) and thus an area of O(|V|*/k?).



Proof. Let S = {S1,...,S5:} be the set of all SCCs. Let N; be the number of
(dummy) vertices in .S;. The width of the compacted drawing of \S; is width(.S;) <
N;. Shearing the drawing of height at most N; with slope — wind(S)-k/width(S;)
adds at most N?/k to the width. Thus, the width of the drawing is in O(N?/k).
The width of the drawing of G is at most the sum of the widths of the drawings
of all SCCs and thus in O(|V|?/k). As the height is k, the area is in O(|V[?).
The height and width of the 2D drawing is twice the width of the intermediate
drawing and thus the area is O(|V|*/k?), however. O

Note that the width of the drawing reduces to O(|V]) if there are no complex
SCCs in the graph. This reduces the area of the intermediate and 3D drawings
to O(]V] - k) and of the 2D drawing to O(|V|?). Complex SCCs can always be
avoided by using special crossing reduction and block building algorithms [5].

Theorem 4. The layout algorithm described in Algorithm 1 has a time com-
plexity of O(|V |+ |E|) for a proper ordered cyclic k-level graph G = (V, E, ¢, <).

5 Summary

We presented the first coordinate assignment algorithm for cyclic level graphs.
Like the established algorithm by Brandes and Ko6pf, which is the de facto stan-
dard coordinate assignment method for hierarchic level graphs, we ensure to
have at most two bends per edge and try to align long edges and center parents
over their children. These are the major aesthetic criteria for such drawings. We
implemented a prototype of our algorithm within the Gravisto toolkit [2].
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