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Abstract. A level graph is a directed acyclic graph with a level assign-
ment for each node. Such graphs play a prominent role in graph draw-
ing. They express strict dependencies and occur in many areas, e. g., in
scheduling problems and program inheritance structures.
In this paper we extend level graphs to cyclic level graphs. Such graphs
occur as repeating processes in cyclic scheduling, visual data mining, life
sciences, and VLSI. We provide a complete study of strongly connected
cyclic level graphs. In particular, we present a linear time algorithm
for the planarity testing and embedding problem, and we characterize
forbidden subgraphs. Our results generalize earlier work on level graphs.

1 Introduction

Cyclic level planar graphs receive their motivation from two sources: level planar
graphs and recurrent hierarchies. A level graph is a directed acyclic graph with
a level assignment for each node. Nodes on the same level are placed at different
positions on a horizontal line and edges are drawn downwards from the upper
to the lower end node. The challenging problems on level graphs are planarity
testing and embedding algorithms in linear time and a characterization in terms
of forbidden subgraphs. This parallels the situation for planar graphs, where
nowadays there are many O(|V |) testing and embedding algorithms [3,8,12] and
the famous Kuratowski graphs [11]: Each graph is planar if it does not contain
a subgraph that is homeomorphic to the complete graph with 5 nodes K5 or
the complete bipartite graph K3,3 with 3 nodes in each set. Level planarity
has been studied intensively in recent years [4, 6]. Jünger and Leipert [9] finally
established a linear time algorithm for the level planarity testing and embedding
problem. Healy et al. [7] gave a complete set of seven level non-planarity patterns
for hierarchies. Fowler and Kobourov [5] added two more forbidden graphs for
a complete set for arbitrary level graphs. Bachmaier et al. [1] extended level
planarity to radial level planarity. There the levels are concentric circles and the
edges are directed from inner to outer circles.

Recurrent hierarchies were introduced by Sugiyama et al. [15] more than 25
years ago. A recurrent hierarchy is a level graph with additional edges from the
last to the first level. Here two drawings are natural: The first is a 2D drawing,
where the levels are rays from a common center, and are sorted counterclock-
wise by their number, see Fig. 1(a). All nodes of one level are placed at different
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positions on their ray and an edge e = (u, v) is drawn as a monotone coun-
terclockwise curve from u to v wrapping around the center at most once. The
second is a 3D drawing on a cylinder, see Fig. 1(b). A planar recurrent hierarchy
is shown on the cover of the book by Kaufmann and Wagner [10]. There it is
stated that recurrent hierarchies are “unfortunately [. . . ] still not well studied”.

The standard method to visualize directed graphs is the Sugiyama algo-
rithm [15], which eliminates all cycles in the graph. This may be acceptable in
many applications. But there are areas in which it is important that the cycles
are preserved and represented as cycles, e. g., visual data mining, or chemical
reactions in the life sciences [14]. Important applications can further be found in
the layout of regular VLSI circuits [13]. Recurrent hierarchies are well suited to
visualize such cyclic or regular structures. To enhance the readability of draw-
ings, edge crossings should be avoided and even excluded.

In this paper we improve our earlier result [2] of an O(|V | log |V |) planarity
testing and embedding algorithm on strongly connected cyclic level graphs and
present an optimal linear time algorithm. Moreover, we characterize forbidden
subgraphs for such graphs. This settles the major questions on strongly con-
nected cyclic level graphs.
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Fig. 1. Drawings of a cyclic 5-level graph G
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Fig. 2. (2, 1)-hierarchy of G
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2 Preliminaries

A cyclic k-level graph G = (V (G), E(G), φG) (k ≥ 2) is a directed graph with-
out self-loops with a given surjective level assignment of the nodes φG : V →
{1, 2, . . . , k}. For two nodes uG, vG ∈ V (G) let span(uG, vG) := φG(vG)−φG(uG)
if φG(uG) < φG(vG), and span(uG, vG) := φG(vG)−φG(uG)+k otherwise. For an
edge e = (uG, vG) ∈ E(G) we define span(e) := span(uG, vG). For a simple path
or a simple cycle P define span(P ) :=

∑
e∈E(P ) span(e). All paths and cycles in

this paper are directed if not stated otherwise. A graph is strongly connected if
for all uG, vG ∈ V (G) a path from uG to vG exists. A cyclic k-level graph G is a
k-level graph if φG(uG) < φG(vG) for each edge (uG, vG) ∈ E(G) holds. A draw-
ing is (cyclic) level plane if the edges do not cross except on common endpoints.
A (cyclic) k-level graph is (cyclic) level planar if such a drawing exists. The right
outer face is the face of the 2D drawing containing the center and the left outer
face is the unbounded face (see Fig. 1(a)). A (cyclic) level planar embedding G
of G consists of two lists N−G (vG) and N+

G (vG) for each node vG ∈ V (G) which
contain the end nodes of ingoing and outgoing edges, respectively. Both lists are
ordered from left to right. A hierarchy is a level graph G s. t. each node vG with
φG(vG) 6= 1 has an ingoing edge.

3 Cyclic Level Non-planarity Patterns

In this section we give a characterization of cyclic level non-planarity patterns
in strongly connected graphs (SCLNP).

Definition 1. A (cyclic) level non-planarity pattern P is a set of (cyclic) level
non-planar graphs with structural similarities. We call a pattern minimal if for
each element of P the removal of one edge makes the graph (cyclic) level planar.
A (cyclic) level graph G matches a pattern P if there exists p ∈ P s. t. p is a
subgraph of G. A set of patterns S is minimal if each pattern in S is minimal.
S is complete if each (cyclic) level non-planar graph matches a pattern in S.

Concerning level non-planarity patterns, Di Battista and Nardelli [4] presented
three patterns for hierarchies (HLNP). This set is complete but not minimal.
Healy et al. [7] gave seven minimal level non-planarity patterns for hierarchies
(MHLNP). This complete set consists of two tree patterns T1 (Fig. 3(a)) and T2
(Fig. 3(b)), a level non-planar cycle C0 (Fig. 3(c)), and four level planar cycles
with one (C1, Fig. 3(d)) to four (C4, Fig. 3(h)) paths starting from the cycle
(C2 having two subcases). For the formal definition of the patterns see [7]. Note,
that contrary to graph planarity, the partition of all minimal (cyclic) non-level
planar graphs into patterns is somewhat arbitrary. Thus, nobody has treated
the minimal cardinality of a minimal set of patterns.

Fowler and Kobourov [5] showed that the MHLNP set is not complete for
general level graphs and added two more tree patterns, which are not needed for
hierarchies, however. These nine patterns (MLNP) are minimal and complete
for the general case. To formally describe cyclic level non-planarity patterns, we
need the following definition.
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Fig. 3. The cyclic level non-planarity patterns for strongly connected graphs (SCLNP)

Definition 2. Let G be a cyclic k-level graph. Let c ∈ N and l ∈ {1, . . . , k}.
Suppose that no edge crosses level l (if such an edge e = (uG, vG) exists, add a
node dG to level l, remove the edge e and add the edges (uG, dG) and (dG, vG)
to the graph). The (c, l)-hierarchy H of G is a (ck+1)-level hierarchy. For each
node vG on level l H has c + 1 duplicates v1, vk+1, . . . , vck+1 with vi on level i.
Let wG be a node with φG(wG) 6= l and let l′ = φG(wG)− l+1 if φG(wG) > l and
l′ = φG(wG) − l + k + 1 otherwise. For each such node wG, H has c duplicated
nodes wl′ , wk+l′ , . . . , w(c−1)k+l′ with wi on level i. For each edge e = (uG, vG)
and for each duplicate ui in H with i < ck+1 H contains the edge (ui, vi+span(e)).

Informally speaking, the (c, l)-hierarchy H of G is obtained by splitting G at
level l (thus creating a level graph) and duplicating the graph c times one below
the other. We will use the notation vi for a duplicate of vG ∈ V (G) on level i in
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H in the following. Figure 1 shows a cyclic 5-level graph and Fig. 2 a level plane
drawing of the corresponding (2, 1)-hierarchy. Note that a (c, l)-hierarchy does
not include an embedding.

In a hierarchy, each node v with φ(v) > 1 has an ingoing edge. In strongly
connected cyclic level graphs each node has an ingoing and outgoing edge. There-
fore, it is not obvious that each of the seven MHLNP patterns can occur in the
cyclic case. But for each of the patterns a strongly connected cyclic level graph
can be constructed. Figures 4(a) to (h) show (1, 1)-hierarchies of strongly con-
nected cyclic k-level graphs which match exactly one of the MHLNP patterns.
The edges needed for the patterns are drawn as full lines. Obviously each of the
MHLNP patterns is a proof of non-planarity in the cyclic case as well. Therefore,
we define a cyclic version of each of the seven MHLNP patterns:

Definition 3. Let G be a cyclic k-level graph. We say that G matches the
pattern CT1 if there exists c ∈ N s. t. the (c, 1)-hierarchy of G matches T1.
We define the remaining six patterns in an analog way and set SCLNP’ =
{CT1, CT2, CC0, CC1, CC2, CC3, CC4}.

Definition 4. Let G be a cyclic k-level graph and c ∈ N \ {0}. A c-cycle is a
simple cycle with span c · k.

Figure 4(i) shows the (1, 1)-hierarchy of a strongly connected cyclic 2-level graph
which is a 2-cycle. Note that this graph is cyclic level non-planar, but does not
match any pattern of SCLNP’. On the other hand none of the graphs in Fig. 4(a)
to (h) contains a 2-cycle. Therefore, an eighth cyclic level non-planarity pattern
is needed.

Definition 5. We define CC as the set of all c-cycles in cyclic k-level graphs
with c, k ∈ N, c > 1 (Fig. 3(i)). We set SCLNP = SCLNP’ ∪{CC}.

Proposition 1. Let G be a cyclic k-level graph. If G matches CC, then G is
cyclic level non-planar.

Note that CC is a minimal pattern, as removing one edge from the cycle leads
to a cyclic level planar graph.

Definition 6. We call a (c, l)-hierarchy H of a cyclic level graph G strongly
level planar if it is level planar and has a level planar embedding s. t. the first
and last level have the same permutation. We call such an embedding a strongly
level planar embedding.

Proposition 2. Let G be a strongly connected cyclic k-level graph and l ∈
{1, . . . k}. G is cyclic level planar if and only if the (1, l)-hierarchy of G is strongly
level planar. Let c ∈ N. If the (c, l)-hierarchy of G is (strongly) level non-planar,
then G is cyclic level non-planar.

Definition 7. Let H be a level graph with a fixed level planar embedding H and
u, v be two nodes on the same level. We say u < v (u > v) if u lies left (right)
of v in H.
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Fig. 4. (1, 1)-hierarchies of cyclic graphs matching exactly one of the SCLNP patterns

Definition 8. Let U , V , W be three permutations of the same node set. We
define the lexicographical ordering with respect to U on the set of permutations
in the following way: If V and W are the same permutations, then they are
equal in the ordering. Otherwise there is a leftmost position on which V and W
have different nodes. Let v and w be the nodes on this position in V and W ,
respectively. We define V < W if v < w in U and V > W if v > w in U .

Another way to look at this ordering is as follows: The permutation U definies
an ordering on an alphabet. A permutation V is then smaller thanW if the word
it builds is smaller than the word of W in the lexicographical ordering.

Lemma 1. Let G be a strongly connected cyclic k-level graph s. t. G does not
match CC. Let H be the (2, 1)-hierarchy of G. Let H be level planar with a fixed
level planar embedding H. Then G is cyclic level planar and a cyclic level planar
embedding G of G exists s. t. the permutation of level 1 in G is the same as the
permutation of level k + 1 in H.
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Proof. Assume for contradiction that such an embedding G of G does not exist.
Consider all level planar embeddings of H which have the same permutation of
level k+1 as H. None of these embeddings has this permutation on level 2k+1,
too (otherwise G would be cyclic level planar with the same permutation on level
1). Of all these embeddings choose one which has the minimal permutation on
level 2k + 1 in the lexicographical ordering with respect to the ordering of level
k+1. We consider this embedding from now on. We show that we can construct
a new embedding with an even smaller permutation on level 2k + 1, which is a
contradiction.

As the permutations of level k+1 and 2k+1 are not the same, there have to
exist two nodes u and v s. t. uk+1 < vk+1 but u2k+1 > v2k+1. W.l.o.g. let u2k+1

and v2k+1 be a pair of nodes with the wrong orientation that have the maximal
number of nodes between them. See Fig. 5 for a sketch in which we omit the
indices indicating the levels.

As G is strongly connected but does not match CC, each node lies on a 1-
cycle. Thus, there have to be paths Qu from uk+1 to u2k+1 and Qv from vk+1 to
v2k+1. As the embedding is level planar,Qu andQv cannot be disjoint. Therefore,
we have a path Ql from uk+1 to v2k+1 and a path Qr from vk+1 to u2k+1. As G
does not match CC, Ql and Qr cannot be disjoint. Even more than that, there
has to exist a node which lies on all paths from uk+1 to v2k+1 and on all paths
from vk+1 to u2k+1 (otherwise the leftmost path from uk+1 to v2k+1 and the
rightmost path from vk+1 to u2k+1 would be disjoint and generate a graph in
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CC). Let wl1 and xl2 be the uppermost and lowest such nodes, respectively, and
Q be one path between them.

Let Rv be the leftmost path from xl2 to v2k+1. Let Ru be the rightmost path
from xl2 to u2k+1. We now prove that we can flip all nodes between Rv and
Ru, thus creating a smaller permutation on level 2k + 1 in the lexicographical
ordering and thus a contradiction.

Consider the nodes on the path Ru from level l2 + 1 to 2k. Assume for
contradiction that a node yl3 on the path has an outgoing edge right to Ru. We
follow this path O downwards. If O ends on Ru, then Ru was not the rightmost
path. Therefore, it has to reach a node o2k+1 on level 2k+1 right of u2k+1. As O is
disjoint to Rv, ok+1 has to lie left of vk+1 (we do not know whether ok+1 < uk+1

or ok+1 > uk+1 holds). But then o2k+1 and v2k+1 have the wrong orientation
and have more nodes between them than v2k+1 and u2k+1. A contradiction. The
same argument can be used for Rv (switching left and right).

Now consider the nodes on the path Rv from level l2 + 1 to 2k + 1. Assume
for contradiction that a node zl4 on the path has an ingoing edge left to Rv. We
follow this path I upwards. If I ends on Rv below or on xl2 , then Rv was not the
leftmost path. If I ends on Q \ {xl2}, then xl2 would not lie on each path from
uk+1 to v2k+1. If it ends on the leftmost connection of uk+1 to wl1 above wl1 ,
then there would be disjoint paths from uk+1 to v2k+1 and from vk+1 to u2k+1.
The only remaining possibility is that I reaches the level k + 1 on a node ik+1

left of uk+1. Due to the path I, i1 has to lie right of u1 and v1. However, we do
not know whether u1 < v1 or u1 > v1 holds.

We now consider the position of i2k+1. If i2k+1 > u2k+1 and, therefore,
i2k+1 > v2k+1, then i2k+1 and v2k+1 have the wrong orientation and more nodes
between them than u2k+1 and v2k+1. If i2k+1 lies between v2k+1 and u2k+1,
we consider the path I ′ from i2k+1 upwards. If I ′ reaches Ru, then we have
disjoint paths from vk+1 to i2k+1 and from ik+1 to v2k+1 and thus G matches
CC. If I ′ reaches Rv first, then I ′ would cause a crossing from ik+1 upwards.
The remaining possibility is that i2k+1 < v2k+1 < u2k+1. Now the same path I ′′
from i1 to ik+1 and from ik+1 to i2k+1 has to exist. I ′′ cannot be disjoint with
Qu or Qv as i1 is right of u1 and v1 but ik+1 is left of uk+1 and vk+1. Therefore,
from i2k+1 upwards I ′′ has to reach I or Rv first to reach Qu. In both cases a
crossing from ik+1 upwards occurs, which is a contradiction. The same argument
can be used to show that no path from Ru upwards exists.

As a consequence, we do not have any outgoing or ingoing edges on Rv to the
left between l2 +1 and 2k+1. Analogously, we do not have outgoing or ingoing
edges to the right of Ru between the same levels. So we can flip the subgraph
between Rv and Ru and thus create a permutation of level 2k+1 which is smaller
than the given one in the lexicographical ordering with respect to the ordering
of level k+1. A contradiction. Thus, G is cyclic level planar with an embedding
G s. t. the permutation of level 1 in G is the permutation of level k+1 in H. ut

Figure 1 shows a strongly connected cyclic 5-level graph and Fig. 2 an arbitrary
level plane drawing of its (2, 1)-hierarchy. Note that levels 1, 6, and 11 have
three different permutations. According to Lemma 1, we can fix the embedding
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of level 6 and change the permutation of level 11 to the permutation of level 6.
We search for two nodes on level 11 which have the wrong orientation according
to level 6 and the maximal number of nodes between them. These nodes are
u = 1 and v = 9. We get w = x = 6 and flip the tree below node 6. After that 1
and 2 have the wrong orientation (with w = 4 and x = 6) and we flip these two
nodes. Thereafter, levels 6 and 11 have the same permutation. This permutation
is used for the cyclic level plane drawings in Fig. 1.

Theorem 1. Let G be a strongly connected cyclic k-level graph. G is cyclic level
planar if and only if it does not match a pattern in SCLNP.

Proof. “⇒” We show the contrapositive. If G matches a pattern of SCLNP’, then
there exists c ∈ N s. t. the (c, 1)-hierarchy H of G matches an MHLNP pattern.
Therefore, H is level non-planar. According to Proposition 2, G is cyclic level
non-planar then. If G matches the pattern CC, then G is cyclic level non-planar
according to Proposition 1.

“⇐” We show the contrapositive. Let G be cyclic level non-planar and let
H be its (2, 1)-hierarchy. If H is level non-planar, then H matches a MHLNP
pattern and, therefore, G matches a SCLNP’ pattern. If H is level planar, then
(the contrapositive of) Lemma 1 shows that G matches the pattern CC. ut

Note that according to Lemma 1 for each strongly connected cyclic k-level non-
planar graph not matching CC its (2, 1)-hierarchy matches an MHLNP pattern.
Therefore, patterns in SCLNP’ can be limited to 2k + 1 levels.

4 Cyclic Level Planarity Testing and Embedding

In this section we give a simple linear time level planarity testing and embedding
algorithm.

Definition 9. Let G be a cyclic k-level graph and H the (2, 1)-hierarchy of G.
Let H be level planar with embedding H. Let F = (v1k+1, v

2
k+1, . . . , v

s
k+1) be the

permutation of level k+1 in H. The rigid (1, 1)-hierarchy H ′ of H consists of the
(1, 1)-hierarchy of G and the additional levels 0 and k+2. Level 0 has the nodes
d10, d

2
0, . . . d

s+1
0 and level k + 2 the nodes d1k+2, d

2
k+2, . . . , d

s+1
k+2. H

′ contains the
edges (di0, vi1), (d

i+1
0 , vi1), (vik+1, d

i
k+2) and (vik+1, d

i+1
k+2) for each i ∈ {1, . . . , s} as

well as the edges (d10, d
1
k+2) and (ds+1

0 , ds+1
k+2).

Note that the rigid (1, 1)-hierarchy H ′ of H is level planar if and only if it has
an embedding s. t. the levels 1 and k+1 have the same permutation F . Then H
is strongly level planar and G cyclic level planar. From Theorem 1 we get the
following idea for a cyclic level planarity testing and embedding algorithm.

Let G = (V (G), E(G), φG) be a strongly connected cyclic k-level graph. We
first test whether |E(G)| ≤ 3|V (G)| − 6 holds (otherwise G cannot be (cyclic
level) planar (Euler)). Construct the (2, 1)-hierarchy H of G then. If H is level
non-planar, then G is cyclic level non-planar. Otherwise let H be a level planar
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embedding of H. We construct the rigid (1, 1)-hierarchy H ′ of H and test its
level planarity. If it fails G is cyclic level non-planar. If it does not fail, we trans-
form the level planar embedding H′ of H ′ into a cyclic level planar embedding
G of G in a straightforward way: Let vG ∈ V (G) with φG(vG) 6= 1. Let vl be the
corresponding node in H ′. We set N−G (vG) = N−H′(vl) and N+

G (vG) = N+
H′(vl).

For a node vG ∈ V (G) with φG(vG) = 1 we set N−G (vG) = N−H′(vk+1) and
N+

G (vG) = N+
H′(v1). In both cases we identify the nodes in H ′ with the corre-

sponding nodes in G.

Algorithm 1: cyclicLevelPlanarEmbedding
Input: A strongly connected cyclic k-level graph G = (V (G), E(G), φG)
Output: A cyclic level planar embedding G or false

1 if |E(G)| > 3|V (G)| − 6 then
2 return false

3 Let H be the (2, 1)-hierarchy of G
4 if ¬levelPlanar(H) then
5 return false

6 Let H be a level planar embedding of H
7 Let H ′ be the rigid (1, 1)-hierarchy of H
8 if ¬levelPlanar(H ′) then
9 return false

10 Let H′ be a level planar embedding of H ′

11 Construct cyclic level planar embedding G of G from H′

12 return G

Theorem 2. Cyclic level planarity testing and embedding on strongly connected
cyclic level graphs can be achieved by Algorithm 1 in linear time.

Proof. The correctness of Algorithm 1 follows directly from Theorem 1. To prove
its time complexity, we consider the construction of the (2, 1)-hierarchy H of G
first. The addition of dummy nodes on level 1 increases the number of nodes and
edges by at most E(G). After that the graph is duplicated: Each node on level
1 has three duplicates, all remaining nodes and all edges have two duplicates.
Therefore, the size of H is linear in the size of G. All steps can easily be done in
linear time. To test the level planarity of H any linear time level planarity testing
and embedding algorithm for hierarchies can be used [4, 9]. The construction of
the (1, 1)-hierarchy is possible in linear time as well. Let w be the number of
nodes on level 1 in this hierarchy. To build the rigid (1, 1)-hierarchy, we add
2(w + 1) nodes and 4w + 2 edges and again use a linear time level planarity
testing and embedding algorithm. The construction of G from H′ can again
easily be done in linear time. ut
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5 Summary and Open Problems

We have shown that each of the seven MHLNP patterns of Healy et al. [7] are
necessary in the strongly connected cyclic level case. To build a complete set,
an eighth pattern is needed: a simple cycle wrapping around the center more
than once (CC). This leads to a simple linear time level planarity testing and
embedding algorithm.

As open problems remain finding a linear time planarity testing and embed-
ding algorithm for arbitrary cyclic level graphs, a stronger characterization of
the SCLNP patterns as well as finding patterns for the arbitrary cyclic level case.

Conjecture 1. Let G be a strongly connected cyclic k-level graph. G is cyclic level
planar if and only if G does not match a pattern in SCLNP with the patterns
in SCLNP’ using at most k + 1 levels.
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(b) Pattern CC0 using 5 levels in a not
strongly connected graph

Fig. 7. (1, 1)-hierarchies of cyclic 3-level graphs matching one SCLNP pattern

Figure 7(a) shows a (1, 1)-hierarchy of a cyclic 3-level graph which matches the
pattern CC2 (case 1) and uses 4 levels. If Conjecture 1 holds, it is not possible
to construct a strongly connected cyclic k-level non-planar graph not matching
CC s. t. all patterns use more than k + 1 levels. Obviously, this is false for not
strongly connected graphs, as the cyclic 3-level graph in Fig. 7(b) shows. The
only pattern it matches is the pattern CC0 using 5 levels. This example can
easily be enlarged s. t. the pattern uses an arbitrary amount of levels.

Conjecture 2. Let G be a (not necessarily strongly connected) cyclic k-level
graph. G is cyclic level planar if and only if there does not exist c ∈ N s. t.
the (c, 1)-hierarchy matches one of the nine MLNP patterns and G does not
contain an undirected simple cycle wrapping around the center more than once.

Lemma 2 is a strong indication for Conjecture 1:

Lemma 2. Let G be a strongly connected cyclic k-level graph not matching CC.
If G matches an SCLNP’ pattern using less than 2k + 1 and more than k + 2
levels, then it matches another instance of an SCLNP’ pattern.
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Proof. Let H be the (2, 1)-hierarchy of G. W.l.o.g. let 1 be the first level of the
pattern in H. Note that H matches the pattern, but the (2, 2)-hierarchy H ′ of G
does not match it, as the level 1 of G is missing at the top. As more than k + 2
levels are used by the pattern, the pattern is not completely there from level k
downwards as well. H ′ has to match another SCLNP’ pattern, as we could use
H ′ instead of H in Lemma 1. ut

Note that Lemma 2 does not make a statement on patterns using 2k+1 or k+2
levels. Nevertheless, we conjecture that the patterns use k + 1 levels at most,
as all strongly connected cyclic level graphs matching a longer pattern seem to
match a shorter pattern or a CC pattern as well.
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