
A Global k-Level Crossing Reduction Algorithm?

Christian Bachmaier, Franz J. Brandenburg,
Wolfgang Brunner, and Ferdinand Hübner

University of Passau, Germany,
{bachmaier|brandenb|brunner|huebnerf}@fim.uni-passau.de

Abstract. Directed graphs are commonly drawn by the Sugiyama algo-
rithm, where crossing reduction is a crucial phase. It is done by repeated
one-sided 2-level crossing minimizations, which are still NP-hard.
We introduce a global crossing reduction, which at any particular time
captures all crossings, especially for long edges. Our approach is based
on the sifting technique and improves the level-by-level heuristics in the
hierarchic framework by a further reduction of the number of crossings
by 5 – 10%. In addition it avoids type 2 conflicts which help to straighten
the edges, and has a running time which is quadratic in the size of the
input graph independently of dummy vertices. Finally, the approach can
directly be extended to cyclic, radial, and clustered level graphs where
it achieves similar improvements over the previous algorithms.

1 Introduction

The Sugiyama framework [12] is the standard drawing algorithm for directed
graphs. It displays them in a hierarchical manner and operates in four phases:
cycle removal (reverse appropriate edges to eliminate cycles), leveling (assign
vertices to levels which define the y-coordinates and introduce dummy vertices
on long edges), crossing reduction (permute the vertices on the levels), and co-
ordinate assignment (assign x-coordinates to the vertices under some aesthetic
criteria). Typical applications are schedules, UML diagrams, and flow charts.

In this paper we focus on the crossing reduction phase, where the vertices on
each level are permuted to minimize the total number of crossings. The common
solution for k-level crossing minimization is a reduction to the one-sided 2-level
crossing minimization problem, which is solved repeatedly in some up and down
sweeps [9, 12]. In the down sweep, the vertices Vi−1 on the upper level are fixed
and the vertices Vi of the lower level are reordered reducing the local number
of edge crossings. In the up sweep the roles are switched. Even the one-sided 2-
level crossing minimization problem is NP-hard [6]. There are many heuristics
for this problem [9]. Bastert and Matuszewski claim [9] that the results of this
level-by-level sweep are far from optimum. “One can expect better results by
considering all levels simultaneously, but k-level crossing minimization is a very
hard problem” [9, page 102]. Our approach addresses this gap. Note that existing
approximation ratios of 2-level algorithms do not translate to k-level graphs.
? Supported by the Deutsche Forschungsgemeinschaft (DFG), grant BR835/15-1.

An important feature of such algorithms is the guarantee of no type 2 conflicts
which are crossings of two edges between dummy vertices. Among others, the
standard fourth phase algorithm [4] by Brandes and Köpf assumes the absence
of type 2 conflicts. Then it aligns long edges vertically and so achieves a crucial
aesthetic criterion [9] for pleasing hierarchical drawings.

Common 2-level crossing reductions are the barycenter and median heuristics
[9]. They place each vertex v ∈ Vi in the barycenter or median position of its
predecessors in Vi−1. After that Vi is sorted by these values. The idea is that
on these positions the edges get short and, thus, generate few crossings. These
techniques are simple, fast, and avoid type 2 conflicts, but leave many crossings.

Although such 2-level algorithms reduce the crossings between Vi−1 and Vi,
the number of crossings between Vi and Vi+1 (and thus even the overall number
of crossings) can increase while permuting Vi. These heuristics push the crossings
downwards or upwards until they are resolved at level k or 1, respectively. An
extension is centered 3-level crossing reduction, i. e., treating three consecutive
levels Vi−1, Vi, Vi+1 and permuting Vi while the orders of Vi−1 and Vi+1 are fixed
s. t. the crossings between the three levels are reduced. However, this generates
type 2 conflicts. For reaching a global optimum, all these algorithms are restricted
to a local view. Thus, they may tend to get stuck in local optima.

Sifting was first used for vertex minimization in ordered binary decision dia-
grams [11] and later adapted to the one-sided 2-level crossing reduction [10]. The
idea is to keep track of the number of crossings while in a sifting step a vertex
v ∈ Vi is moved along a fixed ordering of the vertices in Vi. Finally v is placed
at its locally optimal position. The method is an extension of the greedy-switch
heuristic [5], where v is swapped iteratively with its current successor. We call
a single swap a sifting swap and the execution of a sifting step for every vertex
in Vi a sifting round. Sifting leaves fewer crossings than the simple heuristics in
general at the expense of a higher running time and potential type 2 conflicts [9].

Matuszewski et al. [10] have extended sifting towards a global view, which
we call ordered k-level sifting. There the vertices are sorted by their degree and
are sifted first in increasing order and then in decreasing order. All neighbors
of the vertices to swap, i. e., on both neighboring levels, are considered. The
heuristic does not sweep level-by-level but is still limited to a local view as
long edges are not treated as a whole. Our centered 3-level sifting does the
same level-by-level instead of ordered by degree. Both algorithms produce similar
results. Jünger et al. [8] presented an exact ILP approach for theNP-hard k-level
crossing minimization, which can be used in practice for small graphs. Moreover,
metaheuristics have been proposed in the literature, such as genetic algorithms,
tabu search, or windows optimization.

In this paper we propose a new and global crossing reduction technique. The
algorithm yields better results than traditional heuristics. It is easily extendable
to more general crossing reduction problems, avoids type 2 conflicts, and runs in
quadratic time in the size of the graph. Most 2-level approaches extensively use
dummy vertices, whose number is up to O(k · |E|) ⊆ O(|V |3) and do not make
use of the edge bundling techniques of [7], which cannot be used for sifting.

2 Preliminaries

We suppose that a directed graph without self-loops has passed through the
cycle removal and leveling phases. The outcome is a k-level graph G = (V,E, φ),
where φ : V → {1, 2, . . . , k} is a surjective level assignment of the vertices with
φ(u) < φ(v) for each edge (u, v) ∈ E. For an edge e = (u, v) ∈ E we define
span(e) := φ(v)− φ(u). An edge e is short if span(e) = 1 and long otherwise. A
graph is proper if all edges are short. Each level graph can be made proper by
adding span(e)−1 dummy vertices for each edge e which split e in span(e) many
short edges. Let G′ = (V ′, E′, φ′) denote the proper version of G. As in [4], short
edges are called segments of e. The first and the last segments are the outer and
the others the inner segments. Inner segments connect two dummy vertices.

For a vertex v we denote the set of neighbors from incoming and outgoing
segments by N−(v) := {u ∈ V ′ | (u, v) ∈ E′ } and N+(v) := {w ∈ V ′ | (v, w) ∈
E′ }, respectively. In an ordered proper level graph the vertices on each level as
well as the sets N−(·) and N+(·) are ordered from left to right. Each proper level
graph can be made ordered by choosing an arbitrary ordering for each level and
sorting the sets N−(·) and N+(·) accordingly. In an ordered level graph there
are two conflicting segments if they cross or share a vertex. Conflicts are of type
0, 1 or 2, if they are induced by 0, 1, or 2 inner segments, respectively.

Next we define blocks, which prevent dealing with dummy vertices and so
keep the running time independent of them. A block is a single vertex of V or a
maximum connected subgraph of dummy vertices, i. e., the inner segments of a
long edge. The blocks represent the vertices of a graph related to G′, where the
edges are the outer segments. For a block A define x = upper(A) (y = lower(A))
to be the unique vertex x in A (y in A) with no incoming (outgoing) segments in
A. x and y always exist but may coincide. We define N−(A) := N−(upper(A)),
N+(A) := N+(lower(A)), deg(A) := |N−(A)|+ |N+(A)|, and the set of all level
numbers on which A has (dummy) vertices as levels(A). With block(v) we denote
the block of the vertex v ∈ V ′. Let B be any ordered list of all blocks and let
π : B → {0, . . . , |B| − 1} assign each block its current position in this ordering.

3 Global Sifting

A major drawback of the established crossing reduction algorithms is their local
view. We present a new approach using ideas from [4] and [7]1 and avoiding type
2 conflicts. We treat all dummy vertices of an edge (and each original vertex)
as one block and try to find the best position for the entire block in one step.
This eliminates the problems of classic 2-level approaches which lack this global
view on crossings of long edges. As an initialization the list of blocks B is sorted
arbitrarily and each block A gets π(A) as its position in B (line 1 in Algorithm 1).
At any time during the execution of the algorithm interpreting π(A) for each
1 The authors of [7] use a data structure similar to our blocks and avoid type 2 conflicts.
However, for crossing reduction they proceed level-by-level in the traditional fashion.
Thus, only the running time but not the quality of the result is improved.

Algorithm 1: GLOBAL-SIFTING
Input: Proper k-level graph G′ = (V ′, E′, φ′), number ρ of sifting rounds
Output: Graph G′ with vertices ordered by values π(v) for each v ∈ V ′

1 create list B of all blocks in G′

2 for 1 ≤ i ≤ ρ do
3 foreach A ∈ B do
4 B ← SIFTING-STEP(G′, B, A)

5 foreach v ∈ V ′ do π(v)← π(block(v))
6 return G′

block A as an x-coordinate for each vertex v in A and φ(v) as its y-coordinate
results in a drawing respecting the current ordering of B. All vertices of a block
get the same x-coordinate and, thus, the ordering is type 2 conflict free. These
are important invariants of Algorithm 1.

The main part of the algorithm is the sifting step (line 4). There all positions
for a block A are tested and A is moved to that position where it has the fewest
crossings. This is done for each block A ∈ B (line 3) and repeated a certain
number of times ρ (line 2). In practice, ten rounds suffice. Finally, each vertex
is set to the position of its block (line 5) and the graph is returned (line 6).

3.1 Building the Block List

The graph is partitioned into blocks. Each block A gets an arbitrary but unique
position π(A) in the block list B. As an example consider Fig. 1(a). The input
graph with 7 vertices gets 6 dummy vertices drawn as black circles. The dummy
vertices are combined into 3 blocks and each original vertex forms its own block.
The 10 resulting blocks are shown in Fig. 1(b) with an arbitrary ordering π.

If a given ordering should only be improved in a postprocessing step, a
straightforward initialization strategy is to topologically sort the blocks accord-
ing to the orderings on the levels from left to right in O(|E′|). Our experiments
showed, that a good initial ordering of the blocks leads to better results. However,
these can also be achieved by one or two additional sifting rounds.

3.2 Initialization of a Sifting Step

To improve the performance of one sifting step [3] it is necessary to keep the
adjacency lists N−(A) and N+(A) of each block A ∈ B sorted according to as-
cending positions of the neighboring blocks in B. We store them as arrays for ran-
dom access. Additionally, we store two index arrays I−(A) = I−(upper(A)) and
I+(A) = I+(lower(A)) of lengths |I−(A)| := |N−(A)| and |I+(A)| := |N+(A)|,
respectively. I−(A) stores the indices where upper(A) is stored in each adjacent
block B’s adjacency N+(B). More precisely, let b = N−(A)[i] be a neighbor of
upper(A) with B = block(b). Then I−(A)[i] holds the index at which upper(A)

1

2

3

4

5

1

7

2 3

4

5

6

8 9

10

11 12

(a) A level graph
with ten blocks

1

2

3

4

5

1

7

2

8

0

5

0

2

0 0

3
4

0

9

0

4

0

N
+

I
+

6

0

11

0

4

0

2

1

N

I

1

0

6

1

6

0

12

0

11

0 7

1

5

1

7

2

7

0

5

0

10

0

3

4

5

6

N
+

I
+

N
+

I
+

N
+

I
+

N
+

I
+

N

I

10

12 11

8 9

(b) Separate π-positions, ordered adjacency lists N−

and N+, and index arrays I− and I+ for each block

Fig. 1. Blocks as sifting objects

is stored in N+(B) = N+(b). Symmetrically, I+(A) stores the indices at which
lower(A) is stored in the adjacencyN−(B) of each adjacent blockB. See Fig. 1(b)
for an example. The creation of the four arrays for each block (line 2 of Algo-
rithm 3) can be done in O(|E|) time as Algorithm 2 shows: Traverse the blocks A
in the current order of B and add upper(A) (lower(A)) to the next free position j
of the cleared adjacency array N+(lower(B)) (N−(upper(B))) of each incoming
(outgoing) neighbor B. Both values for I+(B) and I−(A) (I−(B) and I+(A))
and their positions are only known after the second traversal of a segment s.
Thus, we cache the first array position j as an attribute p of s. Benchmarks
have shown that there is a considerable speed-up if only those adjacencies are
updated that are no longer sorted after a sifting step. The theoretical running
time is unaffected by this improvement.

Algorithm 2: SORT-ADJACENCIES
Input: Proper k-level graph G′ = (V ′, E′, φ′), ordered list B of blocks in G′

Output: Ordered sets N ·(A) and I ·(A) for each block A ∈ B
1 for i← 0 to |B| − 1 do π(B[i])← i; clear arrays N ·(B[i]) and I ·(B[i])
2 foreach A ∈ B do
3 foreach s ∈ { (u, v) ∈ E′ | v = upper(A) } do
4 add v to the next free position j of N+(u)
5 if π(A) < π(block(u)) then p[s]← j // first traversal of s
6 else I+(u)[j]← p[s]; I−(v)[p[s]]← j // second traversal of s

7 foreach s ∈ { (w, x) ∈ E′ | w = lower(A) } do
8 add w to the next free position j of N−(x)
9 if π(A) < π(block(x)) then p[s]← j // first traversal of s

10 else I−(x)[j]← p[s]; I+(w)[p[s]]← j // second traversal of s

3.3 Sifting Step

In a sifting step (Algorithm 3) all positions p in B are tested for a block A ∈ B
(lines 5–8) and then A is moved to the position p∗ which has caused the least
number of crossings. Note that it is not necessary to count the crossings for each
position of A. As in [3] and contrary to classic sifting which always maintains the
absolute number of crossings, we treat the number of crossings of A when put
to the first position as χ = 0. Then, we only compute the change in the number
of crossings when iteratively swapping A with its right neighbor (line 6).

Algorithm 3: SIFTING-STEP
Input: Proper k-level graph G′ = (V ′, E′, φ′), ordered list B of blocks in G′,

block A ∈ B to sift
Output: Updated ordering of B

1 B′ ← A ≺ B[0] ≺ · · · ≺ B[|B| − 1] // new ordering B′ with A put to front
2 SORT-ADJACENCIES(G′, B′)
3 χ← 0; χ∗ ← 0 // current and best number of crossings
4 p∗ ← 0 // best block position
5 for p← 1 to |B′| − 1 do
6 χ← χ+ SIFTING-SWAP(A,B′[p])
7 if χ < χ∗ then
8 χ∗ ← χ; p∗ ← p

9 return B′[1] ≺ · · · ≺ B′[p∗] ≺ A ≺ B′[p∗ + 1] ≺ · · · ≺ B′[|B′| − 1]

3.4 Sifting Swap

The sifting swap is the actual computation of the change in the number of cross-
ings when a block A is swapped with its right neighborB. In contrast to one-sided
crossing reduction, our global approach takes the whole neighborhood of both
blocks into account when the change in the number of crossings is computed.
Lemma 1 states which segments are involved.

Lemma 1. Let B be the block list in the current ordering. Let B ∈ B be the
successor of A ∈ B. If swapping A and B changes the crossings between any two
segments, then one of them is an incident outer segment of A or B. The other
segment is an incident outer segment of the same kind (incoming or outgoing)
of the other block or an inner segment of the other block.

Proof. Note that only segments between the same levels can cross. As no type
2 conflicts occur at least one of the segments of a crossing has to be an outer
segment. Let (a, b) and (c, d) be two segments between the same levels with a 6= c
and b 6= d. If the two segments cross after swapping A and B but did not cross
before (or vice versa) either a and c or b and d were swapped. Therefore, one of

the segments is adjacent to A or is a part of A and the other is adjacent to B or
is a part of B. If b and d were swapped and thus a and c were not, φ(b) = φ(d) is
the upper level of A or B and thus one of the crossing segments is an incoming
outer segment of A or B. The other segment is either an incoming outer segment
or an inner segment of the other block. Note that it cannot be an outgoing outer
segment of this block because then neither a and c nor b and d would have been
swapped. The other case of swapping a and c instead of b and d is symmetric. ut

Proposition 1. Let B be the block list in the current ordering. Let B ∈ B be
the successor of A ∈ B. Let i and j be the two levels framing the incoming
outer segments of A, the other three cases are symmetric. If there is a segment
(u, v) between i and j which is either an incoming outer segment of B or an inner
segment of B, then the incoming segments of A starting at a block left of block(u)
cross (u, v) after the swap of A and B only, the segments starting at block(u)
never cross (u, v), and the segments starting right of block(u) cross (u, v) before
the swap only. There are no other changes of crossings due to Lemma 1.

Algorithm 4 shows the details of a sifting swap. First, the levels at which (sig-
nificant) swaps occur and the direction of the segments changing their crossings
are found (lines 2–6). For each entry (l, d) of the set L the two vertices a and b of
A and B on level l are retrieved. Note that when swapping A and B only a and
b are swapped on their level and that in the level of their neighbors Nd(a) and
Nd(b) no order changes. Thus, the computation of the change in the number of
crossings can be done as in [3] (lines 13–23): The neighbors are traversed from
left to right. If a neighbor of a is found (lines 18, 19) its segment will cross all
remaining s− j incident segments of b after the swap. If a neighbor of b is found
(lines 20, 21) its segment has crossed all remaining r − i incident segments of a
before the swap. Common neighbors present both cases at the same time (line
22). An update of the adjacency after a swap (line 10) is only necessary if a and
b have common neighbors. Algorithm 5 shows how this can be done in overall
O(deg(A) + deg(B)) time similarly to the crossing counting function uswap.

3.5 Time Complexity

Lemma 2. Let G = (V,E, φ) be a level graph. Then
∑

B∈B deg(B) ≤ 4 · |E|.

Proof. Each edge e ∈ E contains at most two outer segments. Each outer seg-
ment increases the degree of its two incident blocks by one each. ut

Theorem 1. One round of global sifting (Algorithm 1) has a time complexity
of O(|E|2) for a non-necessarily proper level graph G = (V,E, φ).

Proof. Let B be the blocks ofG. Swapping two blocksA,B ∈ B needsO(deg(A)+
deg(B)) time. Initializing a sifting step takesO(

∑
B∈B deg(B)) = O(|E|) time. A

sifting step of a block A needs O(
∑

B∈B\{A}(deg(A)+deg(B))) = O(|E|·deg(A))
time. Thus, a sifting round positioning each block A ∈ B has time complexity
O(

∑
A∈B(|E| · deg(A)) = O(|E|2). Since |V ′| ≤ k · |E| ∈ O(|E|2) (no empty

levels), traversing all (dummy) vertices in pre- and postprocessing has no effect
on the worst case time complexity. ut

Algorithm 4: SIFTING-SWAP
Input: Consecutive blocks A,B
Output: Change in crossing count

1 begin
2 L ← ∅;∆← 0
3 if φ(upper(A)) ∈ levels(B) then L ← L ∪ {(φ(upper(A),−)}
4 if φ(lower(A)) ∈ levels(B) then L ← L ∪ {(φ(lower(A),+)}
5 if φ(upper(B)) ∈ levels(A) then L ← L ∪ {(φ(upper(B),−)}
6 if φ(lower(B)) ∈ levels(A) then L ← L ∪ {(φ(lower(B),+)}
7 foreach (l, d) ∈ L do
8 let a in A and b in B be the vertices with φ(a) = φ(b) = l

9 ∆← ∆+ uswap(a, b,Nd(a), Nd(b))

10 UPDATE-ADJACENCY(a, b,Nd(a), Id(a), Nd(b), Id(b))

11 swap positions of A and B in B; π(A)← π(A) + 1; π(B)← π(B)− 1
12 return ∆

13 function uswap(a, b,Nd(a), Nd(b)) : integer
14 let x0 ≺ · · · ≺ xr−1 ∈ Nd(a) be the neighbors of a in direction d
15 let y0 ≺ · · · ≺ ys−1 ∈ Nd(b) be the neighbors of b in direction d
16 c← 0; i← 0; j ← 0
17 while i < r and j < s do
18 if π(block(xi)) < π(block(yj)) then
19 c← c+ (s− j); i← i+ 1
20 else if π(block(xi)) > π(block(yj)) then
21 c← c− (r − i); j ← j + 1
22 else c← c+ (s− j)− (r − i); i← i+ 1; j ← j + 1

23 return c

Algorithm 5: UPDATE-ADJACENCIES
Input: Vertices a, b ∈ V ′, Nd(a), Id(a), Nd(b), Id(b)
Output: Updated adjacencies of a and b and all common neighbors

1 let x0 ≺ · · · ≺ xr−1 ∈ Nd(a) be the neighbors of a in direction d
2 let y0 ≺ · · · ≺ ys−1 ∈ Nd(b) be the neighbors of b in direction d
3 i← 0; j ← 0
4 while i < r and j < s do
5 if π(block(xi)) < π(block(yj)) then i← i+ 1
6 else if π(block(xi)) > π(block(yj)) then j ← j + 1
7 else
8 z ← xi // = yj

9 swap entries at positions Id(a)[i] and Id(b)[j] in N−d(z) and in I−d(z)

10 Id(a)[i]← Id(a)[i] + 1; Id(b)[j]← Id(b)[j]− 1
11 i← i+ 1; j ← j + 1

4 Simple Global Crossing Reductions

We have extended the barycenter and median crossing reduction strategies to-
wards blocks as well: We iteratively take the π-positions of the blocks in B and
compute the barycenter or median for each block, respectively, and sort B ac-
cording to these values. Our benchmarks show that both are very fast, however,
are not competitive with global sifting in the number of crossings.

Theorem 2. One round of global barycenter or global median has time com-
plexity O(|E| log |E|) or O(|E|), respectively.

Proof. Computing the barycenters or medians for the O(|E|) blocks can be done
in O(|E|) time due to Lemma 2. Sorting the barycenters takes O(|E| log |E|)
time. The medians can be sorted in O(|E|) time using bucket sort. ut

5 Experimental Results

We have compared the iterative one-sided 2-level barycenter (B), median (M),
and sifting (S), iterative centered 3-level sifting (3S), ordered k-level sifting (OS),
and our new global barycenter (GB), global median (GM), and global sifting
(GS) algorithms.

In a nutshell, classic sifting is fast, leaves few type 2 conflicts, but many
crossings. Centered 3-level sifting is fast, leaves few crossings, but many type 2
conflicts. Global sifting leaves even less crossings (Fig. 2) without any type 2
conflicts within a still feasible running time in practice (Fig. 3). Further mea-
surements reflect that the running time of global sifting is independent of the
number of dummy vertices. This parallels the advanced algorithm in [7].

0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75

2000 4000 6000 8000 10000

C
ro
ss
in
gs

af
te
r
vs
.b

ef
or
e

Graph size |V ′| (75% dummy vertices and |E′| = 2 · |V ′|, i. e., |E| = 5 · |V |)

GM
GB
M
B
S

3S
OS
GS

Fig. 2. Benchmark: number of crossings after vs. before applying the crossing reduction

0

2

4

6

8

10

2000 4000 6000 8000 10000

R
un

ni
ng

ti
m
e
in

se
co
nd

s

Graph size |V ′| (75% dummy vertices and |E′| = 2 · |V ′|, i. e., |E| = 5 · |V |)

GS
OS
3S
S
M
B

GM
GB

Fig. 3. Benchmark: running times

6 Applications of the Global Crossing Reduction

The idea of using blocks for long edges can be used in several other algorithms
to improve their performance in a straightforward way. Further, this advances
the drawability of their results as type 2 conflicts are avoided.

Optimal Crossing Reduction Using an ILP Jünger et al. [8] gave an ILP
formulation for the exact crossing minimization of k-level graphs. Using pairs of
overlapping blocks, i. e., on non-disjoint levels, as variables gives a direct formu-
lation which naturally excludes type 2 conflicts and uses fewer variables.

Clustered Crossing Reduction In a clustered level graph vertices are com-
bined to subgraphs in a hierarchical way. The crossing reduction has to ensure
that all (dummy) vertices of a subgraph on the same level are consecutive and
that all subgraphs spanning several levels have a matching ordering on each
level to avoid crossings of subgraphs. This is rather complicated using a 2-level
crossing reduction approach. Using global sifting this is quite simple: Instead of
swapping a vertex with its right neighbor in a sifting swap we swap all blocks of
a subgraph with its right neighbor (which itself is either a block or a subgraph)
and determine the change in the number of crossings. The time complexity stays
the same as in the normal global sifting. If the layout of the subgraphs them-
selves is not fixed, then global sifting can be applied to the subgraphs as well,
e. g., performing a sifting round for each hierarchical layer.

Cyclic and Radial Level Graphs Level graphs can be extended to cyclic or
radial level graphs. In cyclic level graphs the set of levels is ordered in a cyclic
way, i. e., the first level follows the last one. In radial level graphs each level itself
is ordered in a cyclic way, i. e., the first vertex on each level is the right neighbor

of the last one. See Fig. 4 for clippings of drawings. For both, global sifting is
the first crossing reduction to guarantee the needed absence of type 2 conflicts.

Cyclic levels are normally drawn forming a star in 2D (see Fig. 4(a)). These
drawings explicitly visualize cycles in graphs [2], which is often required in bioin-
formatics. Our global sifting algorithm can be used for cyclic level graphs without
any changes within the same time complexity. Note that one-sided 2-level algo-
rithms cannot be applied here, since each of them pushes most of the crossings
to the next level only. Even the absence of type 2 conflicts cannot be guaranteed
then, because the sweep has to stop at some level.

In a radial level graph the levels are concentric circles (see Fig. 4(b)). These
drawings visualize distances or importance and are the traditional drawings of
social networks. They map structural centrality of the graph to geometric cen-
trality. Our global sifting approach guarantees radially aligned long edges and
can be used with minor modifications: Each block of the block list B has its own
angle. The ordering of B starts at an arbitrary block. Similar to [1], we define
an offset ψ : E → Z for each outer segment. The absolute value |ψ(e)| counts
the crossings of segment e with an imaginary ray splitting up the levels with a
straight halfline from the concentric center to infinity. If ψ(e) < 0 (ψ(e) > 0),
e has clockwise (counter-clockwise) direction read from source to target. When
sifting a block A ∈ B, we have to update the partings, which are the two borders
between the counterclockwise and clockwise segments on the levels above and
below A, see Fig. 4(b). Since we can do this independently of each other and
add the results of the change in crossings to ∆ in Algorithm 4, we use the same
technique as in [1]. We sift a block from its current position in counterclockwise
direction. Thus, for few crossings the partings have to follow in this direction on
their levels. The test during the swap whether changing the orientations of some
of the first of the (ordered) incident segments of A by incrementing their offsets,
and thus putting them last, leads to less crossings and counting the difference
raises the overall running time to O(|E|3). The radial coordinate assignment
phase in [1] relies on the obtained absence of type 2 conflicts.

7 Summary

We have presented an algorithm for the global crossing reduction problem of k-
level graphs. It produces high quality results with fewer crossings than common
approaches at the expense of a quadratic running time, which is still feasible
in practice. This was an open problem since the introduction of the hierarchical
framework [12] in 1981. For cyclic and radial level crossing reduction we presented
the first algorithms which guarantee the absence of type 2 conflicts. Our approach
can easily be used to simplify and improve several other algorithms concerning
level planarity or crossing reduction.

References

1. Bachmaier, C.: A radial adaption of the sugiyama framework for visualizing hier-
archical information. IEEE Trans. Vis. Comput. Graphics 13(3), 583–594 (2007)

(a) Cyclic drawing

6 5

7

parting

parting
2

4

3

A

1

1-

1-

1-

0

0

0

0

0

0

(b) Partings of the block A in a
radial drawing

Fig. 4. Clippings of cyclic and radial drawings

2. Bachmaier, C., Brunner, W.: Linear time planarity testing and embedding of
strongly connected cyclic level graphs. In: Halperin, D., Mehlhorn, K. (eds.) ESA
2008. LNCS, vol. 5193, pp. 136–147. Springer (2008)

3. Baur, M., Brandes, U.: Crossing reduction in circular layout. In: Hromkovic, J.,
Nagl, M., Westfechtel, B. (eds.) Proc. Workshop on Graph-Theoretic Concepts in
Computer Science, WG 2004. LNCS, vol. 3353, pp. 332–343. Springer (2004)

4. Brandes, U., Köpf, B.: Fast and simple horizontal coordinate assignment. In:
Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001. LNCS, vol. 2265, pp. 31–44.
Springer (2002)

5. Eades, P., Kelly, D.: Heuristics for reducing crossings in 2-layered networks. Ars
Combinatorica 21(A), 89–98 (1986)

6. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algo-
rithmica 11(1), 379–403 (1994)

7. Eiglsperger, M., Siebenhaller, M., Kaufmann, M.: An efficient implementation of
sugiyama’s algorithm for layered graph drawing. J. Graph Alg. App. 9(3), 305–325
(2005)

8. Jünger, M., Lee, E.K., Mutzel, P., Odenthal, T.: A polyhedral approach to the
multi-layer crossing minimization problem. In: Di Battista, G. (ed.) GD 1997.
LNCS, vol. 1353, pp. 13–24. Springer (1997)

9. Kaufmann, M., Wagner, D.: Drawing Graphs, LNCS, vol. 2025. Springer (2001)
10. Matuszewski, C., Schönfeld, R., Molitor, P.: Using sifting for k-layer straightline

crossing minimization. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp.
217–224. Springer (1999)

11. Rudell, R.: Dynamic variable ordering for ordered binary decision diagrams. In:
Proc. IEEE/ACM International Conference on Computer Aided Design, ICCAD
1993. pp. 42–47. IEEE Computer Society Press (1993)

12. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierar-
chical system structures. IEEE Trans. Syst., Man, Cybern. 11(2), 109–125 (1981)

