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Directed Graphs are usually layouted with the hierarchic Sugiyama framework, which is
indeed one of the most important drawing methods for graphs. It places the vertices
on parallel level lines and attempts to map the directions of the edges to a uniform
geometric direction, e. g., from top to bottom. Then the resulting drawing visualizes a
common direction of information flow stored by the structure of the input graph.

In this thesis we generalize the traditional hierarchic drawing style in two ways:
radial drawings with level lines forming concentric cycles and cyclic drawings with levels
forming a star, i. e., recurrent hierarchies. Further, we allow edges between vertices
within the same level, which often occur in practice. Our main results are a complete
framework for both layout conventions and a major enhancement of the reduction of
edge crossings using a new global optimization method. This approach also upgrades
traditional horizontal level drawings.

Applications of (drawings of) general level graphs include for example state or flow
charts, schedules, UML class diagrams, entity relationship diagrams, and biochemical
pathways. Radial drawings are especially useful to visualize social or policy networks, i. e.,
to map structural centrality like importance or role of the vertices/actors on geometric
centrality or simply to display the vicinity of a distinguished actor. Typical applications of
cyclic level drawings are the visualizations of cyclic structures within graphs as they can
be found for example in periodic event scheduling, biochemical pathways forming cycles
or spirals, and replication of arrays of identical adjoining substructures in VLSI design,
e. g., cells on memory modules. A combination of the radial and cyclic drawing styles
gives interactive 2D views on the torus, which are infinitely scrollable in four directions.
This is suitable for drawings which avoid long edges and their crossings while preserving
the mental map, e. g., for UML class diagrams.
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1
Introduction and Survey

Visually conditioned informations, e. g., from a metro map on Monday morning to an
election forecast on Sunday evening, are ubiquitous. Most of the time humans interpret
visualizations unconsciously the right way, but some illustrations are confusing and raise
misunderstandings, and others are willfully misleading. Good visualizations impart more
information in the blink of an eye and upon smallest area than simple text ever can
describe.

Humans can percept most informations of all with the eyes [64]. This requires at
all times new and more elaborate ways of visualization, since the information amount
is growing extremely fast, in high contrast to the human perception and comprehen-
sion. With growing information floods it is getting more and more difficult to maintain
the overview, to distinguish between major and minor facts, and to isolate the desired
informations from all other.

A folklore example [98]: The city of London describes their metro map graphically
since the end of the 19th century. This was done in a way as it is common for geographical
plans. The visualization showed the ways with different distances for each passage and
with a street map in the background for an easy orientation. With the growth of the train
net it got more and more difficult to visualize it clearly arranged. In 1937 the draftsman
Henry Beck has reduced the visual complexity of the map radically. He has straighten out
the lines and has allowed angles of 45 or 90 degrees only. By the deliberate omittance
of unnecessary details, the map was concentrated to the major facts. From now on the
users had no orientation in a combination with the street map, no basis about the real
distances between the stations, and no information about the exact routing of the tracks
any more. However, for using the plan it was enough to know where to enter or exit the
trains. The reduced map was so successful, that this principle was copied world wide.

Nowadays, the flood of informations to visualize – usually generated with the help of
machines – is in nearly all cases far too much for manual editing. Furthermore, manual

1



2 Chapter 1. Introduction and Survey

layout is a time consuming exercise with relatively poor results for all but the smallest
of visualizations. Thus, there has been considerable interest in automatic or at least
semi-automatic drawing algorithms. These are made possible since in the mid 1980s
graphics workstations became standard. However, algorithms need a well defined input
format, i. e., there is the need to abstract from (relational) information and convert it to
the mathematical model of a graph with vertices for the entities and edges for relations
between them. This is the point where graph drawing comes into play. Here, the goal
is to layout the information structure, i. e., the corresponding graph, such that it is
easy to understand and to remember. The usefulness of a visualization depends on the
layout of the underlying graph: a “nice” drawing can be a great aid to a designer. The
computer science pioneer Donald E. Knuth stated at the Graph Drawing Symposium
1996: “Graph drawing is the best possible field I can think of. It merges aesthetics,
mathematical beauty, and wonderful algorithms.”

The framework for hierarchical layouting [138], often named after one of its inventors
the Sugiyama algorithm, is nowadays the most common method for drawing directed
graphs. By preserving an uniform edge direction the resulting layouts visualize a common
direction of information flow, e. g., for the illustration of chronological or casual depen-
dencies. This maps topological or structural direction to a geometrical direction. Instead
of a monolithic algorithm the authors of [138] describe a modular framework which fea-
tures four consecutive phases. The phases are self-contained and thus exchangeable,
which provides a high flexibility of processing. In our opinion, this is the deeper reason
for the framework’s success. The particular phases are cycle removal, level assignment,
crossing reduction, and coordinate assignment. Unfortunately, almost all problems which
occur during the single phases of this approach are NP-hard. Nevertheless, for all these
problems appropriate heuristics have been developed and nowadays nearly all general
graph drawing software, e. g., [8, 32, 61, 79, 118, 146], use this approach, mostly en-
riched by modifications required in practice like vertices of different sizes and shapes,
ordering constraints, clustering, etc.

Our goal is to extend the framework such that it generates drawings which do not
only use horizontal level lines for visualizing a top-down information flow. In fact, we use
concentric level lines for a flow from a center to the outside and we use levels forming
a star to highlight cyclic dependencies.

Radial drawings are the most important and well-known drawing conventions in so-
cial network analysis and visualization, in particular, displaying centrality indices (impor-
tance) of actors [21, 144]. Nowadays, the practical relevance of radial drawings can be
seen on the exploding popularity of social network and contact platforms in the internet
like Facebook, Google’s Orkut, MySpace, Xing, or LinkedIn, to name only a few. A local
player in Germany, studiVZ, which started in late 2005 had in October 2007 more page
impressions than the major local sites T-Online, mobile.de and Yahoo Germany in sum
[145]. On the other hand, cyclic drawings are especially useful for an easy perception
of cycles. For example, there are well-known cycles in the biosciences, where it is a
common standard to display these cycles as such, e. g., the citrate cycle or the fatty
acid synthesis. These cycles often serve as a landmark [110] and should be visualized
in their natural circular shape. Another inevitable use are repeating processes, such as

http://www.facebook.com/
http://www.orkut.com
http://www.myspace.com/
http://www.xing.com
http://www.linkedin.com/
http://www.studivz.net/
http://www.t-online.de/
http://www.mobile.de/
http://www.yahoo.de/
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daily, weekly, or monthly schedules with the same tasks, which define the Periodic Event
Scheduling Problem [132]. Again, it is important that these cycles are clearly visible;
this makes the drawing “nice”.

1.1 Preliminaries
We first recall some basic concepts and notions of graphs as they are commonly used,
e. g., in [35, 37, 47, 119]. The established visualization methods for different classes of
graphs are summarized in [42, 96, 136], which cover the basics of graph drawing.

1.1.1 Graphs
A graph G = (V,E) is a finite non-empty set of vertices V which are connected by edges
E. It is directed (a digraph) if the edges are ordered pairs of vertices and undirected if the
order does not matter. Thus, we denote a directed edge by e = (u, v) and an undirected
edge by e = {u, v}. The vertices u and v are the end vertices of an edge e = {u, v}
and are called adjacent to each other. Then it is said that u and v are neighbors. An
end vertex is called incident to its edge(s) and vice versa. A vertex is isolated if it has
no incident edges. Consider two directed edges (u, v) and (v, w). Then (u, v) is called
an incoming edge of v and (v, w) is called outgoing edge of v. The degree deg(v) of
a vertex v is the number of incident edges. Let deg(G) := max{deg(v)|v ∈ V } be the
degree of the graph. Let N−(v) := {u | (u, v) ∈ E }, N+(v) := { v | (v, w) ∈ E }, and
N(v) := N−(v) ∪ N+(v) denote the neighborhood of a vertex v. Similarly denote by
E−(v) := {(u, v) ∈ E}, E+(v) := {(v, w) ∈ E}, and E(v) := E−(v) ∪ E+(v) the sets
of incident edges. A graph is complete if it contains all possible edges. The density of a
graph is the ratio of its number of edges over the number of edges of the corresponding
complete graph.

Usually graphs are visualized in such a way that vertices are drawn as points, circles,
or squares and edges are displayed as curves between vertices. For a digraph an edge
e = (u, v) is drawn as an arrow from its source vertex u to its target vertex v. For an
undirected graph an edge is drawn as a simple line between its end vertices. There is no
arrow, indicating the symmetry.

Parallel edges are two or more edges with the same end vertices. A reflex edge is an
edge (v, v). A simple graph does not contain parallel or reflex edges. A multi graph is
a graph without reflex edges. In the following we use simple graphs for simplicity only.
However, all presented concepts and algorithms can deal with multi graphs out of the
box or can easily be extended.

A graph G∗ = (V ∗, E∗) is called a subgraph of the graph G = (V,E) if V ∗ ⊆ V
and E∗ = { (u, v) | u, v ∈ V ∗ } ⊆ E hold.

A (directed) path P = (v1, . . . , vp) is a sequence of vertices vi with (vi, vi+1) ∈ E
for 1 ≤ i ≤ p−1. P is simple if all vertices are mutually distinct. P is a cycle if v1 = vp
for p > 2. P is a simple cycle if all vertices except v1 and vp are mutually distinct. A
directed graph is strongly connected if there exists a directed path between every pair
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of its vertices. A maximal subgraph with such a property is called a strongly connected
component (SCC).
Every graph G = (V,E) can be traversed by a breadth first search (BFS) using a queue
or by a depth first search (DFS) using a stack or recursion in O(|V |+ |E|) time.

1.1.2 DAGs

A DAG is a directed acyclic graph, i. e., it contains no cycles. In a DAG, a vertex with
no incoming edges is called a source and a vertex with no outgoing edges is called a
sink . Each DAG G = (V,E) has a topological sorting of its vertices, which is a linear
ordering of all its vertices v ∈ V such that if E contains a directed edge (u, v) then u
appears before v in this ordering. Such a vertex ordering is not unique and can be found
efficiently in O(|V |+ |E|) time by successively removing all sources.

1.1.3 Level Graphs

Now we specialize to k-level graphs, which is one of the central notions of this thesis.
A k-level graph G = (V,E, φ) with k ≤ |V | is a k-partite graph with a surjective level
assignment φ : V → {1, 2, . . . , k} that partitions the vertex set into k pairwise disjoint
subsets V = V1

.∪ V2
.∪ . . . .∪ Vk, Vj = φ−1(j), 1 ≤ j ≤ k, such that φ(u) 6= φ(v) for

each edge (u, v) ∈ E. A k-level graph is proper if each edge e = (u, v) ∈ E is short,
i. e., span(e) := |φ(u) − φ(v)| = 1. Otherwise, it has a long edge which spans several
levels. Each level graph can be made proper by subdividing long edges with additional
dummy vertices, i. e., replacing it with a path of proper edges. In total up to O(k · |E|)
dummy vertices may be needed. We call a proper edge incident to two dummy vertices
an inner segment. All other proper edges are called outer segments. For proper level
graphs let Ei := { (u, v) | u ∈ Vi−1, v ∈ Vi, 1 < i ≤ k } ⊆ E be the edges between
levels i− 1 and i. In our examples we draw dummy vertices either as small black circles
or as bends. Level graphs are a generalization of bipartite graphs which have only two
levels and no edges between the vertices within the same level.

A (level) embedding E of a proper level graph is a partial order ≺ of the vertices V
such that u ≺ v or v ≺ u iff φ(u) = φ(v).1 Define the (not necessarily consecutive)
positions of the vertices as a function π : V → Z with u ≺ v ⇔ π(u) < π(v) for any two
vertices u, v ∈ Vi on the same level i. Let the crossing function χE : E × E → {0, 1}
be 1 for mutually distinct edges e1, e2 ∈ E if e1 and e2 cross in the embedding E and 0
otherwise.

1For non-proper level graphs the given definition of E is not sufficient: It does not store between which
pairs of consecutive vertices long edges are routed on spanned levels. Hence, non-proper embeddings
additionally consist of cyclic orderings of the incident edges for every vertex. Because of isolated vertices,
we cannot (completely) omit the vertex orderings.



1.2. Sugiyama Algorithm 5

1.2 Sugiyama Algorithm
The display of hierarchical structures is one of the key topics in automatic graph drawing
[34]. To visualize a common direction of information flow, directed graphs are usually
drawn such that the vertices are placed on parallel horizontal levels, and the edges are
straight lines or y-monotone polylines or splines.
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Figure 1.1. A directed graph and a level drawing

This technique is used by the Sugiyama2 algorithm, the most common algorithm for
drawing DAGs, level graphs, and arbitrary directed graphs [42, 56, 96, 138]. The algo-
rithm operates in four consecutive phases which we will describe together with their state
of the art implementations next. In each phase, the goal is to assure some aesthetic and
readability criteria as good as possible. The following list shows some widely accepted
and important criteria [96] but maybe enlarged by individual preferences:

1. Edges pointing upward should be avoided.

2. Vertices should be evenly distributed.

3. Long edges should be avoided.

4. Edges should be as straight/vertical as possible.

5. Edge crossings should be avoided.

6. Area consumption should be low.

7. Aspect ratio should be reasonable.
2Although there was some initial work on level drawings by Warfield [143] and Carpano [31] before,

this approach is commonly attributed to Sugiyama et al. [138].
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1.2.1 Cycle Removal

In the first phase, called cycle removal , the directed input graph is made acyclic by
reversing the direction of appropriate edges. Reversing a minimum set of edges is known
as the feedback arc set problem and is NP-hard [75, 95]. Clearly, the goal is to keep the
feedback set (FAS), i. e., the set of reversed edges, as small as possible. This keeps the
changes in the graph small. At the end of the algorithm the reversed edges are reversed
again to obtain their initial orientation.
A simple heuristic is to choose an arbitrary ordering of the vertices and reverse all edges
from a higher order vertex to a lower order vertex. Another simple and fast greedy
strategy is to successively reverse for every vertex either the set of incoming edges or all
outgoing ones. Taking always the smaller set leads to |FAS| ≤ |E|

2 . The enhanced greedy
heuristic of Eades et al. [53] is basically the same but proceeds the vertices in a special
order. After hiding all sources and sinks, which never can be part of any cycle, the next
vertex v ∈ V in the loop is always the one with minimal value of |N+(v)|−|N−(v)|. They
show that this results in an upper bound of |FAS| ≤ |E|

2 −
|V |
6 and that a computation

needs onlyO(|E|) time. Sander [131] suggests a more elaborate but similar version of the
above and chooses the next vertex v on the basis of strongly connected components. He
reports promising practical results, however, the same theoretical bounds and a running
time in O(|V | · |E|). Berger and Shor [18] presented a randomized greedy heuristic
with |FAS| ≤ 1

2 + Ω
(

1√
deg(G)

)
· |E|. As yet, the best known approximation factor

is O(log |V | · log log |V |) by an algorithm of Even et al. [63]. The authors of [39–41]
measure their approximation quality against the longest cycle in the graph. Rowe et al.
[126] and Gansner et al. [73] suggest to take DFS or the appearance of edges in cylces
into account. Saab [128] proposes a divide & conquer strategy. A formulation as an
integer linear program (ILP) for computing the exact solution can be found in [78].

1.2.2 Level Assignment

During the second phase, called level assignment, the vertices are assigned to horizontal
levels. Thereby, minimizing both the height, i. e., the number of levels k, and the width
ω, i. e., the maximum number of vertices per level, is NP-hard as a straightforward
reduction from the precedence constraint multiprocessor scheduling problem shows [36,
75]. Nevertheless, the goal is to get compact drawings with a good aspect ratio.

Minimizing the Height Computing a leveling with minimum height can be done by
applying the longest path method : First, each source of the graph is assigned to level
1. For the remaining vertices v the levels are recursively defined by φ(v) = max{φ(u) |
(u, v) ∈ E }+ 1. This puts each vertex on the lowest possible level while minimizing the
number of levels k. There is no explicit balancing of level sizes, however. The algorithm
can be implemented in linear time O(|V | + |E|) by using a topological ordering of the
vertices.
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Given Width For a better vertex distribution consider the Coffman/Graham algorithm
[36], which explicitly maintains a given maximum width ω (ignoring edges). The first
step of the algorithm is as follows: After removing transitive edges in linear time, an
appropriate numbering o : V → {0, . . . , |V | − 1} of the vertices is computed. Initially,
all vertices are unnumbered. We consecutively choose one vertex at a time and assign
the next ascending number to it. We choose the vertex such that it has no unnumbered
successors and that the numbers of the successors are minimal regarding a specific
ordering of integer sets. A set of vertex numbers is considered less than another one,
if the maximum is less. If the maximum of both sets is equal, the next smaller value is
compared, and so on. In the second phase of the algorithm we place one vertex at a
time, starting with the vertex numbered with |V | − 1 on level i = 1 and filling the levels
from lower to higher numbers. In one step we place the next unleveled vertex v ∈ V
with maximal o(v) whose predecessors are already leveled. If level i is full, i. e., if it
already contains |Vi| = ω vertices, or if v has a predecessor u with φ(u) = i, then we
start a new level, i. e., we increase i by 1. We then set of v to φ(v) = i. The whole
algorithm can be implemented to run in O(|V |+ |E|) time [102].

Lam and Sethi [101] have shown that the number of levels k of the computed leveling
with width ω is bounded by k ≤ (2− 2

ω
) · kopt, where kopt is the minimum height of all

levelings with width ω. Thus, the Coffman/Graham algorithm is an exact algorithm for
ω ≤ 2. It is currently the most commonly used leveling method. However, in its process
it does not consider the emerging dummy vertices in the width, which is also NP-hard
[27]. Healy and Nikolov [84] presented an ILP approach for the computation of levelings
with given width and height while counting both original and dummy vertices for the
width.

Minimizing the Total Edge Span Before the third phase starts, traditionally the
graph is made proper. Long edges between vertices of non-adjacent levels are replaced
by chains of dummy vertices and proper edges between the corresponding adjacent levels
as a normalization. The dummy vertices represent potential edge bends and the routing
of long edges among the vertices on the spanned levels.

Minimizing the total edge span in (1.1) is equivalent to minimizing the number
of dummy vertices. This also minimizes the height [56]. The ILP can be solved in
polynomial time because of a totally unimodular constraint matrix [96].

span(G) = min
∑

(u,v)∈E
(φ(v)− φ(u))

subject to
φ(v)− φ(u) ≥ 1 for (u, v) ∈ E
φ(v) ∈ N for v ∈ V

(1.1)

The complexity of algorithms in the Sugiyama framework heavily depends on the number
of dummy vertices inserted. Although this number can be minimized efficiently, it may
still be in the order of O(|V | · |E|) [69].
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1.2.3 Crossing Reduction
In the third phase, called crossing reduction, orderings of the vertices within the levels
are computed such that the number of edge crossings is reduced or even minimized.
Clearly, two edges e1 = (u, v), e2 = (x, y) ∈ E between two levels are crossing if and
only if (π(x)−π(u)) · (π(y)−π(v)) < 0. Empirical studies by Purchase [122, 123] have
shown, that a low number of crossings is one of the major factors for supporting an easy
human perception of graphs.

However, crossing minimization isNP-hard [76], even if there are only two levels [93]
and the vertices of one level are fixed [55, 57, 58]. This is also true for sparse graphs
with vertex degree 4 [112]. The one-sided two-level crossing minimization problem
is fundamental in graph drawing and has received great attention in literature [42].
Therefore, the traditional Sugiyama algorithm uses one (or more) of the many and
intensively investigated heuristics and performs it successively level by level in subsequent
top-down and bottom-up sweeps. These are repeated a constant number of times or until
no further reduction of crossings can be achieved. In the best case no crossings remain
at all and the graph is drawn level planar . However, a heuristic does not guarantee a
planar drawing even if one exists, although in this case it might be especially desirable
to avoid crossings. Fortunately, there are efficient algorithms for testing this property
and for constructing a drawing without a crossing [80, 83, 91, 124].

Experiments by Jünger and Mutzel [92] and Matuszewski et al. [108] showed that
the results of the level-by-level sweep are far from optimum. Bastert and Matuszewski
[96, page 102] claim that “one can expect better results by considering all levels simul-
taneously”, but also state that “k-level crossing minimization is a very hard problem”.

1.2.3.1 One-Sided Crossing Reduction

Since the repeated one-sided crossing reductions are state of the art for reducing crossings
in level graphs, we describe the most popular ones for levels i− 1 (fixed) and 1 < i ≤ k
(permutable) for a proper graph k-level G = (V,E, φ) next. For a survey see [96].

Barycenter and Median Heuristics The fast and simple barycenter and median
heuristics are based on the intuition that if each vertex is close to its neighbors, then the
edges tend to be short and thus generate fewer crossings than long edges. The vertices
in the fixed level i − 1 are numbered from 1 to |Vi−1|. The heuristics assign to each
vertex v ∈ Vi in the permutable level i the barycenter value resp. median position of its
predecessors in Vi−1. After that Vi is sorted according to these values. Both heuristics
avoid type 2 conflicts, i. e., crossings of two edges each connecting two dummy vertices.
The running times for one level stay in O(|Ei| + |Vi| log |Vi|) if computing the median
value of each vertex v ∈ Vi in O(|N−(v)|) time [37]. The log-factor can be eliminated
for the integral vertex positions of the median heuristic by using bucket sort.

For the one-sided two-level crossing reduction, the barycenter heuristic is an O(
√
n)-

approximation to the optimum [58] and it gives a drawing without crossings if one is
possible. The median heuristic is a 3-approximation [58].
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Sifting Heuristic The sifting heuristic has a higher runtime than the above simple
heuristics, however, it produces fewer crossings in practice [77]. Sifting was originally
introduced as a heuristic for the minimization of ordered binary decision diagrams [127],
i. e., optimizing the orderings of the variables, that are widely used to model Boolean
functions in formal logic verification and synthesis. Later it was adapted to the one-sided
crossing minimization problem [108]. The main idea is to keep track of the objective
function while in a sifting step a traversing vertex u ∈ Vi is moved along a fixed ordering
of all other vertices in Vi. Then u is placed at its locally optimal position. This is done
by iteratively swapping consecutive vertices only.
The method is thus an extension of the greedy-switch heuristic [52], where u after putting
it to the front is swapped iteratively with its successor. We call a single swap a sifting
swap. Executing a sifting step for every vertex in Vi is called a sifting round . For crossing
reduction, the objective function is the number of crossings between the edges incident
to the vertex under consideration and all other edges. The efficient computation of the
crossing count in sifting is based on the crossing matrix . The |Vi|2 entries in the crossing
matrix χuv as formally defined by (1.2) correspond to the number of crossings caused by
(the edges of) pairs of vertices u ≺ v ∈ Vi in a particular relative ordering in embedding
E and can be computed as a preprocessing step in O(|Ei|2) time [141, 147]. Whenever
a vertex is placed at a new position, only a small number of updates is necessary [77].

χuv =
∑

s∈N−(u)

∑

t∈N−(v)
χE ((s, u), (t, v)) (1.2)

Let E and E ′ be two embeddings of G∗ = (Vi−1
.∪ Vi, Ei, φ) ⊆ G (1 < i ≤ k), where

E ′ is computed from E by swapping the vertex u ∈ Vi and its successor v ∈ Vi. Since
swapping positions of u and v only affects crossings of incident edges, the number of
crossings in E ′ can be efficiently computed by (1.3).

χE ′ = χE + χvu − χuv︸ ︷︷ ︸
=:∆

(1.3)

This allows a running time in O(|Vi|2) for one round. In practice, only few sifting
rounds (3–5 for typical problem instances) are necessary to reach a local optimum for
all vertices simultaneously. According to our experiments it seems that this is in most
cases also the global optimum which we have computed for small graphs with the ILP
formulation of [92]. The largest reduction of crossings usually occurs in the first round.
In practice sifting obtains a considerable speed-up by considering lower bounds during
the algorithm, allowing to prune parts of the search space [77]. However, the theoretical
time complexity is unaffected by this improvement.

Exact Crossing Minimization Currently, the best known approximation algorithm
for the one-sided crossing minimization problem by Nagamochi [116] gives a 1.4664-
approximation. This multiplicative upper bound does even hold for the well known lower
bound of the crossing number in (1.4), where χuv are the entries of the crossing matrix.
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χlower =
∑

{u,v}⊆Vi

min{χuv, χvu} (1.4)

Valls et al. [141] and Jünger and Mutzel [92] presented the following ILP for computing
the optimal level permutations to obtain the minimum number of crossings. For simplic-
ity we here identify the vertex names with a numbering from 1 to |V |. For both levels
l ∈ {i− 1, i} and all vertices u, v ∈ Vl define δluv = 1 if u ≺ v and δluv = 0, otherwise.
Then we first compute the crossing matrix with entries χuv.

χuv =
∑

s∈N−(u)

∑

t∈N−(v)
δi−1
ts (1.5)

The variables xuv = δiuv in (1.6) store after solving (1.6) the desired relative vertex
positions on level i, i. e., u ≺ v ⇔ xuv = 1.

χ′lower = min
|Vi|−1∑

u=1

|Vi|∑

v=u+1
(χuv − χvu) · xuv

subject to
0 ≤ xuv + xvw − xuw ≤ 1 for u, v, w ∈ Vi,

1 ≤ u < v < w ≤ |Vi|
xuv ∈ {0, 1} for u, v ∈ Vi,

1 ≤ u < v ≤ |Vi|

(1.6)

The optimal crossing number can then easily be computed with (1.7). According to
our experiments in Java using the library lp_solve [19], the approach can be applied to
graphs with up to 150 vertices in practice.

χopt = χ′lower +
|Vi|−1∑

u=1

|Vi|∑

v=u+1
χvu (1.7)

It is somewhat surprising that using the barycenter heuristic instead of an exact algorithm
for iterated one-sided two-level crossing reduction within the sweeping approach over k
levels yields slightly better results with fewer crossings [62, 92]. So, for more than two
levels, the exact level-by-level approach seems not to be the satisfying solution.

1.2.3.2 k-level Crossing Reduction

Up to now there are only few k-level crossing reductions which consider all levels simul-
taneously. Each of them has some drawbacks. Similar to the iterative sweeps above,
they all need proper level graphs G = (V,E, φ) as input.
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Ordered k-Level Sifting A slightly more global approach using sifting has been in-
troduced by Matuszewski et al. [108], which we call ordered k-level sifting to avoid
confusion with our approach described later. In a sifting round, they perform a sifting
step for each vertex of the graph in degree decreasing order. If a round does not im-
prove the number of crossings, the vertex order is reversed for increasing degree. Thus,
the heuristic does not sweep level-by-level but is still limited to a local view as long
edges are not treated as a whole. Contrary to one-sided crossing reductions, here all
edges incident to the swap vertices, i. e., incoming and outgoing edges, are considered
for computing the change in the number of crossings ∆. Thus, the approach rather
corresponds to a centered three-level crossing reduction, i. e., treating three consecutive
levels Vi−1, Vi, Vi+1 and permuting Vi while the orders of Vi−1 and Vi+1 are fixed such
that the crossings between the three levels are reduced. The theoretical time bounds are
in both cases the same as for the sweeping sifting. However, because of the local view
for reducing crossings, it is likely that the approach gets stuck in local optima.

Tutte’s Algorithm Tutte’s algorithm [56] is similar to barycenter. After fixing the
permutation of levels 1 and k, in each other level the x-coordinate of a vertex v is
chosen as the weighted average of its neighbors.

x(v) = 1
2 · |N−(v)| +

∑

u∈N−(v)
x(u) + 1

2 · |N+(v)| +
∑

w∈N+(v)
x(w) (1.8)

This results in a system of sparse linear equation, which to solve may need exponential
time, however. In the last step the levels are sorted according the x-values.

Exact Crossing Minimization Jünger et al. [90] present an ILP formulation for com-
puting the minimum crossing number for a k-level graph. For simplicity of its description
we identify the vertex names with a numbering from 1 to |V |. For levels 1 < i ≤ k and
all pairs of edges (u, v), (x, y) ∈ Ei we define ciuvxy = 1 if (u, v) and (x, y) cross and
ciuvxy = 0, otherwise. The variables xiux in (1.9) store after solving it the desired relative
vertex positions on level 1 ≤ i ≤ k. A value of xiux = 1 means u ≺ x and a value of
xiux = 0 means u � x.

χopt = min
k∑

i=2

∑

(u,v),(w,y)∈Ei,1≤u<w≤|Vi−1|,1≤v<y≤|Vi|
ciuvwy

subject to
−ciuvwy ≤ xivy − xi−1

uw ≤ ciuvwy for (u, v), (w, y) ∈ Ei,
1 ≤ u < w ≤ |Vi−1|,
1 ≤ v < y ≤ |Vi|,
1 < i ≤ k

(1.9)
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1− ciuvwy ≤ xiyv − xi−1
uw ≤ 1 + ciuvwy for (u, v), (w, y) ∈ Ei,

1 ≤ u < w ≤ |Vi−1|,
1 ≤ y < v ≤ |Vi|,
1 < i ≤ k

0 ≤ xiuw + xiwz − xiuz ≤ 1 for u,w, z ∈ Vi,
1 ≤ u < w < z ≤ |Vi|,
1 ≤ i ≤ k

xiuw ∈ {0, 1} for u,w ∈ Vi,
1 ≤ u < w ≤ |Vi|,
1 ≤ i ≤ k

ciuvwy ∈ {0, 1} for (u, v), (w, y) ∈ Ei,
1 ≤ u < w ≤ |Vi−1|,
1 ≤ v < y ≤ |Vi|,
1 < i ≤ k

Jünger et al. state that their branch & cut approach is only practicable if additional
and deeper polyhedral studies are conducted for speedup as already done so far in [90]
(with the introduction of some additional constraint inequalities/cutting planes on the
associated polytope). According to our implementation within the Gravisto framework
[8] using the ILP solver of [19], the approach can be applied to graphs with up to 40
vertices in practice. The concrete running times heavily depend on the uniform edge
distributions among the levels.

Metaheuristics To attack the global k-level crossing minimization problem also meta-
heuristics have been proposed in literature, such as genetic algorithms [99, 140], tabu
search [100], or windows optimization [62]. These general (stochastic) global search
approaches usually compute good solutions with few crossings at the expense of high
running times.

1.2.4 Coordinate Assignment
The fourth phase, called coordinate assignment, computes an x-coordinate x(v) for
every vertex v ∈ V . It is usually constrained to preserve the ordering determined in the
third phase and to introduce a minimum separation space δ between vertices within a
level. The y-coordinates are given by the levels. Finally, the dummy vertices introduced
by the normalization are removed and replaced by edge bends. In the following let
G′ = (V ′, E ′, φ) be the normalized version of the k-level graph G = (V,E, φ).

Straight-Line Every embedding of a k-level graph has a straight-line drawing, even if it
contains long edges. However, these drawings may require up to exponential width [51].
For simplicity we assume that the level lines are drawn equidistant. Let e = (u, v) ∈ E
be a (potentially long) edge which is replaced by a directed edge path p(e) = (u =
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v1, v2, . . . , vspan(e), vspan(e)+1 = v) where v2, . . . , vspan(e) are dummy vertices. Solving
(1.10) delivers the desired result [96].

min
∑

p(e) with e∈E

span(e)∑

i=2

(
x(vi)−

i− 1
span(e)

(
x(vspan(e)+1)− x(v1)

))2

subject to
x(z)− x(y) ≥ δ for φ(y) = φ(z), y ≺ z

(1.10)

Since the objective of (1.10) is a quadratic function, it can be solved for small instances
only. For planar level graphs Eades et al. [50, 51] have shown that every not necessarily
proper level planar graph has a planar straight-line drawing which can be computed in
O(|V |2) time.

Vertical Edges For nice drawings, there are two major objectives to consider [59]. First
the drawings should be compact and second the edges should be as close to vertical as
possible. Gansner et al. [73] model this problem as a linear program (1.11).

min
∑

(u,v)∈E′
Ω((u, v)) · |x(u)− x(v)|

subject to
x(z)− x(y) ≥ δ for φ(y) = φ(z), y ≺ z

(1.11)

Ω(e) denotes the priority to draw edge e ∈ E ′ vertical. Therefore, the authors suggest
higher priorities for inner segments: Ω(e) = 8 for inner segments, Ω(e) = 2 for outer
segments incident to exactly one dummy vertex, and Ω(e) = 1 for all other outer
segments. The linear program can be interpreted as a rank assignment problem on a
compaction graph Ga = (V, {(u, v) : u, v ∈ Vi, |π(v) − π(u)| = 1, 1 ≤ i ≤ k}) with
length function δ. Each valid rank assignment corresponds to a valid drawing. The
objective function can be modeled by adding vertices and edges to Ga [73, 96].

The drawback of the vertical edges approach is, that edges can have as many bends
as dummy vertices. This creates sometimes a “spaghetti” effect which reduces the
readability. To avoid this negative behavior the linear segments model was proposed,
where each edge is drawn as polyline with at most three segments. The middle segment
is always drawn vertical. In general, linear segment drawings have less bends but need
more area than drawings in other models. There have been some algorithms proposed
for this model [24, 28, 129]. The approach of Brandes and Köpf [24] produces pleasing
results in linear time. It is our favorite algorithm.

Brandes/Köpf There are several practical algorithms for horizontal coordinate assign-
ment [24, 28, 54, 56, 74, 130, 131, 138] using different approaches for the optimization
of various objective functions or iterative improvement techniques. However, most inter-
esting is the established algorithm of Brandes and Köpf [24], which generates at most
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two bends per edge and draws every inner segment vertically if no two inner segments
cross. Further, it minimizes the horizontal stretch of segments and also gives good re-
sults for the other aesthetic criteria. The algorithm needs O(|V ′| + |E ′|) computation
time for proper level graphs G′ = (V ′, E ′, φ) and is fast in practice.

The input is the embedding generated in the previous phase three of a proper level
graph. The algorithm consists of three steps, where its first two block building and
compaction are carried out four times (runs) and the third balancing combines the
results. We describe the left top run only. The other three runs are symmetric and can
be realized by flipping the graph horizontally and/or vertically.

For the block building the objective is to vertically align each vertex with its left
upper median neighbor. Note, the median of an even sized set is not unique. First, all
segments are removed that do not lead to an upper median neighbor, see Fig. 1.2(b).
Then two alignments are conflicting if their edge segments cross or share a vertex.
Type 2 conflicts, two crossing inner segments, are assumed to have been avoided by
the crossing reduction phase and not to occur, e. g., using the barycenter method from
Sect. 1.2.3.1. Type 1 conflicts, an outer segment crossing an inner segment, are resolved
in favor of the inner segment, i. e., the outer segment is removed from the graph. Type
0 conflicts, two crossing outer segments, are resolved greedily in a leftmost fashion, i. e.,
the right segment is removed from the graph. At this point there are no crossings left,
see Fig. 1.2(c).

For the (horizontal) compaction each connected component is combined into a block ,
see Fig. 1.2(d). Consider the block graph obtained by introducing directed edges between
each vertex and its successor (if any) on its level, see Fig. 1.2(e). We call this edges inter-
block edges. A “horizontal” longest path leveling by topologically sorting the block graph
determines the x-coordinate of each block and thus of each contained vertex. Thereby,
the given minimum vertex separation δ is preserved. The block graph with expanded
blocks is partitioned into classes, see Fig. 1.2(f). The first class is defined as the set of
vertices which are reachable from the top left vertex. Then the class is virtually removed
from the block graph. This is repeated, until every vertex is in a class. Within the classes
the graph is already compact. Now the algorithm places the classes as close as possible.
In Fig. 1.2(f) this already happened. Fig. 1.2(g) shows the complete left upper layout.

Finally each vertex has four x-coordinates. In the balancing step the two left (right)
aligned assignments are shifted horizontally so that their minimum (maximum) coor-
dinate agrees with the minimum (maximum) coordinate of the smallest width layout.
The resulting coordinate is the average median3 of the four intermediate coordinates.
Fig. 1.2(h) shows the resulting drawing.

1.3 Miscellaneous
Counting the absolute number of crossings χ of edges between two levels in a given
embedding of a two-level graph G = (V,E, φ) can be done by a naive sweep line

3The average median is defined as the average of the possible median values.
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Figure 1.2. Stages of the Brandes/Köpf algorithm
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algorithm in O(|E|+χ) time [129]. The authors of [15, 142] improved this time bound
to O(|E| log |V |).

An alternative approach for one-sided two-level crossing reduction is planarization
[113, 114, 139], i. e., to remove a minimum number of edges such that the resulting
graph is level planar. After drawing this embedding the removed edges are reinserted
which, however, may produce many crossings. The planarisation problem is NP-hard for
both two-sided and one-sided cases, and can be solved in polynomial time for the case
of two given fixed orderings [57]. For an integer programming solution for the two-layer
planarization problem see [115]. The proposed advantage of planarization is that the
drawings generated this way are more readable for humans [114]. However, this is not
completely clear up to now.

For the two-sided two-level crossing minimization, i. e., both consecutive levels are
permutable, Shahrokhi et al. [133] proved that the problem is O(log |V |)-approximable,
when the maximum degree over the minimum degree is bounded by a constant. Jünger
and Mutzel [92] presented an ILP for two-sided crossing minimization problem. Recently,
Buchheim and Zheng presented quadratic programming methods for this problem [29].

1.4 Overview
After some preliminaries and an extensive introduction to the hierarchical framework, we
discuss some new insights to the generation of hierarchic drawings in the next Chapter 2.
This includes how to deal with edges between vertices within the same level and a
practical global approach for k-level crossing reduction. Chapters 3 and 4 summarize our
adaptions of the specific phases of the Sugiyama framework for drawing on concentric and
radial level lines. For an easy understanding, these chapters describe our investigations
and new results high level. The detailed algorithms, proofs, and analyses can be found
in the articles listed in Appendix A. We conclude in Chapter 5 with a short recapitulation
of the major results and provide some suggestion for future investigations and research
in the wider context of level graphs.



2
Horizontal Drawings

In this chapter we extend the hierarchical framework with classic horizontal level lines.
First we show a new extension how to consider edges between vertices within the same
level [11, 13] and then show a new global crossing reduction based on sifting [4]. For the
latter, we consider all levels simultaneously and are not afflicted by the disadvantages
of the algorithms listed in Sect. 1.2.3.2. For an easy distinction with the contents of
the following chapters, we will from now on call level drawings with horizontal level lines
horizontal drawings and prepend the phases with the phrase “horizontal” if necessary.

2.1 Crossing Reduction
For our horizontal drawings we only extend the crossing reduction phase described in
Sect. 1.2.3 for some new features. The other phases essentially remain unchanged.

2.1.1 Intra-Level Edges
Many real world graphs exhibit hierarchies with edges between the vertices on the same
level. For example, the visualization of centrality of actors in social networks [26] pro-
duces level graphs with both (directed) inter-level edges with a span of at least one and
intra-level edges with a span of zero, i. e., (undirected) edges connecting vertices within
the same level. See Fig. 2.1 for an example. Drawing these extended level graphs was
addressed as one of the open problems in social network visualization by Brandes [20].
Another example are UML class diagrams whose levels are traditionally determined by
the depth of inheritance. There may be somewhat arbitrary associations or uses-relations
between the classes, especially between classes on the same level. It has neither been
shown yet that intra-level edges reduce the visual complexity nor that they reduce the to-

17
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tal number of crossings. However, the fact that all existing hierarchical drawing methods
more or less suppress intra-level edges, although they are present from the application
in many cases, justifies an investigation.

1

3

0

2

4

P. Erdos

D. Wagner S.-H. HongP. Eades X. Deng I. Akyildiz

W. Tutte B. McKayN. Wormald P. Hell D. Hsu J. Pach

T. Dwyer F. Schreiber U. Brandes M. Forster G. Bolch C. Papadimitriou

B. Pampel A. Hofmeier M. Matzeder W. Brunner C. Auer B. Gates

D. Kratsch

F. Brandenburg

A. Brandst täd

B.

}

Figure 2.1. Extract from the coauthor graph of the famous Hungarian mathematician
Paul Erdős. The levels correspond to link distances as BFS levels starting at Erdős,
inter-level edges are BFS tree edges, and intra-level edges are BFS traverse edges

It is not surprising that the extended one-sided two-level crossing minimization problem
remains NP-hard. Hence, we show how to enhance the promising one-sided two-level
sifting heuristic from Sect. 1.2.3.1 to include intra-level edges and to consider all types of
the arising crossings for reduction, i. e., crossings of two inter-level edges, an inter-level
and an intra-level edge, and between two intra-level edges. See Fig. 2.2 for an example.
We call our algorithm extended sifting .

In our extended level drawings of extended k-level graphs G = (V,E,H, φ), we
represent intra-level edges inH = H1

.∪H2
.∪. . . .∪Hk using circular arcs with different radii

in order to avoid overlapping edges and crossings between vertices and edges. Thereby,
the respective amplitude of the only interpolation point in the middle raises with the
number of enclosed vertices such that the gradients of the tangents in the endpoints are
lower as the most shallow inter-level edge. This avoids unnecessary (double) crossings
among intra-level and inter-level edges. Further, we restrict to draw the arcs only on one-
side of the level lines, say above, in order to model the problem such that the Sugiyama
framework can cope with it.
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(a) Two-level graph
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(b) After extended sifting

Figure 2.2. Extended one-sided two-level crossing reduction
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2.1.1.1 Circular Sifting

We do not use the traditional sifting method operating on the crossing matrix but apply
the ideas of Baur and Brandes [16] used for the NP-hard [107] crossing minimization
problem in circular drawings. This is finding an ordering for the vertices V of a graph
G = (V,E) which all are placed on a single circle to obtain a reduced/minimum number
of crossings among the straight-line edges in E. Since there does not exist a “circular”
order in mathematics, Baur and Brandes define linear orders ≺α by selecting a reference
vertex α ∈ V as the first of the (here w. l. o. g. counter-clockwise) sequence. For finding
the locally optimal position of a vertex u ∈ V in a sifting step, it is sufficient to record
the change in crossing count ∆ while swapping u with its successor vp ∈ V . This can be
done by considering only edges incident to u or vp: After a swap exactly those pairs of
these edges cross which did not cross before. All other crossings remain unchanged. This
is shown by (2.1) more precisely, where ≺′α is the resulting ordering/circular embedding
after the swap.

∆ =
∑

t∈N(vp)

∣∣∣{ s ∈ N(u) | s ≺′t vp }
∣∣∣−

∑

s∈N(u)

∣∣∣{ t ∈ N(vp) | t ≺s u }
∣∣∣ (2.1)

At the end of one step, u is placed where the intermediary crossing counts reached
their minimum. For efficiency reasons, the computation of ∆ is implemented over suffix
lengths in ordered adjacency lists. For this, the adjacency list of each vertex v must be
kept sorted according to the current order ≺v of the positions of v’s neighbors. Circular
sifting needs O(|V | · |E|) time for one round.

2.1.1.2 Extended Sifting

The same holds for swapping two consecutive vertices u and vp ∈ Vi with 1 < i ≤ k
in horizontal one-sided two-level sifting of a graph G∗ = (Vi−1

.∪ Vi, Ei, Hi, φ) ⊆ G =
(V,E,H, φ), which is proper, considering only inter-level edges Ei: After a swap exactly
those pairs of edges of {(·, u)} ⊆ Ei and {(·, vp)} ⊆ Ei cross which did not cross
before and all other crossings remain unchanged. Thus, similar to [16] we can efficiently
compute the difference in the number of crossings ∆E before and after the swap in
O(|N−(u)|+ |N−(vp)|) time by keeping the adjacency lists of the vertices in Vi ordered
according to the ascending positions of their neighbors in Vi−1. In a sifting step we
only have to record the position which led to a lowest value of ∆E and then have
found the locally optimal position to place the traversing vertex u. Since we need not
necessarily know the absolute numbers of crossings per swap, we can omit the O(|Ei|2)
time consuming creation and the further maintenance of the crossing matrix. Actually,
we again use (1.3) for recording the number of crossings within a sifting step, but set the
initial value of χE = 0. With the described method we exactly obtain the same results,
i. e., the same orderings of Vi, in O(|Vi| · |Ei|) time. From now on we call this new type
of sifting relative sifting to stress the differences to the traditional absolute sifting using
the crossing matrix.
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Hence, it remains to compute the differences in the two remaining types of edge crossings,
i. e., between two intra-level edges in H and between inter-level edges in E and intra-
level edges in H. Although there is also a compact method [11], we compute the
respective differences independently and add them afterwards for a total difference ∆ =
∆E + ∆H + ∆EH per swap. This modular system gives us more transparency and
flexibility to use the same approach for the other types of hierarchic drawings described
in the following chapters.

For the treatment of crossings between intra-level edges, we directly use circular
sifting: Consider the line of level i logically bent to a circle, e. g., as it is done in
Fig. 2.3(a) for the intra-level edges of the graph in Fig. 2.2(a). Since circular sifting is
also naturally modularized by elementary sifting steps, its ∆H computation of crossings
directly delivers the difference in crossings of intra-level edges when swapping two vertices
on the horizontal level i.
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Figure 2.3. Circular crossing reduction for the intra-level edges of the graph in Fig. 2.2

Now we treat crossings between inter-level and intra-level edges. Again, swapping u with
its current successor vp changes only crossings among pairs of inter-level and intra-level
edges which are incident to u or vp. Thus, for computing the change in the crossing
count, we only need the sizes of the six sets Hl(v), Hr(v), E−(v) with v ∈ {u, vp}, see
Fig. 2.4. Hl(v) = { {u, v} | u ≺ v } is the left adjacency andHr(v) = { {v, w} | v ≺ w }
is the right adjacency for each vertex v ∈ Vi. Each of them is sorted according to the
current ordering of Vi with the traversing vertex u in the front.
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(a) Before swapping

h uvpi

Hl( )u
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H v( )pl

E v( )p E u( )

(b) After swapping

Figure 2.4. Crossings among inter-level and intra-level edges
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Neglecting potentially existing short edges h = {u, vp} ∈ H which is a non-contributing
special case, we obtain (2.2) as change in crossing count ∆EH when swapping u and its
direct successor vp.

∆EH = (|Hr(vp)| − |Hl(vp)|) · |E−(u)|+ (|Hl(u)| − |Hr(u)|) · |E−(vp)| (2.2)

During a sifting step we have to keep the ordering of the adjacency of the traversing
vertex u up to date while swapping with successors vp. This is easy, because an affected
edge h = {u, vp} which must be added as the last element to Hl(u) is always the first
of Hl(vp). Note, the orderings of the intra-level adjacency lists of all vertices vp are
valid throughout the complete sifting step besides obsolete positions of edges {u, vp}.
However, these exceptions are irrelevant for the correctness.

We obtain an overall time complexity of O((|Vi−1| + |Vi|) · (|Ei| + |Hi|)) for one
sifting round [11]. In a top-down sweep for a proper k-level graph G = (V,E,Hφ),
we reorder the levels i from 2 to k by consecutively applying our extended one-sided
two-level crossing minimization on the fix ordered set Vi−1 and on the freely permutable
set Vi. In the subsequent bottom-up sweep we reorder the levels i from k − 1 down
to 1 by consecutively applying it on the fix ordered set Vi+1 and the permutable set
Vi. However, in the bottom-up sweep we have a slightly different situation, since the
intra-level edges are above the current level i and cross edges from level i and i − 1.
Nevertheless, the formula for crossings of intra-level and inter-level edges (2.2) does not
depend on any vertex ordering different to that on level i and especially does not depend
on that of level i − 1. Thus, we count the change in the number of crossings of the
intra-level edges of level i with the inter-level edges between level i and i − 1 during
a swap. For this, we take for each vertex v ∈ Vi the set E+(v) instead of E−(v) in
(2.2). After some iterations, say 10, of top-down with subsequent bottom-up sweeps
the algorithm terminates in O(|V | · (|E|+ |H|)) time.

2.1.2 Global Sifting
For nearly thirty years, the common crossing reduction technique has been to consider
only two consecutive levels at a time and to iterate them in multiple top-down and
bottom-up sweeps. Although this procedure has received much attention, there is a
need for a new technique, because the level-by-level approach may be stuck in a local
optimum. This is even the case if the one-sided two-level crossing reduction method in
fact is a minimization and returns optimal vertex orderings of the levels in the sense of
a minimum number of crossings, e. g., see Fig. 2.5. This may even hold for infinitely
many top-down with subsequent bottom-up sweeps, since the example returns the same
embedding after the second bottom-up sweep as obtained from the first bottom-up sweep
and, thus, runs in a circle potentially without any improvement. The idea to find such
an example is the following: It may be better to have slightly more crossings between
levels 1 and 2 and 3 and 4 than the minimum, but then potentially have noticeable
fewer crossings in the middle between levels 2 and 3. Bastert and Matuszewski claim
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in [96, page 102] that the results are even far from optimum. Alas, potentially existing
approximation ratios of one-sided two-level reduction algorithms do not translate to k-
level graphs: Apart from the extremes, levels are not fixed from the input. Their vertex
orders are results of previous applications of the two-level algorithm.

An important feature of crossing reduction algorithms is the avoidance of type 2
conflicts. Among others, the standard fourth phase algorithm by Brandes and Köpf
(Sect. 1.2.4) assumes the absence of type 2 conflicts to align long edges vertically. Since
this is one of the major aesthetic criteria for easily readable hierarchical drawings [96]
and is dependent of the crossing reduction results, we support this in our global sifting
algorithm inspired by [24, 59]. The simple level-by-level barycenter and median heuristics
from Sect. 1.2.3.1 avoid type 2 conflicts automatically in horizontal layouts. Although
two-level algorithms reduce the crossings between Vi−1 and Vi, the number of crossings
between Vi and Vi+1 (and thus even the total number of crossings) can increase while
permuting Vi. These heuristics push the crossings downwards or upwards until they are
resolved at level k or 1, respectively. This is not possible with cyclic levels anymore and,
thus, many crossings will remain after the level where the cyclic sweep was stopped. Even
worse, there may remain type 2 conflicts. Alternatives are ordered k-level sifting or the
similar centered three-level crossing reduction described in Sect. 1.2.3.2. However, both
generate many type 2 conflicts and are for reaching a global optimum both restricted to
a local view. Thus, they also may tend to get stuck in local optima.

Our idea has some similarities to the sparse normalization of Eiglsperger et al. [59]
which also guarantees the absence of type 2 crossings. However, we go one step further:
We do not use the sweeps with two-level one side fixed crossing reduction. We consider
the block graph – which is the same as their compaction graph completed with one
sweep over all levels – directly for crossing reduction. That is, we treat the graph as a
whole. This is new for crossing reduction. Eiglsperger et al. obtain an overall running
time in O((|V |+ |E|) log |E|) for a non-necessarily proper k-level graph G = (V,E, φ)
using the splay tree data structure of Sleater and Tarjan [135] for their operations.
Unfortunately, their algorithm has the limitation that it can only use crossing reductions
which solely consider the position numbers of the fixed neighbors as input for the position
computations of the vertices in the permutable set. As a consequence, they only can use
simple heuristics like barycenter or median instead of the more advanced sifting heuristic
for example. They obtain identical results as the slower sweeping barycenter and median
approaches whose running times depend on the number of dummy vertices. In a nutshell,
Eiglsperger et al. optimize speed but not quality. In our approach we use the blocks to
improve the quality of the resulting embedding.

2.1.2.1 Algorithm

We treat each vertex and each maximum connected subgraph consisting only of dummy
vertices as a block1, e. g., see Fig. 2.6(a), and execute sifting on all these blocks at
the same time independent of their levels. The algorithm gives better results than

1The blocks for assigning coordinates in Sect. 1.2.4 are defined slightly different, e. g., they may
contain both dummy and original vertices.
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Figure 2.5. Crossing reduction using the level-by-level sweep method has been stuck in
local minimum
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traditional sifting heuristics, is easily applicable to other problems, and has quadratic
time complexity independent of the number of dummy vertices.
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Figure 2.6. Blocks as sifting objects

Let B be the list of all blocks of the graph and the bijective function π : B → {0, . . . , |B|−
1} define the current positions of the blocks in B. As an initialization, we use an arbitrary
ordering. Now we perform relative sifting on the block graph2 which consists of the blocks
as vertices and their incident outer segments (which span exactly one level) as edges.
Thereby, the positions of the blocks are defined by π. We perform a conventional sifting
step for a block under the assumption that the positions of all other blocks are fixed,
i. e., we test all positions for a traversing block and move it to the best possible position
in which there were the fewest crossings. Since we treat all dummy vertices of each edge
(and each original vertex) as one block and try to find the best position for the entire
block in one step, we eliminate the problems of traditional two-level crossing approaches
which lack this global view of the crossings of a long edge.

Again, we use relative sifting as described at the beginning of Sect. 2.1.1.2. What
remains is to show how the change in the number of crossings ∆ is computed when
swapping two consecutive blocks. For each swap we have to consider incident edges
between two pairs of levels. One level pair of interest is exactly above the block starting
at the higher level, whereas the other level pair is exactly below the block stopping at
the lower level. Between all other pairs of levels there are no changes. We treat both
level pairs separately and add the computed change in crossings afterwards. Note that
outer segments may cross inner segments even if they did not before, i. e., blocks can
be crossed in their middle part. These type 1 conflicts are tolerated, however, must be
counted for ∆. As we use for the concrete computation the respective vertices of the
involved blocks instead of the entire blocks, we can directly apply the algorithm of [16] as
we have done it in one-sided two-level sifting. For this, we have to keep the adjacencies

2The block graph in Sect. 1.2.4 for coordinate assignment is different, e. g., contains other blocks
and directed edges between successors on the same level.
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ordered according to ascending positions π, as indicated by the N · arrays in Fig. 2.6(b).
For a block A ∈ B let deg(A) be the number of incident outer segments to any vertex
in A. Since we maintain additional index arrays I · indicating where each block is stored
in the adjacencies of its neighbors, see Fig. 2.6(b), we efficiently can perform one sifting
swap of two consecutive blocks A,B ∈ B in O(deg(A) + deg(B)) time.

One may claim, that there may be a large overhead for useless sifting swaps of blocks
whose positions are independent of each other, i. e., which are located on disjoint levels
and have no common neighbors. However, since a swap of two independent blocks needs
only constant time, it would at least consume the same time to check, that a swap might
be unnecessary. Thus, we omit that check to keep the algorithm fast and simple.

Finally, for the resulting embedding we set each vertex to the position of its block
and order the levels according to this positions. We obtain an overall running time in
O(|E|2) for one sifting round of a not necessarily proper level graph G = (V,E, φ).
This parallels the linear running time O(|V |) of the level planarity test [91] which also is
independent of (the number of) dummy vertices. In practice, ten sifting rounds suffice.

2.1.2.2 Simple Global Heuristics

Using the idea of blocks, we also extend the simple barycenter and median crossing
reduction strategies: We iteratively take the given π-positions of the blocks in B and
for each block compute the barycenter or median, respectively, and sort B according to
these values. Notice, if phases two or four of the Sugiyama framework need dummy
vertices, then a pre- and postprocessing in O(|V ′|) ⊆ O(|V | + k · |E|) time is needed
where G′ = (V ′, E ′, φ′) is the normalized version of a k-level graph G = (V,E, φ). Our
benchmarks in Sect. 2.1.2.3 show that both are very fast but qualitatively not competitive
with global sifting in the number of crossings.

2.1.2.3 Benchmarks

Now we experimentally compare the practical performances of the different algorithms
using the Java implementations of [8, 81]. In a nutshell, the simple global approaches
are fast but deliver no acceptable results. Traditional level-by-level sifting is fast, leaves
few type 2 conflicts, but many crossings, however. Centered three-level sifting and
ordered k-level sifting are fast, leave few crossings, but many type 2 conflicts. Global
sifting produces even less crossings than both without any type 2 conflicts at the cost of
a slightly higher running time, which is still feasible. The running time of global sifting
is independent of the number of dummy vertices. This parallels the advanced algorithm
of [59]. With a dummy vertex proportion of 75% the running time is about twice as
high as needed for traditional sifting.

Figures 2.7 to 2.11 show the practical performance of the algorithms iterative one-
sided two-level barycenter (B), median (M), and sifting (S), iterative centered three-level
sifting (3S), ordered k-level sifting (OS), and global barycenter (GB), global median
(GM), and global sifting (GS) applied to the normalized versions G′ = (V ′, E ′, φ′) of
graphs G = (V,E, φ). For comparability reasons, we have never used the lower bound
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speed-up of [77]. For each of the former four heuristics we applied ten top-down with
subsequent bottom-up sweeps and for each of the latter ones we performed ten rounds.
For each graph size, we have generated ten arbitrary graphs G′ with an aspect ratio, i. e.,
maximum number of vertices per level vs. number of levels, of the golden rectangle, i. e.,
of 1+

√
5

2 . We omit measurements of the fast algorithm of Eiglsperger et al. [59], because
the obtained embeddings and crossings are the same as left by sweeping barycenter or
median, respectively. All benchmarks were run on a 2.83 GHz Intel XEON workstation
under Solaris 10 with the Java 6.0 platform of Sun Microsystems, Inc.

We compare the different running times in Fig. 2.7. Although global sifting is the
slowest, it is still feasible in practice even for interactive applications. Clearly, its perfor-
mance on graphs from practice is not as dire as the worst case O(|E|2) time complexity
may suggest on a first glance.
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Figure 2.7. Running times

Figure 2.8 shows the quality of the heuristics in the number of crossings of the resulting
embeddings. The results of global sifting are about five to ten percent better than the
ones of the established algorithms. This does not seem to be very much with respect to
the higher running times, but remember, contrary to the traditional sifting algorithms
the resulting embeddings do not contain any type 2 conflicts. See Fig. 2.10 for that.

Figure 2.9 depicts that the traditional approaches have a constant running time on
graphs with the same sizes but ascending proportions of dummy vertices. For global
sifting the running times get the better the more vertices are dummies, i. e., the more
inner segments exist which are treated as whole. This reflects that the time complexity
O(|E|2) depends only on the number of long edges |E| rather than on the number of
segments |E ′| of the normalized version of the graph.

In Fig. 2.11 we try to compare the results of the heuristics with the exact solution.
For an in practice solvable ILP of the exact algorithm as described in Sect. 1.2.3.2, we had
to keep the graphs with |V ′| ≤ 35 small. Since we have a reasonable proportion of 30%
dummy vertices, the graphs are rather thin. This may be the reason why barycenter here
outperforms two sifting algorithms. Figure 2.8 indicates that under normal circumstances
sifting is qualitatively the better choice [96].
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2.1.3 Exact Crossing Minimization without Type 2 Conflicts
Type 2 conflicts can also be excluded by the exact crossing minimization of Jünger et al.
[90] described in Sect. 1.2.3.2 by adding the additional constraints of (2.3). Here, let
E ′ ⊂ E be the set of all inner segments. Remember, a value ciuvwy = 0 means that
(inner) edges (u, v), (w, y) ∈ E ′ do not cross.

ciuvwy = 0 for (u, v), (w, y) ∈ Ei,
1 ≤ u < w ≤ |Vi−1|,
1 ≤ v < y ≤ |Vi|,
(u, v), (w, y) ∈ E ′,
1 < i ≤ k

(2.3)

This results after simplification in a similar ILP to our approach which will be described
next. However, using our blocks gives a more direct correspondence to the ILP, provides
deeper insights, and avoids the usage of dummy vertices for computing a solution of
the ILP3. For this reason and for a typically lower number of blocks compared to the
number of vertices, the formulation needs fewer variables which potentially leads to lower
computation times.

For the direct approach, we start with an arbitrary but fixed ordering of the list of
blocks B. For any two blocks A, B with π(A) < π(B) which have a common level we
define a boolean variable xAB. The value of xAB = 1 denotes that A is left of B and
xAB = 0 that B is left of A in the final embedding. For each triple of blocks A, B,
C with π(A) < π(B) < π(C) with at least one common level, we add the condition
0 ≤ xAB + xBC − xAC ≤ 1 to exclude cyclic dependencies within a level.

Let s1 = (a, b) and s2 = (c, d) be segments between the same levels such that
at least one of them is an outer segment. Let A = block(a), B = block(b), C =
block(c), D = block(d) be the blocks which contain the vertices a, b, c, d. Note that
A = B or C = D holds if s1 or s2 is an inner segment, respectively. W. l. o. g. let
π(A) < π(C). We add a boolean crossing variable cABCD which indicates whether s1

3For the determination of the equations the graph must be proper, however.
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and s2 cross. If π(B) < π(D) we add the constraint −cABCD ≤ xBD − xAC ≤ cABCD
otherwise we add 1− cABCD ≤ xDB − xAC ≤ 1 + cABCD. The objective function is to
minimize the sum of the values of all crossing variables. Let levels(A) ⊆ {1, . . . , k} be
the set of levels which contain a vertex of a block A ∈ B or which are spanned by its
long edge if omitting dummy vertices. See (2.4) for the complete ILP formulation for
a proper k-level graph G = (V,E, φ) with E ′ ⊂ E denoting the set of inner segments.
Informally speaking, each member of the set C denotes the up to four incident blocks of
each pair of edges which potentially cross.

χopt = min
∑

(A,B,C,D)∈C
cABCD

C = { (A,B,C,D) ∈ B4 | ∃(a, b), (c, d) ∈ E :
(a, b) 6∈ E ′ ∨ (c, d) 6∈ E ′,
φ(b) = φ(d),
A = block(a), B = block(b),
C = block(c), D = block(d),
π(A) < π(C) }

subject to
−cABCD ≤ xBD − xAC ≤ cABCD for (A,B,C,D) ∈ C,

π(B) < π(D)
1− cABCD ≤ xDB − xAC
≤ 1 + cABCD for (A,B,C,D) ∈ C,

π(B) > π(D)
0 ≤ xAB + xBC − xAC ≤ 1 for A,B,C ∈ B,

π(A) < π(B) < π(C),
levels(A) ∩ levels(B)
∩ levels(C) 6= ∅

xAB ∈ {0, 1} for A,B ∈ B,
π(A) < π(B)

cABCD ∈ {0, 1} for (A,B,C,D) ∈ C

(2.4)

2.1.4 Other Applications
Healy et al. [80, 82, 83] use a data structure called vertex exchange graph as a simple
test for level planarity in O(|V ′|2) time for a normalized k-level graph G′ = (V ′, E ′, φ)
of G = (V,E, φ). Using our blocks it is straightforward to improve the running time
of the test from O(|V ′|2), i. e., O((k · |V |)2) worst case, to O(|V |2) similarly to the
ILP in Sect. 2.1.3: Each pair of level overlapping blocks builds one vertex in the vertex
exchange graph. Similar techniques can be used to reduce the number of 2-SAT clauses
in [124] to test level planarity or to minimize crossings.

In a clustered level graph vertices are combined to subgraphs in a hierarchical way
[68]. The crossing reduction has to ensure that all (dummy) vertices of a subgraph on the
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same level are consecutive and that all subgraphs spanning several levels have a matching
ordering on each level to avoid crossings of subgraphs. This is rather complicated using
a two-level crossing reduction approach [131]. Using global sifting this becomes simple:
Instead of swapping a vertex with its right neighbor in a sifting swap we swap all blocks
of a subgraph one by one with their successive blocks and determine the change in the
number of crossings. Valid positions are only where no distinguished subgraphs overlap.
The time complexity stays the same as for standard global sifting. If the layout of the
subgraphs themselves is not fixed, then global sifting can be recursively applied to the
subgraphs as well, e. g., performing a sifting round for each hierarchical layer. For good
results this may be iterated top-down and bottom-up the cluster hierarchy.



3
Radial Drawings

In radial drawings of hierarchical graphs we place the vertices on concentric circles
instead of on horizontal lines and draw the edges as outwards monotone segments of
spirals rather than straight lines as it is both done in the standard Sugiyama framework.
Each curve lies between the concentric levels of its endpoints. This ensures that interior
level lines are not crossed as it would be the case with straight lines. See Fig. 3.1 for
a radial drawing (b) of the horizontal example in (a). The 3D drawing on a cylinder in
Fig. 3.1(c) is topologically equivalent to (b). Logically, both latter illustrations indicate
that there is no explicit left or right of a vertex on a radial level.

The radial drawing style is well suited for the visualization of social or policy networks,
where structural centrality scores are mapped to geometric centrality or the display of the
vicinity of a distinguished vertex is the primary intention [21–23, 25, 144]. See Fig. 3.2 for
an example. Radial drawings allow a more flexible edge routing than horizontal drawings,
as edges can be routed around the center in two directions. In our experimental results
this reduces the number of crossings by approximately 30% on average compared to
traditional horizontal drawings. It is also more likely that a graph can be drawn without
any crossings at all, since the set of level planar graphs is a proper subset of the set
of radial level planar graphs [1, 6, 7]. Radial level drawings are also well suited for
level graphs with an increasing number of vertices on higher levels. For example, in a
graph that shows which Web pages are reachable from a given start page by following
k hyperlinks, higher levels are likely to contain many vertices while there are only few
vertices on the lower levels. Other potential example applications can be found in
[89, 148]. In the remainder of this chapter we describe how to obtain such drawing
using the hierarchic framework.

General radial drawings where vertices are constraint to concentric rings are not
new, i. e., they date back to the 1940s and are called ring or target diagrams [25]. For
some newer examples see the hierarchical graph drawings of [31], the ring diagrams of

31
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Figure 3.1. Drawings of a level graph
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Figure 3.2. Political ties between prominent politicians of a county; the two apparent
groups predict the voting pattern of City Council members (shaded vertices) on building
a new prison (data from [21, 48])
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[125], or the radial tree drawings of [49], which are common for free trees. Di Giacomo
et al. [45, 46] study drawings of planar radial level graphs where the edges are polylines
(with straight-line instead of monotone spiral segments). They show the interesting
result, that in general it is not possible to compute radial drawings of level planar graphs
without crossings, no bends, and uniformly distributed vertices on the levels at the
same time without violating the leveling. Further, they investigate tradeoffs by relaxing
some aesthetic criteria to obtain drawability. Recently, Brandes and Pich [25] presented
an energy based method to radially visualize undirected graphs. They extend stress
majorization techniques [72] with a weighting scheme based on vertex distances that
imposes radial constraints on the layout. Note, radial level drawings are different from
circular drawings [16, 111, 134] where only one circle contains all vertices as described
in Sect. 2.1.1.1 and do not comply with the radial drawings of [43, 44] where edges are
drawn straight-line and level lines are not equidistant.

We present the first extension to the hierarchical framework for concentric level lines
[2, 11, 12, 14]. All benefits, i. e., aesthetic criteria, of the traditional horizontal approach
are preserved.

3.1 Cycle Removal
The problem is identical to the cycle removal in horizontal drawings. Thus, any of the
methods described in Sect. 1.2.1 can be used.

3.2 Level Assignment
The basic problem for computing the level function φ : V → {1, . . . , k} for a DAG G =
(V,E) is the same as in horizontal drawings and any existing level assignment algorithm
for horizontal leveling can directly be used for radial drawings. The optimization criteria
slightly change, however: Radial drawings use k concentric circles to place the vertices of
the k levels. Contrary to the constant line lengths in horizontal drawings, the perimeters
of the circles grow proportionally longer with ascending level numbers: On an outer
circle, there is space for more vertices than on an inner circle.

A straightforward idea is to apply the longest path level assignment method from
Sect. 1.2.2 from outer to inner levels: First, each sink of the graph is assigned to the
highest level. For the remaining vertices the level is recursively defined by φ(v) =
min{φ(w) | (v, w) ∈ E } − 1. This puts each vertex on the outermost possible level
while minimizing the number of levels k. This is a rather simple approach, however,
there is no explicit balancing of level sizes.

For a better vertex distribution, we extend the Coffman/Graham algorithm as de-
scribed in Sect. 1.2.2 such that it takes into account the growing perimeter of the
circles. Coffman and Graham compute a leveling where the number of vertices per level
is bounded by a given global constant ω. We change this bound to be a function ω(i)
which grows proportionally with the index 1 ≤ i ≤ k of a level, i. e., ω(i) ∼ ω · i.
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Similar to the horizontal framework, the level graph is normalized as the last step of
the level assignment phase to make it proper. For drawing (radial) level graphs it is
necessary to know where long edges should be routed, i. e., between which two vertices
on a spanned level. Thus all long edges are subdivided in proper segments by up to
O(k · |E|) new dummy vertices. In the following, we will only consider proper k-level
graphs G = (V,E, φ) if not mentioned otherwise.

3.3 Crossing Reduction
The problem of reducing crossings in radial drawings is more challenging compared to
horizontal drawings, as it involves both vertex ordering and edge routing problems [88].
That is, even if the orderings of the vertices on two consecutive levels are fixed, we still
need to decide how to route, clockwise or counter-clockwise, each edge between them
around the center in order to minimize the number of crossings. For radial embeddings
it is also necessary to know where the (w. l. o. g. counter-clockwise) orderings start and
end on each level. Therefore, we introduce a ray that tags this borderline between the
vertices, see Fig. 3.3(b) for an example. The ray is a straight halfline (or at least a
monotone polyline) from the center to infinity between the vertices on each level with
extremal positions. We call edges crossing the ray cut edges. In horizontal drawings
of level graphs a crossing between two edges only depends on the orderings of the
end vertices. In radial level drawings, however, it is also necessary to consider the
direction and the multiplicity in which the edges are wound around the center, clockwise
or counter-clockwise. We call this the offset ψ : E → Z of an edge. Thereby, |ψ(e)|
counts the crossings of an edge e ∈ E with the ray. If ψ(e) < 0 (ψ(e) > 0), e is a
clockwise (counter-clockwise) cut edge, i. e., the sign of ψ(e) reflects the mathematical
direction of rotation, see Fig. 3.3. If ψ(e) = 0, then e is not a cut edge and thus needs
no direction information.

1

3

24
1+

1-

(a) Edge (1, 3) drawn counter-
clockwise and clockwise (dotted)

1 2

3+

(b) ψ ((1, 2)) = +3

Figure 3.3. Offsets of edges

We define a radial embedding E of a proper graph G = (V,E, φ) to consist of the
vertex ordering π and of the edge offsets ψ, i. e., E = (π, ψ). Compared to horizontal
drawings there is an additional freedom in radial drawings without changing the number
of crossings: rotation of a level i. A clockwise rotation moves the vertex v with minimum
position on the ordered level φ(v) = i over the ray by setting π(v) to the maximum
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on i. The other values of π are updated accordingly1. A counter-clockwise rotation is
defined symmetrically. Rotations do not modify the “cyclic order”, i. e., the neighborhood
of every vertex on its radial level line is preserved. However, the offsets of the edges
incident to v must be updated.

To reduce the number of crossings we first follow the conventional approach of the
level-by-level sweep. The resulting problem is the NP-hard radial one-sided two-level
crossing reduction [2]. In a radial embedding E there can be more than one crossing
between two edges e1, e2 ∈ Ei, 1 < i ≤ k, if they have very different offsets. Intuitively,
this number is approximately equal to the difference of the offsets |ψ(e2)−ψ(e1)|. The
exact formula shown by (3.1) is slightly different, however, with a small shift depending
on the vertex ordering.2

χE(e1, e2) = max
{

0,
∣∣∣ψ(e2)− ψ(e1) + b−a

2

∣∣∣+ |a|+|b|
2 − 1

}
,

where a = sgn (π1(u2)− π1(u1)) and
b = sgn (π2(v2)− π2(v1))

(3.1)

In [2] we have shown that a crossing minimal embedding implies ψ(e1)−ψ(e2) ∈ {0, 1}
for each pair of edges e1 = (u1, v), e2(u2, v) ∈ E−(v) with a common target vertex
v and u1 ≺ u2. That means the offsets differ at most by one. Thus, it is clear that
only embeddings need to be considered, where there is a clear parting between all edges
incident to the same vertex as in Fig. 3.4(a). The parting is that position of the edge
list of v that separates the two subsequences with offsets ψ0 resp. ψ0 + 1. Otherwise
unnecessary crossings are generated between the incident edges, e. g., see Fig. 3.4(b). In
the remainder we only consider radial embeddings with small edge offsets −1, 0, and 1,
because large offsets correspond to very long edges which are difficult to follow. Further,
winding edges more than once around the center only would tend to increase its number
of crossings.
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Figure 3.4. Not all offset combinations for edges (·, v) ∈ E−(v) result in few crossings

1This can be done implicitly if using ordered lists for the vertices of each level.
2Although high offsets are never useful for a low number of crossings, we nevertheless provide the

general result, not only to show that it also can be computed in constant time, but also as an interesting
problem in itself.
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Our results have been used by Hong and Nagamochi [86–88]. They present a 15 and a
4.3992 approximation algorithm to radial one-sided crossing minimization. The former
has a running time of O(|Ei| ·min{|Vi−1|, |Vi|} ·min{|Vi−1| · |Vi|, |Ei| log |Vi|}), whereas
the latter in worst case needs time exponential in the maximum vertex degree of the
input graph. In both cases, the radial problem is reduced to a classic one with horizontal
levels, on which then the approximation algorithm of Nagamochi [116] is applied.

3.3.1 Cartesian Barycenter and Median

Now we directly attack the radial one-sided two-level crossing reduction problem with
the simple heuristics from Sect. 1.2.3.1. We try to reduce crossings among radial edges
between the fixed level i− 1 and the permutable level 1 < i ≤ k in the following. In the
horizontal barycenter crossing reduction method for every vertex in Vi the average value
of the positions of its neighbors in Vi−1 is computed. Afterwards, Vi is sorted according
to this values following the rule of thumb “shorter edges have less crossings than longer
edges”. With some restrictions, this method can be directly used to compute a radial
embedding: The horizontal vertex ordering defines a radial vertex ordering, and all edge
offsets are set to 0. This neglects the additional freedom of radial edge routing, however,
and therefore introduces more crossings than necessary. Even worse, the result depends
on the position of the ray.

We propose another approach which also follows the basic idea that every vertex
should be close to the average position of its neighbors. However, we use the terms
“average” and “position” in a geometric sense. We assume the vertices of the fixed level
Vi−1 to be uniformly distributed on a unit circle, according to the given ordering. This
defines Cartesian coordinates (x(u), y(u)) ∈ R2 for each u ∈ Vi−1. Then we compute
the Cartesian barycenter for each v ∈ Vi using (3.2).

bary(v) =
(∑

u∈N−(v) x(u)
|N−(v)| ,

∑
u∈N−(v) y(u)
|N−(v)|

)
(3.2)

If the Cartesian barycenter (or later the Cartesian median) is (0, 0), then any position
is equipollent. Thus, we take a random one. Afterwards, we sort the vertices circularly
around the origin, i. e., by the angles of bary(v) in polar coordinates. Finally, we dis-
tribute the vertices of level i uniformly on a concentric circle with radius 2 and choose
for the offset of each edge one of −1, 0, or +1, whichever leads to the shortest edge in
a geometric sense. The needed running time for one level is O(|Ei|+ |Vi| log |Vi|).

The Cartesian median heuristic is similar to the Cartesian barycenter heuristic. The
only difference is that we take component-wise the x and y median instead of the
component-wise barycenter. The running time stays the same, since med(v) can be
computed in O(|N−(v)|), see [37]. The median values depend on the underlying coordi-
nate system (origin and rotation). But since we use the same coordinates for all median
computations, this is no problem. Rotated coordinate systems, however, might lead to
different results.
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3.3.2 Radial Sifting
In contrast to the fast and simple algorithms described in the previous section, we now
develop an extension of the sifting heuristic to radial levels. It is slower and slightly more
involved but produces better results, i. e., which have fewer crossings. Recall that the
same holds for traditional sifting on horizontal levels. As above we describe one-sided
two-level crossing reduction between levels i − 1 and i. Again we do not exploit the
traditional sifting method using a crossing matrix but use the relative sifting approach
as described in Sect. 2.1.1.2.

Unfortunately, we cannot directly use (1.3), because in radial sifting the crossing
numbers also depend on the edge offsets, which are not constant in our approach. A
change in the offset of an edge may affect all other edges instead of only the ones
incident to the swap vertices. Therefore, the overall running time of this part of the
algorithm for one sifting round is O(|Ei|2) instead of O(|Vi| · |Ei|) for horizontal relative
sifting. The total running time of the algorithm, however, is dominated by the next step
anyway.

In addition to the position of vertex u, we also have to compute the offsets of the
incident edges. As the traversing vertex u moves along the i-th level circle in counter-
clockwise direction, we update the offsets accordingly. Since there must be a clear parting
of edges incident to u, we do not consider each possible offset combination for each (new)
position of u. Intuitively, the parting of the edges should move around level i− 1 in the
same direction as u on level i, but on the opposite side of the circle. Otherwise, the edges
incident to u get longer and tend to increase the number of crossings. Thus, we only
decrease edge offsets by 1, starting with ψ(e) = 1 for all incident edges e = (·, u) ∈ Ei,
and we also do this one by one in the order of the end vertices on level i − 1. The
decision for which offsets are updated at which position of u is made subject to whether
this leads to an improvement or not. Note that the parting may move around level i− 1
twice, as offsets are decreased from 1 to −1. For one sifting round, we obtain an overall
running time in O(|Vi|2 · |Ei|).

To allow a harmonic drawing of the computed embedding in the next phase a final
postprocessing is useful which rotates level i with respect to uniform edge lengths.
Since our algorithm starts with an offset of 1 for every edge and stops at the first
best parting among several others which are as good, a straightforward drawing of the
embedding is twisted too much (in counter-clockwise direction). However, this O(|Ei|)
time consuming postprocessing step is only for aesthetic reasons and does neither affect
the number of crossings nor the asymptotic running time.

3.3.3 Experimental Results
To analyze the performance of our one-sided two-level heuristics, we have implemented
them in Java. Our experimental results show that all radial heuristics generate fewer
crossings than their horizontal equivalents, experimentally by a factor of 0.7. This is a
very encouraging result, since the running times of the radial algorithms (except sifting)
are similar. As in the horizontal case [92], Cartesian barycenter on average leaves slightly
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fewer crossings than Cartesian median. Another similarity is that radial sifting is the best
among all three radial heuristics, but also the slowest. Usually only few sifting rounds
(3–5 for reasonable problem instances) are necessary to reach a local optimum for all
vertices simultaneously, and the largest reduction of crossings usually occurs in the first
round. In our experiments we further observed that the quality of radial sifting does
not depend much on the quality of the initial embedding. However, a poor initialization
increases the number of sifting rounds needed and thus raises the absolute running time.
A complete implementation in Java sweeping with radial one-sided sifting level-by-level
over k levels can be found in [85].

3.3.4 Radial Sifting with Intra-Level Edges
Similar to Sect. 2.1.1 we extend the sifting algorithm from Sect. 3.3.2 to extended one-
sided two-level radial sifting of extended k-level graphs G = (V,E,H, φ) as sweep over
the levels Vi−1 (fixed) and Vi (permutable) with 1 < i ≤ k. Again the underlying
minimization problem is NP-hard. The resulting extended radial levels drawings are
useful, e. g., for the visualization of social networks where the importance (centrality) of
an actor (modeled by a vertex) defines its level [21–23]. More specifically, traditionally
the visualization of an actor’s status in a social network is a drawing where the levels
are not equidistant, because each level represents a real-valued centrality index for the
actors [26]. Since the centrality values often differ only marginally, status values can be
clustered. The actors with centrality values in the same range are assigned to the same
level to avoid perceptual problems of having too many levels. However, this approach
introduces many intra-level edges. Another application of extended level graphs with
radial drawings is the visualization of micro/macro graphs [17], e. g., arising from group
analysis or role assignment in social networks [21]. In general, intra-level edges may help
to gain better aspect ratios, since drawings tend to be much longer than wide, especially
with the Sugiyama method.

We represent (except for the innermost level) intra-level edges using circular arcs
with different radii in order to avoid overlapping edges and crossings between vertices
and edges, see Fig. 3.5. The interpolation point in the middle is computed according to
the edge lengths, i. e., the number of spanned vertices plus 1. Thus, the interpolation
point of longer edges is closer to the concentric center and a crossing free nesting is
possible. Contrary to straight-line edges but similar to the inter-level edges, there are
two possibilities to wind the intra-level edges around the center, clockwise or counter-
clockwise. For a low crossing number and low visual complexity, we always use the
direction with shorter length, i. e., smaller or equal to b |Vi|

2 c. As in Sect. 2.1.1, we
restrict to draw the arcs only one-side of the level lines, say inside (above), in order to
model the problem as in the classic Sugiyama framework.

Like in Sect. 2.1.1 we split the computation for the change in crossing numbers when
swapping two vertices in the three values ∆ = ∆E+∆H+∆EH . ∆E is computed exactly
as discussed in Sect. 3.3.2.

For an easy notation (v1, v2) ∈ Hi denotes an intra-level edge that is wound counter-
clockwise around the center starting at vertex v1 and ending at vertex v2. This partitions
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Figure 3.5. Example extended level drawings

the intra-level adjacency H(v) for each v ∈ Vi in two sets, the incoming intra-level edges
Hl(v) = {(·, v) ∈ Hi} and the outgoing intra-level edges Hr(v) = {(v, ·) ∈ Hi}. Per
convention, we store edges for which each direction results in the same length in Hl.
Hl(v) and Hr(v) are kept sorted according to the ≺v-ordering of the neighbors of v.
During the sifting step, both the incoming and the outgoing intra-level adjacency lists
of both vertices u and vp are updated after their sifting swap. Then the computation of
∆H is basically the same as in Sect. 2.1.1.2.

It remains the computation of ∆EH for crossings between inter-level and intra-level
edges. With the splitting of the intra-level adjacency for each vertex introduced in
the previous paragraph, computing the change in crossings ∆EH when swapping two
consecutive vertices u and vp ∈ Vi stays principally the same as in (2.2) of Sect. 2.1.1.
Thereby, we again neglect short edges {u, vp} which do not contribute to the crossings.
What remains is the additional freedom of routing the intra-level edges around the center
in two different directions. Contrary to crossings between only intra-level edges, this now
has an effect as Fig. 3.6 shows.

To overcome this problem, we use the heuristic to always prefer the shorter direction.
We denote intra-level edges that span at least b |Vi|

2 c − 1 vertices as long edges. After
the swap of the traversing vertex u with its (counter-clockwise) successor vp, the length
of all incoming intra-level edges of u, in Hl(u) and all outgoing intra-level edges of vp in
Hr(vp) is increased by 1. Similarly, the length of all outgoing edges of u in Hr(u) and all
incoming edges of vp in Hl(vp) is decreased by 1. In the case of an increase, it only can
happen that the first (last) edge of the adjacency list Hl(u) (Hr(vp)) becomes a long
edge. This is true, since we keep the adjacency lists ordered according to ≺u (≺vp) and
ascending edge lengths. One special case remains: If |Vi| is even, then some intra-level
edges may have the same length |Vi|

2 in both directions. We call them vis-à-vis edges,
because they are incident to two vertices that are placed opposite to each other on their
circular level. In order to locally minimize the number of crossings, we break ties in favor
of the direction that causes less crossings with inter-level edges.
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Figure 3.6. Crossings between inter-level and intra-level edges and optimal routing

We obtain an overall time complexity of O(|Vi|2 ·(|Ei|+ |Hi|)) for one round of extended
radial sifting.

3.3.5 Global Sifting
To achieve all the benefits of our global sifting approach presented in Sect. 2.1.2, we now
generalize it to work on not necessarily proper radial level graphs G = (V,E, φ) such as
the one shown in Fig. 3.7(a). The algorithm guarantees radially aligned inner segments
of long edges out of the box and can be used directly with only minor modifications:
Each block of the block list B has its own angle. See Fig. 3.7(b) for an example. As
above we introduce a ray to imply an ordering to B and use the offsets as defined for each
outer segment. When sifting a traversing block A ∈ B, we have to update two partings.
These are the two borders between the counter-clockwise and clockwise segments on
the levels above and below A. More precisely, the partings are among edges incident
either to the topmost or to the bottommost vertex of A, respectively, see Fig. 3.8.

Since we can do the parting updates independently of each other and add the results
of the changes in crossing counts to our ∆-value in relative sifting, we can use the same
technique as in Sect. 3.3.2: We sift a block from its current position in counter-clockwise
direction. Thus, for few crossings the partings have to follow in this direction on their
levels. The test during the swap whether changing the orientations of some of the first
of the (ordered) incident segments of A by incrementing their offsets, and thus putting
them last, leads to less crossings and counting the difference raises the overall running
time to O(|E|3). However, the subsequent coordinate assignment described in Sect. 3.4
relies on the absence of type 2 conflicts which is up to now only guaranteed here.

The leftmost alignment3 of a level (pushing the vertices of a level clockwise towards
the ray without changing their ordering) or the distribution of the vertices equidistant
on their levels under maintenance of the topology (and the crossings as they are) may

3Remember, an embedding is defined by positions of vertices in ordered levels (and edge offsets)
and not by (absolute) coordinates.
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make some edges longer, see Figs. 3.7(c) and (d). In worst case, some edges may span
afterwards up to exclusively 720◦. However, since no vertex is pushed over the ray all
edge offsets will remain valid and stay at most 1, which is a precondition of the coordinate
assignment phase described next. For example, in Fig. 3.7(d), the edge (v, 11) spans
360◦ instead of 0◦ and being straight. This avoids three new crossings.

3.4 Coordinate Assignment
In radial level drawings we draw the edge segments as segments of spirals, unless they are
radially aligned and, thus, are drawn as straight lines. This results in strictly monotone
curves from inner to outer levels and ensures that segments do not cross inner level
lines or cross each other unnecessarily. This fourth phase of the framework is usually
constrained not to change the vertex orderings computed previously, what is especially
useful if the input embedding is a planar embedding, e. g., as generated by [1, 7]. Further,
the drawing algorithm should support commonly accepted criteria for readability and
aesthetics, like small area, good separation of (dummy) vertices within a level, length
and slope of edges, straightness of long edges, and balancing of edges incident to the
same vertex. In our opinion edge bends in radial level drawings tend to be even more
disturbing than in horizontal level drawings because of the visual edge complexity of
spiral segments. Thus, we again base our algorithm on the approach of Brandes/Köpf
[24] as described in Sect. 1.2.4 which guarantees at most two bends per edge. Further
it prioritizes vertical alignment, which helps us to obtain radial alignment. The criterion
of small area in horizontal coordinate assignment, i. e., to obtain small width, turns to
uniform distribution of the vertices on the radial levels. As a consequence, a user defined
parameter δ for the minimum vertex separation as used in Sect. 1.2.4 is not needed.
Since the (proper) input embedding for this phase maintains the position π(v) for every
vertex v ∈ V , the position of the ray is implicitly evident, i. e., on each level it lies
between the two vertices with extremal positions.
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3.4.1 Preprocessing
If an inner segment is a cut segment in the input embedding, i. e., if it crosses the ray,
then the maximum of two bends for the corresponding long edge cannot be guaranteed,
see Fig. 3.9 for an example. We call this situation a type 3 conflict as a generalization
of the notion in [24].

1

2

Figure 3.9. Type 3 conflict

A simple solution is to demand the absence of inner cut segments in the input, similar
to type 2 conflicts in [24] and here. A different, more constructive, and always doable
approach described next is to unwind the graph and rotate some levels. This changes
the position of the ray, i. e., the offset of some edges, and thus the embedding. However,
this does not affect a later drawing, since the relative orderings of the vertices stay the
same.

Clearly, levels 3 ≤ i < k with incoming inner segments are unwound one after
the other by rotating the whole respective outer graph, i. e., all levels ≥ i are rotated
simultaneously by multiples of 360◦ for each i. This is done in such a way, that the
resulting offsets of all inner segments are either 0 or +1 and that there are no two
dummy vertices v1, v2 ∈ Vi on the same level i with ψ

(
(u1, v1)

)
= 0, ψ

(
(u2, v2)

)
= +1,

and v1 ≺ v2 for any pair of dummy vertices u1, u2 ∈ Vi−1 on the previous level. This
is always possible in linear time as constructively shown in [2, 12]. Up to now the
position of the ray and the orderings of the vertices remained unchanged. Finally, we
use standard rotations (Sect. 3.3) to eliminate the remaining crossings of inner segments
with the ray. Recall, rotation of a single level i is different from rotating levels during
unwinding. Here we do not rotate by (multiples of) 360◦ in general and do not rotate
all levels ≥ i simultaneously. Clearly, we rotate each level clockwise such that the ray
enters the position after the last dummy vertex incident to an inner segment with an
offset of originally +1. In the end, all inner segments have an offset of 0. However, the
approach may create many crossings of outer segments with the ray.

3.4.2 Intermediate Horizontal Layout
In the next step we generate an intermediate horizontal drawing of the radial level
embedding with the Brandes/Köpf algorithm of Sect. 1.2.4. Therefore, we ignore all
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cut segments. Since the embedding is now free of type 3 conflicts, all inner segments
of an edge are aligned vertically. The resulting layout will later be transformed into a
concentric layout by concentrically connecting the ends of the horizontal level lines with
their beginnings. Since the circumferences of circular level lines grow with ascending
level numbers 1 ≤ i ≤ k, we use a minimum vertex separation distance δi = 1

i
for each

horizontal level i, which is in each case indirectly proportional to i. Hence, we obtain a
uniform minimum arc length between two consecutive vertices on every level line with
the radial transformation described in the next section.

3.4.3 Radial Layout
At this stage every vertex v ∈ V has Cartesian coordinates

(
x(v), y(v) = φ(v)

)
∈ R×N.

For the transformation into a radial 2D drawing we interpret these coordinates as polar
coordinates and transform them with (3.3) into Cartesian coordinates. The position of
the ray denotes 0◦.

(
x2D(v), y2D(v)

)
=
(
y(v) · cos

(
2π
z
· x(v)

)
, y(v) · sin

(
2π
z
· x(v)

))
∈ R2 (3.3)

The factor 2π
z
normalizes the length of the horizontal level lines to the circumferences of

the radial level lines. We set z as the largest horizontal distance between two vertices on
the same level i plus δi. This normalization automatically realizes the necessary overlap
between the left and the right contour of the horizontal layout when drawn radially, see
Fig. 3.10 for a schematic illustration.

(a) Horizontal (b) Radial

Figure 3.10. Overlap of the left and right contour

After drawing the vertices, we draw each short edge e = (u, v) ∈ E as a segment of a
spiral. For that, we use the interpolation points p controlled by the parameter t ∈ [0; 1]
in (3.4). Since e can wind multiply around the center, we add ψ(e)·z to the x-coordinate
of v. To obtain smooth edges, the number of interpolation points needed for drawing
the edges with an approximating polyline or spline depends on the edge length and a
quality factor.
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(
x2D(p), y2D(p)

)
=
(
(1− t) · y(u) + t · y(v)

)

·
(

cos
(

2π
z
·
(
(1− t) · x(u) + t · (x(v) + ψ(e) · z)

))
,

sin
(

2π
z
·
(
(1− t) · x(u) + t · (x(v) + ψ(e) · z)

)))
(3.4)

For generating a radial 3D drawing on the cylinder we use (3.5), where rω is the radius
of the cylinder. Edges are interpolated similar to above.

(
x3D(v), y3D(v),z3D(v)

)
=

(
rω · cos

(
2π
z
· x(v)

)
, rω · sin

(
2π
z
· x(v)

)
, y(v)

)
∈ R2 × N

(3.5)

For the radial coordinate assignment we obtain a linear running time O(|V | + |E|) in
the size of a proper level graph G = (V,E, φ).

3.4.4 Example Outputs
In the following we oppose some traditional layouts with their radial pendants generated
with the Java implementation of [66]. Apart from the edge orientations, they share a
common embedding, respectively. Note, all size indications on vertices include dummy
vertices and references to the number of edges count proper edges, i. e., the segments.

(a) Horizontal (b) Radial

Figure 3.11. Example with |V | = 39, |E| = 47, and k = 3
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(a) Horizontal (b) Radial

Figure 3.12. Example with |V | = 58, |E| = 69, and k = 10

(a) Horizontal (b) Radial

Figure 3.13. Example with |V | = 201, |E| = 228, and k = 18
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(a) Horizontal (b) Radial

Figure 3.14. Example with |V | = 216, |E| = 230, and k = 10
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4
Cyclic Drawings

In the general case, the Sugiyama framework destroys cycles in its first phase by remov-
ing or reversing some edges, see Sect. 1.2.1. It turned out that this is very useful to
draw directed graphs with no or only few cycles to visualize the common direction of
information flow in diagrams. In some applications, however, it is not appropriate or
even inacceptable to assume that there is some reasonable partial order in the graph.
Then cycles should not just be considered as temporary “error” since they carry essen-
tial structural information which needs to be clearly visible or explicitly highlighted in a
drawing. This forbids the removal of cycles. Examples are distinguished cycles in the
life sciences like the fatty acid synthesis illustrated in Fig. 4.1(a) or the citrate cycle
[110], and processes in a schedule which repeat in a daily or weekly turn [132], e. g., see
Fig. 4.1(b). The users in this areas are accustomed to see the cycles as such, although
drawn by hand up to now. Even more, these cycles often serve as a landmark [110].
In the area of information visualization, circular parallel coordinates are an adequate
instrument to depict multi dimensional data in two dimensions [38, 65]. Cyclic drawings
visualize data with a similar scheme.

Obviously, there are many situations where the destruction of cycles by reversing
some edges to compute a layout and an ex post correction to their primal directions is
not appropriate. This fact was already known to Sugiyama et al., so they proposed in
their seminal paper from 1981 [138] beside the hierarchical framework a drawing style
for cyclic graphs, which they called recurrent hierarchies. A recurrent hierarchy is a
level graph with additional edges from the last to the first level. Here, two drawings
are natural: The first is a 2D drawing, where the levels are rays from a common center
forming a star, and are sorted counter-clockwise by their number, see Fig. 4.2(a). All
vertices of one level are placed at different positions on their ray and an edge e = (u, v)
is drawn as a monotone counter-clockwise curve, i. e., as segment of a spiral, from u
to v wrapping around the center at most once. The second is a 3D drawing on a

49
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(a) Fatty acid synthesis [110]

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

Task 11Task 12

Task 11Task 1 Task 11Task 2

Task 11Task 3

Task 11Task 10

Task 11Task 6

Task 11Task 8

Task 11Task 9

Task 11Task 4

Task 11Task 11

Task 11Task 5

Task 11Task 7

(b) Schedule for repeating tasks. The edges illustrate
(cyclic) dependencies on results of previous tasks

Figure 4.1. Cyclic level drawings in life sciences and scheduling
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cylinder, see Fig. 4.2(c). In both cases, the last level k is a predecessor of the first
level 1. As a consequence, the span of an edge e = (u, v) is now (re-)defined as
span(e) := φ(v)− φ(u) if φ(u) < φ(v), and span(e) := φ(v)− φ(u) + k otherwise.
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Figure 4.2. Example drawings

Typical applications for cyclic layouts can also be found in VLSI design. There, it is
often necessary to build regular layouts of one dimensional arrays of identical cells as
Fig. 4.3(a) exemplifies. Let S be the cell which is replicated, for example a bit or word
on a memory chip. Then, the content and the links of S have to be layouted in such a
way that it can be used to seamlessly tile an infinite strip. This is topologically nothing
else than cylinder drawings of S as Fig. 4.3(b) shows, or the flat drawings as a star. We
will see in Chapter 5 how to tile the plane with two dimensional arrays.
Recurrent hierarchies are known to most graph drawers – but unnoticed. A planar
recurrent hierarchy is shown on the cover of the text book by Kaufmann and Wagner
[96]. There it is stated that recurrent hierarchies are “unfortunately [. . . ] still not well
studied” [96, page 119]. One reason is that they are much harder. Intuitively, there is
no start and no end, there are no top and bottom levels.

Sugiyama and Misue [137] have later introduced an alternative approach to the
framework. They proposed a set of modifications of force-based algorithms to enforce
cyclic orientation. In this context they ask [137, page 372]: “Can directed graphs with
cycles be drawn in a way that it is easy to grasp the global flow of the graphs and the
existence of cycles?” They use a concentric force field which rotates around the center
and takes edges along. They report about promising experimental results for small
example graphs, although they neglect given hierarchical dependencies. Their method is
quite intuitive and easy to implement, however, as is common to force-based methods,
highly suspectible to local minima and sensitive to the choice of the initial configurations
and parameters. Recently, Pich [121] presented a method using spectral graph layout
techniques [97] to generate cyclic drawings of directed graphs. However, this does not
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(a) One dimensional
array of cells [109]

(b) Cell representation on
the cylinder

Figure 4.3. Applications in VLSI design

result in discrete levels for the vertices. Thus, we do not follow these approaches and
enhance the hierarchic framework for cyclic level lines [3–5].

Clearly, cyclic drawings are only superior to traditional hierarchic drawings on graphs
with a mainly cyclic rather than a hierarchic structure. Hypothesis about that can
be analyzed with [120, 121] using spectral decompositions [97] of the skew symmetric
adjacency matrix before deciding how to draw a given graph.

4.1 Cycle Removal
In cyclic drawings edges are irreversible and cycles are represented in a direct way. Thus,
the cycle removal phase disappears from the common Sugiyama framework. This saves
much effort, since the underlying problem is the NP-hard feedback arc set problem [75].
Another advantage are short edges. The sum of the edge length can be smaller than
in the hierarchical case: Consider a cycle consisting of three vertices. The only way to
draw this graph in the Sugiyama framework is to reverse one edge which will span two
levels. Therefore, the sum of the edge length will be four. In the cyclic case this graph
can be drawn on three levels such that each edge has span one.

Note that any Sugiyama drawing is a cyclic Sugiyama drawing which discards the
option to draw edges between the last and the first level. Due to this trivial reason, all
benefits of such drawings exist in the cyclic case as well. However, the sum of the edge
length and the number of crossings will often be smaller.
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4.2 Level Assignment
Cyclic level assignment is akin to the NP-hard directed circular arrangement problem,
where the vertices of a directed graph are embedded onto evenly spaced points on a
circle such that the total (weighted) length of the counter-clockwise edges is minimized
[71, 103, 104, 117]. This translates to an injective leveling, where each vertex gets it
own cyclic level. A typical application for directed circular arrangement is to define the
best periodical order of server broadcasts of data packets, where the edges represents
(e. g., time or data) dependencies between the packets [104]. With cyclic leveling there
is a generalization such that more than one packet can be broadcasted at a particular
time step, e. g., over different (logical) channels. However, contrary to common circular
arrangement methods, we do not consider so called multicasts, i. e., duplicating data
packets within one broadcast round. Another main application of circular arrangement
can be found in load minimization in directed ring networks like in Cisco’s Dynamic
Packet Transport technology [117]. The authors of [71] show that directed circular
arrangement has no polynomial time approximation scheme (PTAS). Hence, it is likely
that circular leveling admits no PTAS as well. For the theoretical background of cyclic
arrangement of directed graphs see [71, 105].

Before we start with constructive algorithms to assign vertices to cyclic levels, we
first work out the objectives for cyclic leveling and compare their complexities to the
hierarchical style.

4.2.1 Complexity

There is a substantial and diametric discrepancy between the hierarchic and the cyclic
leveling. Simultaneously minimizing the height and the width is NP-hard in the former,
cf. Sect. 1.2.2, and polynomial in the latter case. In fact for cyclic leveling this is
even trivial: An edge e = (u, v) does not impose any constraint on the leveling of the
vertices u and v. Therefore, filling up an arbitrary height times width grid with vertices
on arbitrary positions gives a compact leveling, since dummy vertices of long edges are
traditionally not counted for the width, see Sect. 1.2.2. However, in general the resulting
drawings are ugly and confusing.

Conversely, minimizing the sum of the edge lengths drawing on k ≥ 2 levels is
polynomial hierarchically, see Sect. 1.2.2, and is NP-hard on cyclic levels. There the
span can no longer be formulated by a system of efficiently solvable linear equations,
because a case differentiation or the modulo operation is needed. We have shown the
NP-completeness by reductions for the maximum bipartite subgraph and the graph k-
colorability problems [5]. Thus for the desired goal of an overall small span we have
to use heuristics. Known approaches from the hierarchical case like the longest path
method [96] or the Coffman-Graham algorithm [36] cannot be easily adapted to the
cyclic case. They heavily rely on the fact that the graph is acyclic and start the leveling
process at source vertices with no incoming edges. As it is not guaranteed that such
vertices exist in the cyclic case at all, we introduce three new heuristics.
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4.2.2 Breadth First Search
The BFS-heuristic to level a graph (V,E) to obtain a k-level graph G = (V,E, φ) with
maximum width ω is rather simple: We choose an arbitrary start vertex v ∈ V , set
φ(v) = 1 and perform a directed BFS from v. Define next(i) := (i mod k) + 1 to be
the cyclic next level after level 1 ≤ i ≤ k. Whenever we reach a vertex w for the first
time using an edge (u,w), we set φ(w) = next(φ(u)) if this level does not contain ω
vertices already. Otherwise, we move w to the first non-full level. Consequently, the
tree edges will have a rather short span. However, the back edges are not taken into
account for the leveling at all and may get arbitrarily long with a span up to k, thus.
The algorithm needs O(|V |+ |E|+ k2) time.

4.2.3 Minimum Spanning Tree
The next heuristic has similarities to the algorithm of Prim [37], which computes the
minimum spanning tree (MST) of a graph. We sequentially level the vertices by a greedy
algorithm. Let V ′ ⊂ V be the set of already leveled vertices. Whenever we level a vertex
v ∈ V −V ′, all incident edges to vertices in V ′ get a fixed span. Therefore, we set φ(v)
such that the sum over this spans is minimized. Note that there are possibly more edges
incident to v which are also incident to not yet leveled vertices in V − V ′. These edges
will be considered when their second end vertex gets leveled. We decide in which order
to add the vertices by using a distance function δX(v), for which we discuss four options.
Thereby, let E(v, V ′) := { {v, w} ∈ E | w ∈ V ′ } be the set of (underlying undirected)
edges incident to v and an already leveled vertex w and let span(E∗) := ∑

e∈E∗ span(e)
for E∗ ⊆ E be a shortcut for the sum over the spans of the edges in a set E∗.

Minimum Increase in Span We choose the vertex which will create the minimum
increase in span in the already leveled graph:

δMIN(v) = min
φ(v)∈{1,...,k}

span(E(v, V ′)) (4.1)

Minimum Average Increase in Span The distance function δMIN will place vertices
with a low degree first, as vertices with a higher degree will almost always cause a higher
increase in span. Therefore, considering the increase in span per edge is reasonable:

δMIN_AVG(v) = min
φ(v)∈{1,...,k}

span(E(v, V ′))
|E(v, V ′)| (4.2)

We distribute isolated vertices uniformly on the non-full levels in the end.

Maximum (Average) Increase in Span Choose the vertex which causes the maxi-
mum (average) increase in span per edge:

δMAX(v) = 1
δMIN(v) , δMAX_AVG(v) = 1

δMIN_AVG(v) (4.3)
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The reasoning behind is that a vertex which causes a high increase in span will cause
this increase when leveled later as well. But if we level the vertex now, we can possibly
level other adjacent, not yet leveled vertices in a better way. A similar idea could be to
simply choose a vertex with a high degree, i. e., with many not yet leveled neighbors.

Note that we use δX(v) only to determine which vertex is leveled next. After we have
decided which vertex v to take next, we assign v to level φ(v) such that the increase in
span will be minimized. In some cases several levels for v will create the same increase in
span. Then we choose a level for v which minimizes ∑e∈E(v,V ′) span(e)2 as well. Thus,
v gets a level which is more centered between v’s leveled neighbors and the resulting
drawing is more balanced. In each case, we can only use a level which has not yet the
maximum number ω of vertices on it. Vertices with already leveled neighbors always
block a place on their optimal level such that they can later be placed on the level.

The heuristic needs O(|V | log |V |+ k · deg(G) · |E|) time. According to our exper-
iments [5, 106], all MST variants do not differ very much in quality, i. e., in the overall
span. However, to take the minimum average increase in span as distance function seems
to be the best.

4.2.4 Force Based

Spring embedders use a physical model to simulate the edges as springs [70, 94, 96].
Forces between vertices are computed and the vertices are moved accordingly. Trans-
ferring this idea to the cyclic leveling problem, we could use a force function similar to
conventional energy based placement algorithms as follows:

force(v) =
∑

(v,w)∈E
(span((v, w))− 1)2 −

∑

(u,v)∈E
(span((u, v))− 1)2 (4.4)

However, moving a vertex to its energy minimum using this force will not minimize the
span of the graph [5], i. e., (4.4) minimizes the deviation between the edge lengths.
Furthermore, the span may increase when moving a vertex towards its energy minimum,
as some edges can flip from span 1 to span k. We solve this problem by using directly
the span as the (undirected) force which is minimized, see (4.5).

force(v) := span(E(v, V )) (4.5)

We move the vertex with the maximum impacting force. And we directly move the
vertex to its energy minimum, which is the level such that the span is minimized. For
this, we test all possible (non-full) levels. Note that moving all vertices at once as done
in [94] would not decrease the time complexity here.

As an initial leveling we use the result of the minimum average increase in span tree
heuristic from Sect. 4.2.3. For each iteration we need O(|V | log |V | + k · |E|) time.
Experiments [5, 106] confirm our expectation that this heuristic is the best among all
our cyclic leveling strategies.
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4.3 Crossing Reduction
As it is the case with radial drawings, the cyclic style reduces the number of crossings
compared to the horizontal style in general. See Figs. 4.2(a) and (b) for an example.
At the threshold with no crossings [9], there are cyclic level planar graphs which are not
level planar. See Fig. 4.2 by considering the solid edges only.

Our global sifting algorithm from Sect. 2.1.2.1 can be used directly for cyclic level
graphs without major changes. We put each block to an unique radius around the center
rather than on an own x-position, i. e., the positions in the block list B define these radii.
See Fig. 4.4 for an example. Recall that there are no “ring blocks” since every long edge
is wrapped around the center at most once and, thus, each block spans at most k − 2
levels. We obtain the same time complexity O(|E|2) for one sifting round in the block
graph for a not necessarily proper k-level graph G = (V,E, φ) which is independent from
the number of dummy vertices. A difference to horizontal global sifting is that up to
four level pairs must be considered for a change in crossings per swap, since two blocks
may have an overlap which builds up at most two disjoint intervals. See Fig. 4.5 for an
example. The algorithm shown as pseudo code in [4] is already aware of this. For results
of experiments with an implementation in Java substantiated by benchmarks see [81].

Note that one-sided two-level algorithms cannot be applied here, since each of them
pushes most of the crossings to the next level only. There is no possibility to push the
crossings “out of the drawing” as it can be done with horizontal level lines. Since the
(last) cyclic sweep has to stop at some time at a concrete level, it would leave many
crossings between this level and its successor level. Furthermore, the absence of type
2 conflicts cannot be guaranteed then, even if using the simple barycenter or median
heuristics which avoid them on horizontal levels. Again, this will be necessary for the
coordinate phase as introduced in Sect. 4.4. See [9, 10] for the special case of cyclic
level planar graphs, which admit crossing free embeddings.

4.4 Coordinate Assignment
Once again we modify the algorithm of Brandes and Köpf from Sect. 1.2.4, now for
cyclic k-level graphs G = (V,E, φ) to provide a linear time algorithm using quadratic
area with at most two bends per edge. We assume that the input embedding is proper,
i. e., V includes dummy vertices if necessary, and does not contain type 2 conflicts.

We represent drawings of cyclic level graphs in an intermediate drawing in the remain-
der of the section assigning each vertex v two coordinates x(v) ∈ R and y(v) = φ(v) ∈
N. The x-coordinate increases from left to right (by at least unit length between succes-
sive vertices), the y-coordinate increases downwards in edge direction, see Fig. 4.6(b).
All vertices on level 1 are duplicated on level k + 1 using the same x-coordinates. Each
segment (u, v) ∈ E is drawn straight-line from

(
x(u), y(u)

)
to
(
x(v), y(u) + 1

)
with

slope 1
x(v)−x(u) .

A cyclic 2D drawing as shown in Fig. 4.6(a) is obtained from an intermediate drawing
by transforming each point p =

(
x(p), y(p)

)
of the plane by (4.6), with the radius
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Figure 4.4. Global crossing reduction for a cyclic drawing
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Figure 4.6. Different styles of cyclic drawings and directions
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r(p) =
(
δ′ + max{x(v)|v ∈ V }

)
− x(p) · δ and the angle α(p) =

(
y(p) − 1

)
· 2π
k
.

The constant value δ′ defines the minimum distance of a vertex to the center as shift
in x-direction and δ is as previously the constant minimum distance between vertices on
the same level.

(
x2D(p), y2D(p)

)
=
(
r(p) · cos

(
α(p)

)
, r(p) · sin

(
α(p)

))
∈ R2 (4.6)

A cyclic 3D drawing on a cylinder as exemplified by Fig. 4.6(c) uses for each point p the
coordinates defined by (4.7), where rk is the radius of the cylinder.

(
x3D(p), y3D(p), z3D(p)

)
=
(
x(p) · δ,−rk · sin

(
α(p)

)
, rk · cos

(
α(p)

))
∈ R3 (4.7)

These equations transform straight-lined segments of the intermediate layout to spiral
segments in the 2D or 3D drawings.

4.4.1 Layout Algorithm
Similar to Sect. 1.2.4, the algorithm consists of three basic steps: block building, hori-
zontal compaction, and balancing. The first two steps are carried out by four runs for
each combination of left/right with up/down alignment. The results are merged by the
balancing step. Again, we describe the left top run only, since the remaining runs can
be realized by flipping the graph horizontally and/or vertically.

The block building phase is done in the same way as in [24]: We try to align vertices
with its left upper median adjacent vertices to blocks and remove all other segments
level by level until we obtain a cyclic block graph. The only difference is that the cyclic
block graph can have closed blocks spanning exactly k levels as circles and open blocks
spanning at least k levels as spirals which shall both be avoided to simplify the algorithm.
In both cases we split such a block by removing outer segments until each resulting block
has at most a span of k− 1. Suitable outer segments always exist, as no edge can span
more than k levels. Thus, the invariant of at most two bends per edge still holds.

In the compaction step we compact the cyclic block graph by arranging all blocks
as close as possible to each other minimizing the width of the drawing. The remaining
discrepancy to [24] is that in the cyclic case there may be unavoidable cyclic dependencies
in the left-to-right ordering among vertically aligned paths/blocks in the block graph,
cf. Fig. 4.7(a). To see that, consider all intra-block edges undirected and find a cycle.
Thus, in general it impossible to draw inner segments vertically (and straight-line), as
shown by Fig. 4.7(c). We solve this problem by shearing the drawing of such cycles
such that all inner segments have the same slope as done in Fig. 4.7(b). The slope has
to be chosen such that each cycle and thus the resulting curve starts and ends at the
same coordinates. For cyclic 2D drawings this means the edges are no circular arcs but
“parallel” spirals with uniform radius growth factors. Since each block will be drawn with
constant slope, the shearing has no influence to the guarantee of at most two bends per
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Figure 4.7. Cyclic dependencies in block graph
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edge. An originally closed block will not be sheared like other blocks as it cannot be
part of a cyclic dependency.

In general there may be more than one “independent” cycle within the block graph.
Hence, to obtain a drawing it is necessary to find an individual slope for each strongly
connected component (SCC). Thus, we shear each SCC individually and all edges of
each block in the same SCC get the same slope. The necessary and sufficient slope
of an SCC S depends on the maximum number ω(S) of inter-block edges which can
be found within one of its simple cycles. This corresponds to finding the longest path
within a graph, which is in general NP-hard [75]. Fortunately, in our special case it is
possible to find this widest cycle C in linear time in the size of S, i. e., in O(|V (S)| +
|E(S)|) [3]. Let cdown and cup be the numbers of intra-block edges traversed in C in and
against their direction, respectively. The number of windings of S is then defined as
wind(S) := b cdown−cup

k
c. Informally speaking, wind(S) counts how often S wraps around

the center. Choosing then an uniform slope of −(wind(S)·k)
ω(S) draws each inter-block edge

of C with unit length. Other cycles in S which are not as wide as C will have some
unused horizontal space in the drawing and, thus, will have intra-block edges longer than
unit distance.

Finding C and compacting S is done simultaneously: We find a y-monotone path P
in S from a rightmost vertex through an arbitrary starting block B to a leftmost vertex,
using inter-block edges in both directions and preserving intra-block edge directions.
By virtually removing all inter-block edges of P we cut S open. This cuts each cycle
of the block graph exactly once. We assign an arbitrary vertex v ∈ V of B the new
coordinate y′(v) = φ(v). In a traversal of the block graph we then assign each other
vertex a y′-coordinate: Using an inter-block edge we assign both end vertices the same
y′-coordinate. Using an intra-block edge in or against its direction we increase or decrease
the y′-coordinate by 1, respectively, without using a modulo operation. The result is
an acyclic block graph, which we compact (in contrast to [24]) in the following way:
After placing each block which is a source on an imaginary zero line, we compact S
by a leftmost topological sorting preserving unit distance. Afterwards we fix all sinks
on their positions, traverse all other blocks in reversed topological order, and move
them as much to the right as possible, again preserving unit distance. For placing a
block as close as possible to the already placed ones, we traverse its levels. After the
compaction each block (and therefore each vertex v in S) has an assigned x′-coordinate.
Let e = (u, v) be a removed inter-block edge. The width of a simple widest cycle through
e is then x′(u)−x′(v)+1. Considering all removed inter-block edges and computing the
maximum value gives the width of the widest simple cycle which defines the width ω(S)
of S. Applying the modulo k operation on the y-coordinates gives the final intermediate
layout of S.

After compacting each SCC on its own, we globally compact the set of SCCs. Since
all vertices of each SCC on the same level are consecutive, no SCCs can interleave. We
interpret the SCCs as super vertices and perform a topological sorting on the resulting
DAG. We then compact the SCCs in the same way as we have compacted the blocks
within one SCC before.
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In the final balancing step the four results are combined for computing one x-coordinate
for each vertex out of the four x-coordinates from the four runs. Contrary to [24],
we cannot use the average median of the four x-coordinates for each vertex, since this
may induce additional bends on edges in the cyclic case. The reason is that on lines
with potentially different slopes the median changes at crossings, i. e., it is a non-linear
function. Hence, we instead use the barycenter of all four x-coordinates for each vertex,
which preserves the orderings of the vertices on a level. The result is a non-integral
x-coordinate. However, due to the sheared drawing of the SCCs none of the four
intermediate drawings has guaranteed integer x-coordinates, anyway. Additional bends
can occur since the blocks of the four runs may differ. However, the invariant of at most
two bends per edge e in the final drawing still holds, as the y-coordinates of the bends
located at the topmost and lowest dummy vertex of e are identical in each drawing. It
is possible that some vertices in one run belong to a block of an SCC although they do
not belong to an SCC or even one block in another run. Thus, balancing can lead to
more different slopes than in each of the four runs alone.

If similar slopes should be more important than balancing, we only perform one
downwards run with a modified block building step. We start with the median vertex of
the upper level and align it with its median successor. Whenever one of the two medians
is not unique, we choose an arbitrary one. From this vertex we move to the left (right)
to align the remaining vertices on the level trying the right (left) median first. However,
this results in balanced outgoing edges only. We compact unsymmetrically to the left
first as described previously.

For an embedding of a proper graphG = (V,E, φ) we obtain an intermediate drawing
which has a width of O( |V |2

k
) and an used area of O(|V |2). For the 3D drawing the

same bounds hold. The 2D drawing has a width and a height of O( |V |2
k

) and thus an
area of O( |V |4

k2 ). Our layout algorithm has a linear time complexity O(|V |+ |E|) in the
size of the proper graph G = (V,E, φ).

4.4.2 Example Outputs
In the following, we present some example outputs of our cyclic framework generated
with the Java implementation of [67] which should help to judge the quality of the
resulting drawings.
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(a) 2D drawing

(b) Intermediate and surface of the 3D drawing

Figure 4.8. A graph with |V | = 24, |E| = 44, k = 9 after four runs
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(a) 2D drawing

(b) Intermediate and surface of the 3D drawing

Figure 4.9. The graph of Fig. 4.8 after one balanced run
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5
Conclusion

This thesis focuses on drawing directed graphs and presents a generalized framework for
drawing graphs containing hierarchical or recurrent information. Most of the algorithms
have been implemented in Java as plug-ins of Gravisto [8] or as standalone prototypes
and have been evaluated theoretically and empirically.

5.1 Summary
After an introduction to well known topics in graph theory and graph drawing we gave an
extended overview of the Sugiyama framework [138] with its four phases, cycle removal,
level assignment, crossing reduction, and coordinate assignment. It is the most common
and the de facto standard algorithm for drawing directed graphs. We then extended it in
three directions: First we showed how to eliminate the level-by-level sweeping approach
with its local view on crossings used for nearly thirty years now within most standard
crossing reduction heuristics. We have introduced a practical global optimization consid-
ering in each step all affected crossings of the whole graph. With its elimination of type
2 conflicts, this global approach perfectly matches to the linear time layout algorithm of
Brandes and Köpf [24]. This is up to now the best known algorithm for the coordinate
assignment phase realizing crucial aesthetic criteria like vertical long edges and at most
two bends per edge. We further showed how to additionally consider intra-level edges
which often arise directly and/or in a natural way from the applications. This makes the
algorithms more usable in practice.

Afterwards we showed enhancements phase by phase for concentric and star-shaped
instead of parallel horizontal level lines. There are many similarities but there are also
many discrepancies in the algorithmic problems and solutions addressed by the four
phases. Some of the problems have an essentially different character. Particularly,
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for radial drawings the first two phases are nearly identical. For the third phase the
algorithms have to be adapted to cope with two possible edge directions, i. e., clockwise
or counter-clockwise routing. For the fourth phase an adequate cut has to be found,
the traditional fourth phase applied, and then the resulting coordinates have to be
transformed. For cyclic drawings, the first phase is not applicable. The second phase,
i. e., the leveling, is completely different as in horizontal problems: A suitable number
of levels k is not computed automatically by the algorithms. Further, the traditional
algorithms cannot be applied since they always argue with source and sink vertices which
in general do not exist in non-acyclic graphs. The NP-hard optimization goals behind
the algorithms are exactly opposite to each other. Crossing reduction can be done with
the global crossing reduction without any major changes. The one-sided level-by-level
approaches are not sufficient for that. The fourth phase has a different character, since
the blocks must have some slope to obtain drawable layouts, i. e., vertical blocks are in
general not possible.

From a software engineering perspective, all presented algorithms are modular and fit
seamlessly together into one framework. The obtained time complexities of our proposed
major approaches are summarized by Table 5.1.

Table 5.1. Time complexities of the proposed algorithms for a graph G = (V,E) and
(one of) its proper k-leveled version G′ = (V ′, E ′, φ′)

horizontal radial cyclic
cycle removal O(|E|) [53] O(|E|) [53] –
leveling O(|V |+ |E|) [36] O(|V |+ |E|) O(|V | log |V |

+k · deg(G) · |E|)
glob. cross. reduct. O(|E|2) O(|E|3) O(|E|2)
coord. assignment O(|V ′|+ |E ′|) [24] O(|V ′|+ |E ′|) O(|V ′|+ |E ′|)

Clearly, the cylinder drawings in 3D may in general not be useful for an easy human
perception, at least if visualized on a 2D display. However, using interactive and scrollable
2D views on the cylinders changes that. We even suggest to combine the best of both
worlds radial and cyclic to obtain an interactive 2D view on the torus (genus 1 surface)
which is infinitely scrollable in four directions. This avoids long edges striking out the
whole drawing, but preserves the mental map of the classes and their interactions. See
Fig. 5.1 for an example UML class diagram of the Java jar-API.

5.2 Future Work
Actually the phases of the hierarchical framework are not independent of each other.
The modularization is to some degree only an algorithmical simplification. This is per
se a good thing, but here the quality of the result can suffer severely. For example
consider level assignment and crossing reduction. Each leveling potentially has an own
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Figure 5.1. Interactive view of an UML class diagramm from the Java jar-API. Asso-
ciations are drawn solid while «uses»-connections are dashed
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minimum number of crossings since vertices are only allowed to be permuted within their
assigned level. Thus, for a low number of crossings an optimization is to consider the
phases not independently of each other [33]. See [140] for such an approach using a
genetic algorithm for combined level assignment and crossing reduction phases. Chimani
et al. [33, 34] utilize upward planarity and planarization to introduce new levels for a
low number of crossings. Our global crossing reduction approach is also a next step
towards this goal, since it is especially conditioned to support coordinate assignment
phases which forbid type 2 conflicts. Also, a longest path ordering of our blocks may
serve as a basis for the coordinate assignment.

A completely different approach for crossing reduction is planarization [113, 114], see
Sect. 1.3. In our eyes an important task would be to systematically extend planarization
to radial and cyclic level graphs and for graphs with intra-level edges. The counterpart in
standard horizontal drawings has been well studied [57, 115] and the resulting drawings
seem to be pleasing [113, 114]. The results from the most recent work by Chimani et al.
[33, 34] are very promising and achieve improvements for crossing reduction by up to
30% compared to a classical Sugiyama approach. Roughly speaking, they try to find an
upward drawing , i. e., where all edges are pointing in one direction, of a DAG with as
few crossings as possible. However, the price for this reduction is high. The convention
of the hierarchic framework is lost as phase three introduces many new levels. The area
is expanded and it is not clear whether there is one extra level for each served crossing.
At present the achievements/improvements of their approach are incomparable to our
approach. First heuristics for planarization in radial drawings are presented by Buchner
[30].

These continuative questions and open problems will be addressed in an ongoing
research paper supported by the German Research Foundation DFG: Is there any exten-
sion of speeding-up global sifting by the use of lower bounds similar to [77]? Note, a
straight forward extension of [77] by using variables χAB which denote the number of
crossings of edges incident to blocks A and B with π(A) < π(B) instead of vertices is
not possible. These crossings also depend on the positions of the other adjacent blocks
which are variable. However, if there is any extension, does it also apply for the radial,
cyclic, or intra-level edge cases? What tight lower and upper bounds do exist for the
optimal crossing number χ over k-levels for the different kinds of drawing styles? How
do they change if type 2 conflicts are forbidden? Are there any approximation ratios of
the presented heuristics for crossing reductions, or even (complete) new approximation
algorithms? Are there any efficient algorithms for counting existing crossings in cyclic
and radial k-level embeddings as there are [15, 129, 142] for the horizontal case with
two levels? Another goal is to extend global sifting to consider constraints, i. e., some
given relative orders of blocks or vertices which may not be violated.

In this thesis we have shown algorithms for the first three phases which are inde-
pendent of (up to O(k · |E|)) dummy vertices. This is reflected by their running times
summarized in Table 5.1. This is not yet true for the fourth phases, which still need
dummy vertices and thus have running times in O(|V ′|+ |E ′|) instead O(|V |+ |E|) for
(embeddings of) graphs G = (V,E, φ) and their normalized versions G′ = (V ′, E ′, φ).
Eiglsperger et al. [59] presented an O((|V |+ |E|) log |E|) time horizontal coordinate as-
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signment phase using the algorithm of Brandes and Köpf [24] with a minor modification.
Remember, the original algorithm needs O(|V ′|+ |E ′|) time. They mark type 1 conflicts
already during their O((|V | + |E|) logE) time crossing reduction phase by considering
crossings of their virtual edges on each level. Then they use long inner segments within
the Brandes/Köpf algorithm, i. e., they consider only up to two extremal dummy vertices
per long edge. They claim, that there are no further changes. Marking type 1 conflicts
as crossings of outer segments and blocks is also possible while swapping two blocks
in our global sifting approach without affecting time complexities. However, in [59, 60]
the algorithm is not completely described, e. g., it is unclear how to build up the block
graph as defined in [24]. Originally each dummy vertex gets an inter-block edge to its
predecessor or successor, respectively. For example, there may be blocks A whose set
of spanned levels is a subset of the set of levels of non-extremal dummy vertices of
predecessor/successor blocks B. Then the (up to two) inter-block edges between A and
B are undefined since there are no end vertices in A on the respective levels. A solution
may be to create inter-block edges between blocks as super vertices rather than between
(dummy) vertices. However, it is left open if at all and how to do that concretely and
whether this has some consequences to the theoretical running time. Important future
research should also contain a translation of this or a similar approach for radial and
cyclic drawing styles.

The remainder lists some further interesting challenges on higher levels of detail
which are specific for the drawing styles and their phases.

Radial Crossing Reduction The problem of finding an optimal offset for a radial
two-level graph with fixed orderings of the vertices of both levels is still open. More
specifically: Is it NP-hard to test whether a bipartite graph G = (V1

.∪ V2, E) with
given positions π of V1 and V2 admits edge offsets ψ such that the resulting number
of crossings is a most K? However, there exists a 3-approximation algorithm for the
problem [116].

Cyclic Leveling What is the optimum number of k of levels for cyclic leveling? Fur-
ther, if representing the cycles as such is not that important as the sum of the edge
length, then one could consider to reverse some edges in the cyclic case as well. A
detailed study of a combined edge reversal/leveling algorithm would be of interest.

Cyclic Coordinate Assignment Open problems for the cyclic coordinate assignment
are a symmetric compaction for the one run version and alternative approaches for more
compact drawings, i. e., with linear width.
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A
Selected Articles

In this appendix you find selected publications which are the base of this cumulative
thesis. The articles are ordered as the ideas and contents are summarized in Sections 2,
3, and 4.

A.1 Articles for Sect. 2
This section lists a preprint of [11] and [4] in this order.
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Abstract

The most popular method of drawing directed graphs is to place vertices on a set
of horizontal or concentric levels, known as level drawings. Level drawings are well
studied in Graph Drawing due to their strong application for the visualization of
hierarchy in graphs. There are two drawing conventions: horizontal drawings use a
set of parallel lines and radial drawings use a set of concentric circles.
In level drawings, edges are only allowed between vertices on different levels.

However, many real world graphs exhibit hierarchies with edges between vertices
on the same level. In this paper, we initiate the new problem of extended level
drawings of graphs, which was addressed as one of the open problems in social
network visualization, in particular, displaying centrality values of actors. More
specifically, we study minimizing the number of edge crossings in extended level
drawings of graphs. The main problem can be formulated as the extended one-sided
crossing minimization problem between two adjacent levels, as it is folklore with
the one-sided crossing minimization problem in horizontal drawings.
We first show that the extended one-sided crossing minimization problem is NP-

hard for both horizontal and radial drawings, and then present efficient heuristics for
minimizing edge crossings in extended level drawings. Our extensive experimental
results show that our new methods reduce up to 30% of edge crossings.

Key words: (radial) level graph, crossing minimization, intra-level edges,
hierarchy, level/layered drawing, visualization of social networks, graph algorithm

∗ Corresponding author.
Email addresses: bachmaier@fim.uni-passau.de (Christian Bachmaier),

hedi.buchner@nicta.com.au (Hedi Buchner), forster@fim.uni-passau.de
(Michael Forster), shhong@it.usyd.edu.au (Seok-Hee Hong).

Preprint accepted by Discrete Applied Mathematics 17 September 2009

74 Appendix A. Selected Articles



1 Introduction

A level drawing (or hierarchical drawing) of a graph is the most popular
drawing convention for directed graphs, alternatively known as the Sugiyama
method [1]. Consequently, drawing level graphs is a well-studied problem in
Graph Drawing. There is a rich literature on drawing level graphs includ-
ing characterizations of level-planar graphs, level planarity testing, crossing
minimization, and planarization methods for non-level planar graphs, see [2].

There are two drawing conventions for level graphs: in horizontal drawings,
vertices are placed on parallel horizontal lines and edges are drawn as strictly
y-monotone polylines that may bend when they intersect a level line [1–3]. In
radial drawings, vertices are placed on concentric circles and edges are drawn
as polyline segments of spirals which are monotone from the concentric center
to the outside [4]. Both drawings are produced based on the same drawing
framework, the Sugiyama method, which consists of the following four steps:

(1) Cycle removal: Reverse appropriate edges to eliminate cycles.
(2) Level assignment: Assign vertices to levels such that no edges have both

end vertices on the same level, and introduce dummy vertices to represent
long edges which span more than one level by a path of proper edges. The
dummy vertices represent edge bends.

(3) Crossing minimization: Compute a good ordering of the vertices on each
level to minimize edge crossings between two adjacent levels.

(4) Coordinate assignment: Assign x-/angular coordinates to the vertices
to meet some esthetic criteria. The y-/radial coordinates are implicit
through the levels.

However, many real world graphs exhibit hierarchies with edges between the
vertices on the same level. For example, the visualization of centrality of actors
in social networks produces level graphs with both inter-level and intra-level
edges [5]. Note that up to now it is neither shown if intra-level edges reduce the
visual complexity nor if they reduce the overall number of crossings. The fact
that all existing hierarchical drawing methods more or less simply ignore intra-
level edges, although they are present from the respective application in most
cases, justifies an investigation. To our best knowledge, the only exception is
the compound graph drawing algorithm of Sugiyama and Misue [6] where a
fast but qualitatively inferior barycenter strategy on intra-level edges is used
to avoid crossings of edges and bounding rectangles of a compound node.

We initiate the new problem of drawing extended level graphs, i. e., level graphs
with intra-level edges. Drawing extended level graphs was addressed as one of
the open problems in social network visualization by Brandes [7]. The proposed
goal is an easy human perception, where one of the main criteria seems to be

2
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Fig. 1. Example drawings.

an overall low number of crossings [8]. Extended level graphs often occur in
practice, for example graphs where the level assignment is already predefined
by breadth first search to express distances, or social networks where the
importance (centrality) of an actor (modeled by a vertex) defines its level [9–
11]. More specifically, the visualization of an actor’s status in a social network
is a horizontal drawing where the levels are not equidistant, because each
level represents a real-valued centrality index for the actors [5]. Since the
centrality values often differ only marginally, status values can be clustered.
The actors with centrality values in the same range are assigned to the same
level to avoid perceptual problems of having too many levels. However, this
approach introduces many intra-level edges. In the conclusion of [5], Brandes
et al. state that the treatment of intra-level edges needs further investigation.
Later, Brandes proposed a new research direction on minimizing all types of
crossings including inter-level edge and intra-level edges, for social network
visualization as an open problem [7].

Another application of extended level graphs with radial drawings is the visu-
alization of micro/macro graphs [12], e. g., arising from group analysis or role
assignment in social networks [11]. In general, intra-level edges may help to
gain better aspect ratios, since drawings tend to be much longer than wide,
especially with the Sugiyama method.

In our extended level drawings of extended level graphs, we represent intra-
level edges using circular arcs with different radii in order to avoid overlapping
edges and crossings between vertices and edges, see Fig. 1. Further, we restrict
to drawing the arcs only on one-side of the level lines, say above (inside), in
order to model the problem as in the Sugiyama framework.

3
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Table 1
Survey of treated edge crossing variants.

inter-level mixed intra-level all

horizontal drawings [2] X [13]/X X

radial drawings [4] X X X

In this paper, we study the crossing minimization problem in extended level
graphs to improve the readability [8] of the extended level drawings. More
precisely, we study the new problem of minimizing the number of edge cross-
ings in extended level drawings of graphs. The main focus of this paper can
be formally defined as the extended one-sided crossing minimization problem
between two adjacent levels, similar to the well-known one-sided crossing min-
imization for the horizontal drawing convention. We show that the one-sided
crossing minimization problem for extended level graphs is NP-hard for both
horizontal and radial drawings, and present greedy heuristics for minimizing
edge crossings that take different types of edge crossings into account: inter-
level crossings between two inter-level edges, intra-level crossings between two
intra-level edges, and mixed crossings between intra-level edges and inter-level
edges. Note that greedy heuristics are state of the art in this area [2] since
they are much faster and, thus, can treat larger graphs than common local
search algorithms.

Our main aim is to extend the well-known sifting heuristic for level drawings.
More specifically, we designed new extended sifting heuristics by carefully in-
tegrating sifting, radial sifting, and circular sifting methods together with a
new crossing counting algorithm. Our extensive experimental results show that
our new methods reduce up to 30% of crossings compared to existing standard
heuristics which only consider inter-level edge crossings. Of course, this value
is only a rule of thumb for reasonable ratios between inter-level and intra-level
edges. Since our algorithm is the first one which does not simply ignore intra-
level edge crossings, it is clear that the more intra-level edges are present, the
higher the gain will be. The running times of our algorithms are within the
same bounds as the traditional sifting algorithms. Thus, we are able to handle
the same graph sizes within similar times.

The checkmarks in Tab. 1 summarize the problems solved in this paper,
which is organized as follows: After explaining some necessary preliminar-
ies in Sect. 2, we present our extended sifting heuristics for extended level
graphs, which explicitly consider three different types of crossings in horizon-
tal drawings in Sect. 3. Then, we present extended radial sifting heuristics
for extended level graphs in radial drawings in Sect. 4. Section 5 presents our
experimental results and Sect. 6 concludes with some open problems.

4
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2 Preliminaries

A (proper) k-level graph G = (V,E, φ) is a graph with a level assignment
φ : V → {1, 2, . . . , k}, which partitions the vertex set into k ≤ |V | pairwise
disjoint subsets V = V1

.∪ V2
.∪ · · · .∪ Vk, Vi = φ−1(i), 1 ≤ i ≤ k, such that

|φ(u) − φ(v)| = 1 for each inter-level edge {u, v} ∈ E. Particularly, k = 1
implies that E = ∅. For v ∈ V with φ(v) > 1 let E(v) = { {u, v} ∈ E | u ∈
Vφ(v)−1 } be the (predecessor) inter-level adjacency list. Define E(v) = ∅, if
φ(v) = 1. An ordering of a level graph is a partial order ≺ of V such that
u ≺ v or v ≺ u iff φ(u) = φ(v) for each pair of vertices u, v ∈ V . If the vertex
sets Vi are ordered sets (according to ≺), we call G an ordered level graph.

2.1 Sifting with a Crossing Matrix

The most common technique for crossing minimization in level drawings is
to only consider two consecutive levels at a time in multiple top-down and
bottom-up passes. Starting with an arbitrary ordering of the first level, sub-
sequently the ordering of one level is fixed, while the subsequent level is re-
ordered to minimize the number of crossings in-between. Thus, the 2-level
horizontal drawing is the fundamental building block for drawing level graphs
with k-levels.

The well-studied one-sided 2-level crossing minimization problem is formally
defined as follows: Given a 2-level graph G = (V1

.∪V2, E, φ), where the vertex
set V1 is given with a fixed ordering, compute an ordering of V2 which pro-
duces the minimum number of crossings. This is known to be NP-hard [14]
and a number of heuristics, approximation algorithms, and exact algorithms
have been proposed. Eades and Wormald [14] proposed a median heuristic,
which produces a 3-approximate solution to the one-sided crossing minimiza-
tion problem. The barycenter heuristic by Sugiyama et al. [1] is an O(

√
n)-

approximation [14]. The barycenter (median) heuristic assigns each vertex of
V2 the barycenter (median) value of its neighbors in V1, assuming the positions
of vertices in V1 are numbered from 1 to |V1| according to ≺. A sorting accord-
ing to these values defines the ordering among the vertices in V2. Currently,
the best known approximation algorithm for the one-sided crossing minimiza-
tion problem given by Nagamochi [15] delivers 1.4664-approximate solutions.
Jünger et al. [16,17] presented integer linear programming algorithms and ex-
perimentally compared the exact results with various heuristics. See [2, 3] for
an extended overview.

For our new problem of one-sided crossing minimization in extended level
graphs, we will adopt the sifting heuristic, which is slower than simple heuris-

5
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tics like barycenter or median heuristics, however, produces fewer crossings
in practice. Sifting was originally introduced as a heuristic for vertex mini-
mization in ordered binary decision diagrams [18] and later adapted for the
one-sided crossing minimization problem [19]. The main idea is to keep track of
the objective function while moving in a sifting step a vertex u ∈ V2 along with
a fixed ordering of all other vertices in V2 and then placing u to its locally
optimal position. This is done by iteratively swapping consecutive vertices
only.

The method is thus an extension of the greedy-switch heuristic [20], where
u is swapped iteratively with its successor. We call a single swap a sifting
swap. Executing a sifting step for every vertex in V2 is called a sifting round.
For crossing minimization, the objective function is the number of crossings
between the edges incident to the vertex under consideration and all other
edges. The efficient computation of the crossing count in sifting is based on
the crossing matrix. The |V2|2 entries in the crossing matrix correspond to the
number of crossings caused by (the edges of) pairs of vertices in a particular
relative ordering and can be computed as a preprocessing step in O(|E|2) time
[21, 22]. Whenever a vertex is placed in a new position, only a small number
of updates is necessary. This allows a running time of O(|V2|2) for one round.
In practice, only few sifting rounds (3 – 5 for reasonable problem instances)
are necessary to reach a local optimum for all vertices simultaneously. Our
experiments showed that this is in most cases also the global optimum which
we computed for small graphs with the ILP formulation of [17]. The largest
reduction of crossings usually occurs in the first round.

2.2 Crossing Minimization in Radial Drawings

Compared to the horizontal drawings of level graphs, radial drawings of level
graphs have not been well studied. The problem of crossing minimization in
radial drawing is more challenging, as it involves both vertex ordering and edge
routing problems. That is, even if the orderings of vertices in both orbits are
fixed, we still need to decide how to route (i. e. clockwise or counterclockwise)
each edge around the inner orbit in order to minimize the number of edge
crossings in a radial drawing.

Bachmaier [4] presented a new radial drawing framework, an adaptation of the
Sugiyama method [1] to radial drawings. He proved that the one-sided crossing
minimization problem in radial drawings is NP-hard and presented a number
of heuristics including radial sifting with experimental results. The first poly-
nomial time 15-approximation algorithm for one-sided crossing minimization
problem in radial drawings was presented by Hong and Nagamochi [23]. Their
main contribution was to reduce a given instance of the one-sided crossing
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minimization in a radial drawing to that of the one-sided crossing minimiza-
tion in a horizontal drawing.

As our new extended radial sifting heuristics for extended level graphs is based
on radial sifting, we will explain details including basic terminologies in Sect. 4.

2.3 Circular Sifting

The asymptotic overall running time of the original algorithm described above
is O(|E|2 + |V2|2) and too high for our purposes, i. e., to handle large graphs.
Thus, we apply the circular sifting heuristic of Baur and Brandes [13] used for
the NP-hard [24] crossing minimization problem in circular drawings: Order
the vertices V of a graph G = (V,E) which all are placed on a single circle,
e. g., as in Fig. 5, to minimize the number of crossings among the straight-
line edges in E. Since there is no “circular” order, Baur and Brandes define
linear orders ≺α by selecting a reference vertex α ∈ V which is the first of
the (here counterclockwise) sequence. For finding the locally optimal position
of a vertex u ∈ V in a sifting step, it is sufficient to record the change in
crossing count while swapping u with its successor vp ∈ V . This can be done
by considering only edges incident to u or vp: After a swap exactly those pairs
of these edges cross which did not cross before. All other crossings remain
unchanged (let χ(π) be the number of crossings of a drawing π and N(v) be
the set of adjacent vertices of v ∈ V ).

Lemma 2.1 (Baur, Brandes) Let u ≺u vp ∈ V be consecutive vertices in a
circular drawing π and let π′ be the drawing with their positions swapped, then

χ(π′) = χ(π)−
∑

x∈N(u)
|{ y ∈ N(vp) | y ≺πx u }|

+
∑

y∈N(vp)
|{x ∈ N(u) | x ≺π′y vp }| .

At the end of one step, u is placed where the intermediary crossing counts
reached their minimum. For efficiency reasons, the computation of the change
in crossing count is implemented over suffix lengths in ordered adjacency lists.

2.4 Inter-Level Sifting for Crossings between Inter-Level Edges

For horizontal level lines, we adapt the above idea to one-sided 2-level crossing
minimization, which we call inter-level sifting for simplicity. We mainly ex-
change ≺α by ≺ and virtually connect the start and the end points of the level
lines to obtain a circle. Then, we only consider the ordering of the permutable
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level 2 as presented by Algorithms 1, 2, and 3. We obtain the same results
as with the matrix method, without knowing the absolute crossing numbers,
however. Since all three methods are generic and are also used for the following
algorithms, Algorithm 2 already contains lines 4 and 8. At present, these lines
can be ignored and the input graphs can be considered as G = (V1

.∪ V2, E, φ)
for ease of understanding. For efficiency reasons, all shown operations are im-
plemented in place on the graph data structure.

Algorithm 1. SIFTING-ROUND
Input: Ordered 2-level graph G = (V1

.∪ V2, E,H, φ)
Output: Updated ordering of V2

foreach u ∈ V2 do1
V2 ← SIFTING-STEP(G, u)2

return V23

Algorithm 2. SIFTING-STEP
Input: Ordered 2-level graph G=(V1

.∪ V2, E,H, φ), Vertex u ∈ V2 to sift
Output: Updated ordering of V2

let v0 = u ≺ v1 ≺ · · · ≺ v|V2|−1 be the current ordering of V2 with u put to front1

foreach v ∈ V2 do2
Sort E(v) ⊆ E on ascending ordering of V1 in O(|E|) time3
Sort Hl(v), Hr(v) ⊆ H on ascending ordering of V2 in O(|H|) time4

χ← 0; χ∗ ← 0 // current and best number of crossings5
p∗ ← 0 // best vertex position6
for p← 1 to |V2| − 1 do7

l← UPDATE-INTRA-ADJ(G, u, vp)8
χ← χ+SIFTING-SWAP-INTER(G, u, vp)9
if χ < χ∗ then10

χ∗ ← χ; p∗ ← p11

return V2←v1≺ · · · ≺vp∗−1≺u≺vp∗≺ · · · ≺v|V2|−112

3 Crossing Minimization on Horizontal Levels

An extended k-level graph G = (V,E,H, φ) is a k-level graph (V,E, φ) which
additionally has intra-level edges {u, v} ∈ H with φ(u) = φ(v). For v ∈ Vi
let Hl(v) = { {u, v} ∈ H | u ≺ v } be the left intra-level adjacency list and
Hr(v) = { {v, w} ∈ H | v ≺ w } be the right intra-level adjacency list.

In this section, we first consider the new problem of one-sided 2-level crossing
minimization for extended level graphs with horizontal drawings. It is easy to
see that the one-sided 2-level crossing minimization problem for an extended
2-level graph is NP-hard, since at least two subproblems, considering only
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Algorithm 3. SIFTING-SWAP-INTER
Input: Ordered 2-level graph G=(V1

.∪ V2, E,H, φ), Swap vertices u, vp ∈ V2
Output: Change in crossing count
let x0 ≺ · · · ≺ xr−1 be the neighbors of u in V11
let y0 ≺ · · · ≺ ys−1 be the neighbors of vp in V12
c← 0; i← 0; j ← 03
while i < r and j < s do4

if xi ≺ yj then5
c← c+ (s− j)6
i← i+ 17

else if yj ≺ xi then8
c← c− (r − i)9
j ← j + 110

else11
c← c+ (s− j)− (r − i)12
i← i+ 1; j ← j + 113

return c14

inter-level edges [14] and considering only intra-level edges [24] are NP-hard.
The circular crossing minimization in [24] is exactly the same as minimizing
crossings among intra-level edges of a horizontal level i (consider the level line
i bent to a circle).

Lemma 3.1 The one-sided 2-level crossing minimization problem for extended
level graphs in horizontal drawings is NP-hard.

This motivates us to design efficient heuristics for the problem and we design
extensions of the sifting heuristic for extended level graphs in order to compute
a reasonable solution efficiently. After presenting a simple integrated method
that only works for horizontal drawings, we then present our main method,
extended sifting heuristics for horizontal drawings, which consists of three
subroutines, each minimizing different types of crossings.

3.1 Compact Method

The extended one-sided 2-level crossing minimization problem on horizontal
levels can be transformed into a corresponding circular crossing minimization
problem where the vertices of the two levels are placed on the two disjoint
semicircles, i. e., vertices on level 1 clockwise on semicircle 1 and vertices on
level 2 counterclockwise on semicircle 2, see Fig. 2. Then, only vertices in V2
are sifted using positions in semicircle 2 only. This is a minor modification of
the original circular sifting.

9
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Fig. 2. Using circular sifting for extended one-sided 2-level crossing minimization.
Definition 3.1 For a 2-level graph G = (V1

.∪V2, E,H, φ) let π be a horizontal
drawing with

u1 ≺π u2 ≺π · · · ≺π ur=|V1| and v1 ≺π v2 ≺π · · · ≺π v|V2|

for vertices ui, r ∈ V1, 1 ≤ i ≤ |V1|, and vj ∈ V2, 1 ≤ j ≤ |V2|.

A corresponding circular drawing π′ is a circular drawing of G with

u|V1| ≺π
′
r u|V1|−1 ≺π

′
r · · · ≺π

′
r u1 ≺π

′
r v1 ≺π

′
r v2 ≺π

′
r · · · ≺π

′
r v|V2|−1 .

Lemma 3.2 Let π′ be a corresponding circular drawing of a 2-level graph
G = (V1

.∪ V2, E,H, φ) drawing π. Then two edges cross in π′ if and only if
they cross in π.

PROOF. Let e1 = (u1, v1), e2 = (u2, v2) ∈ E be two arbitrary inter-level
edges with w. l. o. g. u1 ≺π u2. They cross in π if and only if v2 ≺π v1, whereas
they cross in π′ if and only if u2 ≺π′v1 u1 and v2 ≺π′u1 v1.

Now, let e1 = (v1, v3), v2 = (v2, v4) ∈ H be two arbitrary intra-level edges
with w. l. o. g. v1 ≺π v2. They cross in π if and only if v2 ≺π v3 ≺π v4, whereas
they cross in π′ if and only if v1 ≺π′v1 v2 ≺π′v1 v3 ≺π′v1 v4.

Finally, let e1 = (u, v2) ∈ E be an arbitrary inter-level edge and e2 = (v1, v3) ∈
H be an arbitrary intra-level edge with w. l. o. g. v1 ≺π v3. They cross in
π if and only if v1 ≺π v2 ≺π v3, whereas they cross in π′ if and only if
v1 ≺π′u v2 ≺π′u v3 and v3 ≺π′v3 u ≺π

′
v3 v1. ut

Unfortunately, this simple transformation cannot be applied to radial draw-
ings. Thus, we present a new method for extended one-sided crossing mini-
mization in the following section.

10
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(b) After minimization.

Fig. 3. The first two levels of Fig. 1.

3.2 Extended Sifting

We now present a new extended sifting algorithm for extended one-sided cross-
ing minimization, where we treat the three different kinds of crossings sepa-
rately without any impact on the running time and quality. The algorithm
runs not only theoretically but also practically within the same time and gen-
erates exactly the same orderings and number of crossings. Further, speaking
in terms of algorithm or software engineering, the problem is attacked with a
more modular approach.

3.2.1 Intra-Level Sifting for Crossings Between Intra-Level Edges

Consider overlapping intra-level edges {v1, v4}, {v2, v3} ∈ H with v1 ≺ v2 ≺
v3 ≺ v4. They do not cross, since we draw each edge {u, v} as a circular
arc instead of a straight line. For that, we use a quadratic spline with an
amplitude, i. e., height of the only interpolation point, rising with the number
of enclosed vertices between u and v in the current ordering ≺ of V2. Thus,
even if v1 = v2 or v3 = v4 the edges do not cross, except in common end points.
We further take care not to introduce unnecessary “double” crossings between
intra-level and inter-level edges by restricting the maximum edge amplitude
according to the dimension of the drawing. For example, if the edge {5, 8} in
Fig. 3(a) has a higher amplitude, it would cross the edge {4, 5}. Note that we
require to draw all intra-level edges completely above the second level line, as
will be explained in Sect. 3.2.2.

Note that Sugiyama and Misue [6] presented a faster but qualitatively inferior
insertion barycenter method for intra-level crossing minimization. More specif-
ically, they created a dummy vertex splitting each intra-level edge, which they
placed on a common dummy level. After computing the barycenter value of the
neighbors for each dummy vertex, they ordered the dummy level in ascending
value. Finally, they computed the barycenter values for the original vertices
according to the new positions of their dummy neighbors, which define the fi-
nal ordering. Unfortunately, this method introduces unnecessary crossings, as

11

84 Appendix A. Selected Articles



0 21 3 4

(a) Before.

0 21 3 4

1 2 3 40

1.0 0.5 2.0 3.5 3.0

pos:

bc:

(b) Intermediate.

0 21 34

(c) After.

Fig. 4. Insertion Barycenter of [6].

Fig. 4 shows. A straightforward solution to avoid these unnecessary crossings
may be to make the amplitudes of the edges pairwise different, which leads
up to |H| different dummy levels. As a consequence, in order to be able to
run a 2-level crossing minimization algorithm considering all types of cross-
ings later, each inter-level edge must be split in |H|+ 1 segments by |H| new
dummy vertices. This prevents not only time efficient processing, but also is
obstructive for a good result, i. e., fewer crossings: Each of the additionally
necessary |H| crossing minimization rounds is a heuristic only and is thus not
exact.

Thus, we again use the idea from circular sifting (Sect. 2.3), which we al-
ready have used in inter-level sifting in Sect. 2.4, however, now for crossing
minimization between intra-level edges. Hence, we call it intra-level sifting.

Considering the horizontal line of level 2 bent to a circle (see Fig. 5), the
circular crossing minimization algorithm fits out of the box: For one round call
Algorithm 1 where line 9 of Algorithm 2 is changed to call Algorithm 4 instead
of Algorithm 3. Line 3 of Algorithm 2 is left away in this case. Algorithm 4
is the same as Algorithm 3 except that the neighbors are on level 2 and the
ordering ≺ is replaced by ≺vp , i. e., the ordering of V2 is different in each swap.

With Algorithm 5 we keep the ordered intra-level adjacencies of vertex u up
to date during a sifting step. Thus, we know the ordering ≺vp among u’s
neighbors, since this is the concatenation of Hr(u) and Hl(u) (in this order).
Therefore, we need no reordering for determining the xis per swap. The same
holds for the yis: Algorithm 5 also updates the intra-level adjacencies of the
swap vertex vp, but does not maintain their ordering due to performance
restrictions, in contrast to u. However, we rely on the fact that a short edge
h = {u, vp} is always the first of Hl(vp). This is true since we build up the
sorting of this adjacency list right after u was placed on the first position
of V2 in Algorithm 2 and there never were any updates to this ordering. In
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Fig. 5. Circular crossing minimization for intra-level edges of the graph in Fig. 3.

Algorithm 4. SIFTING-SWAP-INTRA
Input: Ordered 2-level graph G=(V1

.∪ V2, E,H, φ), Swap vertices u, vp ∈ V2
Output: Change in crossing count
let x0 ≺vp · · · ≺vp xr−1 be the neighbors of u in V2 − {vp}, {xi, u} ∈ H1
let y0 ≺vp · · · ≺vp ys−1 be the neighbors of vp in V2 − {u}, {yj , vp} ∈ H2

c← 0; i← 0; j ← 03
while i < r and j < s do4

if xi ≺vp yj then5
c← c− (s− j)6
i← i+ 17

else if yj ≺vp xi then8
c← c+ (r − i)9
j ← j + 110

else11
c← c− (s− j) + (r − i)12
i← i+ 1; j ← j + 113

return c14

other words, the ordering of the intra-level adjacencies of all vertices vp is
valid throughout the complete sifting step besides obsolete positions of edges
{u, vp}. However, these exceptions are irrelevant for the determination of the
orderings of the yis, since they never contain u.

3.2.2 Mixed Sifting for Crossings Between Inter-Level and Intra-Level Edges

As mentioned previously, we restrict intra-level edges to be only routed above
the second level line. Otherwise, if we allowed routing on both sides, the num-
ber of crossings between inter-level and intra-level edges would depend on the
inter-level edges to vertices on a third level, which contradicts the pairwise
level by level sweep approach.

13
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Algorithm 5. UPDATE-INTRA-ADJ
Input: Ordered 2-level graph G=(V1

.∪ V2, E,H, φ), Swap vertices u, vp ∈ V2
Output: Number of edges between u and vp, Updated Hl(u), Hr(u), Hl(vp), and

Hr(vp) as side effect
l← 0 // number of short intra-level edges1
while {u, vp} = getF irst(Hr(u)) ∈ H do2

h← removeFirst(Hr(u))3
append(Hl(u), h)4
removeFirst(Hl(vp)) // first, since list was never updated before5
prepend(Hr(vp), h)6
l← l + 17

return l8

E( )vpE( )u

Hl( )u
h vpu

H ( )r u

H ( )vpr

H( )vpl

(a) Before swap.

h

H ( )r uH( )vpl

E( )uE( )vp

uvp

H ( )vprHl( )u

(b) After swap.

Fig. 6. Crossings among intra-level and inter-level edges.

As with the previous inter-level and intra-level sifting algorithms, swapping
vertex u with its successor vp changes only crossings (here among inter-level
and intra-level edges) between edges incident to u or vp. Thus for computing
the change in the crossing count, we only need the sizes of the six sets Hl(v),
Hr(v), E(v) with v ∈ {u, vp}, see Fig. 6.

Neglecting potentially existing short edges h = {u, vp} ∈ H which is a non-
contributing special case, we obtain (1) as change in crossing count ∆ when
swapping u and successor vp. The correctness follows again from the invariant
that after a swap exactly those pairs of intra-level (excluding short edges) and
inter-level edges cross which did not cross previously.

∆ = (|Hr(vp)| − |Hl(vp)|) · |E(u)|+ (|Hl(u)| − |Hr(u)|) · |E(vp)| (1)

Thus, for mixed sifting a complete round can be started by calling Algorithm 1
and updating line 9 of Algorithm 2 to call Algorithm 6. Line 3 of Algorithm 2
does not need to be executed here. Note that the intra-level adjacency updates
caused by a swap are done prior to a call of Algorithm 6. Thus l has now to
be subtracted from Hl(u) and Hr(vp) instead of Hr(u) and Hl(vp).
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Algorithm 6. SIFTING-SWAP-MIXED
Input: Ordered 2-level graph G=(V1

.∪ V2, E,H, φ), Swap vertices u, vp ∈ V2,
Number of short edges l = |{{u, vp} ∈ H}|

Output: Change in crossing count
return ((|Hr(vp)| − l)− |Hl(vp)|) · |E(u)|+ ((|Hl(u)| − l)− |Hr(u)|) · |E(vp)|1

3.3 Combining all Crossings

Finally, for our main algorithm extended sifting considering all types of cross-
ings, we call Algorithm 1 with an updated line 9 of Algorithm 2 in order
to call Algorithm 7. There, we simply add the three independent changes in
crossing counts. However, other formulas preferring some type of crossings at
the expense of more crossings of other types are possible, e. g., the usage of
weighting factors.

Algorithm 7. SIFTING-SWAP-EXT
Input: Ordered 2-level graph G=(V1

.∪ V2, E,H, φ), Swap vertices u, vp ∈ V2
Output: Change in crossing count
cE ← SIFTING-SWAP-INTER(G, u, vp)1
cH ← SIFTING-SWAP-INTRA(G, u, vp)2
cHE ← SIFTING-SWAP-MIXED(G, u, vp)3
return cV + cH + cHV4

We obtain the same time bound as the original sifting algorithm for a level
graph G = (V,E, φ) considering only inter-level edges, or for a graph G =
(V,H) considering only intra-level edges.

Theorem 3.1 One round of extended one-sided sifting on an extended 2-level
graph G = (V,E,H, φ) takes O(|V | · (|E|+ |H|)) time.

PROOF. For running time calculations, we assume w. l. o. g. that there are
no isolated vertices. They can be removed in preprocessing step and added
again in postprocessing since their positions have no influence on the crossing
number.

One round of inter-level (intra-level) sifting takes O(|V | · |E|) (O(|V | · |H|))
time according to Theorem 3 of [13]. One round of mixed sifting takes O(|V | ·
|H|) time, since one step needs O(|H|) time: The initial sorting of the intra-
level adjacency in Algorithm 2 can be done in O(|H|) time by traversing the
vertices of V2 in order and adding each to the adjacency lists of its right or left
neighbors. Each of the |V2| sifting swaps takes constant time. An integrated
execution is possible, since the only updates to the intra-level adjacency list
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Fig. 7. Bottom-up sweep for the graph in Fig. 1.

are done by Algorithm 2. Thus the algorithms mutually do not compromise
each other. ut

3.4 Sweep over all Levels

According to our experience, the quality of sifting does not depend much on
the quality of the initial vertex ordering of the first level. However, a “bad”
initialization raises the number of needed sifting rounds and thus the absolute
running time. Therefore, it may be useful to apply some rounds of intra-level
sifting to V1 to get a practical initial ordering.

In a top-down sweep, we reorder the levels i from 2 to k by consecutively ap-
plying our extended one-sided 2-level crossing minimization on the fix ordered
set Vi−1 and on the freely permutable set Vi. In the subsequent bottom-up
sweep we reorder the levels i from k − 1 down to 1 by consecutively applying
the extended one-sided 2-level crossing minimization on the fix ordered set
Vi+1 and the permutable set Vi. However, in the bottom-up sweep we have a
slightly different situation, since the intra-level edges are below the current
level i and cross edges from level i and i − 1 (see Fig. 7 for an example).
Nevertheless, the formula for crossings of intra-level and inter-level edges (1)
does not depend on any vertex ordering different to that on level i and espe-
cially does not depend on that of level i − 1. Thus, we count the change in
the number of crossings of the intra-level edges of level i with the inter-level
edges between level i and i− 1 during a swap. For this, we let for every v ∈ Vi
be E(v) = { (x, v) | x ∈ Vi−1 } instead of { (y, v) | y ∈ Vi+1 } in Algorithm 6,
which then is the same as a top-down sweep. After some iterations (for our
experiments 10) of top-down with subsequent bottom-up sweeps the algorithm
terminates.
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4 Crossing Minimization on Concentric Levels

In this section, we present a heuristic for extended one-sided crossing mini-
mization with radial drawings. In radial drawings, we place vertices on con-
centric circles, instead of parallel horizontal lines [4,25]. The major advantage
of radial over horizontal drawings is the additional freedom of routing edges in
two directions around the center, i. e., clockwise and counterclockwise, which
results in fewer edge crossings and therefore reduced visual complexity. Fur-
ther, there is also a higher probability of no crossings, because of the fact that
the set of level planar graphs is a proper subset of radial planar graphs [25].

As in the previous section, to display extended k-level graphs G = (V,E,H, φ),
we define extended radial drawings as radial drawings with additional intra-
level edges. For crossing minimization in extended radial drawings, we use
exactly the same framework as for horizontal drawings, described in the pre-
vious section. Thus, we restrict ourselves to the only difference, the one-sided
radial 2-level crossing minimization, in the following.

4.1 Radial Sifting for Crossing Minimization in Radial Drawings

In this section we briefly review the results and terminology of radial sifting [4]
for crossing minimization in radial drawings of level graphs G = (V1

.∪V2, E, φ)
containing inter-level edges, an adaption of the original sifting algorithm to
radial drawings.

In order to represent orderings π1 and π2 (w. l. o. g. counterclockwise) of the
vertices on the circular levels, a ray is introduced as a straight half-line from
the concentric center to infinity which tags the borderline between the vertices
with extremal positions. Edges crossing the ray are called cut edges.

How many times and in which direction an edge is wound around the center is
crucial for radial drawings. This information is stored by the offset ψ : E → Z
of an edge. Thereby, |ψ(e)| counts the crossings of an edge e ∈ E with the
ray. If ψ(e) < 0 (ψ(e) > 0), e is a clockwise (counterclockwise) cut edge, i. e.,
the sign of ψ(e) reflects the mathematical direction of rotation, see Fig. 8.
If ψ(e) = 0, then e is no cut edge and thus needs no direction information.
Observe that a cut edge cannot cross the ray clockwise and counterclockwise
simultaneously and for a small number of crossings only offsets in {−1, 0, 1}
are of interest. A radial embedding E of G is defined by the vertex order π and
the edge offsets ψ, i. e., E = (π, ψ).

Lemma 4.1 ([4]) Radial one-sided 2-level crossing minimization is NP-hard.
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Fig. 8. Offsets of edges [4].

For radial drawings, however, the idea of circular sifting cannot be adopted
directly, as the crossing number between inter-level edges also depends on
their offsets, which are not necessarily constant. Thus inter-level sifting as
described in Sect. 2.3 is used, with a different formula for counting crossings
(sgn : R→ {−1, 0, 1} is the signum function):

Lemma 4.2 ([4]) Let E = (π, ψ) be a radial embedding of a 2-level graph
G = (V1

.∪ V2, E, φ). Then the number of crossings between two edges e1 =
(u1, v1) ∈ E and e2 = (u2, v2) ∈ E is

χE(e1, e2) = max
{

0,
∣∣∣ψ(e2)− ψ(e1) + b−a

2

∣∣∣+ |a|+|b|
2 − 1

}
,

where a = sgn (π1(u2)− π1(u1)) and b = sgn (π2(v2)− π2(v1)) .

Before counting the change in crossing number by considering the edges in-
cident to those two swapped vertices, it is crucial to adapt the offsets of the
edges. Let u be the vertex moved along in counterclockwise direction in a sift-
ing step. Initially, the offset of all edges (·, u) are set to 1 and ordered according
to the positions of incident vertices on level 1. While moving u along level 2
in counterclockwise direction, the offsets of edges are decreased according to
their ordering by 1 as long as that reduces the number of crossings. The split
in the edge list is called the parting, i. e., where the offsets differ by 1. The
parting may move around the center twice, as offsets can be decreased from 1
to −1.

Theorem 4.1 ([4]) Given a 2-level graph G = (V,E, φ), radial sifting runs
in O(|V |2 · |E|) time.

4.2 Intra-Level Edges in Extended Radial Drawings

We now discuss the new problem of extended radial crossing minimization for
extended 2-level graphs G = (V1

.∪V2, E,H, φ). For an extended radial drawing
we draw intra-level edges as segments of circles with different radii (with the
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Fig. 9. Extended radial sifting: crossings between inter-level and intra-level edges
and optimal routing.

interpolation point in the middle) according to the edge lengths, i. e., the
number of spanned vertices plus 1. The interpolation point of longer edges is
closer to the concentric center, see Fig. 1(b) for an example. Intra-level edges
lie in the inner face of level 2, but must not intersect with the circle of level
1. Further, they must be “flat” enough, i. e., they must nestle to the circle
of level 2 close enough, not intersecting inter-level edges of their end vertices
unnecessarily. Contrary to straight-line edges, there are two possibilities to
wind the edges around the center, clockwise or counterclockwise. For a low
crossing number and low visual complexity, we always use the direction with
shorter length, i. e., ≤ b |V2|

2 c. See Fig. 9(b) where long edges are marked by
dotted lines. For an easy notation (v1, v2) ∈ H denotes an intra-level edge
that is wound counterclockwise around the center starting at vertex v1 and
ending at vertex v2. This partitions the intra-level adjacency H(v) for each
v ∈ V2 in two sets, the incoming set Hl(v) = {h = (·, v) | h ∈ H } and the
outgoing set Hr(v) = {h = (v, ·) | h ∈ H }. Per convention, we store edges
for which each direction results in the same length in Hl. Hl and Hr are again
kept sorted similar to Algorithm 5. As a consequence, both the left and the
right adjacency lists of both vertices are updated after their sifting swap.

4.3 Extended Radial Sifting for Crossing Minimization in Extended level
Graphs

In this section, we present our extended radial sifting heuristic for the extended
one-sided radial crossing minimization problem. We first analyze the time
complexity of the problem.

Lemma 4.3 Extended radial one-sided 2-level crossing minimization is NP-
hard.
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PROOF. It is straightforward that the extended one-sided radial crossing
minimization is NP-hard, as the two subproblems, circular crossing mini-
mization [24] and the radial one-sided 2-level crossing minimization [4] are
NP-hard. ut

For extended radial sifting we also use the same modular approach as in ex-
tended intra-level sifting described in Sect. 3.2 to reduce the three different
types of crossings, and add the resulting changes using the separate crossing
numbers. For the minimization of crossings only between inter-level edges, the
radial sifting heuristic is used as it is. Also, drawing intra-level edges as seg-
ments of circles instead of straight-lines clearly does not change the number of
crossings between them. Thus, we can use the circular sifting heuristic. How-
ever, the algorithm for crossing minimization of crossings between intra-level
edges and inter-level edges needs some modification, as will be described in
the following section.

4.3.1 Crossings Between Inter-Level and Intra-Level Edges in Extended Ra-
dial Drawings

Since we have split the intra-level adjacencies in incoming and outgoing edges,
computing the change in crossings when swapping two consecutive vertices u
and vp stays principally the same as in (1). Thereby, we again neglect short
edges {u, vp} which do not contribute to the crossings. What remains is the
additional freedom of routing the intra-level edges around the center in two
different directions. Contrary to crossings between only intra-level edges, this
now has an effect, see Fig. 9 for an example. To overcome this problem, we
use the heuristic to always prefer the shorter direction.

We denote intra-level edges that span at least b |V2|
2 c− 1 vertices as long edges.

After the swap, the length of all incoming intra-level edges of u, in Hl(u) and
all outgoing intra-level edges of vp in Hr(vp) is increased by 1. Likewise, the
length of all outgoing edges of u in Hr(u) and all incoming edges of vp in Hl(vp)
is decreased by 1. In the case of an increase, it only can happen that the first
(last) edge of the adjacency list Hl(u) (Hr(vp)) becomes a long edge. This
is true, since we keep the adjacency lists ordered according to ≺u (≺vp) and
ascending edge lengths. The necessary updates are done with Algorithm 8. The
number of crossings with inter-level edges COUNT-MIXED-CROSSINGS(h)
caused by an intra-level edge h = (v1, v2) is the number of inter-level edges
which have exactly one incident vertex between v1 and v2 and the other one
outside.

One special case remains: If |V2| is even, then some intra-level edges may have
the same length |V2|

2 in both directions. We call them vis-à-vis edges, since

20

A.1. Articles for Sect. 2 93



Algorithm 8. SHORTEN-LONG-EDGES
Input: Ordered 2-level graph G=(V1

.∪ V2, E,H, φ), Swapped vertices vp, u ∈ V2
Output: Change in crossing count
c← 01
while h = (o, u) = getF irst(Hl(u)) ∈ H is long do2

c← c − COUNT-MIXED-CROSSINGS(h)3
removeFirst(Hl(u))4
remove(Hr(o), h)5
h← (u, o) // swap direction6
append(Hr(u), h)7
prepend(Hl(o), h)8
c← c + COUNT-MIXED-CROSSINGS(h)9

while h = (vk, o) = getLast(Hr(vp)) ∈ H is long do10
c← c − COUNT-MIXED-CROSSINGS(h)11
removeLast(Hr(vp))12
remove(Hl(o), h)13
h← (o, vk) // swap direction14
prepend(Hl(vp), h)15
append(Hr(o), h)16
c← c + COUNT-MIXED-CROSSINGS(h)17

return c18

they are incident to two vertices that are placed opposite to each other. In
order to locally minimize the number of crossings, we break ties in favor of
the direction that causes less mixed crossings as shown in Algorithm 9. We
update the adjacency lists according to which direction of the current edge
causes less crossings.

4.3.2 All Crossings in Extended Radial Drawings

The overall sifting swap is essentially analogous to Algorithm 7. First we
compute the change in the number of crossings between inter-level edges,
then between intra-level edges, and finally between intra-level and inter-level
edges. However, the sifting step (Algorithm 10) is extended as more updating
parts are needed: After the preliminary steps and swapping the current vertex
with its successor in the sifting swap, the offsets and parting of the involved
inter-level edges must be updated as well as the routing of some intra-level
edges, depending on their length.
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Algorithm 9. SHORTEN-VISAVIS-EDGES
Input: Ordered 2-level graph G=(V1

.∪ V2, E,H, φ), Swapped vertices vp, u ∈ V2
Output: Change in crossing count
c← 01
while h = (o, u) = getF irst(Hl(u)) ∈ H is vis-à-vis do2

c1 ← COUNT-MIXED-CROSSINGS(h)3
removeFirst(Hl(u))4
remove(Hr(o), h)5
h← (u, o) // swap direction6
append(Hr(u), h)7
prepend(Hl(o), h)8
c2 ← COUNT-MIXED-CROSSINGS(h)9
if c2 ≤ c1 then c← c+ c2 − c110
else undo changes11

while h = (vk, o) = getLast(Hr(vp)) ∈ H is vis-à-vis do12
c1 ← COUNT-MIXED-CROSSINGS(h)13
removeLast(Hr(vp))14
remove(Hl(o), h)15
h← (o, vk) // swap direction16
prepend(Hl(vp), h)17
append(Hr(o), h)18
c2 ← COUNT-MIXED-CROSSINGS(h)19
if c2 ≤ c1 then c← c+ c2 − c120
else undo changes21

return c22

4.3.3 Computational Complexity

For our extended radial sifting, we use the radial sifting algorithm as a subcom-
ponent. Thereby, we consider the numbers of intra-level and mixed crossings
additionally to the inter-level crossings. We obtain the following time com-
plexity:

Theorem 4.2 One round of extended radial sifting on an extended 2-level
graph G = (V,E,H, φ) takes O(|V |2 · (|E|+ |H|)) time.

PROOF. The worst case in terms of computational complexity occurs for
the current vertex u being a vertex with inter-level and intra-level edges. In
that case, the running time for one round of radial sifting is O(|V2|2 ·|E|+|E|2)
and for circular sifting O(|V2| · |H|).

Before and after a sifting swap, the computation and update of the mixed
crossing number between two consecutive vertices u and vp without any intra-
level edges involved that change their direction runs in O(1) time. As in one
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Algorithm 10. SIFTING-STEP
Input: Ordered 2-level offset graph G=(V1

.∪ V2, E,H, φE), Vertex u ∈ V2 to sift
Output: Updated ordering of V2

let v0 = u ≺ v1 ≺ · · · ≺ v|V2|−1 be the current ordering of V2 with u put to front1

sort all edges2
find best parting and offsets for edges (·, u) ∈ E3

χ← 0; χ∗ ← 0 // current and best number of crossings4
p∗ ← 0 // best vertex position5
j ← 0; j∗ ← 0 // current and best offset at the parting6
i← 0; i∗ ← 0 // current and best parting7
for p← 1 to |V2| − 1 do8

χ← χ+SIFTING-SWAP-EXT(G, u, vp)9
χ← χ+SHORTEN-LONG-EDGES(G, u, vp)10
χ← χ+UPDATE-OFFSETS(G, u, vp)11
χ← χ+SHORTEN-VISAVIS-EDGES(G, u, vp)12

if χ < χ∗ then13
χ∗ ← χ; p∗ ← p14
j∗ ← j15
i∗ ← i16

set best parting and offsets for edges (·, u) ∈ E17
return V2←v1≺ · · · ≺vp∗−1≺u≺vp∗≺ · · · ≺v|V2|−118

round of sifting each vertex is at each position once, this contributes O(|V2|2)
to the overall running time. If an intra-level edge h ∈ H changes direction, the
computation of its number of crossings with inter-level edges runs in O(|E|)
time. Now consider only one sifting step, i. e., one vertex u is moved along
the periphery of its level. Let h = (v1, v2) be an edge incident to two vertices
v1, v2 ∈ V2 with v1, v2 6= u. Both v1 and v2 only change their position once
during the sifting step of u. Thus, h can change its direction at most twice
in one sifting step. Considering the incident intra-level edges of u, they can
change their direction at most twice as well. Therefore, the contribution to
the time complexity for one sifting step is O(|V2| · |E|+ |H|) and thus for one
round of sifting is O(|V2|2 · |E|). ut

5 Experimental Results

To analyze the performance of one sifting round of our extended one-sided
2-level crossing minimization heuristics, we have implemented them in Java.
Further, we have implemented the corresponding standard sifting algorithm
which uses a crossing matrix to compare its practical running time with the
sifting algorithm of [13]. We have evaluated the implementations for horizon-
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tal drawings using 15625 random level graphs: 25 graphs for each combination
of the parameters |V1| = |V2| ∈ {50, 100, . . . , 1250}, |E|/|V2| ∈ {1, . . . , 5},
and |H|/|V2| ∈ {1, . . . , 5}. With the same parameters, but |V1| = |V2| ∈
{20, 30, . . . , 290}, we similarly have tested 17500 random radial level graphs.

Figure A.2 and A.3 (Fig. A.11 and A.12 for concentric levels) confirm that it
makes sense to consider all types of crossings simultaneously, since the algo-
rithms generate (as expected) fewer crossings than standard sifting, experi-
mentally by a factor of 0.7. This is a very encouraging result, since the differ-
ences in absolute running times between our extended sifting and the existing
standard (inter-level) sifting and intra-level sifting, i. e., the running time of
mixed sifting, are negligible in practice even on larger graphs (see Fig. A.1 and
A.10). For example, in our experiment the running time of extended sifting
for horizontal drawings with |V1| = |V1| = |E| = |H| = 104 is about 4 minutes
and for radial drawings with |V1| = |V1| = |E| = |H| = 103 is about 6 minutes.

To give a feeling about the performance of inter-level sifting in horizontal
drawings compared to an optimal algorithm: The ILP approach of [17] using
the free lpsolve library needs for |V1| = |V2| = 150 and |E| = 750 about 50
minutes to reduce the number of crossings from 145925 to the optimum of
94742. One round of sifting needs less than 20 ms and leaves 94981 crossings.
After 3 rounds we have 94770 crossings.

6 Conclusion

In this paper, we studied the new problem of crossing minimization in extended
level graphs. We considered two different drawings, horizontal drawing and
radial drawings, and presented two heuristics for extended one-sided crossing
minimization in both drawings. Essentially, we extended the well-known sifting
heuristic for crossing minimization of level graphs to handle three different
types of crossings in extended level graphs. Ignoring non-contributing self
loops, our algorithms can work also on multi-graphs within the same time
bounds.

So far, we have used only random initial orderings of the vertices. However, the
quality of the orderings produced by extended sifting is not independent from
the input. Thus, it may be helpful to use some extensions of fast and simple
heuristics, e. g., barycenter or median [2,4] heuristics, to reduce crossings in a
preprocessing step.

One future research is the investigation on the freedom of routing intra-level
edges above and below the level lines, not restricting them to one side. As an
alternative for the crossing minimization approach, a planarization approach
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was also studied for extended level graphs [26]: The planarization problem of
extended-level graph is NP-hard and, thus, heuristics are suggested. However,
these should be evaluated with extensive experimental results.
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A Benchmark Results

The appendix shows the practical performance of the algorithms. All bench-
marks were run on a 2.4 GHz Core 2 PC under the Java 6.0 platform from
Sun Microsystems, Inc.

A.1 Horizontal Level Lines

Figures A.1 to A.9 provide benchmark results comparing the heuristics to
minimize crossings in horizontal drawings: inter-level sifting (CM with crossing
matrix as in Sect. 2.1, ES without as in Sect. 2.2), circular sifting with semi-
circles (CS) as in Sect. 3.1, intra-level sifting (HS) as in Sect. 3.2.1, mixed
sifting (MS) as in Sect. 3.2.2, and extended sifting (XS) as in Sect. 3.3.
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Fig. A.1. Benchmark: running times.
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Fig. A.2. Benchmark: total crossing numbers.
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Fig. A.3. Benchmark: total crossing numbers.

0.40
0.50
0.60
0.70
0.80
0.90
1.00
1.10

200 400 600 800 1000 1200

A
fte

r
vs
.b

ef
or
e

Graph size |V1| = |V2|

ES
HS
CS
XS
MS

Fig. A.4. Benchmark: numbers of crossings between intra-level and inter-level edges.
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Fig. A.5. Benchmark: numbers of crossings between intra-level and inter-level edges.
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Fig. A.6. Benchmark: numbers of crossings between intra-level edges.
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Fig. A.7. Benchmark: numbers of crossings between intra-level edges.
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Fig. A.8. Benchmark: numbers of crossings between inter-level edges.
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Fig. A.9. Benchmark: numbers of crossings between inter-level edges.

A.2 Concentric Level Lines

Figures A.10 to A.18 provide benchmark results comparing the heuristics to
minimize crossings in radial drawings: inter-level sifting (ES) as in Sect. 4.1,
intra-level sifting (HS) as in Sect. 4.2, mixed sifting (MS) as in Sect. 4.3.1,
and extended sifting (XS) as in Sect. 4.3.2.
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Fig. A.10. Benchmark: running times.
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Fig. A.12. Benchmark: total crossing numbers.
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Fig. A.13. Benchmark: numbers of crossings between intra-level and inter-level
edges.
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Fig. A.14. Benchmark: numbers of crossings between intra-level and inter-level
edges.
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Fig. A.15. Benchmark: numbers of crossings between intra-level edges.
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Fig. A.16. Benchmark: numbers of crossings between intra-level edges.
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Fig. A.17. Benchmark: numbers of crossings between inter-level edges.
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Fig. A.18. Benchmark: numbers of crossings between inter-level edges.
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B Examples

Figures B.1 and B.2 show example outputs of both extended sifting algorithms.
Remember, these are not results of a complete Sugiyama framework, as the
fourth phase for the coordinate assignment is missing. Here, the vertices are
uniformly distributed on their levels to show the orderings.

(a) Input with χ(π) = 768. (b) Output after one sifting round
with χ(π′) = 441.

Fig. B.1. Horizontal example with |V1| = |V2| = 20, |E| = 50, and H = 10.

(a) Input with χ(π) = 2405. (b) Output one sifting round with
χ(π′) = 1397.

Fig. B.2. Radial example with |V1| = |V2| = 20, |E| = 50, and H = 10.
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Abstract. Directed graphs are commonly drawn by the Sugiyama algo-
rithm, where crossing reduction is a crucial phase. It is done by repeated
one-sided 2-level crossing minimizations, which are still NP-hard.
We introduce a global crossing reduction, which at any particular time
captures all crossings, especially for long edges. Our approach is based
on the sifting technique and improves the level-by-level heuristics in the
hierarchic framework by a further reduction of the number of crossings
by 5 – 10%. In addition it avoids type 2 conflicts which help to straighten
the edges, and has a running time which is quadratic in the size of the
input graph independently of dummy vertices. Finally, the approach can
directly be extended to cyclic, radial, and clustered level graphs where
it achieves similar improvements over the previous algorithms.

1 Introduction

The Sugiyama framework [12] is the standard drawing algorithm for directed
graphs. It displays them in a hierarchical manner and operates in four phases:
cycle removal (reverse appropriate edges to eliminate cycles), leveling (assign
vertices to levels which define the y-coordinates and introduce dummy vertices
on long edges), crossing reduction (permute the vertices on the levels), and co-
ordinate assignment (assign x-coordinates to the vertices under some aesthetic
criteria). Typical applications are schedules, UML diagrams, and flow charts.

In this paper we focus on the crossing reduction phase, where the vertices on
each level are permuted to minimize the total number of crossings. The common
solution for k-level crossing minimization is a reduction to the one-sided 2-level
crossing minimization problem, which is solved repeatedly in some up and down
sweeps [9, 12]. In the down sweep, the vertices Vi−1 on the upper level are fixed
and the vertices Vi of the lower level are reordered reducing the local number
of edge crossings. In the up sweep the roles are switched. Even the one-sided 2-
level crossing minimization problem is NP-hard [6]. There are many heuristics
for this problem [9]. Bastert and Matuszewski claim [9] that the results of this
level-by-level sweep are far from optimum. “One can expect better results by
considering all levels simultaneously, but k-level crossing minimization is a very
hard problem” [9, page 102]. Our approach addresses this gap. Note that existing
approximation ratios of 2-level algorithms do not translate to k-level graphs.
? Supported by the Deutsche Forschungsgemeinschaft (DFG), grant BR835/15-1.
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An important feature of such algorithms is the guarantee of no type 2 conflicts
which are crossings of two edges between dummy vertices. Among others, the
standard fourth phase algorithm [4] by Brandes and Köpf assumes the absence
of type 2 conflicts. Then it aligns long edges vertically and so achieves a crucial
aesthetic criterion [9] for pleasing hierarchical drawings.

Common 2-level crossing reductions are the barycenter and median heuristics
[9]. They place each vertex v ∈ Vi in the barycenter or median position of its
predecessors in Vi−1. After that Vi is sorted by these values. The idea is that
on these positions the edges get short and, thus, generate few crossings. These
techniques are simple, fast, and avoid type 2 conflicts, but leave many crossings.

Although such 2-level algorithms reduce the crossings between Vi−1 and Vi,
the number of crossings between Vi and Vi+1 (and thus even the overall number
of crossings) can increase while permuting Vi. These heuristics push the crossings
downwards or upwards until they are resolved at level k or 1, respectively. An
extension is centered 3-level crossing reduction, i. e., treating three consecutive
levels Vi−1, Vi, Vi+1 and permuting Vi while the orders of Vi−1 and Vi+1 are fixed
s. t. the crossings between the three levels are reduced. However, this generates
type 2 conflicts. For reaching a global optimum, all these algorithms are restricted
to a local view. Thus, they may tend to get stuck in local optima.

Sifting was first used for vertex minimization in ordered binary decision dia-
grams [11] and later adapted to the one-sided 2-level crossing reduction [10]. The
idea is to keep track of the number of crossings while in a sifting step a vertex
v ∈ Vi is moved along a fixed ordering of the vertices in Vi. Finally v is placed
at its locally optimal position. The method is an extension of the greedy-switch
heuristic [5], where v is swapped iteratively with its current successor. We call
a single swap a sifting swap and the execution of a sifting step for every vertex
in Vi a sifting round. Sifting leaves fewer crossings than the simple heuristics in
general at the expense of a higher running time and potential type 2 conflicts [9].

Matuszewski et al. [10] have extended sifting towards a global view, which
we call ordered k-level sifting. There the vertices are sorted by their degree and
are sifted first in increasing order and then in decreasing order. All neighbors
of the vertices to swap, i. e., on both neighboring levels, are considered. The
heuristic does not sweep level-by-level but is still limited to a local view as
long edges are not treated as a whole. Our centered 3-level sifting does the
same level-by-level instead of ordered by degree. Both algorithms produce similar
results. Jünger et al. [8] presented an exact ILP approach for theNP-hard k-level
crossing minimization, which can be used in practice for small graphs. Moreover,
metaheuristics have been proposed in the literature, such as genetic algorithms,
tabu search, or windows optimization.

In this paper we propose a new and global crossing reduction technique. The
algorithm yields better results than traditional heuristics. It is easily extendable
to more general crossing reduction problems, avoids type 2 conflicts, and runs in
quadratic time in the size of the graph. Most 2-level approaches extensively use
dummy vertices, whose number is up to O(k · |E|) ⊆ O(|V |3) and do not make
use of the edge bundling techniques of [7], which cannot be used for sifting.
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2 Preliminaries

We suppose that a directed graph without self-loops has passed through the
cycle removal and leveling phases. The outcome is a k-level graph G = (V,E, φ),
where φ : V → {1, 2, . . . , k} is a surjective level assignment of the vertices with
φ(u) < φ(v) for each edge (u, v) ∈ E. For an edge e = (u, v) ∈ E we define
span(e) := φ(v)− φ(u). An edge e is short if span(e) = 1 and long otherwise. A
graph is proper if all edges are short. Each level graph can be made proper by
adding span(e)−1 dummy vertices for each edge e which split e in span(e) many
short edges. Let G′ = (V ′, E′, φ′) denote the proper version of G. As in [4], short
edges are called segments of e. The first and the last segments are the outer and
the others the inner segments. Inner segments connect two dummy vertices.

For a vertex v we denote the set of neighbors from incoming and outgoing
segments by N−(v) := {u ∈ V ′ | (u, v) ∈ E′ } and N+(v) := {w ∈ V ′ | (v, w) ∈
E′ }, respectively. In an ordered proper level graph the vertices on each level as
well as the sets N−(·) and N+(·) are ordered from left to right. Each proper level
graph can be made ordered by choosing an arbitrary ordering for each level and
sorting the sets N−(·) and N+(·) accordingly. In an ordered level graph there
are two conflicting segments if they cross or share a vertex. Conflicts are of type
0, 1 or 2, if they are induced by 0, 1, or 2 inner segments, respectively.

Next we define blocks, which prevent dealing with dummy vertices and so
keep the running time independent of them. A block is a single vertex of V or a
maximum connected subgraph of dummy vertices, i. e., the inner segments of a
long edge. The blocks represent the vertices of a graph related to G′, where the
edges are the outer segments. For a block A define x = upper(A) (y = lower(A))
to be the unique vertex x in A (y in A) with no incoming (outgoing) segments in
A. x and y always exist but may coincide. We define N−(A) := N−(upper(A)),
N+(A) := N+(lower(A)), deg(A) := |N−(A)|+ |N+(A)|, and the set of all level
numbers on which A has (dummy) vertices as levels(A). With block(v) we denote
the block of the vertex v ∈ V ′. Let B be any ordered list of all blocks and let
π : B → {0, . . . , |B| − 1} assign each block its current position in this ordering.

3 Global Sifting

A major drawback of the established crossing reduction algorithms is their local
view. We present a new approach using ideas from [4] and [7]1 and avoiding type
2 conflicts. We treat all dummy vertices of an edge (and each original vertex)
as one block and try to find the best position for the entire block in one step.
This eliminates the problems of classic 2-level approaches which lack this global
view on crossings of long edges. As an initialization the list of blocks B is sorted
arbitrarily and each block A gets π(A) as its position in B (line 1 in Algorithm 1).
At any time during the execution of the algorithm interpreting π(A) for each
1 The authors of [7] use a data structure similar to our blocks and avoid type 2 conflicts.
However, for crossing reduction they proceed level-by-level in the traditional fashion.
Thus, only the running time but not the quality of the result is improved.
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Algorithm 1: GLOBAL-SIFTING
Input: Proper k-level graph G′ = (V ′, E′, φ′), number ρ of sifting rounds
Output: Graph G′ with vertices ordered by values π(v) for each v ∈ V ′

create list B of all blocks in G′1
for 1 ≤ i ≤ ρ do2

foreach A ∈ B do3
B ← SIFTING-STEP(G′, B, A)4

foreach v ∈ V ′ do π(v)← π(block(v))5
return G′6

block A as an x-coordinate for each vertex v in A and φ(v) as its y-coordinate
results in a drawing respecting the current ordering of B. All vertices of a block
get the same x-coordinate and, thus, the ordering is type 2 conflict free. These
are important invariants of Algorithm 1.

The main part of the algorithm is the sifting step (line 4). There all positions
for a block A are tested and A is moved to that position where it has the fewest
crossings. This is done for each block A ∈ B (line 3) and repeated a certain
number of times ρ (line 2). In practice, ten rounds suffice. Finally, each vertex
is set to the position of its block (line 5) and the graph is returned (line 6).

3.1 Building the Block List

The graph is partitioned into blocks. Each block A gets an arbitrary but unique
position π(A) in the block list B. As an example consider Fig. 1(a). The input
graph with 7 vertices gets 6 dummy vertices drawn as black circles. The dummy
vertices are combined into 3 blocks and each original vertex forms its own block.
The 10 resulting blocks are shown in Fig. 1(b) with an arbitrary ordering π.

If a given ordering should only be improved in a postprocessing step, a
straightforward initialization strategy is to topologically sort the blocks accord-
ing to the orderings on the levels from left to right in O(|E′|). Our experiments
showed, that a good initial ordering of the blocks leads to better results. However,
these can also be achieved by one or two additional sifting rounds.

3.2 Initialization of a Sifting Step

To improve the performance of one sifting step [3] it is necessary to keep the
adjacency lists N−(A) and N+(A) of each block A ∈ B sorted according to as-
cending positions of the neighboring blocks in B. We store them as arrays for ran-
dom access. Additionally, we store two index arrays I−(A) = I−(upper(A)) and
I+(A) = I+(lower(A)) of lengths |I−(A)| := |N−(A)| and |I+(A)| := |N+(A)|,
respectively. I−(A) stores the indices where upper(A) is stored in each adjacent
block B’s adjacency N+(B). More precisely, let b = N−(A)[i] be a neighbor of
upper(A) with B = block(b). Then I−(A)[i] holds the index at which upper(A)
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Fig. 1. Blocks as sifting objects

is stored in N+(B) = N+(b). Symmetrically, I+(A) stores the indices at which
lower(A) is stored in the adjacencyN−(B) of each adjacent blockB. See Fig. 1(b)
for an example. The creation of the four arrays for each block (line 2 of Algo-
rithm 3) can be done in O(|E|) time as Algorithm 2 shows: Traverse the blocks A
in the current order of B and add upper(A) (lower(A)) to the next free position j
of the cleared adjacency array N+(lower(B)) (N−(upper(B))) of each incoming
(outgoing) neighbor B. Both values for I+(B) and I−(A) (I−(B) and I+(A))
and their positions are only known after the second traversal of a segment s.
Thus, we cache the first array position j as an attribute p of s. Benchmarks
have shown that there is a considerable speed-up if only those adjacencies are
updated that are no longer sorted after a sifting step. The theoretical running
time is unaffected by this improvement.

Algorithm 2: SORT-ADJACENCIES
Input: Proper k-level graph G′ = (V ′, E′, φ′), ordered list B of blocks in G′

Output: Ordered sets N ·(A) and I ·(A) for each block A ∈ B
for i← 0 to |B| − 1 do π(B[i])← i; clear arrays N ·(B[i]) and I ·(B[i])1
foreach A ∈ B do2

foreach s ∈ { (u, v) ∈ E′ | v = upper(A) } do3
add v to the next free position j of N+(u)4
if π(A) < π(block(u)) then p[s]← j // first traversal of s5
else I+(u)[j]← p[s]; I−(v)[p[s]]← j // second traversal of s6

foreach s ∈ { (w, x) ∈ E′ | w = lower(A) } do7
add w to the next free position j of N−(x)8
if π(A) < π(block(x)) then p[s]← j // first traversal of s9
else I−(x)[j]← p[s]; I+(w)[p[s]]← j // second traversal of s10
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3.3 Sifting Step

In a sifting step (Algorithm 3) all positions p in B are tested for a block A ∈ B
(lines 5–8) and then A is moved to the position p∗ which has caused the least
number of crossings. Note that it is not necessary to count the crossings for each
position of A. As in [3] and contrary to classic sifting which always maintains the
absolute number of crossings, we treat the number of crossings of A when put
to the first position as χ = 0. Then, we only compute the change in the number
of crossings when iteratively swapping A with its right neighbor (line 6).

Algorithm 3: SIFTING-STEP
Input: Proper k-level graph G′ = (V ′, E′, φ′), ordered list B of blocks in G′,

block A ∈ B to sift
Output: Updated ordering of B
B′ ← A ≺ B[0] ≺ · · · ≺ B[|B| − 1] // new ordering B′ with A put to front1
SORT-ADJACENCIES(G′, B′)2
χ← 0; χ∗ ← 0 // current and best number of crossings3
p∗ ← 0 // best block position4
for p← 1 to |B′| − 1 do5

χ← χ+ SIFTING-SWAP(A,B′[p])6
if χ < χ∗ then7

χ∗ ← χ; p∗ ← p8

return B′[1] ≺ · · · ≺ B′[p∗] ≺ A ≺ B′[p∗ + 1] ≺ · · · ≺ B′[|B′| − 1]9

3.4 Sifting Swap

The sifting swap is the actual computation of the change in the number of cross-
ings when a block A is swapped with its right neighborB. In contrast to one-sided
crossing reduction, our global approach takes the whole neighborhood of both
blocks into account when the change in the number of crossings is computed.
Lemma 1 states which segments are involved.

Lemma 1. Let B be the block list in the current ordering. Let B ∈ B be the
successor of A ∈ B. If swapping A and B changes the crossings between any two
segments, then one of them is an incident outer segment of A or B. The other
segment is an incident outer segment of the same kind (incoming or outgoing)
of the other block or an inner segment of the other block.

Proof. Note that only segments between the same levels can cross. As no type
2 conflicts occur at least one of the segments of a crossing has to be an outer
segment. Let (a, b) and (c, d) be two segments between the same levels with a 6= c
and b 6= d. If the two segments cross after swapping A and B but did not cross
before (or vice versa) either a and c or b and d were swapped. Therefore, one of
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the segments is adjacent to A or is a part of A and the other is adjacent to B or
is a part of B. If b and d were swapped and thus a and c were not, φ(b) = φ(d) is
the upper level of A or B and thus one of the crossing segments is an incoming
outer segment of A or B. The other segment is either an incoming outer segment
or an inner segment of the other block. Note that it cannot be an outgoing outer
segment of this block because then neither a and c nor b and d would have been
swapped. The other case of swapping a and c instead of b and d is symmetric. ut
Proposition 1. Let B be the block list in the current ordering. Let B ∈ B be
the successor of A ∈ B. Let i and j be the two levels framing the incoming
outer segments of A, the other three cases are symmetric. If there is a segment
(u, v) between i and j which is either an incoming outer segment of B or an inner
segment of B, then the incoming segments of A starting at a block left of block(u)
cross (u, v) after the swap of A and B only, the segments starting at block(u)
never cross (u, v), and the segments starting right of block(u) cross (u, v) before
the swap only. There are no other changes of crossings due to Lemma 1.

Algorithm 4 shows the details of a sifting swap. First, the levels at which (sig-
nificant) swaps occur and the direction of the segments changing their crossings
are found (lines 2–6). For each entry (l, d) of the set L the two vertices a and b of
A and B on level l are retrieved. Note that when swapping A and B only a and
b are swapped on their level and that in the level of their neighbors Nd(a) and
Nd(b) no order changes. Thus, the computation of the change in the number of
crossings can be done as in [3] (lines 14–24): The neighbors are traversed from
left to right. If a neighbor of a is found (lines 19, 20) its segment will cross all
remaining s− j incident segments of b after the swap. If a neighbor of b is found
(lines 21, 22) its segment has crossed all remaining r − i incident segments of a
before the swap. Common neighbors present both cases at the same time (line
23). An update of the adjacency after a swap (line 10) is only necessary if a and
b have common neighbors. Algorithm 5 shows how this can be done in overall
O(deg(A) + deg(B)) time similarly to the crossing counting function uswap.

3.5 Time Complexity

Lemma 2. Let G = (V,E, φ) be a level graph. Then
∑

B∈B deg(B) ≤ 4 · |E|.
Proof. Each edge e ∈ E contains at most two outer segments. Each outer seg-
ment increases the degree of its two incident blocks by one each. ut
Theorem 1. One round of global sifting (Algorithm 1) has a time complexity
of O(|E|2) for a non-necessarily proper level graph G = (V,E, φ).

Proof. Let B be the blocks ofG. Swapping two blocksA,B ∈ B needsO(deg(A)+
deg(B)) time. Initializing a sifting step takesO(∑B∈B deg(B)) = O(|E|) time. A
sifting step of a block A needs O(∑B∈B\{A}(deg(A)+deg(B))) = O(|E|·deg(A))
time. Thus, a sifting round positioning each block A ∈ B has time complexity
O(∑A∈B(|E| · deg(A)) = O(|E|2). Since |V ′| ≤ k · |E| ∈ O(|E|2) (no empty
levels), traversing all (dummy) vertices in pre- and postprocessing has no effect
on the worst case time complexity. ut
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Algorithm 4: SIFTING-SWAP
Input: Consecutive blocks A,B
Output: Change in crossing count

begin1
L ← ∅;∆← 02
if φ(upper(A)) ∈ levels(B) then L ← L ∪ {(φ(upper(A),−)}3
if φ(lower(A)) ∈ levels(B) then L ← L ∪ {(φ(lower(A),+)}4
if φ(upper(B)) ∈ levels(A) then L ← L ∪ {(φ(upper(B),−)}5
if φ(lower(B)) ∈ levels(A) then L ← L ∪ {(φ(lower(B),+)}6
foreach (l, d) ∈ L do7

let a in A and b in B be the vertices with φ(a) = φ(b) = l8

∆← ∆+ uswap(a, b,Nd(a), Nd(b))9

UPDATE-ADJACENCY(a, b,Nd(a), Id(a), Nd(b), Id(b))10

swap positions of A and B in B; π(A)← π(A) + 1; π(B)← π(B)− 111
return ∆12

end13

function uswap(a, b,Nd(a), Nd(b)) : integer14
let x0 ≺ · · · ≺ xr−1 ∈ Nd(a) be the neighbors of a in direction d15

let y0 ≺ · · · ≺ ys−1 ∈ Nd(b) be the neighbors of b in direction d16
c← 0; i← 0; j ← 017
while i < r and j < s do18

if π(block(xi)) < π(block(yj)) then19
c← c+ (s− j); i← i+ 120

else if π(block(xi)) > π(block(yj)) then21
c← c− (r − i); j ← j + 122

else c← c+ (s− j)− (r − i); i← i+ 1; j ← j + 123

return c24

Algorithm 5: UPDATE-ADJACENCIES
Input: Vertices a, b ∈ V ′, Nd(a), Id(a), Nd(b), Id(b)
Output: Updated adjacencies of a and b and all common neighbors

let x0 ≺ · · · ≺ xr−1 ∈ Nd(a) be the neighbors of a in direction d1

let y0 ≺ · · · ≺ ys−1 ∈ Nd(b) be the neighbors of b in direction d2
i← 0; j ← 03
while i < r and j < s do4

if π(block(xi)) < π(block(yj)) then i← i+ 15
else if π(block(xi)) > π(block(yj)) then j ← j + 16
else7

z ← xi // = yj8

swap entries at positions Id(a)[i] and Id(b)[j] in N−d(z) and in I−d(z)9

Id(a)[i]← Id(a)[i] + 1; Id(b)[j]← Id(b)[j]− 110
i← i+ 1; j ← j + 111
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4 Simple Global Crossing Reductions

We have extended the barycenter and median crossing reduction strategies to-
wards blocks as well: We iteratively take the π-positions of the blocks in B and
compute the barycenter or median for each block, respectively, and sort B ac-
cording to these values. Our benchmarks show that both are very fast, however,
are not competitive with global sifting in the number of crossings.

Theorem 2. One round of global barycenter or global median has time com-
plexity O(|E| log |E|) or O(|E|), respectively.

Proof. Computing the barycenters or medians for the O(|E|) blocks can be done
in O(|E|) time due to Lemma 2. Sorting the barycenters takes O(|E| log |E|)
time. The medians can be sorted in O(|E|) time using bucket sort. ut

5 Experimental Results

We have compared the iterative one-sided 2-level barycenter (B), median (M),
and sifting (S), iterative centered 3-level sifting (3S), ordered k-level sifting (OS),
and our new global barycenter (GB), global median (GM), and global sifting
(GS) algorithms.

In a nutshell, classic sifting is fast, leaves few type 2 conflicts, but many
crossings. Centered 3-level sifting is fast, leaves few crossings, but many type 2
conflicts. Global sifting leaves even less crossings (Fig. 2) without any type 2
conflicts within a still feasible running time in practice (Fig. 3). Further mea-
surements reflect that the running time of global sifting is independent of the
number of dummy vertices. This parallels the advanced algorithm in [7].
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A.1. Articles for Sect. 2 117



0

2

4

6

8

10

2000 4000 6000 8000 10000

R
un

ni
ng

ti
m
e
in

se
co
nd

s

Graph size |V ′| (75% dummy vertices and |E′| = 2 · |V ′|, i. e., |E| = 5 · |V |)

GS
OS
3S
S
M
B

GM
GB

Fig. 3. Benchmark: running times

6 Applications of the Global Crossing Reduction

The idea of using blocks for long edges can be used in several other algorithms
to improve their performance in a straightforward way. Further, this advances
the drawability of their results as type 2 conflicts are avoided.

Optimal Crossing Reduction Using an ILP Jünger et al. [8] gave an ILP
formulation for the exact crossing minimization of k-level graphs. Using pairs of
overlapping blocks, i. e., on non-disjoint levels, as variables gives a direct formu-
lation which naturally excludes type 2 conflicts and uses fewer variables.

Clustered Crossing Reduction In a clustered level graph vertices are com-
bined to subgraphs in a hierarchical way. The crossing reduction has to ensure
that all (dummy) vertices of a subgraph on the same level are consecutive and
that all subgraphs spanning several levels have a matching ordering on each
level to avoid crossings of subgraphs. This is rather complicated using a 2-level
crossing reduction approach. Using global sifting this is quite simple: Instead of
swapping a vertex with its right neighbor in a sifting swap we swap all blocks of
a subgraph with its right neighbor (which itself is either a block or a subgraph)
and determine the change in the number of crossings. The time complexity stays
the same as in the normal global sifting. If the layout of the subgraphs them-
selves is not fixed, then global sifting can be applied to the subgraphs as well,
e. g., performing a sifting round for each hierarchical layer.

Cyclic and Radial Level Graphs Level graphs can be extended to cyclic or
radial level graphs. In cyclic level graphs the set of levels is ordered in a cyclic
way, i. e., the first level follows the last one. In radial level graphs each level itself
is ordered in a cyclic way, i. e., the first vertex on each level is the right neighbor
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of the last one. See Fig. 4 for clippings of drawings. For both, global sifting is
the first crossing reduction to guarantee the needed absence of type 2 conflicts.

Cyclic levels are normally drawn forming a star in 2D (see Fig. 4(a)). These
drawings explicitly visualize cycles in graphs [2], which is often required in bioin-
formatics. Our global sifting algorithm can be used for cyclic level graphs without
any changes within the same time complexity. Note that one-sided 2-level algo-
rithms cannot be applied here, since each of them pushes most of the crossings
to the next level only. Even the absence of type 2 conflicts cannot be guaranteed
then, because the sweep has to stop at some level.

In a radial level graph the levels are concentric circles (see Fig. 4(b)). These
drawings visualize distances or importance and are the traditional drawings of
social networks. They map structural centrality of the graph to geometric cen-
trality. Our global sifting approach guarantees radially aligned long edges and
can be used with minor modifications: Each block of the block list B has its own
angle. The ordering of B starts at an arbitrary block. Similar to [1], we define
an offset ψ : E → Z for each outer segment. The absolute value |ψ(e)| counts
the crossings of segment e with an imaginary ray splitting up the levels with a
straight halfline from the concentric center to infinity. If ψ(e) < 0 (ψ(e) > 0),
e has clockwise (counter-clockwise) direction read from source to target. When
sifting a block A ∈ B, we have to update the partings, which are the two borders
between the counterclockwise and clockwise segments on the levels above and
below A, see Fig. 4(b). Since we can do this independently of each other and
add the results of the change in crossings to ∆ in Algorithm 4, we use the same
technique as in [1]. We sift a block from its current position in counterclockwise
direction. Thus, for few crossings the partings have to follow in this direction on
their levels. The test during the swap whether changing the orientations of some
of the first of the (ordered) incident segments of A by incrementing their offsets,
and thus putting them last, leads to less crossings and counting the difference
raises the overall running time to O(|E|3). The radial coordinate assignment
phase in [1] relies on the obtained absence of type 2 conflicts.

7 Summary

We have presented an algorithm for the global crossing reduction problem of k-
level graphs. It produces high quality results with fewer crossings than common
approaches at the expense of a quadratic running time, which is still feasible
in practice. This was an open problem since the introduction of the hierarchical
framework [12] in 1981. For cyclic and radial level crossing reduction we presented
the first algorithms which guarantee the absence of type 2 conflicts. Our approach
can easily be used to simplify and improve several other algorithms concerning
level planarity or crossing reduction.
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A Radial Adaptation of the Sugiyama Framework
for Visualizing Hierarchical Information

Christian Bachmaier

Abstract— In radial drawings of hierarchical
graphs the vertices are placed on concentric circles
rather than on horizontal lines and the edges are
drawn as outwards monotone segments of spirals
rather than straight lines as it is both done in
the standard Sugiyama framework. This drawing
style is well suited for the visualisation of cen-
trality in social networks and similar concepts.
Radial drawings also allow a more flexible edge
routing than horizontal drawings, as edges can be
routed around the center in two directions. In
experimental results this reduces the number of
crossings by approximately 30 percent on average.
Few crossings are one of the major criteria for
human readability.

This paper is a detailed description of a complete
framework for visualizing hierarchical information
in a new radial fashion. Particularly, we briefly
cover extensions of the level assignment step to
benefit by the increasing perimeters of the circles,
present three heuristics for crossing reduction in
radial level drawings, and also show how to visual-
ize the results.

Index Terms— graph drawing, radial, crossing
reduction, Sugiyama framework, spiral segments

I. Introduction

H IERARCHICAL graph layout is the method of
choice for visualizing a general direction of flow,

e. g., data or information, in relational data. Thereby
vertices are usually drawn on parallel horizontal lines,
and edges are drawn as y-monotone polylines that
may bend when they intersect a level line. The stan-
dard drawing algorithm [1] for visualizing flow in
vertical direction consists of four phases: cycle removal
(reverses appropriate edges to eliminate cycles), level
assignment (assigns vertices to levels and introduces
dummy vertices to represent edge bends), crossing

Manuscript received 14 June 2006; revised 11 Oct. 2006;
accepted 19 Oct. 2006; published online 2 Jan. 2007.

The author is with the Fakultät für Mathematik und Infor-
matik, Universtät Passau, Innstr. 33, 94032 Passau, Germany.
E-mail: bachmaier@fmi.uni-passau.de

reduction (permutes vertices on the levels), and coor-
dinate assignment (assigns x-coordinates to vertices,
y-coordinates are implicit through the levels). See [2]
for an extended overview.

The novelty of this paper is that we draw the
level lines as concentric circles instead of as paral-
lel horizontal lines and thus visualize flow from the
center outwards. Further, in analogy to y-monotone
straight line edges used in horizontal level drawings,
we draw the edges as segments of spirals, unless they
are radially aligned, in which case they are drawn
as straight lines. This results in strictly monotone
curves from inner to outer levels and ensures that the
segments do not cross inner level lines or each other
unnecessarily. The apparent advantage of radial level
drawings is that level graphs can be drawn with fewer
edge crossings. It is also more likely that a graph can
be drawn without any crossings at all, since the set
of level planar graphs is a proper subset of the set of
radial level planar graphs [3]. Note that radial level
drawings are different from circular drawings [4]–[6]
where only one circle contains all vertices and do not
comply with radial drawings [7] where edges are drawn
straight line and level lines are not equidistant. Fur-
ther, in contrast to both, here “inner level edges” with
both end vertices on a common level are prohibited.
See Fig. 1 for an example.

Radial drawings are not new, for example see the
hierarchical graph drawings of [8], the ring diagrams
of [9], or the radial tree drawings of [10], which are
common for free trees. Radial level drawings are also
common, e. g., in the study of social networks [11],
[12]. There vertices model actors and edges represent
relations between the actors. The importance (central-
ity) of a vertex is expressed by its distance (closeness)
to the center, i. e., a position on a low level. Radial
level drawings are also well suited for level graphs
with an increasing number of vertices on higher levels.
For example, in a graph that shows which Web pages
are reachable from a given start page by following k
hyperlinks, higher levels are likely to contain many
vertices while there are only few vertices on the lower

1077–2626/07$25.00 c© 2007 IEEE
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Fig. 1. Drawings of a level graph

levels. Other potential applications may be found in
[13], [14].

The paper is organized as follows: After some pre-
liminary definitions in the next section, we present a
complete framework in Sugiyama style to create radial
level drawings of hierarchical graphs. This is done
by introducing methods for radial level assignment in
Sect. III, radial crossing reduction in Sect. IV, and
radial coordinate assignment [15] in Sect. V. We omit
the cycle removal step since it does not differ from the
horizontal case and standard algorithms can be used.
See [2] for an overview on that topic. We conclude in
Sect. VI.

II. Preliminaries

A k-level graph G = (V,E, φ) is a directed acyclic
graph (DAG) with a level assignment φ : V →

{1, 2, . . . , k}, which partitions the vertex set into k ≤
|V | pairwise disjoint subsets V = V1

.∪V2
.∪· · · .∪Vk, Vi =

φ−1(i), 1 ≤ i ≤ k, such that φ(u) < φ(v) for each edge
(u, v) ∈ E. Particularly, k = 1 implies that E = ∅. An
edge (u, v) is short if φ(v)− φ(u) = 1; otherwise it is
long and spans the levels φ(u)+1, . . . , φ(v)−1. A level
graph without long edges is proper. Any level graph
can be made proper by subdividing each long edge
(u, v) ∈ E by the introduction of new dummy vertices

vi ∈ Bi, i = φ(u) + 1, . . . , φ(v) − 1, φ(vi) = i. We
draw dummy vertices as small black circles, Fig. 6(a),
or edge bends, Fig. 1. The edges of a proper level graph
are also called (edge) segments. If both end vertices of
a segment are dummy vertices, it is called an inner
segment. Let N = |V ∪B|+ |B|+ |E| denote the size
of the proper level graph G = (V ∪B,E, φ) where V
contains the original vertices and B = B1

.∪B2
.∪ . . . .∪

Bk contains the dummy vertices with |B| ≤ k|E| ≤
|V ||E|.

An ordering of a proper level graph is a partial
order ≺ of V ∪ B such that u ≺ v or v ≺ u iff
φ(u) = φ(v). This is equivalent to a definition of
the vertex positions on level i as a bĳective function
πi : Vi ∪ Bi → {0, . . . , |Vi| + |Bi| − 1} with u ≺ v ⇔
πi(u) < πi(v) for any two vertices u, v ∈ Vi ∪ Bi. Let
π = (πi)1≤i≤k. We call an ordering of a level graph a
horizontal embedding. In case that an ordering admits
a drawing without edge crossings (except common
end points), it is called a level planar embedding.
Throughout the paper let N−(v) = {u | (u, v) ∈ E }
denote the predecessors of v ∈ V . A vertex is called
a source (sink), if there is no incoming (outgoing)
incident edge. Let sgn: R → {−1, 0, 1} denote the
signum function.

III. Radial Level Assignment

THE basic problem is the same as in horizontal
level drawings: In this phase a given DAG is to

be transformed into a level graph by assigning the
vertices to levels. Thus, any existing level assignment
algorithm for horizontal level drawings can directly
be used for radial level drawings. The optimization
criteria, however, slightly change: Radial level draw-
ings use k concentric circles to place the vertices of
the k levels. Contrary to the constant line lengths in
horizontal level drawings, the perimeters of the circles
grow longer with ascending level numbers: On an outer
circle, there is space for more vertices than on an
inner circle. Thus, we investigate how level assignment
methods can be extended to take advantage of this.

A straight-forward idea is to apply the longest path
level assignment method from outer to inner levels:
First, each sink of the graph is assigned to the highest
level. For the remaining vertices the level is recursively
defined by φ(v) = min{φ(w) | (v, w) ∈ E } − 1. This
puts each vertex on the outermost possible level while
minimizing the number of levels k. There is no explicit
balancing of level sizes, however.

For a better vertex distribution, an extension of
the Coffman/Graham algorithm [16] can be used that
explicitly takes into account the growing perimeter of
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the circles. Coffman and Graham compute a leveling
where the number of vertices per level is bounded
by a given constant W . We change this bound to
be a function w(i) which grows proportionally with
the index i of a level: w(i) = W · i. The first phase
of the algorithm remains unchanged, but we apply
it using the opposite edge direction: After remov-
ing transitive edges in linear time, an appropriate
numbering o : V → {0, . . . , |V | − 1} of the vertices
is computed: Initially, all vertices are unnumbered.
We consecutively choose one vertex at a time and
assign the next ascending number to it. The vertex
is chosen so that it has no unnumbered successors
and that the numbers of the successors are minimal
regarding a specific ordering of integer sets: a set of
vertex numbers is considered less than another one, if
the maximum is less. If the maximum of both sets is
equal, the next smaller value is compared, and so on.
In the second phase the algorithm places one vertex at
a time, starting with the vertex numbered with |V |−1
on level i = 1 and filling the levels from inner to outer
circles. In one step it places the next unleveled vertex
v ∈ V with maximum o(v) whose predecessors are
already leveled. If level i is full, i. e., if i contains w(i)
vertices, or if v has a predecessor u with φ(u) = i,
then a new level is started, i. e., i is increased by 1.
The level of v is then set to φ(v) = i.

As the last step of the level assignment phase the
level graph is made proper, because for drawing level
graphs it is necessary to know where long edges should
be routed, i. e., between which two vertices on a
spanned level. Thus all long edges are subdivided in
proper segments by new dummy vertices B in O(k|E|)
running time. In the following, we will only consider
proper level graphs.

IV. Radial Crossing Reduction

REGARDLESS of whether the leveling of a level
graph is given by the application or if it has been

computed by one of the algorithms in the previous
section, the next step towards a hierarchical drawing
is to compute an embedding. In horizontal hierarchical
drawings the embedding is fully defined by the vertex
ordering π. For radial embeddings it is also neces-
sary to know where the (w. l. o. g. counter-clockwise)
orderings start and end on each level. Therefore, we
introduce a ray that tags this borderline between the
vertices, cf. Fig. 1(b). The ray is a straight halfline
from the center to infinity between the vertices on each
level with extremal positions. Edges crossed by the ray
are called cut edges. In horizontal drawings of level
graphs a crossing between two edges only depends

1

3

24
1+

1-

(a) Edge (1, 3) drawn counter-
clockwise and clockwise (dot-
ted)

1 2

3+

(b) ψ ((1, 2)) = +3

Fig. 2. Offsets of edges

on the orderings of the end vertices. In radial level
drawings, however, it is also necessary to consider the
direction in which the edges are wound around the
center, clockwise or counter-clockwise. Furthermore,
edges can also be wound around the center multiple
times. We call this the offset ψ : E → Z of an
edge. Thereby, |ψ(e)| counts the crossings of an edge
e ∈ E with the ray. If ψ(e) < 0 (ψ(e) > 0), e
is a clockwise (counter-clockwise) cut edge, i. e., the
sign of ψ(e) reflects the mathematical direction of
rotation, see Fig. 2. If ψ(e) = 0, then e is not a cut
edge and thus needs no direction information. Observe
that a cut edge cannot cross the ray clockwise and
counter-clockwise simultaneously. We define a radial
embedding E of a graph G = (V,E, φ)1 to consist of
the vertex ordering π and of the edge offsets ψ, i. e.,
E = (π, ψ).

Compared to horizontal drawings there is an ad-
ditional freedom in radial drawings without changing
the crossing number: rotation of a level i. A clockwise
rotation moves the vertex v with minimum position
on the ordered level φ(v) = i over the ray by setting
πi(v) to the maximum on i. The other values of
πi are updated accordingly. For an illustration see
Fig. 3, where v = 5. A counter-clockwise rotation is
defined symmetrically. Rotations do not modify the
“cyclic order”, i. e., the neighborhood of every vertex
on its radial level line is preserved. However, the
offsets of the edges incident to v must be updated.
If rotating clockwise, the offsets of incoming edges
of v are reduced by 1 and the offsets of outgoing
edges are increased by 1. The offset updates for
rotating counter-clockwise are symmetric. Depending
on the implementation, rotation needsO(deg(v)) resp.
O(|V |+ deg(v)) running time.

The most common technique for crossing reduction
in proper level graphs is to only consider two consecu-

1We need not to distinguish between original and dummy
vertices in this phase. Thus here V denotes both of them for
an easy notation.
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tive levels at a time in multiple top-down and bottom-
up passes. Starting with an arbitrary permutation of
the first level, subsequently the ordering of one level is
fixed, while the next one is reordered to minimize the
number of crossings in-between. This one-sided two-
level crossing reduction problem is NP-hard [17] and
well-studied. For radial level embeddings we follow the
same strategy and consider the radial one-sided two-
level crossing reduction problem. Given a 2-level graph
G = (V1

.∪V2, E, φ) and an ordering π1 of the first level,
our objective is to compute an ordering of the second
level and offsets for the edges with few crossings.

A. Properties
Crossings between edges in radial embeddings de-

pend on their offsets and on the order of the end
vertices. There can be more than one crossing between
two edges, if they have very different offsets. We
denote the number of crossings between two edges
e1, e2 ∈ E in an embedding E by χE(e1, e2). Intu-
itively, this number is approximately equal to the
difference of the offsets |ψ(e2) − ψ(e1)|. The exact
formula is slightly different, however, with a small
shift depending on the vertex ordering, see Lemma 1.2
The (radial) crossing numbers of a radial embedding E
and of a level graph G = (V,E, φ) are then naturally
defined as χ(E) =

∑
{e1,e2}⊆E,e1 6=e2

χE(e1, e2) and
χ(G) = min{χ(E) | E is a radial embedding of G}.

Lemma 1: Let E = (π, ψ) be a radial embedding of
a 2-level graph G = (V1

.∪ V2, E, φ). Then the number
of crossings between two edges e1 = (u1, v1) ∈ E and
e2 = (u2, v2) ∈ E is

χE(e1, e2) =

max
{
0,
∣∣ψ(e2)− ψ(e1) + b−a

2

∣∣+ |a|+|b|
2 − 1

}
,

2Although high offsets are never useful for a low number of
crossings, we nevertheless provide the general result, not only
to show that it also can be computed in constant time, but also
since it is an interesting problem in itself.

TABLE I
The crossing number in relation to δ = ψ(e2)− ψ(e1)

u1 v1 ψ(e2) u1 v1 ψ(e2)
vs. vs. vs. χE(e1, e2) vs. vs. vs. χE(e1, e2)
u2 v2 ψ(e1) u2 v2 ψ(e1)

≺ ≺ < |δ| � � > |δ|
≺ ≺ = 0 � � = 0
≺ ≺ > |δ| � � < |δ|
≺ = <

˛̨
δ − 1

2

˛̨
− 1

2
� = >

˛̨
δ + 1

2

˛̨
− 1

2
≺ = = 0 � = = 0
≺ = >

˛̨
δ − 1

2

˛̨
− 1

2
� = <

˛̨
δ + 1

2

˛̨
− 1

2
≺ � < |δ − 1| � ≺ > |δ|+ 1
≺ � = 1 � ≺ = 1
≺ � > |δ − 1| � ≺ < |δ|+ 1
= ≺ <

˛̨
δ − 1

2

˛̨
− 1

2
= � >

˛̨
δ − 1

2

˛̨
− 1

2
= ≺ = 0 = � = 0
= ≺ >

˛̨
δ − 1

2

˛̨
− 1

2
= � <

˛̨
δ − 1

2

˛̨
− 1

2
= = < |δ| − 1 = = > |δ| − 1
= = = 0

where a = sgn (π1(u2)− π1(u1)) and
b = sgn (π2(v2)− π2(v1)) .

Proof: In analogy to horizontal embeddings, edge
crossings do not depend on the exact position of the
end vertices, but only on the relative ordering (≺ , �,
or =) and on the edge offsets. We can assume w. l. o. g.
that ψ(e1) = 0, because in any embedding we can
rotate the whole second level multiple times without
changing π2 or the offset difference δ = ψ(e2)−ψ(e1).
This leads to 3 · 3 · 3 = 27 cases, which are straight-
forward to prove, see Tab. IV-A.

Corollary 1: Let E be a radial embedding of a 2-
level graph G = (V1

.∪V2, E, φ). Swapping the position
of two vertices v, w ∈ V2 changes the number of
crossing between two edges (·, v), (·, w) ∈ E by at
most 1.

Before we show our radial crossing reduction algo-
rithms, we first discuss some more properties which
follow from radial level lines.

Lemma 2: Let G = (V1
.∪V2, E, φ) be a 2-level graph

and let e1 = (u1, v) ∈ E and e2 = (u2, v) ∈ E be two
edges with a common target vertex v. Then in any
crossing minimal radial embedding E = (π, ψ) of G,
π1(u1) < π1(u2) implies ψ(e2)− ψ(e1) ∈ {0, 1}.

Proof: Assume that ψ(e2) − ψ(e1) 6∈ {0, 1}.
Then Lemma 1 implies χE(e1, e2) > 0. We choose
an arbitrary crossing between e1 and e2 and show
how the embedding can be modified to reduce the
number of crossings, see Fig. 4(a) for an illustration.
We exchange the routing of e1 and e2 between v and
the crossing: e1 is routed along the old course of e2
until it reaches the crossing. The routing from there
to u1 is not changed. We symmetrically do the same
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Fig. 4. Not all offset combinations for edges (·, v) ∈ E result
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with e2. In the new embedding e1 and e2 have one
crossing less and the number of crossings has not
changed otherwise, contradicting the assumption and
proving the lemma.

Because of this result, it is clear that only embed-
dings need to be considered, where there is a clear
parting between all edges incident to the same vertex
as in Fig. 4(b). The parting is that position of the
edge list of v that separates the two subsequences
with offsets ψ0 resp. ψ0 + 1. Otherwise unnecessary
crossings are generated between the incident edges,
see Fig. 4(c). We also only consider radial embeddings
with small edge offsets, because large offsets corre-
spond to very long edges which are difficult to follow.
Obviously, winding edges more than once around
the center can only increase its number of crossings.
Thus, only the offsets −1, 0, and 1 are used in our
algorithms.

Lemma 3: Radial one-sided two-level crossing mini-
mization is NP-hard.

Proof: We show the NP-hardness by reduction
from the horizontal one-sided two-level crossing min-
imization problem, which is known to be NP-hard
[17]. Given a 2-level graph G = (V1

.∪ V2, E, φ) with a
fixed permutation π1 of the first level, we construct a
new 2-level graph G′ = (V ′

1

.∪ V ′
2 , E

′, φ′) by adding a
barrier as follows: G is extended by |E|2 new vertices
x0, . . . , x|E|2−1 at the end of the first level π′1(xi) =
|V1|+ i, φ′(xi) = 1 and a new vertex y on the second
level φ′(y) = 2 that is connected to them by new edges
e0, . . . , e|E|2−1, ei = (xi, y).

Let E ′ = ((π′1, π
′
2), ψ) be a radial embedding of G′

that has a minimum number of crossings subject to
π′1. We can assume w. l. o. g. (because of rotation and
Lemma 2) that π′2(y) = |V2| and ψ(ei) = 0 for all
new edges. Then none of the new edges has a crossing
with any of the original edges, because this would lead
to |E|2 crossings, contradicting the minimality of the
embedding. Thus, there are no cut edges, and π2 =
π′2|V2

is a solution of the original horizontal one-sided

two-level crossing minimization problem.
As a consequence, we use heuristics for an efficient

solution of the problem. In the following, we present
three different approaches, extending some well-known
[2] horizontal one-sided two-level crossing reduction
methods, namely the barycenter, median, and sifting
heuristics.

B. Cartesian Barycenter Heuristic
In the horizontal barycenter crossing reduction

method for every vertex in V2 the average value of the
positions of its neighbors in V1 is computed. Afterward
V2 is sorted according to this values following the
rule of thumb “shorter edges have less crossings than
longer edges”. With some restrictions, this method
can be directly used to compute a radial embedding:
The horizontal vertex ordering defines a radial vertex
ordering, and all edge offsets are set to 0. This neglects
the additional freedom of radial edge routing, however,
and therefore introduces more crossings than neces-
sary. The result is especially bad for vertices whose
neighbors on the first level are far apart. If, for an
extreme example, a vertex is only adjacent to the first
and last vertex of the first level, its best position is
obviously near the ray, labeling one of the edges as a
cut edge. But the horizontal algorithm cannot do that,
and therefore produces an out-of-balance embedding.
Even worse, the result depends on the current position
of the ray.

One approach to improve that could be to rotate the
first level before computing the barycenter values to
an appropriate position, or maybe even use different
rotations for different vertices. We propose a simpler,
yet equally promising method. The basic idea stays
the same: each vertex should be close to the average
position of its neighbors. However, we use the terms
“average” and “position” in a geometric sense. We
assume the vertices of the first level V1 to be uni-
formly distributed on a unit circle, according to the
given ordering π1. This defines Cartesian coordinates
(x(u), y(u)) ∈ R2 for each u ∈ V1. Then we compute
for each v ∈ V2 the Cartesian barycenter3

bary(v) =

(∑
u∈N−(v) x(u)

|N−(v)| ,

∑
u∈N−(v) y(u)

|N−(v)|

)

of its predecessors N−(v) and sort the vertices circu-
larly around the origin, i. e., by the angles of bary(v)

3Note that the division by |N−(v)| can be omitted in an
implementation, because it does not change the polar angle of
bary(v).
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in polar coordinates,

β(v) = arctan
y (bary(v))

x (bary(v))

+ π ·H (−x (bary(v))) · sgn (y (bary(v))) ,
where H(x) = 0 for x ≤ 0 and H(x) = 1 for x > 0 is
the unit step function. Many programming languages
provide a specialized function atan2(x, y) for this
purpose.

After sorting, we distribute the vertices of the sec-
ond level uniformly on a concentric circle with radius
2 and choose for the offset of each edge one of −1,
0, or +1, whichever leads to the shortest edge in a
geometric sense. Obviously, this algorithm has the
same running time as its horizontal version:

Theorem 1: The running time of the Cartesian
barycenter heuristic is O(|E|+ |V | log |V |).

C. Cartesian Median Heuristic
The Cartesian median heuristic is similar to the

Cartesian barycenter heuristic. The only difference is
that we take component-wise the x and y median in-
stead of the component-wise barycenter. The running
time stays the same, since med(v) can be computed in
O(N−(v)), see [18]. The median values depend on the
underlying coordinate system (origin and rotation).
But since we use the same coordinates for all median
computations, this is no problem. Rotated coordinate
systems, however, might lead to different results.

D. Radial Sifting Heuristic
As a contrast to the fast and simple algorithms

described above, we also developed an extension of
the sifting heuristic, which is slower but generates
fewer crossings. Sifting was originally introduced as
a heuristic for vertex minimization in ordered binary
decision diagrams [19] and later adapted for the (hori-
zontal) one-sided crossing minimization problem [20].
The idea is to keep track of the objective function
while moving a vertex v ∈ V2 along a fixed order-
ing of all other vertices in V2. Then v is placed to
its locally optimal position. The method is thus an
extension of the greedy-switch heuristic [21], where
neighbors are only swapped if this does not increase
the number of crossings. For crossing reduction the
objective function is the number of crossings between
the edges incident to the vertex under consideration
and all other edges. Consecutively testing each vertex
v ∈ V2 on each position once is called a sifting round.

The efficient computation of crossing numbers in
sifting for horizontal embeddings is based on the

crossing matrix. Its entries correspond to the number
of crossings caused by pairs of vertices in a particular
relative ordering and can be computed as a prepro-
cessing step. Whenever a vertex is placed to a new
position, only a small number of updates is necessary.
For radial embeddings, however, the crossings matrix
cannot be computed in advance, because two vertices
cannot be said to be in a particular (linear) relative
order on radial levels.

Let E = (π, ψ) and E ′ = (π′, ψ) be two embeddings
of G, where E ′ is computed from E by swapping the
vertex v ∈ V2 and its successor w ∈ V2 according to
π2, i. e., π′2(w) = π2(v) and π′2(v) = π2(v) + 1. Since
swapping positions of v and w only affects crossings
of incident edges, the number of crossings in E ′ is
efficiently computed as

χ(E ′) = χ(E)− cE(v, w) + cE ′(v, w), where
cE(v, w) =

∑

u∈N−(v)

∑

x∈N−(w)

χE ((u, v), (x,w)) .

Unfortunately, we cannot directly transfer the ideas
of [4] for the efficient computation of that formula,
because in radial sifting the crossing numbers also
depend on the edge offsets, which are not constant in
our approach. A change in the offset of an edge may
affect all other edges. Therefore, the overall running
time of this part of the algorithm for one sifting round
is O(|E|2) instead of O(|V ||E|). The total running
time of the algorithm, however, is dominated by the
next step, anyway.

In addition to the position of vertex v, we also
have to compute the offsets of the incident edges.
As v moves along the second level circle in counter-
clockwise direction, we update the offsets accordingly.
Because of Lemma 2 we do not consider each possible
offset combination for each position of v. Intuitively,
the parting of the edges should move around the
first level circle in the same direction as v, but on
the opposite side of the circle. Otherwise, the edges
incident to v get longer and tend to increase the
number of crossings. Thus, we only decrease edge
offsets by 1, starting with ψ(e) = 1 for all incident
edges e, and we also do this one by one in the order
of the end vertices on level 1. The decision for which
offsets are updated at which position of v is made
subject to whether this leads to an improvement or
not. Note that the parting may move around level 1
twice, as offsets are decreased from 1 to −1.

Algorithm 1 shows one round of radial sifting. We
do not try the position |V2|−1, because it is equivalent
to position 0 modulo rotation.
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Algorithm 1: RADIAL-SIFTING
Input: Two level graph G = (V1

.∪ V2, E, φ) with
radial embedding E = (π, ψ)

Output: Updated embedding E , i. e., positions π2
and offsets ψ

foreach v ∈ V2 with deg(v) > 0 do1

// put v to first position2
foreach w ∈ V2 with π2(w) < π2(v) do3

π2(w)← π2(w) + 14

π2(v)← 05

let {v = v0, . . . , v|V2|−1} ← V2 be ordered by π26
let Ev ← {e0, . . . , edeg(v)−1} be the edges7

(u, v) ∈ E ordered by π1(u)
// init offsets as 18
foreach ev ∈ Ev do ψ(ev)← 19

// init counters for pos, offset, parting, #cross.10
i∗ ← 0; j∗ ← j ← 0; l∗ ← l← 0; c∗ ← c← 011

// search best position for v12
for i← 0 to |V2| − 2 do13

repeat14
// try to improve part. by red. next offset15
c1 ←

∑
e∈E χE(el, e)16

ψ(el)← j17
c2 ←

∑
e∈E χE(el, e)18

// if successful, try again, else restore19
if c2 ≤ c1 then20

c← c− c1 + c221
l← l + 122

if l = deg(v) then23
j ← j − 124
l← 025

else ψ(el)← j + 126
until c1 < c227

// store best pos, offset, parting, #cross.28
if c < c∗ then i∗ ← i; j∗ ← j; l∗ ← l; c∗ ← c29

// swap v and vi+1 and update #cross.30
let Evi+1 be the set of edges (·, vi+1) ∈ E31

incident to vi+1

c← c−∑ev∈Ev

∑
evi+1

∈Evi+1
χE(ev, evi+1

)32
π2(vi+1)← i; π2(v)← i+ 133
c← c+

∑
ev∈Ev

∑
evi+1

∈Evi+1
χE(ev, evi+1)34

// place v to best position35
foreach w ∈ V2 with π2(w) ≥ i∗ do36

π2(w)← π2(w) + 137

π2(v)← i∗38

// set best offsets for v’s incident edges39
for i← 0 to l∗ − 1 do ψ(ei)← j∗40
for i← l∗ to deg(v)− 1 do ψ(ei)← j∗ + 141

Theorem 2: Given a 2-level graph G = (V,E, φ),
the algorithm RADIAL-SIFTING runs in O(|V |2 ·|E|)
time.

Proof: For each node v ∈ V2 the content of the
repeat-until loop in lines 14–27 is executed O(|V | +
deg(v)) times: once per position, and additionally once
per shifted parting. It is thus executed O(|V |2 + |E|)
times in total. As the running times of lines 16 and 18
are O(|E|), the repeat-until loop contributes O(|V |2 ·
|E|+ |E|2) to the overall running time.

The only other relevant part are lines 32 and 34,
which are executed once for each pair (v, vi+1). Since
the summation needs O(deg(v) · deg(vi+1)), the total
running time of this part is O(|E|2) and is therefore
dominated by the above.

To allow a harmonic drawing of the computed em-
bedding in the next phase a final postprocessing which
rotates level 2 with respect to uniform edge lengths is
useful, e. g., see Fig. 5. Since our algorithm starts with
an offset of 1 for every edge and stops at the first best
parting among several others which are as good, a
straightforward drawing of the embedding is twisted
too much (in counter-clockwise direction). Thus the
sum of the absolute edge lengths can be reduced by
rotating level 2 with Algorithm 2: While assuming to
have a drawing with uniform vertex distribution on
both levels, we compute the average angle spanned by
the edges and rotate the whole level 2 by this amount.
However, this O(|E|) time postprocessing is only for
aesthetic reasons and does neither affect the number
of crossings nor the asymptotic running time.

E. Experimental Results
To analyse the performance of our heuristics, we

have implemented them in Java. Further, we have
realized the corresponding horizontal versions to com-
pare the resulting number of crossings with the radial
algorithms. We have tested the implementations using
a total number of 5000 random graphs: 50 graphs for
each combination of the following parameters: |V1| =
|V2| ∈ {20, 40, 60, 80, 100} and |E|/|V2| ∈ {1, . . . , 20}.

The experimental results in the Appendix show that
all radial heuristics generate fewer crossings than their
horizontal equivalents, experimentally by a factor of
0.7. This is a very encouraging result, since the run-
ning times of the radial algorithms (except sifting) are
similar, see Fig. 10. Like in the horizontal case [22],
Cartesian barycenter on average leaves slightly fewer
crossings than Cartesian median. Another similarity
is that radial sifting is the best among all three
radial heuristics, but also the slowest. Usually only few
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(b) Figure 5(a) clockwise rotated by 4

Fig. 5. Postprocessing to reduce absolute edge lengths

Algorithm 2: RADIAL-SIFTING-POSTPROCESS
Input: Radial embedding E = (π, ψ) of a two level

graph G = (V1
.∪ V2, E, φ)

Output: Updated embedding E , i. e., positions π2
and offsets ψ

// init vertex distances and average angle1
ε1 ← 2π

|V1| ; ε2 ←
2π
|V2| ; δ ← 02

// compute average angle spanned by edges3
foreach e = (u, v) ∈ E do4

αu ← π1(u) · ε1; αv ← π2(v) · ε25
δ ← δ + (αu − αv) + 2π · ψ(e)6

δ ← δ
|E|7

// if necessary, rotate level 28
r ← b δ

ε2
+ 1

2c9
if r < 0 then10

for i← 1 to |r| do11
Counter-clockwise rotate level 212

else if r > 0 then13
for i← 1 to r do14

Clockwise rotate level 215

sifting rounds (3−5 for reasonable problem instances)
are necessary to reach a local optimum for all vertices
simultaneously, and the largest reduction of crossings
usually occurs in the first round. In our experiments
we further observed that the quality of radial sifting
does not depend much on the quality of the initial
embedding. However, a poor initialization increases
the number of sifting rounds needed and thus raises
the absolute running time.

V. Radial Coordinate Assignment

AS already mentioned, in radial level drawings
we draw the edge segments as segments of

a spiral, unless they are radially aligned, in which
case they are drawn as straight lines. This results in
strictly monotone curves from inner to outer levels
and ensures that segments do not cross inner level
lines or unnecessarily each other. This phase is usu-
ally constrained not to change the vertex orderings
computed previously, what is especially useful if the
input embedding is a planar embedding, e. g., as gen-
erated by [3]. Further, the drawing algorithm should
support commonly accepted criteria for readability
and aesthetics, like small area, good separation of
(dummy) vertices within a level, length and slope of
edges, straightness of long edges, and balancing of
edges incident to the same vertex. In our opinion edge
bends in radial level drawings tend to be even more
disturbing than in horizontal level drawings. Thus we
base our algorithm on the approach of Brandes/Köpf
[23] which guarantees at most two bends per edge.
Further it prioritizes vertical alignment, which helps
us to obtain radial alignment. The criterion of small
area in horizontal coordinate assignment, i. e., to ob-
tain small width, turns to uniform distribution of the
vertices on the radial levels. As a consequence, a user
parameter δ like in Sect. V-A is not needed. Since the
input embedding for this phase maintains the position
π(v) for every vertex v ∈ V ∪B, the position of the ray
is implicitly evident, i. e., on each level it lies between
the two vertices with extremal positions.

A. Horizontal Coordinate Assignment
There are several algorithms for horizontal coor-

dinate assignment [1], [24]–[31] using different ap-
proaches for the optimization of various objective
functions or iterative improvement techniques. Most
interesting is the Brandes/Köpf algorithm [23], which
generates at most two bends per edge and draws
every inner segment vertically if no two inner segments
cross. Further it minimizes the horizontal stretch of
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segments and also gives good results for the other
aesthetic criteria. The algorithm has O(N) running
time and is fast in practice. For level planar embed-
dings Eades et al. [32] presented an algorithm that
does not generate bends at all. However, it may need
exponential area.

Since the horizontal drawing algorithm of Bran-
des/Köpf [23] is the basis of our radial drawing al-
gorithm, we give an extended overview. It consists
of three basic steps: vertical alignment, horizontal
compaction, and balancing. The first two steps are
carried out four times. After that, the four results are
combined in the balancing step.

1) Vertical Alignment: The objective is to consecu-
tively align each vertex with its left upper, right upper,
left lower, and right lower median neighbor. Here and
in Sect. V-A.2 we describe the alignment to the left
upper median, the other three passes are analogous.

At the beginning all segments are removed from the
graph which do not lead to an upper median neighbor,
i. e., only candidates for vertical alignment are left,
see Fig. 6(b). Then two alignments are conflicting
if their corresponding edge segments cross or share
a vertex. These conflicts are classified according to
the number of involved inner edge segments. Type 2
conflicts, two crossing inner segments, are assumed to
have been avoided by the crossing reduction phase
and not to occur. For example this is automatically
ensured by the barycenter and median methods. For
sifting the absence of type 2 conflicts can be ensured
by weighting each inner segment crossing with |E|
instead of 1. Type 1 conflicts, a non-inner segment
crossing an inner segment, are resolved in favor of the
inner segment. That means, the non-inner segment is
removed from the graph. Finally, type 0 conflicts, two
crossing non-inner segments, are resolved greedily in
a leftmost fashion. That means, the right segment is
removed from the graph. At this point there are no
crossings left, see Fig. 6(c).

2) Horizontal Compaction: In the second step each
maximum set of vertically aligned vertices, i. e., each
connected component, is combined into a block, see
Fig. 6(d). Consider the block graph obtained by in-
troducing directed edges between each vertex and its
successor (if any) on its level and by contracting the
blocks into single vertices, see Fig. 6(e). A “horizontal”
longest path layering on the block graph determines
the x-coordinate of each block and thus of each con-
tained vertex. Thereby the given minimum separation
of the vertices δ is preserved.

The longest path layering leaves horizontal gaps
between the blocks. Thus a further horizontal com-

1

6

Fig. 7. Type 3 conflict

paction is possible: The block graph with expanded
blocks is partitioned into classes, see Fig. 6(f). The
first class is defined as the set of vertices which are
reachable from the top left vertex. Then the class
is removed from the block graph. This is repeated,
until every vertex is in a class. Within the classes the
graph is already compact. Now the algorithm places
the classes as close as possible except for minimum
separation δ. In Fig. 6(f) this already happened.
Fig. 6(g) shows the complete left upper layout.

3) Balancing: At this point we have four x-
coordinates for each vertex. The two left (right)
aligned assignments are shifted horizontally so that
their minimum (maximum) coordinate agrees with
the minimum (maximum) coordinate of the smallest
width layout. The resulting coordinate is the average
median4 of the four intermediate coordinates. After
reinserting all removed segments, the resulting draw-
ing is obtained, see Fig. 6(h).

B. Preprocessing
If an inner segment is a cut segment, i. e., if it

crosses the ray, then the maximum of two bends for
the corresponding long edge cannot be guaranteed, see
Fig. 7 for an example. We call this situation a type 3
conflict. A simple solution is to demand the absence
of inner cut segments in the input embedding, similar
as it is done with type 2 conflicts. A different, more
constructive and always doable approach described in
the following, is to eliminate the conflicts by changing
the position of the ray. This strategy changes the offset
of some edges and thus changes the embedding. But
this does not affect a later drawing.

Before we continue with the description of the elim-
ination algorithm, we discuss an important property
of radial level embeddings:

4If the median is not unique, the average median is defined
as the average of the two median values.
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(h) Final balanced layout

Fig. 6. Stages of the Brandes/Köpf algorithm

Lemma 4: Let E′
i = { (u, v) | u ∈ Bi−1, v ∈ Bi } ⊆

E be the set of all inner segments between levels i−1
and i with 2 < i < k. Then for any two edges e1, e2 ∈
E′

i : |ψ(e1)− ψ(e2)| ≤ 1.
Proof: In the extreme case let e1, e2 ∈ E′

i for
2 < i < k be inner segments with ψ(e1) = max{ψ(e) |
e ∈ E′

i} and ψ(e2) = min{ψ(e) | e ∈ E′
i}. Now assume

that ψ(e1) > ψ(e2) + 1. As a consequence e1 and e2
cross. This is a type 2 conflict and contradicts the
absence of type 2 conflicts in the input embedding.

In a first step to eliminate type 3 conflicts we
consecutively unwind the levels in ascending order

from 3 to k−1 with Algorithm 3. Between levels 1 and
2 resp. k−1 and k there are no inner segments. Clearly,
level i is unwound by rotating the whole outer graph,
i. e., all levels ≥ i are rotated by multiples of 360
degrees. Please note that UNWIND-LEVEL updates
only offsets of edges between levels i − 1 and i. The
position of the ray, i. e., the ordering of the vertices,
remains the same.

Lemma 5: After unwinding for each inner segment
e ∈ E : ψ(e) ∈ {0,+1}.

Proof: Lemma 4 implies for each inner segment
e = (u, v) with φ(v) = i that ψ(e) ≤ 1. Additionally
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Algorithm 3: UNWIND-LEVEL
Input: Radial embedding E = (π, ψ) of a level graph

G = (V ∪B,E, φ) and level i with 2 < i < k
Output: Updated embedding E , i. e., offsets ψ of

inner segments entering level i
m← min{ψ(e) | e = (u, v) ∈ E, u ∈ Bi−1, v ∈ Bi}1
foreach segment e = (u, v) ∈ E with v ∈ Vi ∪Bi do2

ψ(e)← ψ(e)−m3

ψ(e) cannot be negative because we have subtracted
the minimum over all inner segments entering level i.
Since this argument holds for every level 2 < i < k,
the claim follows.

Lemma 6: After unwinding there are no two
dummy vertices v, v′ ∈ Bi on the same level i with
ψ
(
(u, v)

)
= 0, ψ

(
(u′, v′)

)
= +1, and v ≺ v′ for any

u, u′ ∈ Bi−1.
Proof: Follows directly from the absence of type

2 conflicts.
Now we use rotation as described in Sect. IV to

eliminate the remaining crossings of inner segments
with the ray. Please note that rotation of a single level
i is different from rotating levels during unwinding.
Here we do not rotate by (multiples of) 360 degrees in
general and do not rotate all levels ≥ i simultaneously.
Let B′

i ⊆ Bi be the set of dummy vertices incident to
an incoming inner segment e = (u, v) with ψ(e) = +1.
Let v = argmax{π(v) | v ∈ B′

i}. We rotate level
i clockwise until the ray enters the position after v,
i. e., until v is the last vertex on i and thus v =
argmax{π(v) | v ∈ Vi ∪ Bi}. We use the clockwise
direction, because according to Lemma 6 we do not
generate new type 3 conflicts this way. Finally, all
inner segments have an offset of 0. The overall running
time is O(N).

C. Intermediate Horizontal Layout
In the next step we generate a horizontal layout

of the radial level embedding with the Brandes/Köpf
algorithm. Therefore we ignore all cut segments. Re-
member that the embedding is free of type 3 conflicts.
Thus all inner segments of an edge are aligned verti-
cally. The resulting layout will later be transformed
into a concentric layout by concentrically connecting
the ends of the horizontal level lines with their be-
ginnings. Therefore, we must take into account that
circumferences of radial level lines grow with ascend-
ing level numbers. Thus we use a minimum vertex
separation distance δi = 1

i for each horizontal level
i, which is in each case indirectly proportional to i.

(a) Horizontal (b) Radial

Fig. 8. Overlap of the left and right contour

In this way we achieve a uniform minimum arc length
between two neighbor vertices on every radial level line
with the radial transformation described in the next
section, since we use the level numbers 1, 2, . . . , k as
radii.

D. Radial Layout
At this stage every vertex v ∈ V has Cartesian

coordinates
(
x(v), y(v) = φ(v)

)
∈ R × R. For the

transformation into a radial drawing we interpret
these coordinates as polar coordinates and trans-
form them with Eq. (1) into Cartesian coordinates(
xr(v), yr(v)

)
∈ R×R. The position of the ray denotes

0 degrees.

(
xr(v), yr(v)

)
=(

y(v) · cos
(
2π
z · x(v)

)
, y(v) · sin

(
2π
z · x(v)

)) (1)

The factor 2π
z normalizes the length of the horizon-

tal level lines to the circumferences of the radial level
lines. We set z = max

{
max{x(v′) | v′ ∈ Vi ∪ Bi} −

min{x(v′) | v′ ∈ Vi ∪ Bi} + δi | 1 ≤ i ≤ k
}

, i. e., z
is the largest horizontal distance between two vertices
on the same level i plus δi. The addend δi is necessary
to maintain the minimum distance between the first
and the last vertex, since they become neighbors
on the radial level line. Let iz be the level which
defines z. The normalization automatically realizes
the necessary overlap between the left and the right
contour of the horizontal layout when drawn radially,
see Fig. 8. Level iz is the widest level and thus iz
defines the maximum overlap of the contours.

After drawing the vertices, we draw the edges as
segments of a spiral. Each point p of a straight line
segment e = (u, v) is defined by Eq. (2) for 0 ≤ t ≤ 1.

(
x(p), y(p)

)
= (1− t)

(
x(u), y(u)

)
+ t
(
x(v), y(v)

)
(2)
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The coordinates of p can be transformed with
Eq. (1). But e can be a cut segment, which winds
multiple times clockwise or counter-clockwise around
the center. Therefore we rather use Eq. (3) which
simulates this behavior horizontally. Imagine |ψ(e)|+1
copies of the layout placed in a row, cf. Fig. 9. If
ψ(e) ≥ 0, then imagine e drawn as straight line from
u in the leftmost layout to v in the rightmost layout.
Otherwise, draw e from u in the rightmost layout to
v in the leftmost one. Any two neighboring layouts
of the row are separated by δiz , i. e., the x-coordinate
of the leftmost vertex in the right layout is the x-
coordinate of the rightmost vertex of the left layout
plus δiz .

(
x(p), y(p)

)
=(1− t)

(
x(u), y(u)

)

+ t
(
x(v) + ψ(e) · z, y(v)

) (3)

For all edges with offset 0 there is only one possible
direction without crossing the ray, i. e., there is only
one copy in the row. Equation (3) inserted in Eq. (1)
for drawing a spiral segment between u and v results
in the following equation:

(
xr(p), yr(p)

)
=
(
(1− t)y(u) + t · y(v)

)

·
(
cos
(
2π
z ·
(
(1− t)x(u) + t · (x(v) + ψ(e) · z)

))
,

sin
(
2π
z ·
(
(1− t)x(u) + t · (x(v) + ψ(e) · z)

)))

(4)
If t = 0.5, then p lies on a concentric circle with ra-

dius φ(u)+φ(v)
2 , because the radius of the spiral segment

grows proportional to the concentric distance between
p and φ(u). To obtain smooth edges, the number of
supporting points s : E → N needed for drawing edges
e = (u, v) with an approximating polyline or spline
depends on the edge length and a quality factor Q ≥ 1.

s(e) ∼ φ(v) ·
(∣∣2π

z · x(v)− 2π
z · x(u) + ψ(e) · 2π

∣∣) ·Q
∼ φ(v) ·

(∣∣x(v)−x(u)
z + ψ(e)

∣∣) ·Q
(5)

In the special case of |V1| = 1, e. g., in Fig. 7, it
is more aesthetic pleasing to place v ∈ V1 into the
concentric center, cf. Fig. 1(b). Thus we renumber the
levels by φ′(w) = φ(w) − 1 for all w ∈ V ∪ B − {v},
set xr(v) = yr(v) = 0, layout G′ = (V ∪B−{v}, E −
{ (v, w) | w ∈ V }, φ′), and draw each edge (v, w) as
a straight line. To get a readable picture in the case
|V1| > 1, Eades [10] suggests to set the diameter of
the first level to the radial distance between the radial

level lines. To achieve this with our algorithm, we use
0.5, 1.5, 2.5, . . . , k−1.5, k−0.5 as level numbers/radii.
An equivalent solution is to double the number of
levels k′ = 2k, to renumber the levels by φ′(v) =
2φ(v) − 1 for all v ∈ V ∪ B, to generate a drawing
of G′ = (V ∪B,E, φ′), and finally to zoom by a factor
of 1

2 .
Usually we draw on a canvas which has dimensions

a × b and has the origin in the upper left corner.
Thus for each vertex or supporting point p we do
the following: With the translation

(
xr(p), yr(p)

)
=(

xr(p)+
a
2 , yr(p)+

b
2

)
we move the origin to the center.

In order to use the entire drawing space, we scale the
layout by

(
x(p), y(p)

)
=
(
x(p), y(p)

)
· min{a,b}

2k .
Since the elimination of type 3 conflicts generates

no new crossings and Eqs. (1) and 4 are bĳective we do
not change the crossing number given by the embed-
ding. A radial level planar embedding is drawn planar.
Adopting the common assumption that drawing a line
(here an edge as a spiral segment with its supporting
points) needs O(1) time, we obtain an O(N) running
time.

VI. Conclusion

WE extended three well known crossing reduc-
tion techniques to radial level drawings. In

practice, all algorithms are fast enough to be applied
to reasonably large graphs. We showed by empirical
evidence, that using radial instead of horizontal level
lines reduces the number of crossings significantly.
Further we have presented a new linear time algorithm
for drawing level graphs (assigning coordinates) in a
radial fashion. To check its performance and to visu-
ally confirm the good quality of the resulting drawings
we realized a prototype as a plug-in for Gravisto [33]
in Java. For a given embedding, the coordinates of a
graph with N = 50, 000 can be computed in less than
50 seconds on a 1.8 GHz PC with 768 MB RAM. For
computing radial embeddings of graphs of this size
sifting is too slow and one should choose the faster but
qualitatively inferior barycenter or median method,
analogously to the recommendation for horizontal
embeddings.

Future research can address a more efficient sifting
algorithm. Also, there are some interesting problems
which we do not touch in this paper: Can the num-
ber of crossings χ(E) in a radial embedding E be
computed in O(χ(E)) time? Is χ(E) ≤ 3χ(G) (or
similar) for an embedding E computed by one-sided
Cartesian median heuristic on a 2-level graph G as it
is for horizontal median [17]? Are there efficient radial
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Fig. 9. Simulation of cut edges

extensions of other crossing reduction heuristics? A ra-
dial crossing reduction algorithm that already avoids
type 3 conflicts in this phase would be helpful, since
our elimination approach may create many crossings
of non-inner segments with the ray.
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Appendix
Crossing Reduction Benchmark Results
Figure 10 provides benchmarks comparing horizon-

tal barycenter (HB), horizontal median (HM), and
horizontal sifting (HS) crossing reduction heuristics
with their radial variants, i. e., Cartesian barycenter
(CB), Cartesian median (CM), and radial sifting (RS).
The diagrams show that radial sifting is the best
algorithm leaving dramatically fewer crossings than
the others, but it is also the slowest, and that radial
barycenter is the fastest. The same facts hold for the
corresponding horizontal algorithms, which is folklore.
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Abstract. The Sugiyama framework is the most commonly used con-
cept for visualizing directed graphs. It draws them in a hierarchical way
and operates in four phases: cycle removal, leveling, crossing reduction,
and coordinate assignment.
However, there are situations where cycles must be displayed as such,
e. g., distinguished cycles in the biosciences and processes that repeat in
a daily or weekly turn. This forbids the removal of cycles. In their seminal
paper Sugiyama et al. also introduced recurrent hierarchies as a concept
to draw graphs with cycles. However, this concept has not received much
attention since then.
In this paper we investigate the leveling problem for cyclic graphs. We
show that minimizing the sum of the length of all edges is NP-hard for
a given number of levels and present three different heuristics for the
leveling problem. This sharply contrasts the situation in the hierarchi-
cal style of drawing directed graphs, where this problem is solvable in
polynomial time.

1 Introduction

The Sugiyama framework [8] is among the most intensively investigated algo-
rithms in graph drawing. It is the standard technique to draw directed graphs,
and displays them in an hierarchical manner. This is well-suited particularly for
directed acyclic graphs, which are drawn top-down (or left to right) and level
by level. These drawings reflect the underlying graph as a partial order. Typical
applications are schedules, UML diagrams and flow charts.

In the general case, the Sugiyama framework first destroys cycles. In the
decycling phase it removes or redirects some edges until the resulting graph is
acyclic. However, there are many situations, where this procedure is inacceptable.
For example, there are well-known cycles in the biosciences, and it is a common
standard there to display these cycles as such. These cycles often serve as a
landmark [7]. Another application for cycles are repeating processes, such as
daily, weekly or monthly schedules with almost the same tasks. Here again it is
important that these cycles are clearly visible in a “nice” drawing.

In their original paper from 1981 [8], Sugiyama et al. have proposed a solution
for both the hierarchical and the cyclic style. The latter is called recurrent hier-
archy. A recurrent hierarchy is a level graph with additional edges from the last
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to the first level. Here, two drawings are natural: The first is a 2D drawing, where
the levels are rays from a common center, and are sorted counterclockwise by
their number, see Fig. 1(a). All nodes of one level are placed at different positions
on their ray and an edge e = (u, v) is drawn as a monotone counterclockwise
curve from u to v wrapping around the center at most once. The second is a 3D
drawing on a cylinder, see Fig. 1(c). A combination of the two drawing methods
would be the best of both worlds: An interactive 2D view which shows horizontal
levels. This view can be scrolled upwards and downwards infinitely and always
shows a different part of the cylinder, e. g., the front view of Fig. 1(c).

Recurrent hierarchies are known to most graph drawers – but unnoticed. A
planar recurrent hierarchy is shown on the cover of the book by Kaufmann and
Wagner [6]. There it is stated that recurrent hierarchies are “unfortunately [. . . ]
still not well studied”. The reason is that they are much harder. Intuitively, there
is no start and no end, there are no top and bottom levels. Formally, we pinpoint
a problem which is tractable in the hierarchical style and is intractable in the
cyclic style.
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Fig. 1. Example drawings

In cyclic drawings edges are irreversible and cycles are represented in a direct
way. Thus, the cycle removal phase disappears from the common Sugiyama
framework. This saves much effort, since the underlying problem is the NP-
hard feedback arc set problem [5]. Another advantage are short edges. The sum
of the edge length can be smaller than in the hierarchical case: Consider a cycle
consisting of three nodes. The only way to draw this graph in the Sugiyama
framework is to reverse one edge which will then span two levels. Therefore, the
sum of the edge length will be four. In the cyclic case this graph can be drawn
on three levels s. t. each edge has span one. Moreover, the cyclic style reduces
the number of crossings in general. See Fig. 1(a) and (b) as an example. At the
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threshold with no crossings [2], there are cyclic level planar graphs which are
not level planar. Here, consider Fig. 1 with the solid edges only.

Note that any Sugiyama drawing is a cyclic Sugiyama drawing which discards
the option to draw edges between the last and first level. Therefore, all benefits
of such drawings exist in the cyclic case as well. However, the sum of the edge
length and the number of crossings will often be smaller.

In this paper we consider the leveling phase for the cyclic Sugiyama frame-
work. In the hierarchical version this phase is generally solved by topological
sorting, or more advanced, by the Coffman-Graham algorithm [3, 6]. As our
main result we show that minimizing the sum of the length of all edges is NP-
hard for a given number of levels. This sharply contrasts the hierarchical case.
Then we introduce three heuristics for the cyclic leveling problem, and evaluate
them experimentally within the Gravisto system [1].

2 Preliminaries

Let G = (V,E) be a directed graph. For a given k ∈ N we call φ : V →
{1, 2, . . . , k} a level assignment and G = (V,E, φ) a cyclic k-level graph. We
denote with deg(v) the degree of a node v ∈ V . For two nodes u, v ∈ V let
span(u, v) = φ(v)−φ(u) if φ(u) < φ(v), and span(u, v) = φ(v)−φ(u)+ k other-
wise. For an edge e = (u, v) ∈ E we define span(e) = span(u, v) and span(G) =∑
e∈E span(e). For a set of edges E′ ⊆ E we define span(E′) =

∑
e∈E′ span(e).

next(l) = (l mod k)+1 denotes the level after l. For a node v ∈ V and a subset
V ′ ⊂ V we set E(v, V ′) = { (u, v) ∈ E | u ∈ V ′ } ∪ { (v, w) ∈ E | w ∈ V ′ }.

3 Complexity of Cyclic Leveling

In this section we consider different leveling problems and compare their com-
plexity in the hierarchical and the cyclic style. The graphs G = (V,E) are di-
rected in both cases and are acyclic in the hierarchical case.

Definition 1 (Height and Width). Let G be a directed graph which is drawn
s. t. the edges connect vertices on different levels and are uni-directed from the
start level to a successive level. Let the height be the number of levels and let the
width be the maximal number of nodes on a level.

We can now state our leveling problems, both for the common hierarchical style
and for the cyclic style of recurrent hierarchies.

Problem 1. Let k ∈ N. Does there exist a leveling of G with height at most k?

Problem 2. Let ω ∈ N. Does there exist a leveling of G with width at most ω?

Problem 3. Let k, ω ∈ N. Does there exist a leveling of G with height at most k
and width at most ω?
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In the hierarchical case problems 1 and 2 are easy: The former can be solved
in linear time by the longest path search algorithm [6], whereas, the latter is
trivial as each graph has a leveling with width 1 by placing each node on its
own level according to a topological sorting of G. Problem 3 is NP-hard as this
corresponds to precedence constrained scheduling [5].

In the cyclic case all these problems are easy. Note that an edge e = (u, v)
does not impose any constraint on the leveling of the nodes u and v. u can have
a smaller level, a larger level, and even the same level as v. Therefore, the answer
to Problems 1 and 2 is yes (if k, ω > 0). For Problem 3 there is a cyclic leveling
if |V | ≤ k · ω by arbitrarily placing vertices in a k × ω grid.

Problem 4. Let l ∈ N. Does there exist a leveling of G with span(G) ≤ l?

In the hierarchical case minimizing the span can be formulated as an ILP:

min
∑

(u,v)∈E
(φ(v)− φ(u)) (1)

∀v ∈ V :φ(v) ∈ N (2)
∀e = (u, v) ∈ E :φ(v)− φ(u) ≥ 1 (3)

This ILP can be solved in polynomial time, since the constraint matrix is totally
unimodular [6]. Therefore, Problem 4 has a polynomial time complexity in the
hierarchical case as well. In the cyclic case the span can no longer be formulated
by a system of linear equations, as a case differentiation or the modulo operation
is needed.

As a degenerated case we may place all nodes on a single level. Then all edges
have span 1 which is obviously minimal. Therefore, we sharpen Problem 4:

Problem 5. Let l, k ∈ N. Does there exist a leveling of G with exactly k levels
with span(G) ≤ l?

Problem 5 is simple for k = 1, as such a leveling exists if l ≥ |E|. For k > 1
we now show that the problem is NP-hard. We use two different reductions for
k = 2 and k > 2. For k = 2 we use the NP-hard bipartite subgraph problem [5]:

Problem 6 (Bipartite subgraph). Let G = (V,E) be an undirected graph and
k ∈ N. Does there exist a bipartite subgraph G′ of G with at least k edges?

Lemma 1. Let G = (V,E) be an undirected graph and l ∈ N. Let G∗ = (V,E∗)
be a directed version of G with an arbitrary direction for each edge. G contains
a bipartite subgraph G′ with at least l edges if and only if there exists a leveling
of G∗ on two levels with span(G∗) ≤ 2|E| − l.

Proof. “⇒”: Let G′ = (V ′, E′) be a bipartite subgraph of G with at least l edges.
Let V1

.∪V2 = V ′ be the partition of the node set with all edges of E′ between V1
and V2. We construct the following leveling for G∗: For each node v ∈ V1 we set
φ(v) = 1, for each node v ∈ V2 we set φ(v) = 2, and for all nodes v ∈ V \(V1∪V2)
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we set φ(v) = 1. Then each edge in E′ has span 1 and all other edges have span
1 or 2. Thus, span(G∗) ≤ |E′|+ 2(|E| − |E′|) = 2|E| − E′ ≤ 2|E| − l.

“⇐”: Let φ be a leveling of G∗ with span(G∗) ≤ 2|E| − l. Let V1 and V2 be
the nodes of V on level 1 and 2, respectively. Let E′ ⊆ E be the set of edges e
s. t. one end node is in V1 and the other is in V2. Then, G′ = (V,E′) is bipartite.
All edges in E′ have span 1 in the leveling φ and all other edges have span 2. As
span(G∗) ≤ 2|E|− l = 1 · l+2(|E|− l), there are at least l edges with span 1. As
these edges are in E′, G′ is a bipartite subgraph of G with at least l edges. ut
For k > 2 we use graph k-colorability, which is NP-hard for a fixed k > 2 [5]:

Problem 7 (Graph k-colorability). Let G = (V,E) be an undirected graph and
let k ∈ N. Does there exist a coloring c : V → {1, . . . , k}, s. t. c(u) 6= c(v) for
every edge e = {u, v} ∈ E?

Lemma 2. Let G = (V,E) be an undirected graph and let k ∈ N. Let G′ =
(V,E′) with E′ containing the edges (u, v) and (v, u) for each edge {u, v} ∈ E.
G is k-colorable if and only if G′ has a leveling on k levels with span(G′) ≤ k ·|E|.
Proof. Let e = {u, v} ∈ E. Note that for each leveling φ of G′ and each edge
e = (u, v) ∈ E′ the sum of the spans of (u, v) and (v, u) is either k (if φ(u) 6= φ(v))
or 2k (if φ(u) = φ(v)). Thus, span(G′) ≥ k · |E

′|
2 = k · |E|.

“⇒”: Let c be a coloring of G. Set φ = c. Then, for each edge with end nodes
u and v in G (and G′) φ(u) 6= φ(v) holds. Thus, each pair of edges (u, v) and
(v, u) in sum has span k and span(G′) = k · |E| holds.

“⇐”: Let φ be a leveling of G′ with span(G′) ≤ k ·|E|. Then, span(G′) = k ·|E|
and for each edge (u, v) ∈ E′ φ(u) 6= φ(v) holds. Thus, c = φ is a correct coloring.

ut
Theorem 1. Let G = (V,E) be a directed graph and l, k ∈ N (k ≥ 2). The
problem whether there exists a leveling of G on k levels with span(G) ≤ l is
NP-complete.

Proof. Lemma 1 and Lemma 2 show that the problem is NP-hard for k = 2 and
k > 2, respectively. The problem is obviously in NP. ut

4 Heuristics

As minimizing the span of a graph in a cyclic leveling with k levels is NP-
complete, we have to use heuristics. Known approaches from the hierarchical
case as the longest path method [6] or the Coffman-Graham algorithm [3] cannot
be easily adapted to the cyclic case. They heavily rely on the fact that the graph
is acyclic and start the leveling process at nodes with no incoming edges. As it
is not guaranteed that such nodes exist in the cyclic case at all, we introduce
three new heuristics. They are evaluated experimentally in Sect. 5.

The input to the algorithms are the number of levels k and the maximum
number of nodes on a level ω. The output is the leveling φ : V → {1, . . . , k}.
The parameter k is either given by the user or it is pre-computed, e. g., as the
average length of simple cycles detected by a depth first search of the graph.
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Table 1. Complexity of leveling (k as height and ω as width)

hierarchical cyclic

Minimizing k O(|V |+ |E|),
by longest path

Set φ : V → {1}

Minimizing ω O(|V |+ |E|),
by φ = topsort

Choose injective φ

Leveling with k and ω given NP-hard, precedence
constrained scheduling

Test k · ω ≥ |V |

Minimizing k with ω given NP-hard for arbitrary
ω > 2

Set k = d |V |
ω
e

Minimizing ω with k given NP-hard for k > 2 Set ω = d |V |
k
e

Minimizing span(G) with k given P, by LP NP-hard for k > 1

4.1 Breadth First Search

The breadth first search (BFS) heuristic (Algorithm 1) is rather simple: We
choose an arbitrary start node v, set φ(v) = 1 and perform a directed BFS
from v. When we reach a node w for the first time using an edge (u,w), we set
φ(w) = next(φ(u)) if this level does not contain ω nodes already. Otherwise, we
move w to the first non-full level.

Using this heuristic the tree edges will have a rather short span. But the back
edges are not taken into account for the leveling at all. Thus, these edges can be
arbitrarily long.

Lemma 3. The BFS leveling heuristic needs O(|V |+ |E|+ k2) time.

Proof. BFS runs in O(|V |+ |E|) time. In addition we must keep and update an
array N of size k. N [i] denotes the first non-full level from level i. At most all
k levels can get full which costs O(k) time for each. ut

4.2 Minimum Spanning Tree

This heuristic has similarities to the algorithm of Prim [4], which computes the
minimum spanning tree (MST) of a graph. We sequentially level the nodes by
a greedy algorithm. Let V ′ ⊂ V be the set of already leveled nodes. When we
level a node v, all edges in E(v, V ′) get a fixed span. Therefore, we set φ(v) s. t.
span(E(v, V ′)) is minimized. Note that there are possibly more edges incident to
v which are also incident to not yet leveled nodes. These edges will be considered
when the second end node is leveled.

We decide in which order to add the nodes by using a distance function δ(v).
We discuss four options:
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Algorithm 1: breadthFirstSearchLeveling
Input: G: a directed graph, k: the number of levels,

ω: the maximum number of nodes on each level
Output: φ: a cyclic leveling of G

Queue Q← ∅1
Leveling φ← ∅2
foreach u ∈ V do u.marked← false3
foreach l ∈ {1, . . . , k} do N [l]← l4
foreach u ∈ V do5

if ¬u.marked then6
Q.append(u)7
u.marked← true8
φ(u)← N [1]9
updateN(N [1])10
while ¬Q.isEmpty() do11

v ← Q.removeF irst()12
foreach neighbor w of v do13

if ¬w.marked then14
w.marked← true15
φ(w)← N [next(φ(v))]16
updateN(φ(w))17
Q.append(w)18

return φ19

Minimum Increase in Span (MST_MIN) We choose the node which will
create the minimum increase in span in the already leveled graph:

δMIN(v) = min
φ(v)∈{1,...,k}

span(E(v, V ′)) (4)

Minimum Average Increase in Span (MST_MIN_AVG) Using the dis-
tance function δMIN will place nodes with a low degree first, as nodes with a
higher degree will almost always cause a higher increase in span. Therefore,
considering the increase in span per edge is reasonable:

δMIN_AVG(v) = min
φ(v)∈{1,...,k}

span(E(v, V ′))
|E(v, V ′)| (5)

We distribute isolated nodes evenly on the non-full levels in the end.

Maximum (Average) Increase in Span (MST_MAX(_AVG)) Choose
the node which causes the maximum (average) increase in span per edge:

δMAX(v) =
1

δMIN(v)
, δMAX_AVG(v) =

1

δMIN_AVG(v)
(6)
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The idea behind this is the following: A node which causes a high increase in
span will cause this increase when leveled later as well. But if we level this node
now, we can possibly level other adjacent, not yet leveled nodes in a better way.

Note that we only use the distance function δ(v) to determine which node to
level next. When we level a node v, we set φ(v) s. t. the increase in span will be
minimized. In some cases several levels for v will create the same increase in span.
We will then choose a level for v which minimizes

∑
e∈E(v,V ′) span(e)

2 as well.
Thus, we assign v a level which is more centered between its leveled adjacent
nodes. In each case we can only use a level which has not yet ω nodes on it.
Nodes with already leveled neighbors block a place on their optimal level s. t.
they can later be placed on the level. Algorithm 2 shows the complete heuristic.

Algorithm 2: minimumSpanningTreeLeveling
Input: G: a directed graph, k: the number of levels,

ω: the maximum number of nodes on each level
Output: φ: a cyclic leveling of G

Heap H ← ∅1
Leveling φ← ∅2
foreach u ∈ V do3

u.status← white4
δ(u)←∞5

foreach u ∈ V do6
if u.status = white then7

δ(u)← 08
H.insert(u)9
while ¬H.isempty() do10

v ← H.removeMin()11
v.status← black12
φ(v)← getOptimalLevel(v)13
foreach neighbor w of v with w.status 6= black do14

δ(w)← computeDistance(w)15
φ(w)← getOptimalLevel(w)16
if w.status = gray then17

H.update(w)18

else19
w.status← gray20
H.insert(w)21

return φ22

Lemma 4. The MST heuristic needs O(|V | log |V |+ k · deg(G) · |E|) time.

Proof. The time complexity is dominated by the while loop. Here, removing each
node from the heap costs O(|V | log |V |). Each edge e = (w, z) ∈ E may change
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its span whenever a neighbor v of w (or z) is fixed on a level. In this case each
of the k levels is tested for w (or z). Thus, we get O(k · (deg(w) + deg(z))) for e
and O(k · deg(G) · |E|) for all edges. Finally, updating all neighbors in the heap
costs O(|E| log |V |) (or O(|E|) using a Fibonacci heap). ut

4.3 Force Based

Spring embedders use a physical model to simulate the edges as springs [6]. Forces
between nodes are computed and the nodes are moved accordingly. Transferring
this idea to the cyclic leveling problem, we could use a force function similar to
conventional energy based placement algorithms as follows:

force(v) =
∑

(v,w)∈E
(span(v, w)− 1)2 −

∑

(u,v)∈E
(span(u, v)− 1)2 (7)
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Fig. 2. Force based placement of node v

However, moving a node to its energy minimum using this force will not minimize
the span of the graph, i. e., (7) minimizes the deviation between the edge lengths,
e. g., see Fig. 2. Furthermore, the span may increase when moving a node towards
its energy minimum, as some edges can flip from span 1 to span k. We solve this
problem by using directly the span as the (undirected) force which is minimized:

force(v) = span(E(v, V )) (8)

We move the node with the maximum impacting force. And we directly move
the node to its energy minimum, which is the level s. t. the span is minimized.
For this, we test all possible (non-full) levels. Note that moving all nodes at once
would not decrease time complexity here. Algorithm 3 shows the pseudo code.

As an initial leveling we either use a random leveling (SE_RND) or the result
of the best minimum spanning tree heuristic MST_MIN_AVG (SE_MST).
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Algorithm 3: forceBasedLeveling
Input: G: a directed graph, k: the number of levels,

ω: the maximum number of nodes on each level
Output: φ: a cyclic leveling of G

Heap H ← ∅1
φ← computeInitialLeveling()2
foreach v ∈ V do3

computeForce(v)4

while improvement ∧ iterations < limit do5
foreach v ∈ V do6

H.insert(v)7

while ¬H.isEmpty() do8
v ← H.removeMax()9
φ(v)← energyMinimalLevel(v)10
foreach neighbor w of v do11

updateForce(w, v)12

return φ13

Lemma 5. In the force based heuristic O(|V | log |V |+k · |E|) time is needed for
each iteration.

Proof. Inserting all nodes in the heap can be implemented in O(|V |) time. Re-
moving each node from the heap has time complexity O(|V | log |V |). Computing
the energy minimal level for v costs O(k · deg(v)), which is O(k · |E|) for all
nodes. Computing the new force is possible in time O(1) for each neighbor of v,
in O(deg(v)) for all neighbors and O(|E|) in total. The O(|E|) updates in the
heap cost O(|E| log |V |) (or O(|E|) using a Fibonacci heap). ut

5 Empirical Results

In this section we evaluate and compare the heuristics with each other and with
an optimal leveling. The optimal leveling is computed by a branch and bound
algorithm which can be used for graphs up to 18 nodes.

In Fig. 3 the running times of the algorithms are shown. Figure 4 compares
the calculated spans of the heuristics with the optimal span. For a better pairwise
comparison of the heuristics, Fig. 5 only shows their results.

For Fig. 3 and 5 the number of nodes |V | was increased by steps of 50 each
time. For each size 10 graphs with |E| = 5|V | were created randomly. For Fig. 4
10 graphs for each size |V | and |E| = 2|V | were used. In all three diagrams k and
ω were set to

√
2|V |, s. t. there were 2|V | possible node positions. Each heuristic

was applied to each graph min(|V |, 30) times using different start nodes resp.
initial levelings and choosing the average.
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The benchmarks show the practical performance of the algorithms. All tests were
run on a 2.8 GHz Celeron PC under the Java 6.0 platform from Sun Microsys-
tems, Inc. within the Gravisto framework [1].

As expected the force based heuristics with MST initialization computes the
best leveling and the results are close to the optimum. All MST variants do
not differ very much, but MST_MIN_AVG seems to be the best. The results
can be improved by applying the heuristics i times to the same graph with i
different start nodes or different initial levelings, respectively, and choosing the
best result. However, the price is an i times higher running time.

6 Summary and Open Problems

The leveling problem has turned out to be essentially different in the hierarchical
and cyclic style. We have shown different optimization goals for the cyclic leveling
compared to the goals of the hierarchic leveling. For the reasonable minimization
of the sum of the edge lengths we have shown the NP-hardness and presented
three practical heuristics for the problem.

Open problems are the approximation ratios of our heuristics, other quality
measures for cyclic drawings, the best number of levels, and the completion of
the cyclic style to a cyclic Sugiyama framework.
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Abstract. The Sugiyama framework is the most commonly used con-
cept for visualizing directed graphs. It draws them in a hierarchical way
and operates in four phases: cycle removal, leveling, crossing reduction,
and coordinate assignment. However, there are situations where cycles
must be displayed as such, e. g., distinguished cycles in the biosciences
and scheduling processes which repeat in a daily or weekly turn. This
excludes the removal of cycles. In their seminal paper Sugiyama et al.
introduced recurrent hierarchies as a concept to draw graphs with cycles.
However, this concept has not received much attention in the following
years. In this paper we supplement our cyclic Sugiyama framework and
investigate the coordinate assignment phase. We provide an algorithm
which runs in linear time and constructs drawings which have at most
two bends per edge and use quadratic area.

1 Introduction

The Sugiyama framework [9] is among the most intensively studied algorithms in
graph drawing. It is the standard technique to draw directed graphs, and displays
them in a hierarchical manner. It consists of the four phases of cycle removal,
leveling, crossing reduction, and coordinate assignment. Typical applications are
schedules, UML diagrams, and flow charts.

In its first phase the Sugiyama framework destroys all cycles. However, there
are many situations where this is unacceptable. There are well-known cycles in
the biosciences [7], where it is a common standard to display these cycles as
such. Another inevitable use are repeating processes, such as daily, weekly, or
monthly schedules which define the Periodic Event Scheduling Problem [8].

In their seminal paper [9], Sugiyama et al. proposed a solution for both the
hierarchic and the cyclic style. The latter is called a recurrent hierarchy which
is a level graph with additional edges from the last to the first level. It can be
drawn in 2D where the levels are rays from a common center (see Fig. 1(a))
and each edge e = (u, v) is a monotone counterclockwise poly-spiral segment
from u to v wrapping around the center at most once. An alternative is a 3D
drawing on a cylinder (see Fig. 1(c)). A combination would be the best of both
worlds: an interactive 2D view with horizontal levels. It can be scrolled upwards
and downwards infinitely and always shows a different part of the cylinder, see
Fig. 1(b) for a snap shot, which also represents our intermediate drawing.
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Fig. 1. Example drawings

In cyclic drawings edges are irreversible and cycles are represented in a direct
way. Thus, the cycle removal phase is not needed. This saves much effort, since
the underlying feedback arc set problem is NP-hard [4]. Further advantages over
hierarchic drawings (see Fig. 1(d)) are shorter edges and fewer crossings.

A planar recurrent hierarchy is shown on the cover of the textbook by Kauf-
mann and Wagner [6]. There it is stated that recurrent hierarchies are “unfortu-
nately [. . . ] still not well studied”. After investigating the leveling phase [1], we
consider the coordinate assignment phase for the cyclic case. There are several
algorithms for non-cyclic coordinate assignment [6]. We modify the established
algorithm of Brandes and Köpf [3] for cyclic level graphs and provide a linear
time algorithm using quadratic area and with at most two bends per edge.

2 Preliminaries

A cyclic k-level graph G = (V,E, φ) (k ≥ 2) is a directed graph without self-loops
with a given surjective level assignment of the vertices φ : V → {1, 2, . . . , k}. Let
Vi ⊂ V be the set of vertices v with φ(v) = i. For two vertices u, v ∈ V let
span(u, v) := φ(v) − φ(u) if φ(u) < φ(v) and span(u, v) := φ(v) − φ(u) + k
otherwise. For an edge e = (a, b) ∈ E we define span(e) := span(a, b). An edge
e with span(e) = 1 is short, otherwise long. A graph is proper if all edges are
short. Each cyclic level graph can be made proper by adding span(e)−1 dummy
vertices for each edge e and thus splitting e in span(e) many short edges, which
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we call the segments of e. In total, this leads up to O(|E| · k) new vertices.
The first and the last segment of each edge are its outer segments, and all other
segments between two dummy vertices are its inner segments. A proper cyclic
k-level graph G = (V,E, φ,<) is ordered if < is a total ordering for each Vi
(1 ≤ i ≤ k). In accordance to [3] we say that in an ordered cyclic level graph
there are two conflicting segments if they cross or share a vertex. Conflicts are
of type 0, 1 or 2, if they are induced by 0, 1, or 2 inner segments, respectively.

We represent drawings of cyclic level graphs in an intermediate drawing in
the remainder of the paper assigning each vertex v two coordinates x(v) ∈ R and
y(v) = φ(v) ∈ N. The x-coordinate increases from left to right, the y-coordinate
increases downwards in edge direction, see Fig. 1(b). All vertices on level 1 are
duplicated on level k+1 using the same x-coordinates. Each segment s = (u, v)
is drawn straight-line from

(
x(u), y(u)

)
to
(
x(v), y(u) + 1

)
with slope 1

x(v)−x(u) .
A 2D drawing as in Fig. 1(a) is obtained from an intermediate drawing by
transforming each point p = (x(p), y(p)) of the plane to

(
x2D(p), y2D(p)

)
=
(
r(p)·

cos(α(p)), r(p) · sin(α(p))
)
, with the radius r(p) = (offsetx + maxv∈V (x(v))) −

x(p) · δx and the angle α(p) = (y(p) − 1) · 2πk . The constant offsetx defines the
minimum distance of a vertex to the center and δx the minimum distance of
vertices on the same level. A 3D drawing as in Fig. 1(c) uses the coordinates(
x3D(p), y3D(p), z3D(p)

)
=
(
x(p) · δx,−rk · sin(α(p)), rk · cos(α(p))

)
where rk

is the radius of the cylinder. These equations transform straight lines of the
intermediate drawing to spiral segments in the 2D or 3D drawings.

A drawing is (cyclic level) plane if the edges do not cross except on common
endpoints. A cyclic k-level graph is (cyclic level) planar if such a drawing exists.

3 Layout Algorithm

In this section we describe our coordinate assignment phase for cyclic level
graphs. We adapt the algorithm of Brandes and Köpf [3] and use their nota-
tion. Like them, we also assume that the crossing reduction has avoided type 2
conflicts. These can be avoided even for cyclic level graphs as shown recently [5].

The input to our algorithm is the output of the third phase and thus a proper
ordered cyclic level graph. Note that dummy vertices were introduced after the
leveling. Algorithm 1 consists of three basic steps: block building (lines 4–5),
horizontal compaction (lines 6–12), and balancing (line 14) which reflect the steps
in [3]. The first two steps are carried out four times (runs) for each combination
of left/right with up/down alignment (line 2). The four results are merged by
the balancing step. We describe the left top run only. The other three runs are
realized by flipping the graph horizontally and/or vertically before and after
(lines 3, 13) each run. The computed intermediate drawing can be transformed
into the 2D or 3D drawing, where dummy vertices are replaced by edge bends.

In the cyclic case there may be unavoidable cyclic dependencies in the left-
to-right ordering among vertically aligned paths. Thus, it is impossible to draw
inner segments vertically, in general. We solve this problem by shearing the
drawing of such a cycle s. t. all inner segments have the same slope.
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Algorithm 1: cyclicCoordinateAssignment
Input: G = (V,E, φ,<): An ordered and proper cyclic k-level graph
Output: Coordinates (x(v), y(v)) for each v ∈ V in the intermediate drawing I
P ← ∅1
foreach (h, v) ∈ {left, right} × {up, down} do2

G′ ← flip(G, h, v) // according to current run3
H ← buildCyclicBlockGraph(G′)4
splitLongBlocks(H) // split long and closed blocks5
S ← computeSCCs(H)6
foreach complex SCC S ∈ S do7

S′ ← cutSCC(S) // returns non-cyclic block graph8
width(S′)← compact(S′) // using two topsorts9
shear(S′,−(wind(S′) · k)/width(S′)) // shear S′ with given slope10
S ← S \ S ∪ S′11

compact(S) // globally all SCCs12
P ← P ∪ flip(S, h, v)13

I ← balance(P) // balance four runs14
return I15

3.1 Block Building

The block building phase is done in the same way as in [3]. We try to align vertices
with its median adjacent vertices to blocks and remove all other segments level
by level until we obtain a cyclic path graph and thus a cyclic block graph.

Definition 1. A cyclic path graph H ′ = (V,Eintra, φ,<) is an ordered and
proper cyclic level graph with a plane embedding respecting the ordering <. Each
vertex of H ′ has indegree and outdegree at most one. We call each connected
component of H ′ a block and all edges e ∈ Eintra intra block edges. A block B is
closed if each vertex of B has indegree and outdegree one or open, otherwise. The
height of B is defined as the number of intra block edges in B. The cyclic block
graph H = (V,Eintra

.∪ Einter, φ) of H ′ is obtained by adding an edge e ∈ Einter
from each vertex in H ′ to its consecutive right vertex on the same level (if there
is one), which we call inter block edges.

To create such a graph we first mark outer segments involved in type 1 conflicts
between two levels. Then, we traverse the lower level from left to right and try
to align each vertex with one of its median predecessor vertices. First we try its
upper left median, then its upper right median. An alignment is impossible if
the segment is marked or if it would cross a segment already used for aligning.
The current vertex becomes the top vertex of a new block if both alignments
fail. All inner segments of an edge are aligned and thus lie in the same block.
As each block is drawn with constant slope, this ensures at most two bends per
edge. Eintra is the set of all remaining edges. See Fig. 2 for an example. Vertices
and intra block edges of the same block are framed. The inter block edges lie on
the level lines. The dotted segments were removed in the block building phase.
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Fig. 2. Block graphs of Fig. 1(a) to (c) as 2D drawings

The cyclic block graph can have closed blocks (with height k) and open blocks
with height ≥ k (spirals) which shall be avoided to simplify the algorithm (line
5). In both cases we split such a block by removing outer segments until each
resulting block has at most height k−1. Such outer segments always exist, as no
edge can span more than k levels. Therefore, the invariant of at most two bends
per edge still holds. Note that an originally closed block will not be sheared like
other blocks in Sect. 3.2 as it cannot be part of a cyclic dependency. See Fig. 2(b)
for an example: The segment (2, 4) was removed to open a closed block and the
segment (5, 7) was used to split a long block in two shorter ones. The result is a
cyclic block graph with open blocks of height at most k − 1.

3.2 Horizontal Compaction

In this section we compact the cyclic block graph by arranging all blocks as close
to each other as possible minimizing the width of the drawing. Not all blocks
can be drawn vertically as there can be cyclic dependencies in the left-to-right
ordering among blocks, which we call rings.

Definition 2. A block path P in a cyclic block graph H = (V,Eintra
.∪Einter, φ)

is a sequence of vertices v1, . . . , vs ∈ V s. t. for each pair of consecutive vertices vi
and vi+1, 1 ≤ i < s, (vi, vi+1) ∈ Eintra or (vi+1, vi) ∈ Eintra or (vi, vi+1) ∈ Einter.
It is simple if all vertices are mutually distinct. A block path is a ring R if v1 =
vs. In a simple ring the vertices v1, . . . , vs−1 are mutually distinct. The width
of R is the number of inter block edges in R. Let cdown and cup be the number of
intra block edges traversed in R in and against their direction, respectively. The
number of windings of R is then defined as wind(R) = (cdown − cup)/k.
Informally, a ring is a cycle in the block graph where the direction of the inter
block edges is preserved and the intra block edges are used in any direction.
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wind(R) counts how often R wraps around the center. As each ring is an ordered
sequence, we count windings along increasing and decreasing levels positive and
negative, respectively. We consider the strongly connected components (SCCs)
connected by block paths of the block graph separately. The simple SCCs consist
of one block. All other complex SCCs contain rings. Figure 2(a) consists of three
simple SCCs ((2, 4), (7, 9, 12) and (13)) and one complex SCC (the remaining
two blocks) in which all simple rings R have width(R) = 2 and wind(R) = 1.

Lemma 1. For each ring R of a cyclic block graph G wind(R) 6= 0.

Proof. Assume for contradiction that there exists a ring R with wind(R) = 0
in the block graph of G. Unwrapping G several times, i. e., placing multiple
copies of the intermediate drawing one below the other and merging first and
last levels, leads to a block graph of a (non-cyclic) level graph H which contains
R completely. Then, H has a cyclic dependency, which is a contradiction. ut

Lemma 2. For each simple ring R of a cyclic block graph |wind(R)| ≤ 1.

Proof. Assume for contradiction that there is a simple ringR with |wind(R)| > 1.
As R wraps around the center in the 2D drawing more than once, each drawing
of R crosses itself. Each cyclic path graph is planar. Further, each drawing of it
respecting its ordering can be extended to a planar drawing of its cyclic block
graph by adding the inter block edges along the level lines. Since R is a subgraph
of the cyclic block graph, this is a contradiction. ut

Theorem 1. Let R be the set of all simple rings of an SCC in a cyclic block
graph. For each R ∈ R wind(R) = 1 or for each R ∈ R wind(R) = −1.

Proof. According to Lemmas 1 and 2 |wind(R)| = 1 holds for each ring R ∈ R.
Assume for contradiction that there exist two rings R1, R2 ∈ R with wind(R1) =
1 and wind(R2) = −1. Let v1 and v2 be vertices in R1 and R2, respectively. Let
S be a (not necessarily simple) ring through v1 and v2, which always exists as
v1 and v2 lie in the same SCC. Due to Lemma 1 wind(S) 6= 0. If wind(S) > 0,
let T be a non-simple ring consisting of S and wind(S) many copies of R2 joined
via v2. Otherwise, let T be a ring consisting of S and −wind(S) many copies of
R1 joined via v1. In both cases wind(T ) = 0, which contradicts Lemma 1. ut

Definition 3. Let S be a complex SCC of a cyclic block graph containing a
simple ring R. We define wind(S) = wind(R) and width(S) as the maximum
width of all simple rings in S.

Horizontal Compaction of a complex Strongly Connected Component
It is not possible to draw all blocks of a complex SCC S straight-line and verti-
cally. Therefore, we will draw all blocks of S with the same slope. The slope has
to be chosen s. t. each ring, and thus the resulting curve, in S starts and ends at
the same coordinates. All rings in S have the same number of windings wind(S),
which is either 1 or −1. Thus, each simple ring spans wind(S) ·k levels. To draw
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Fig. 3. Drawing of a complex SCC

one simple ring R we could use the slope −(wind(R) ·k)/width(R), which would
result in inter block edges of unit length. In order to draw all blocks in S with
the same slope (line 10 in Algorithm 1) we must use the width of the widest
simple ring of S and the slope −(wind(S) · k)/width(S). With this slope the
widest ring will fit exactly and use unit length inter block edges. All narrower
rings will have some unused horizontal space in the drawing and thus have inter
block edges which are longer than one unit.

To use this slope we have to determine the width of the widest simple ring in
S. The general problem of finding a longest cycle is NP-hard [4]. However, here
it can be solved in linear time by cutting the SCC. Finding the length and com-
pacting the layout is done simultaneously. To cut an SCC (line 8 in Algorithm 1),
we start at an arbitrary block B and temporarily remove all incoming inter block
edges of B. We then follow the outgoing inter block edge of the topmost vertex
of B to the next block B′. We temporarily remove all incoming inter block edges
of B′ which are above the traversed incoming edge. We repeat this procedure
until the topmost vertex of the current block has no outgoing inter block edge.
Note that this happens before B is visited a second time, as otherwise the SCC
would contain unreachable blocks. Thus, a block path Pr from B to a rightmost
vertex in S is found. The same procedure is repeated from starting block B using
the outgoing inter block edge of the lowest vertex to reach B′ and deleting all
incoming inter block edges below the traversed edge until a lowest vertex with
no incoming inter block edge is found, which gives the block path Pl.

Combining Pr and Pl results in a y-monotone path P from a rightmost vertex
through B to a leftmost vertex, using inter block edges in both directions and
preserving intra block edge directions. Due to the removed incoming inter block
edges left of P all rings in S are cut exactly once. We then assign an arbitrary
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vertex v ∈ V of B the new coordinate y′(v) = φ(v). In a traversal of the block
graph we assign each vertex a y′-coordinate: Using an inter block edge we assign
both end vertices the same y′-coordinate. Using an intra block edge in or against
its direction we increase or decrease the y′-coordinate by 1, respectively, without
using a modulo operation. The result is an acyclic block graph, which we compact
(in contrast to [3]) in the following way (line 9 in Algorithm 1): We place each
block which is a source in the acyclic block graph on an imaginary zero line,
treat all other blocks in the topological order and move them as much to the
left as possible preserving unit distance. Afterwards, we fix all sinks on their
positions, treat all other blocks against the topological order and move them as
much to the right as possible. For placing a block as close as possible to the
already placed ones, we traverse its levels. After the compaction each block (and
therefore each vertex v in S) has an assigned x′-coordinate. Let e = (u, v) be a
removed inter block edge. The width of the widest simple ring of S through e is
then x′(u)−x′(v)+1. Considering all removed inter block edges and computing
the maximum value gives the width of the widest simple ring width(S) in S.

See Fig. 3 for an example of an SCC S with wind(S) = 1 and k = 6 levels.
Figure 3(a) shows a leftmost intermediate drawing with the black start block B.
Its lowest vertex is already the leftmost vertex on its level. To reach a rightmost
vertex four other blocks have to be visited. The dashed line cuts six inter block
edges. Figure 3(b) shows the resulting compacted horizontal block graph using y′-
coordinates. The widths of the widest rings through each of the six cutted edges
are (from top to bottom): 5, 5, 7, 10, 10, 10. Thus, width(S) = 10. Shearing the
drawing with slope −1·610 results in Fig. 3(c). Using the modulo operation for the
y-coordinates gives the final intermediate drawing in Fig. 3(d).

Theorem 2. The intermediate drawing of S uses the coordinates x(v) = x′(v)−
(width(S)/(wind(S)·k))·y′(v) and y(v) = ((y′(v)−1) mod k)+1 = φ(v) for each
vertex v in S. In the drawing all intra block edges have slope(S) = −(wind(S) ·
k)/width(S). The ordering of vertices on the same level is the one given by the
crossing reduction phase and these vertices have at least unit distance.

Proof. In the compacted drawing of the open block graph all blocks are drawn
vertically. Shearing the drawing results in unchanged y′-coordinates and new
x-coordinates x(v) = x′(v) + y′(v)/ slope(S). Now all edges have slope slope(S).
Using the y-coordinates y(v) = ((y′(v) − 1) mod k) + 1 = φ(v) does not affect
the slope of the edges. But now all vertices on the same level have the same y-
coordinate again. Let u and v be two consecutive vertices on the same level. Let
u be left of v according to the crossing reduction. If the inter block edge (u, v)
was not cut before, then u and v have the same y′-coordinates in the compacted
drawing and u is still the left neighbor of v with at least unit distance between
them. This does not change in the sheared or final intermediate drawing. If (u, v)
was cut, then y′(v) = y′(u) − k · wind(S). There exists a simple block path P
from v to u as we are compacting an SCC. P cannot have been cut as otherwise
P and (u, v) form a simple ring that would have been cut twice. The ring formed
by P and (u, v) is at most width(S) wide and thus x′(v) ≥ x′(u)−(width(S)−1).
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After the drawing is sheared, x(v) ≥ x(u)+ 1 holds. Therefore, u is still left of v
and the two vertices are at least unit distance apart. As a result, all consecutive
vertices and thus all vertices on the same level are separated by unit distance
and are in the ordering given by the crossing reduction phase. ut

Horizontal Compaction Our next step is to globally compact the set of com-
pacted complex SCCs and simple SCCs (line 12 in Algorithm 1).

Lemma 3. In a drawing that respects the order of the crossing reduction phase
all vertices of an SCC on the same level are consecutive.

Proof. Let u, v be two vertices of an SCC on the same level s. t. u is left of v.
Note that there is a block path from v to u. Also, there is a horizontal path from
u to v using inter block edges only. Therefore, all vertices between u and v lie
on a ring containing u and v and thus belong to the same SCC. ut
This means that no SCCs can interleave. We interpret the SCCs as super vertices
and perform a topological sorting on the resulting DAG. We then compact the
SCCs as we compacted the blocks of a (non-cyclic) block graph before.

3.3 Balancing

In this phase (line 14 in Algorithm 1) the four results are balanced by computing
one x-coordinate for each vertex out of the four x-coordinates computed by the
four runs. The only difference to the algorithm of Brandes and Köpf [3] is that
we do not use the average median of the four x-coordinates for each vertex,
since this can induce additional bends in the cyclic case. The reason is that on
lines with different slopes the median changes at crossings, i. e., it is a non-linear
function. Hence, we use the average of all four x-coordinates for each vertex.

Proposition 1. Using the average of the x-coordinates of the four runs for each
vertex does not change the ordering of the vertices on a level and preserves at
least unit distance. Additional bends can occur since the blocks of the four runs
may differ. However, the invariant of at most two bends per edge e in the final
drawing still holds, as the y-coordinates of the bends located at the topmost and
lowest dummy vertex of e are identical in each drawing.

Note that it is possible that some vertices in one run belong to a block of an
SCC although they do not belong to an SCC or even one block in another run.
Thus, balancing can lead to more different slopes than in each of the four runs
alone. See Fig. 2 for two different block graphs of two runs of the same graph.

4 Algorithm Analysis

Theorem 3. Let G = (V,E, φ,≺) be a proper ordered cyclic k-level graph. The
width of the intermediate drawing of G is O(|V |2/k) and the area is O(|V |2). For
the 3D drawing the same bounds hold. The 2D drawing has a width and height
of O(|V |2/k) and thus an area of O(|V |4/k2).
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Proof. Let S = {S1, . . . , Sr} be the set of all SCCs. Let Ni be the number of
(dummy) vertices in Si. The width of the compacted drawing of Si is width(Si) ≤
Ni. Shearing the drawing of height at most Ni with slope −wind(S)·k/width(Si)
adds at most N2

i /k to the width. Thus, the width of the drawing is in O(N2
i /k).

The width of the drawing of G is at most the sum of the widths of the drawings
of all SCCs and thus in O(|V |2/k). As the height is k, the area is in O(|V |2).

The height and width of the 2D drawing is twice the width of the intermediate
drawing and thus the area is O(|V |4/k2), however. ut
Note that the width of the drawing reduces to O(|V |) if there are no complex
SCCs in the graph. This reduces the area of the intermediate and 3D drawings
to O(|V | · k) and of the 2D drawing to O(|V |2). Complex SCCs can always be
avoided by using special crossing reduction and block building algorithms [5].

Theorem 4. The layout algorithm described in Algorithm 1 has a time com-
plexity of O(|V |+ |E|) for a proper ordered cyclic k-level graph G = (V,E, φ,<).

5 Summary

We presented the first coordinate assignment algorithm for cyclic level graphs.
Like the established algorithm by Brandes and Köpf, which is the de facto stan-
dard coordinate assignment method for hierarchic level graphs, we ensure to
have at most two bends per edge and try to align long edges and center parents
over their children. These are the major aesthetic criteria for such drawings. We
implemented a prototype of our algorithm within the Gravisto toolkit [2].
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