Radial Level Planarity Testing and Embedding
in Linear Time*

Technical Report MIP-0303
June, 2003

Christian Bachmaier, Franz J. Brandenburg, and Michael Forster

University of Passau,
94030 Passau, Germany
Fax: +49 851 509 3032
{bachmaier,brandenb,forster}@fmi.uni-passau.de

Abstract. Every planar graph has a concentric representation based
on a breadth first search, see [24]. The vertices are placed on concentric
circles and the edges are routed as curves without crossings. Here we take
the opposite view. A graph with a given partitioning of its vertices onto k
concentric circles is k-radial planar, if the edges can be routed monotonic
between the circles without crossings. Radial planarity is a generalisation
of level planarity, where the vertices are placed on k horizontal lines. We
extend the technique for level planarity testing of [13,14,16-18,20] and
show that radial planarity is decidable in linear time, and that a radial
planar embedding can be computed in linear time.

1 Introduction

The display of hierarchical structures is an important issue in automatic graph
drawing. Directed acyclic graphs (DAGs) and ordered trees are usually drawn
such that the vertices are placed on horizontal levels, and the edges are drawn as
straight lines or as y-monotone polylines. This technique is used by the Sugiyama
algorithm, the most common algorithm for drawing DAGs [6,23]. After the cal-
culation of a level assignment, the algorithm tries to minimise the number of
edge crossings. In the best case there are no crossings at all, and the graph is
level planar. Level planarity has been investigated intensively, and there are lin-
ear time algorithms both for the test of k-level planarity and for the computation
of an embedding.

A k-level graph G = (V, E, ¢) is an undirected graph with a level assignment
¢:V — {1,2,...,k}, 1 < k < |V|, that partitions the vertex set into V =
VIUV2U---UVFk VI =¢71(j), 1 < j <k, such that ¢(u) # ¢(v) for each edge
(u,v) € E. A k-level graph is proper if |¢(u) — ¢(v)| = 1 for each edge (u,v) € E.

* This research has been supported in part by the Deutsche Forschungsgemeinschaft,
grant BR 835/9-1.

The level planarity problem [7,13,18] can be formulated as follows: Is it possible
to draw a level graph G in the Cartesian plane such that all vertices v € V7 of
the j-th level are placed on a single horizontal line [; = { (z,j) | € R} and the
edges are drawn as strictly y-monotone curves without crossings. For a planar
k-level drawing with the above restrictions an embedding of the graph has to be
computed. Level planar embeddings are characterised by linear orderings <; of
the vertices in each V7, 1 < j < k, which is the order of the vertices from left to
right. See Fig. 1 for an example of a level planar graph.

Fig. 1. A level planar graph

Note that we do not consider the problem of finding a level planar or radial
planar embedding for graphs without a given levelling. Heath and Rosenberg [15]
have shown that the levelling problem is NP-hard for proper graphs. In the
non-proper case, i.e., with arbitrarily long edges, each planar graph has a k-
level planar levelling. This follows for example from the planar grid drawings of
de Fraysseix et al. [5]. There neither the number of levels nor the length of the
edges is taken into account, e. g., for a minimisation.

Level planarity can be generalised to radial level planarity or short radial
planarity. In contrast to the above the vertices are not drawn on k horizontal lines
but on k concentric circle lines [; = { (jcos#,jsinf) |0 € [0,27) },1 <j<k. A
k-level graph is radial k-level planar if there are orderings <; of the vertices on
each radial level such that edges are drawn as strictly monotone curves from inner
to outer levels without crossings. The transformation of a level planar embedding
to a radial planar embedding can be obtained by connecting the ends of each
level and thus forming concentric level circles. This allows the insertion of some
additional edges connecting the end of one level with the beginning of another.
These cut edges cross an imaginary ray from the centre of the concentric levels
to infinity through the points where the connected fronts and backs of the levels
meet. There are two directions for routing cut edges around the centre, clockwise
and counterclockwise. As an extension to level planar embeddings, radial planar
embeddings need additional information about cut edges and their direction.
Figure 2(b) shows a radial planar drawing of the graph in Fig. 2(a) which is not
level planar. The edge (1,6) crosses the imaginary ray and thus is a clockwise
cut edge, following its implicit direction from lower to higher levels. Obviously,
a radial planar graph is level planar, if there are no cut edges.

Fig. 2. A radial planar graph with a radial planar drawing

Lemma 1. Let G be a k-level graph. Then the following holds:
G is level planar = G is radial level planar = G is planar
Proof. The correctness follows directly from the definitions. O

The more general approach of Dujmovi¢ et al. [9] leads to a linear time
fixed parameter tractable algorithm for detecting radial planar graphs for a fixed
number of levels. We give a practical algorithm based on the level planarity test of
Leipert et al. [16-18,20] that improves this result to O(|V]) time for an arbitrary
number of (non empty) levels.

Without loss of generality, we only consider simple graphs without self loops
and parallel edges. Because of Lemma 1 a input graph with |E| > 3|V| — 6 is
rejected as not radial planar. In the following V(G) denotes the vertex set of a
graph G and E(G) its edge set respectively.

This paper is organised as follows: After a brief outline of the linear level
planarity testing and embedding algorithm of Leipert et al. in the next section,
we present our linear time approach to decide whether a graph is radial planar
in Sect. 3. Section 4 describes how a radial level planar embedding can be found
with our algorithm within the same linear time bounds. We close with a summary
in Sect. 5.

2 Related Work

The basis of our algorithm is the linear time algorithm of Leipert et al. [16-18,20]
for level planarity testing and embedding which is in turn based on previous work
of Heath and Pemmaraju [13,14]. These algorithms extend the planarity test for
hierarchies' of Di Battista and Nardelli [7] to arbitrary level graphs. Chan-

L A hierarchy is a level graph with a single source, where a source is a vertex having
only edges to a higher level. A sink is defined analogously.

dramouli and Diwan [3] present a linear time algorithm to determine whether a
triconnected DAG is level planar.

2.1 Linear Time Level Planarity Test

The basic idea of the algorithm is to perform a top down sweep, processing the
levels in order 1,2,...,k and to compute for every level V7, 1 < j < k, a set of
permutations of V7 that appear in some level planar embedding of G7. G7 is the
subgraph induced by VI UV?2U---UVJ. G is level planar if and only if the set
of permutations of G¥ = G is not empty.

In order to represent and store sets of vertex permutations efficiently a data
structure called PQ-tree, introduced by Booth and Lueker [2], is used. A PQ-tree
represents the permutations of a finite set S in which the members of specified
subsets of S occur consecutively. It is a rooted and ordered tree with leaves
and two types of inner nodes, P- and Q-nodes. In the context of this paper
the term vertex denotes an element of a graph and the term node denotes an
element of a PQ-tree. Usually P-nodes are drawn as circles while Q-nodes are
drawn as rectangles. The leaves correspond to the elements of S and the possible
permutations are encoded by the combination of the two types of inner nodes.
The children of a P-node can be permuted arbitrarily, whereas the children of a
Q-node are ordered and this order can only be reversed. If PQ-trees are used in
planarity tests, a P-node always represents a cut vertex and a Q-node represents
a biconnected component of a graph. The leaves represent edges to the not
yet processed part of the graph. If there are no permutations with the given
restrictions, the PQ-tree is empty.

The most important operation on PQ-trees is REDUCE. It restricts the
stored set of permutations such that all elements of a given set S’ C S are con-
secutive in all remaining permutations. In a bottom up strategy it uses eleven
template matching patterns, P0-P6 and Q0-Q3, to realise local changes within
a tree, see Fig. 3 and Fig. 4. During the reduce phase PQ-leaves representing el-
ements of S are called pertinent. A PQ-node having at least one pertinent child
is called pertinent, too. A PQ-node having only pertinent children is called full,
one having at least one pertinent and at least one non-pertinent is called partial
and one having no pertinent children is called empty. The pertinent subtree is
the subtree of minimum height that contains all pertinent PQ-leaves. Its root is
called pertinent root or short pert-root.

For an application of P2, P4, P6, and Q3 the root of the left side (source
pattern) of the template must be pert-root. For an application of P3 and P5
this must not be the case, whereas for the remaining templates it may be the
case. Some template applications may reverse the order of the children of some
Q-nodes and insert the children of a Q-node somewhere in between the children
of another Q-node. In order to achieve the complexity of REDUCE proved in [2],
both reversing a list of children and inserting a list of children into another must
be done in constant time. The complexity of REDUCE is crucial for linear time
level planarity testing and embedding. For further reading on PQ-trees see [2].

Lon = Lo

(a) Template PO

Lon = &

(b) Template P1

ﬁ pert-root ﬁh
e oen E——

(¢) Template P2

not pert-root

(d) Template P3

—_—

(e) Template P4

_—

(f) Template P5

pert-root
_

(g) Template P6

Fig. 3. Templates for testing (level) planarity. The grey shading indicates that subtrees
are pertinent

LL— 0k L1-1

(a) Template QO (b) Template Q1

O oy L S e v e

(c) Template Q2

9. V59 W Wy Wy Wy oy
(d) Template Q3

Fig. 4. Templates, Part 2

Let G7, 1 < j < k, be the induced subgraph of G from level 1 to j. G7 is
not necessarily connected, so a separate PQ-tree T(Ff) is introduced for every
component sz of G/ with m; denoting the number of such components and
1 <7< m;. T(Ff) represents the set of admissible permutations of the vertices
of FZJ in V7 that appear in some level planar embedding of G7. If two different

components are adjacent to a common vertex v, their corresponding PQ-trees
have to be merged. 7(G7) denotes the set of all T'(F}).

Algorithm 1: LEVEL-PLANARITY-TEST
Input: G = (V' UV2U...UV* E, ¢)
Output: boolean value indicating whether G is level planar
Initialise 7 (G")
for j—1tok—1do
T(G'*) « CHECK-LEVEL(T (GY), VIT1)
if 7(G'*') = () then return false
end

return true

See Algorithm 1 for a formal description of the LEVEL-PLANARITY-TEST.
The procedure CHECK-LEVEL, as a sweep over a single level j, is divided into
two phases. All operations are not done on the graph but in T'(F}). The following

7

describes the first reduction phase. Define HY to be the extended form of FJ. Tt
consists of Ff plus some new virtual vertices and virtual edges. For every edge
(u,v) with u € V(F/)NV7 and ¢(v) > j, a new virtual vertex with label v and a
virtual edge connecting it to u is introduced in H f . The set of all virtual vertices
of H z] that are labelled with v is denoted by S7. Note that there may be several
virtual vertices with the same label, possibly adjacent to different components of
G’ and each with exactly one entering edge. The extension of T'(F}) to T'(H?)
which is called the vertex addition step is accomplished by a PQ-tree operation
called REPLACE_PERT. Since all PQ-leaves with the same label appear consec-
utively after the PQ-tree operation REDUCE in every admissible permutation,
each such consecutive set of PQ-leaves is replaced by REPLACE_PERT with
a P-node. This is the parent of new leaves representing the adjacent vertices
of vin VItLUVIit2 ... U VE. Afterwards all PQ-leaves representing vertices
in VJ*t1 with the same label are reduced to appear as a consecutive sequence
in any permutation stored in the PQ-trees. Then REPLACE-SINGLE replaces
them with a single representative PQ-leaf with the same label. R} denotes this
reduced extended form of Hf If the graph is not a hierarchy, the replacement

with a single representative is necessary for the correctness of the algorithm,
see [20, p. T1ff].

Now it is possible that there are PQ-leaves with the same label in different
PQ-trees, so the second reduction phase merges these trees. A reduced extended
form R} is called v-singular if all virtual vertices have the same label, i.e.,
Uwev,p(u)>; Si° = {v}. Singular components are handled by examining space
information (values called PML and QML) on interior faces above v which are
created when all leaves labelled with v are replaced with a single representative.
See [20, p. 71ff] for details. If there is no interior face having enough space to
contain the singular component, it is checked if it can be placed on the outer
face with the same mechanism as for non-singular forms.

The following is a short description of these pairwise merge operations. Define
the low indexed level of F}, LL(F}), to be the smallest d such that F} contains
a vertex in Vd. This value is maintained as an attribute of the corresponding
PQ-tree T'(F}). The height of a component F} is j —LL(F}). A merge operation
is accomplished using information that is stored at the nodes of the PQ-trees.
For any set of virtual vertices S C Vi1 U Vit2 ... U V* that belongs to a
form H] or R}, define the meet level of S, ML(S), to be the greatest d < j
such that V¢ U V4t U ... U V7 induces a subgraph of G in which all s € S
occur in the same connected component. For every P-node X a single value
ML(X) = ML(frontier(X)) is maintained with frontier(X) being the sequence of
its descendent leaves from left to right. For every Q-node Y with ordered children
Y1,Ys, ..., Y, values ML(Y;, Y;11) = ML(frontier(Y;) U frontier(Y;41)), 1 <i < ¢,
are stored. The maintenance of the ML-values during template reductions and
insertions in the PQ-trees is straightforward. They are indicators if a PQ-tree
with a given low indexed level fits into the indentations under a P-node or
between two sons of a Q-node.

Let TV, T3, ..., Tf be all PQ-trees with v € V7/*! in their frontier sorted
according to their descending height. All PQ-trees T, 2 < e < f, are merged
sequentially into the highest one, T7. This corresponds to adding the root of T
as a child to a PQ-node of T}. In order to find an appropriate location to insert
TY, the method starts with the leaf labelled with v in T} and proceeds upwards
in 77 until a node X’ and its parent X are encountered satisfying one of the
following ordered conditions A-E.

Merge Condition A The node X is a P-node with ML(X) < LL(77). Attach
T? as child of X in T7.

Merge Condition B The node X is a Q-node with ordered children X, Xs,
ooy Xi, X' = X4, and ML(Xq, X3) < LL(TY?). Replace X' in T} with a Q-node
Y having X’ and T? as children. The case were X' = X; and ML(X;_1, X};) <
LL(T?) is symmetric.

Merge Condition C The node X is a Q-node with ordered children X, Xs,
Ceey Xt, X' = Xi, 1<i<t, and ML(Xzfl,XZ) < LL(T;) and ML(X“XZ+1) <
LL(T?). Replace X’ with a Q-node Y having X’ and T as children.

T, o X :]
X \ — A AY A A
X A X X X, X,

X, x.! x.x !

Merge Condition D The node X is a Q-node with ordered children X7, X5,
L X, X=X, 1<i<t, and

ML(XZ'_hXi) < LL(T:) < ML(X,‘,XH_l).

Attach T? as a child of X between X,_; and X;. In case that
ML(X;, X;41) < LL(TY) < ML(X;-1, X;),
attach T as child of X between X; and X, ;.
T

T ' '
. i o xi : |
Dreal BTy
X, Xof\ o X X,
X X., X.X ,

1

v

Merge Condition E The node X is the root of Y. Reconstruct T} by inserting
a Q-node Y as new root with X’ and T2 as children.

T, T, v
X —
v v
vov

After each merge operation, REDUCE and REPLACE_PERT are called to
make all v-leaves consecutive and then to replace them with one single repre-
sentative PQ-leaf. Afterwards the entry for T is deleted from the set 7 (G7*1).
Scanning for other leaves with the same label after v-merging several reduced
extended forms is omitted in order to achieve linear running time. However, this
strategy results in improper reduced extended forms, called partially reduced ex-
tended forms, possibly having several virtual vertices with the same label. They
are reduced lazily on demand.

Finally, in a new sweep over this level all PQ-leaves representing sinks v in
VIi+1 are deleted from their corresponding PQ-tree reconstructing this tree such
that it obeys the properties of a valid PQ-tree again.

Note that this mechanism also works on non-proper level graphs without any
extra effort (adding all children on higher levels not only the ones from the next
level), within O(]V]) time and without inserting up to O(|V|?) dummy vertices
for long and thus multi level spanning edges.

2.2 Linear Time Level Planar Embedding

In order to get a witness for the result of the level planarity test or to draw
the graph nicely, i.e., planar, this algorithm can compute a level embedding in
two passes. See Algorithm 2 for an outline. After G is augmented to a planar
st-graph, a planar st-embedding can be obtained via the algorithm of Chiba et
al. [4]. With this a level planar embedding can be computed easily.

An st-graph, as defined in [10,21], is a biconnected digraph with two adjacent
vertices s and ¢ and a numbering st : V — {1,...,|V|} of the vertices such that
st(s) = 1, st(t) = |V, and for any vertex v with 1 < st(v) < |V| two adjacent

10

Algorithm 2: LEVEL-PLANAR-EMBED
Input: G = (VIUV2U...UVF E, ¢)
Output: level embedding & of G if it is level planar, () otherwise

expand G to G by adding V° « {s} and V*T! — {t}
AUGMENT(G.r)

if AUGMENT failed then return & «

// Gst is now a hierarchy

reverse level numbering G; from the bottom to the top

AUGMENT(Gs:) // cannot fail

reverse level numbering G; from the top to the bottom

Est «— Est U (S, t)

// Gst is now an st-graph

TOPSORT (V)

compute a planar embedding £, according to Chiba et al. [4]
using the topological sorting as an st-ordering

& «— CONSTRUCT-LEVEL-EMBED (g, Gt)

return &

vertices v and w exist with st(u) < st(v) < st(w). Augmenting a level graph
G to an st-graph G is divided into two phases. After adding s as a single
source and t as a single target, in the first phase an outgoing edge is added
to every sink of G by application of a modified LEVEL-PLANARITY-TEST
algorithm from level 1 to k. Using the same algorithmic concept bottom up, i.e.,
the modified LEVEL-PLANARITY-TEST from level k£ to 1, an incoming edge
is added to every source of GG in the second phase. To add these edges without
destroying level planarity, every PQ-leaf representing a sink in G is replaced with
a sink indicator as a leaf in its corresponding PQ-tree. This indicator is ignored
throughout the application of the algorithm and is removed either with the leaves
representing the incoming edges of some vertex w € V!, 1 > j, or is still left in
the final PQ-trees. In the first case the node which is represented by the sink
indicator is connected to w after the reduction of w by REPLACE_PERT called
on w. In the second case it is connected to ¢ at the end of the algorithm. Sink
indicators in PQ-trees which represent a v-singular form are connected to v if
they are inserted in a inner face above v. Note that if all siblings of a node are
ignored, its parent becomes recursively ignored, too. Thus it can happen that
whole PQ-trees get ignored.

An st-numbering is naturally defined on digraphs. Therefore the implicit edge
direction given by the levelling is used and edges are directed from the lower to
the higher level. The numbering of the vertices by topological sorting results in
a valid st-numbering. Now Algorithm 2 computes an st-embedding £, with the
technique of Chiba et. al. [4].

11

The function CONSTRUCT-LEVEL-EMBED derives a level planar embed-
ding & of G from the planar embedding &. It traverses the graph in depth
first search order (DFS) starting at vertex ¢t and proceeding from every visited
vertex v to the unvisited neighbour w on a smaller level that appears first in
clockwise ordering of v’s adjacency in &g . Initially, all levels in & are empty.
When a vertex w ¢ {s,t} is visited, it is appended at the end of the ordered
list of the vertices assigned to ¢(w). Because this DFS starts at ¢ and uses
only edges to vertices with a smaller st-number, the DFS in Chiba’s method
ENTIRE-EMBED [4, p. 62] to extend the obtained directed upward embedding
&, into a complete and undirected st-embedding &,; can be omitted for the sake
of efficiency.

In order to achieve linear running time, searching for sink indicators that can
be considered for augmentation must be avoided. But sink indicators must be
treated correctly by merge operations. Therefore a new node type called contact
is introduced in the PQ-trees during the merge operations B—D. These contacts
store which sinks have to be augmented if the new introduced Q-node is spliced
by application of a template matching with its parent Q-node in the further
progress of the algorithm. For further reading on this topic see [16,17,20].

3 Radial Level Planarity Test

3.1 Concepts

Level planarity and radial planarity look similar, but there are some essential
differences. Leipert’s algorithm heavily depends on the fact that a level graph is
level planar if and only if each connected component is level planar. Therefore
it suffices to test each connected component for level planarity. This is no more
true for radial planarity, as Fig. 5 explains.

Fig. 5. A non-radial planar graph consisting only of radial planar connected compo-
nents

Clearly a graph is radial planar, if it consists only of level planar components,
because it is level planar. Hence, we must consider those components that are
radial planar but not level planar. Therefore we introduce the concept of a ring:

Definition 1. A ring is a biconnected component of a level graph which is radial
planar but not level planar. A level graph containing a ring is called a ring graph.

12

A priori it is not clear whether a biconnected component is a ring. We will
see later how rings are detected. Nevertheless we investigate some interesting
properties of rings first. The graph in Fig. 6(a) consists of four biconnected
components, one of which is a ring. We observe that a component can be nested
in another and that, in the case of this graph, this is even necessary for a planar
drawing. This only happens if the “outer” component is a ring. It also becomes
clear that whether a component is a ring is not related to whether it contains a
cycle. In fact every biconnected component with at least three vertices contains
a cycle, but whether it is a ring depends on the levelling. If vertex 14 was on
level 1, this graph would not contain a ring, because according to the ray in
Fig. 6(b) there are no cut edges.

(a) A ring graph (b) Not a ring graph

Fig. 6. Rings depend on the levelling

Lemma 2. If G is a level graph not containing any ring, the following state-
ments are equivalent:

1. G is radial planar

2. G is level planar.

3. Fach connected component of G is level planar.
4. Fach connected component of G is radial planar.

Proof. The correctness follows directly from the definitions. a

Hence, if a graph does not contain a ring, we can use Leipert’s level planarity
test algorithm to test for radial planarity. For ring graphs, the algorithm has to
be extended.

13

3.2 Rings

Before we describe in the next section how our algorithm stores the admissible
permutations of the vertices on each circle, we discuss some more properties of
rings first.

Lemma 3. In any radial planar embedding of a ring graph the centre of the
concentric levels lies in an inner face, the centre face.

Proof. Suppose there exists a ring graph G that has a radial planar embedding
& with the centre lying in the outer face. Then G contains a ring R. If we restrict
& to R, the centre lies on the outer face of R. This means, there is a ray from the
centre to infinity which crosses no edges. Therefore there are no cut edges and
R is level planar, a contradiction to the definition of a ring made in Definition 1.

O

Lemma 4. A ring contains at least four vertices and four edges.

Proof. A ring is not level planar. Thus every level embedding contains at least
two crossing edges (u,v) and (w,) with mutually different vertices u, v, w, and
x. To ensure biconnectivity at least four edges are needed. Figure 5 shows two
minimum rings. a

The nesting of rings is determined by some characterising parameters:

Definition 2. Let G be a k-level graph containing a ring R. The minimum
and mazimum level with vertices of R are denoted by ar and dr. These values
are independent of the embedding. Let Br be the mazimum level with a vertex
of the centre face in any radial planar embedding. Analogously, define vgr as
the minimum level with a vertex of the outer face of R in any radial planar
embedding. See Fig. 7 for an example.

Fig. 7. Extreme levels of a ring. ar =2, fr =6,y =3,0r =7

Definition 3. A radial planar embedding of a ring R is called level optimal if
both Br and yr are the extremes of the centre and outer face border, respectively.

14

A priori it is not clear that there is a level optimal embedding for every ring.
But our algorithm constructs such an embedding as we will see later in the proof
of Lemma 10.

Lemma 5. Any ring R spans at least two levels and its characterising parame-
ters relate as dgp > Yyr > ar and 0 > Br > QR.

Proof. Edges are not allowed to be horizontal, i.e., their source and target ver-
tices always lie on different levels. Because of Lemma 4 a ring always contains
edges and thus has vertices on at least two levels. Therefore the four relations
follow directly from the definitions. a0

Lemma 6. Let G be a level graph consisting of two disjoint rings R and S. G
1s radial planar if and only if R and S are radial planar and

ag >Yr N Bs >dg or ar>vsAPBr>ds.

Proof. “=": Let G be a radial planar graph consisting of two disjoint rings R and
S. Because subgraphs of radial planar graphs are always radial planar, R and S
are radial planar. Each ring is biconnected and contains the centre according to
Lemma 3. Thus one ring is fully contained within the centre face of the other
in any planar embedding. In the case of R being contained within S, suppose
ag < g or Bg < dg. Then the border of the centre face of S intersects with the
border of the outer face of R, a contradiction to the radial planarity of G. If S
is contained in R, we analogously get the second part of the formula.

“<": Let G be a level graph consisting of two disjoint rings R and S with
ag > YrANBs > dg or ag > vs APBr > dg. Since these conditions are symmetric,
we only consider the first case. To show the radial planarity of G, we construct
an embedding of G by combining level optimal radial planar embeddings £f* and
Els of R and S. These embeddings only have in common the levels between ag
and Jg, thus the others remain unchanged. Since ag > g, all vertices of .S are
on higher levels than vz and thus can be placed outside of the outer border of R.
Because of g > g, all vertices of R fit within the centre border of S, see Fig. 8.
Note that it may be necessary to rotate and squeeze R, so that all vertices fit
within the greatest cavity of S and vice versa. a

In other words, given appropriate embeddings of R and S, R must fit into
the centre face of S or vice versa and cannot be placed side by side, as Leipert’s
algorithm would do.

3.3 R-Nodes

Our goal is to extend Leipert’s algorithm to test for radial planarity. The ba-
sic ideas of that algorithm can be adopted. The input graph is traversed in a
top down sweep, which now becomes a “wavefront” sweep from the centre. The
processed part of the graph is represented by a collection of trees, which is de-
noted by 7. For dealing with rings, we introduce a new data structure PQR-trees.

15

(a) The “inner” ring R, (b) The “outer” ring S, (c) R nested in the cen-
Yyr=1,0r =4 as=2,08s=5 tre face of S

Fig. 8. Nesting of rings

PQR-trees store the admissible edge permutations of radial planar graphs. PQR-
trees are not related to SPQR-trees, used for incremental planarity testing [8].
Instead, PQR-trees are based on PQ-trees but contain a new “R” node type for
the rings. R-nodes are similar to Q-nodes, but they have some new properties
representing the differences between rings and other biconnected components.
An R-node is drawn as an elliptical ring. The admissible operations on an R-
node are reversion, i.e., inverting the iteration direction of its children in the
same way as for Q-nodes, and a new one, rotation. Since rings always contain
the centre, it is possible to rotate a ring. This corresponds to rotating the graph
around the centre, and is done by moving a subsequence of R-node children from
the beginning of the children list to its end, or vice versa, while maintaining the
relative order of the moved children. On a circular list this happens implicitly.
Therefore R-nodes (as well as Q-nodes) can be implemented for example with
the improved symmetric list data structure [1]. Then insertions, reversions and
rotations can be done in constant time, which is crucial for the linear running
time of this test.

Lemma 7. For storing admissible edge permutations of radial planar graphs, it
suffices that R-nodes occur only as the root of a PQR-tree.

Proof. At any time in the wavefront sweep when a ring is encountered, it follows
from radial planarity that there are no PQ-leaves left that originate from a
component nested within the centre face of the ring. As a direct consequence, it
is sufficient that R-nodes never have siblings and thus only occur at the root of
PQR-trees. This follows from the definition of PQ-trees, since inner tree nodes
must have at least two children, see [2, p. 339]. O

3.4 New Templates

Due to the introduction of R-nodes we need twelve new templates to realise
REDUCE on PQR-trees, some of them being analogous to Q-node templates,

16

not pert-root
_—

(a) Template P7

—

(b) Template P8

ﬁ not root

(¢) Template P9

T-X Hﬁ Tk ﬁ'ﬂ Ik root

(d) Template Q4

X ”ﬁ X ﬁh T2

not pert-root
_—

(e) Template Q5

X ﬁﬁﬂ Lok root

(f) Template Q6

Ik ﬂ'ﬁﬂ Tk not root

(g) Template Q7

Fig. 9. Additional templates for testing radial level planarity, Part 1. Again the grey
shading indicates that subtrees are pertinent

17

Tog = 1T

(a) Template RO

N

(b) Template R1

o ﬁ

(c) Template R2

WU

(e) Template R4

Fig. 10. Additional templates, Part 2

18

see Fig. 9 and Fig. 10. An R-node is only generated with one of the templates P8,
Q4, or Q6, illustrated in Fig. 9(b), Fig. 9(d), and Fig. 9(f). Any of the displayed
children are optional, as long as the child sequence of the resulting R-node starts
and ends with pertinent children and has at least one empty child. It is clear,
that in this cases it is not possible to apply any of the standard templates, i.e.,
the graph is no more level planar. This means that R-nodes are created only if it
is necessary, i.e., if newly encountered edges change a represented biconnected
component from level planar into a ring. Due to Lemma 7, P8, Q4, and Q6 may
only be applied to the root of a PQR-tree. This is different from the restriction
that some PQ-tree templates may only be applied to pert-root.

In analogy to the templates Q0—-Q3 and Q6 it is necessary to provide new
templates RO-R4, shown in Fig. 10, to treat source patterns having an R-node
as its root. Before the application of an R-template it may be necessary to rotate
the R-node. R0, R2, R3, and R4 are the straightforward transformations of QO,
Q2, Q3, and Q6, respectively. In R1 we introduce a new pseudo Q-node X’ for
technical reasons. This preserves the information that the PQR-tree represents
a ring component and makes it possible to compute the value minML in order
to know what fits “below” this ring component. The single meet level at the root
is set to ML(X’, X’) = minML.

Definition 4. For an R-node X with children X1, Xa, ... X, define
minML = mm{ ML(X“XH_l) | 1 S 7 S t,Xt+1 = X1 }

As we have seen, a Q-node may be boundary partial, i.e., it may have per-
tinent children at the front and at the end having at least one empty child in
the middle. Preserving radial planarity, this can always be the case if the root of
the PQR-tree is already an R-node or becomes an R-node during this reduction
step and afterwards a rotation is possible, see Fig. 11. Then the front and the
back is allowed to be connected via cut edges. If we can find a boundary partial
Q-node in the PQ-tree after REDUCE, the graph is rejected as not radial level
planar. This is even the case if this Q-node is the pertinent root. Note that the
templates prohibit that a boundary partial Q-node is created at the root of a
PQ-tree.

)\ !)z

Fig. 11. Iterative merges of boundary partial Q-nodes

The presence of boundary partial Q-nodes forces us to provide the additional
templates P7-P9 and Q5-Q7. P7 is the straightforward transformation of P6 if
not applied to pert-root. The full children are grouped by a new P-node which is

19

inserted into the Q-node. It is both admissible to place it at the front or at the
back. The difference here is whether the edges represented by the descendant
leaves become cut edges later. The same holds for the new P-node created in
P8 or P9. P8 can be applied only to the root, P9 otherwise. Template Q5 is
basically the same as Q4 but treats non-roots. Q4 and Q5 are the inversion of
Q3. Templates Q6 and Q7 are for Q-nodes having only full children except one
boundary partial child, the first one is for the root and the second one for a
non-root.

Now we are ready to show another important property of R-nodes with the
next Lemma:

Lemma 8. Once an R-node is created, it is preserved until its host PQR-tree is
deleted.

Proof. There is no template which destroys or replaces an R-node. Further, R1
ensures that an R-node never gets full, that means it is never replaced by an
application of REPLACE_PERT. a

3.5 Merge Operations on PQR-Trees

Merge conditions stay essentially the same in PQR-trees as described in Sect. 2.1
if no R-node occurs. Because of Lemma 6, merge condition E, i.e., placing two
PQ-trees next to each other with a new Q-root, cannot be applied if T} or T
has an R-root. As a consequence a merge operation may fail contrary to the
non-radial case where condition E always is admissible if no other condition
fits. For PQR-trees with an R-node as root we have to provide two additional
merge conditions. The root of 7)Y must not be an R-node. If X is an R-node and
thus the root of the host PQR-tree 17, condition B and C collapse to the new
condition C®, because R-nodes can be rotated such that a merge can always be
done in its interior. Similarly, if X is the root of the source pattern of condition D
and X is an R-node we obtain DY,

Merge Condition C® The root of T? is not an R-node. The node X is
an R-node with ordered children X, X5, ..., X;, X' = X;, 1 < i < t, and
ML(X;_1,X;) < LL(T?) and ML(X;, X;41) < LL(T?). Replace X’ with a Q-
node Y having X’ and T? as children.

P G — A
] —
JACTEWAN X JAIEWAN A Xx
X, X, XX, v

20

Merge Condition D® The root of T is not an R-node. The node X is an
R-node with ordered children X, Xo, ..., X;, X' = X, 1 <i < t, and

ML(Xl'_hXi) < LL(T:) < ML(XZ,XH_l)
Attach T as a child of X between X, _; and X;. In case that
1\/[].4()(1‘7 Xi+1) < LL(T:) < ML(Xifl,Xi),

attach T as child of X between X; and X ;.

Merge Condition E The node X' is the root of T7. X’ and the root of T2 is
not an R-node. Reconstruct T} by inserting a Q-node Y as new root with X’

and T as children.
T, T, v
X —
A A-x
v v
v v

3.6 Merge of Processed Non-Rings

In level planarity testing, separate components can always be placed side by
side without violating planarity. This is not necessarily true here. Consider a
component of the input graph G containing at least one ring, cf. Sect. 3.2. The
other components detected so far must fit into some inner face of the ring or its
outer face. We first consider the case that these other components contain no
rings. For the efficient execution of the necessary additional checks the algorithm
maintains a variable minLL.

Definition 5. minLL = min{ LL(T) | T is a completely processed PQR-tree
with no R-root}. A completely processed PQR-tree is a PQR-tree representing
a component of the graph not having any vertices on the current or on higher
levels. If there is no such T, then minLL = oo.

The detection of a processed PQR-tree T" works as follows: After every call
of REPLACE-SINGLE we check whether T consists of just one leaf (or just an
R-node with one leaf) and whether the vertex represented by this leaf is a sink
of the graph. As soon as a PQR-tree T is identified as completely processed after
REPLACE-SINGLE, minLL is updated with min{minLL, LL(T")}. All processed

21

PQR-trees are discarded as in Leipert’s test algorithm. It suffices to check if the
component C' of the completely processed PQR-tree starting at the lowest level
fits into an internal face. For all other processed (non-ring) components there is
enough space to embed them in the same face as C. Inner faces are always closed
by a call of REPLACE-SINGLE for a vertex v. Then, if there is a processed PQR-
tree without an R-root, i.e., if minLL < oo, we check if the largest of the newly
created inner faces, i.e., the one of them starting at the lowest level, can include
C. For this we use the same mechanism as Leipert uses for v-singular forms
and compare minML with the new PML/QML value. If it fits, minLL > PML
or minLL > QML, we set minLL. = oco. Otherwise we need not care whether
another processed component smaller as C' fits, for which its PQR-tree has been
discarded. These will still fit later when a face for C' is found. If no such face can
be found, the graph is not radial level planar anyway. Recall that a processed
PQR-tree with an R-root can never be included this way. The next section deals
with merging of these.

3.7 Merge of Processed Rings

Let T® be the only one, cf. Lemma 9, but maybe processed PQR-tree with an
R-root. If none exists yet, 7% is undefined. As soon as the algorithm detects
a ring and T becomes defined we obtain the invariant that 77 stays defined
until termination, where T needs not always to stay the same PQR-tree. This
behaviour is guaranteed because if another PQR-tree T' gets an R-root by the
application of template P8, Q4 or Q6 during the reduction of a link vertexr v, we
proceed as described by Algorithm 3.

Algorithm 3: TREAT-NEW-RING

Input: PQR-tree T of a newly encountered ring, link vertex v, 7%, minLL
Output: boolean value indicating whether radial planarity is preserved

if TR £ NULL then
if (T® is not processed) A (T is not v-singular) then return false
minML « min(ML between the sons of the root of T7)
if (minML > LL(7T)) V (minML > minLL) then return false
delete T%

end

™" —T

return true

If there is a PQR-tree T with an R-node as root, the algorithm checks if 7%
is completely processed. Otherwise GG is not radial planar except the case that
TP is v-singular, which is covered by the same mechanism as in level planarity
testing. Afterwards the algorithm checks whether minML is small enough that
T fits “below” T% and the tree with the smallest low indexed level minLL and
thus all others fit “between” T and T'%, see Fig. 12. If one of the checks fails, G

22

is not radial planar because of Lemma 6. Finally T is updated. This algorithm
leads to the next lemma.

TR

&/

b

Fig. 12. Merge of rings

Lemma 9. At any time in the radial level planarity test algorithm, there is at
most one PQR-tree containing an R-node in T if the graph under test is radial
level planar.

3.8 Completion

If at termination of the test algorithm there is no PQR-tree T representing
a ring graph, the graph is level planar. Otherwise, if no other trees occurred
after TT was detected, i.e., we have minLL = oo, the graph is radial planar,
too. It remains to check whether the other PQR-trees fit below TF, i.e., if
minML < minLL. Otherwise, G is not radial planar.

3.9 Correctness

As already stated in Sect. 3.2 it is necessary for the correctness of our algorithm
that every computed embedding of a ring is level optimal.

Lemma 10. The algorithm constructs a level optimal embedding for every ring
contained in the graph.

Proof. Consider a ring R contained in the graph. As long as the corresponding
PQR-tree does not contain an R-node, the centre of the concentric levels lies
in the outer face. Only the templates P8, Q4, and Q6 introduce a new R-node
which closes the centre face. This does not cover the case of two nested rings
sharing a common vertex on a lower level than the link vertex of the outer ring.
See Fig. 13 for an example. In this case the centre face of the outer ring is closed
by the application of template R4.

As these four templates are only applied if none of the other templates
matches, there is no admissible permutation which allows to close the centre
face on a higher level. Hence, the centre face ends on level Sr. Note that insert-
ing v-singular forms into the centre face of R does not influence Sg.

23

(a) Vertex 4 links two rings (b) Before closing
the outer ring

Fig. 13. Linked and nested rings

Each PQR-tree representing a ring R has an R-node as its root. At any
time during the application of the algorithm the indentations of the outer face
are represented by the ML-values between two siblings. The meet levels stored
between a node and its siblings are always lower or equal than the ones between
its children. Thus the overall smallest values are stored between children of the
root and minML represents the highest indentation of the outer border of R. The
value of minML can only change when an inner face is closed by REPLACE-
SINGLE. It may be possible that multiple options exist which faces are closed
due to the freedom of rotation. This only depends on the templates applied
in REDUCE. The only template which has multiple options is R1. Since R1
always preserves the minimum meet level, cf. Sect. 3.4, it is guaranteed that the
highest possible indentation is preserved whenever possible. Thus vz = minML
is optimal in this embedding. a

Lemma 11. The REDUCE operation, extended with the new templates shown
in Fig. 9 and Fig. 10, calculates correctly the new set of admissible permutations
for radial planarity.

We omit the proof of this lemma because it is quite lengthy and rather
simple. It must be shown first that no template violates radial planarity. This
is obvious because the templates are constructed exactly that way. Further it
must be shown that any radial planar graph can be processed successfully, i.e.,
no further templates are necessary. This is true because in all cases where no
template can be applied, the graph is not radial planar. This can be shown easily
by regarding all possible constellations of node types and the order of empty,
full, and (boundary) partial children. As a direct consequence we get our first
main theorem:

Theorem 1. There is an O(|V]) time algorithm for testing radial k-level pla-
narity.

24

4 Radial Planar Embedding

Leipert et.al. also have presented an algorithm for computing a level planar
embedding for a level planar graph. This algorithm can be extended to compute
a radial planar embedding for a radial planar graph by using PQR-trees. Again
there are some differences that need attention.

4.1 Meet Levels between Ignored Siblings

As already mentioned in Sect. 2.2, PQ-trees contain ignored nodes, when cal-
culating an embedding. Since we use the same strategy for calculating radial
embeddings we also have to treat ignored nodes. This is especially important
when calculating minML because we have to consider ML-values between any
pair of adjacent children of the R-node. This includes ignored children. There-
fore we have to ensure that the ML-values of ignored nodes are calculated cor-
rectly. For example, when a Q-node with outermost ignored children is spliced
into another one, the outer ML-values have to be initialised. Fortunately, this is
straightforward and can always be done in constant time.

4.2 Embedding the Edges

As already mentioned in the introduction, we not only have to compute a vertex
ordering <; on each level j but also the edge routing. It is not necessary to order
the adjacent edges of each vertex like it is done in [4], but it suffices to designate
cut edges. The following detection of cut edges is done by the st-embedding
creation step described in Sect. 4.4.

At the beginning no edges are marked as cut edges. The recognition if an
edge is a cut edge works as follows: A new node denoted by ray indicator and
labelled with $ marks for an R-node where the imaginary ray splits its children.
The ray indicator is ignored throughout the application of the algorithm similar
to sink indicators and it always stays a child of the R-node. It is created with
every R-node by slightly modified templates P8, Q4, and Q6, see Fig. 14.

R1 also has to be modified. Recall that it creates a pseudo Q-node X'’. Before
this is done the R-node is rotated such that two siblings between which minML
is located become the end vertices of X’. Otherwise level optimality can be lost.
See Fig. 15 for an illustration.

It is possible that $ divides the children of X’ into two parts. Thus before
creating X' it is necessary to drag one part over the $ because it must stay a child
of the R-node. All leaves of all pertinent subtrees that are dragged over the ray
indicator represent cut edges. They can be found via DFS without violating the
O(|V|) time bound, because after each drag operation the subtrees are removed
from the PQR-tree by REPLACE_PERT anyway. The same operation is neces-
sary if in REPLACE_PERT the ray indicator lies within the pertinent sequence.
Again one part of the pertinent sequence is dragged over the ray indicator before
the pertinent sequence is replaced. For an example consider the graph shown in
Fig. 16(a). Figure 16(b) shows its corresponding PQR~tree before the reduction

= TInr

(a) Template R1 (b) Template P8

X Hﬁ' Tk ﬁ'ﬂ -1

root
——

$

(¢) Template Q4

(d) Template Q6

Fig. 14. Radial level planarity with level embedding templates

(a) Not level optimal (b) Level optimal
ML=1
ML=2 ML=1 A
A X 5
ML=1 : ML=2 ML=2
6 6 $ 6 $ 6 6 6
(¢) Initial PQR-tree (d) After rotation (e) Final PQR-tree
on level 3

Fig. 15. Preserving level optimality

25

26

of all leaves labelled with 4, whereas Fig. 16(c) shows the resulting PQR-tree
after this reduction. The applied template is Q4. As shown in Fig. 16(d) the leaf
representing the edge (1,4) is dragged over $ in REPLACE_PERT thus (1,4)
becomes a cut edge.

(a) The input graph

@T @
4 3 4 $ 4 3 4 $ 3 4 4

(b) The PQR- (c) Figure 16(b) (d) (1,4) is dragged
tree before Q4 after REDUCE over $

Fig. 16. Detection of a cut edge while reducing the leaves of vertex 4

4.3 Augmenting G to G4

Instead of talking about processed PQR-trees as in Sect. 3, now we denote them
as ignored PQR-trees because they consist of ignored nodes only, cf. Sect. 2.2.
Here it is not sufficient to store only the LL-value of the highest ignored PQR-
tree. We also have to store all ignored PQR-trees, because their sinks must be
augmented with edges later. This can be the case if a ring is closed by template
P8, Q4, or Q6. Then all sinks are augmented to the link vertex w on which
REDUCE was called and that closes the ring. Further it can be the case that
augmenting to a vertex v is necessary if a face is closed by REPLACE-SINGLE
called on all leaves representing v. Hence, we maintain an ignored PQR-tree
collection T which stores all ignored PQR-trees in addition to the active collec-
tion T. The embedding of all ignored components within a ring always can be
done without violating radial planarity. Let vertex u be a sink represented by a
sink indicator in a PQR-tree in 7. Then ¢(w) > é(u) holds.

When an R-node is created, all other PQR-trees, whether ignored or not, are
nested into an inner face. This includes ignored PQR-trees with an R-root. Only
a single PQR-tree T is left. In analogy to Lemma 9, this leads directly to the
following property:

27

Lemma 12. 7 U7 " contains at most one R-rooted PQR-tree T*.

If a vertex v closes a face, it does not suffice to test whether the highest
PQR-tree fits into this face after REPLACE-SINGLE, but also all sinks in 7"
are augmented to v and 7 is emptied. Similar to the test, if there exists an
ignored R-rooted PQR-tree T'%, this step is omitted for a face different from the
centre face, because rings cannot be embedded within faces not containing the
centre. The other PQR-trees in 7" are embedded later in the same face as T*.

As an optimisation, the test whether the LL-value of a newly created PQR-
tree for the outer ring fits below the minML-value of an ignored inner ring can
be omitted as well as the test if the other ignored PQR-trees fit between the two
rings. This is done by the bottom up phase with the single hierarchy rooted at t.
Still, the sinks have to be connected to the link vertex.

When a PQR-tree contains ignored nodes, the templates P8, Q4, and Q6
may not only be applied to the root of a PQR-tree. It may happen that the
path from a Q-node X to the root of the tree is the only non-ignored path from
the root downwards, i.e., all predecessors of X have only one non-ignored child.
Then all vertices represented by nodes that are not descendants of X can be
embedded within the ring represented by the new R-root. Therefore these nodes
are removed and the corresponding sinks are augmented to the link vertex. The
O(]V]) time bound is not violated, because if the test on this situation fails
either the input graph is not radial planar and the algorithm rejects or we have
a situation as shown in Fig. 11. This case can be checked in O(1) time because
in a PQR-tree no node chains exist and thus the parent Q-node of X has at
least one other non-ignored child. If the test does not fail, the traversed nodes
are removed and thus are not traversed a second time. With this approach the
calculation time stays linear in the sum again.

4.4 Computation of £

To compute an st-embedding &; of the graph G (see Algorithm 2) the algo-
rithm of Chiba et al. [4] is used. Unfortunately this algorithm, because it is based
on the vertex addition method of [10,21], needs an st-graph as input. But in our
case G5 has no st-edge (s,t). If G is a ring graph, s and ¢ are not in the same
face in any planar level embedding & of G, i.e., s does not lie in the outer face
as t does, cf. Lemma 3. Therefore the introduction of a new edge (s,t) as it is
done in Leipert’s algorithm may not be possible because it may destroy radial
planarity and the st-embedding algorithm will fail. Thus we omit introducing
(s,t), but only have an induced st-numbering of the vertices. After radial edge
augmentation every vertex apart from s and ¢ has at least one incoming and at
least one outgoing edge. There are no other sources than s and no other sinks
than ¢. Without the st-edge, G5 may not be biconnected.

In the standard vertex addition method with computation of an embed-
ding [4,10,21] the edge (s, t) behaves similar to the imaginary ray in the radial
level planarity test. The difference is that the st-edge is physically existent and
therefore no other edge is allowed to cross it without violating planarity. Thus

28

cyclic reduces, i. e., cut edges, are not allowed and need not be considered. With-
out (s,t), cyclic reduces are admissible. Thus our idea to solve the problem is the
same as that of extending the level planarity test to the radial case. We upgrade
the standard graph planarity test with embedding to use our new templates.
We use R-nodes and thus the PQR-tree data structure to realise cyclic reduces.
Again we omit the DFS of Chiba’s algorithm to compute an st-embedding &,
out of the obtained upward st-embedding &,, cf. Sect. 2.2, here not only for the
sake of efficiency but for the correctness. In our context, &, is more an inward
embedding than an upward embedding. Now with our approach it is possible to
route edges around s. The routing around ¢ is not admissible because we only
consider monotone level planar graphs. Figure 17(b) is a radial planar drawing
of the graph shown in Fig. 17(a) assuming the st-edge, shown as a dashed line,
was not there. Due to the existence of cut edges Chiba’s DFS may not deliver a
valid edge ordering around each vertex, e. g., see the adjacencies of vertex 0 and
2 in Fig. 17(h), whereas in &, the orderings of the incoming edges are correct,
see Fig. 17(g). Therefore in Sect. 4.5 we use &, to calculate a radial level planar
embedding & instead of &;.

For example, Fig. 17(c) to Fig. 17(f) show the now admissible cyclic re-
duce of vertex 4 by an illustration of digraphs, the so called bushes, and their
corresponding PQR-trees. If there is the edge (s,t), T(B4) cannot be reduced
according to vertex 4 because no template fits. Otherwise template Q4 can be
applied and we obtain Fig. 17(f). Afterwards replacing 4 with 5 by application
of REPLACE_PERT can designate e.g. (2,4) as cut edge.

Let I, ls, ..., l; be the leaves scanned in this order labelled with v and let v
be the vertex on which REPLACE_PERT is called. The method UPWARD-
EMBED of [4, p. 67f] relies on the fact that the order of the leaves/edges
in frontier(pertinent sequence) which are removed from the PQR-tree by RE-
PLACE_PERT and which afterwards are stored in &, are in an admissible or-
dering except of reversion. The potential reversions of the parent Q-node in the
further proceeding of the algorithm are handled by the direction indicators of [2].
This behaviour stays exactly the same with children of an R-node X. There ex-
ists one difference, however. If the ray indicator occurs within the pertinent
sequence, we have to drag one part over it. But this is done previously to the
removal of the pertinent sequence. In the further proceeding of the algorithm,
after the removal of the pertinent sequence, there is the possibility of a rotation
on X and thus of an implicit rotation of Iy, lo, ..., ;. But this only means ro-
tation of the whole graph including the ray. Hence, the ordering of the stored
sequence stays valid. Note that if an R-node has only pertinent children, then it
is admissible to move the ray indicator in an arbitrary way leading to different
outer faces, i.e., to different embeddings. This plays only a minor role because
we are only interested in a single admissible embedding. Thus analogously to
UPWARD-EMBED of Chiba et al. we obtain a valid inward embedding,.

29

(b) A planar (¢) The bush By
graph drawing

o8
5 FFI?TI
4 5 5 4 $ 4 5 5 4

(e) T(B4), reducing 4 (f) T'(Ba) after
is not possible reduction of 4

Fig. 17. Embedding an edge around s without the (dashed) st-edge. The numbers in
the vertices not only show their label but also represent their indicated st-numbers

30

4.5 Computation of &

In this section we assume w.l.0.g. that the incoming adjacent edges are sorted
clockwise for every vertex in embedding &,. Before we present our algorithm for
computing a radial level embedding we show a few lemmata.

Lemma 13. Fach vertex v € Gg —{s} hast at least one incoming non-cut edge.

Proof. Gst = (Vst, Est) is an st-graph without an st-edge. Thus every vertex
v € Vi — {s} has at least one incoming edge. An edge is only marked as cut
edge in REPLACE_PERT and in template R1 if the ray indicator lies within the
pertinent sequence. Then there are PQ-leaves representing edges on each side of
it and can only be put on one side of the sequence. Thus the edges of the part
which are not dragged over $ are non-cut edges. If $ is already at the beginning
or end of the pertinent sequence, no pertinent edges are cut edges. a

Lemma 14. There exists at least one path from s to every vertexr v € Gg not
containing a cut edge.

Proof. Follows directly from Lemma 13. ad

Lemma 15. A cut edge never lies between two mon-cut edges in the ordered
adjacency of a vertex v in any &,.

Proof. Assume v has adjacent incoming edges in the ordering eq, e., es, see
Fig. 18. Let e; and es be non-cut edges and e. be a cut edge.

Fig. 18. No cut edge can be between two non-cut edges

Let v1 be the source vertex of e; and vy the source vertex of ey respectively.
Then vy # ve. Thus there exist two paths, p; from s to v; and py from s to o,
according to Lemma 15 which are at least different at one edge. The cut edge e,
destroys planarity with crossing the bounds of the face between p; and ps which
is a contradiction. O

This leads to two different types of cut edges according to their position in
the adjacency list. We call them clockwise or counterclockwise according to its
implicit direction from lower to higher levels.

Definition 6. A cut edge is called clockwise with respect to &, if it occurs at the
end of the incoming adjacency list of its target node. It is called counterclockwise
otherwise.

31

Lemma 16. No vertex v in &, can be the target of both clockwise and counter-
clockwise cut edges.

Proof. Assume v has two incoming cut edges, one being clockwise and the other
being counterclockwise. Consider Fig. 19. Because edges have to be drawn mono-
tonic, cut edges are not allowed to be placed below ¢. Thus they cross at least
once above s which is a contradiction to planarity. O

Fig.19. No vertex v has a incoming clockwise and a incoming counterclockwise cut
edge at the same time assuming monotone planarity

According to the lemmata above we obtain Algorithm 4. &[j] denotes the
vertex list of the radial level j, ordered by <;.

Algorithm 4: CONSTRUCT-LEVEL-EMBED
Input: &, Gst = (Vit, Est)
Output: &

procedure DFS(v,dir)
if visited[v] = true then return
visited[v] < true
if dir = left then insert v at the beginning of &[¢(v)]
else insert v at the end of & [¢p(v)]
foreach incoming edge e of v in direction dir do
if e is a cut edge then
if e is clockwise then insert(Q, source(e),left)
else insert(Q, source(e), right)

else
‘ DFS(source(e), dir)
end
end
end

foreach v € V;; do visited[v] < false

Queue @Q // stores pairs
insert(Q, t, right)
while Q not empty do DFS(delete_first(Q))

return &

32

CONSTRUCT-LEVEL-EMBED starts with a sorted DFS from t in &, not
using cut edges. All vertices with at least one incoming cut edge are placed
into a Queue Q. Every other newly detected vertex v is inserted at the end of
Ei[p(v)]. Afterwards a sorted DFS is started from all vertices ¢ € @, in turn
using only unvisited vertices. Clockwise cut edges are traversed from right to
left and their respective source vertex w is inserted at the beginning of its level
list &[¢p(w)]. Counterclockwise cut edges are traversed from left to right and
their respective source vertex w is inserted at the end of its level list &[p(w)].
Now it is possible that some unused non-cut edges and therefore some unvisited
vertices are reachable form w. They are inserted at the same end of the level
lists as w. Note that source vertices of newly detected cut edges are treated in
the same manner as above and are inserted into . The algorithm terminates
when all vertices have been processed.

Theorem 2. Algorithm 4 constructs a valid planar level embedding of the given
inward embedding &, and needs O(|V|) running time.

Proof. The running time of O(|V]) is obvious, because the algorithms performs
DFS only with different parts of the graph one after the other. Hence, we only
need to show the correctness. The algorithm starts at ¢ and traverses first the
trunk, the face labelled with 1 in Fig. 20.

Fig. 20. Successive and sorted attachments of faces to the sides of the trunk

This is the same mechanism which Leipert et al. use in Algorithm 2. After-
wards it attaches the other faces successively to the left and to the right side.
These attachments are sorted, on the left side of the trunk from right to the left,
on the right side of the trunk from left to right, and at each case from bottom
to the top. a

Example 1. Figure 21 shows & computed by Algorithm 4 from &, shown in
Fig. 17(g).

33

ne
2 [1oh»{[0]
s[ilop[o]
+[510]

Fig. 21. & computed from &, in Fig. 17(g)

5 Conclusion

We have presented a new algorithm for detecting radial planarity of a k-level
graph in linear time. For this we have enhanced the PQ-tree data structure of [2]
with a new node type, R-nodes, representing a ring component of the graph.
The obtained data structure is called PQR-tree. Our algorithm is capable of
computing a radial level planar embedding within the same linear time bounds
as other planarity test algorithms [4,16-18,20]. To check the practicability of
our algorithm we have realised a prototypical implementation of it in C++ using
the Graph Template Library [11] with improved symmetric lists [1].

Further investigations are desired in order to expand the test algorithms for
the various kinds of level planarity for detecting the so called minimal non level
planar subgraph patterns (MNLP-patterns) if the tested graph is not level pla-
nar. These MNLP-patterns for level graphs are characterised in [12] and are the
counterparts of the Kuratowski Graphs K33 and K5. See [19,22] for detection
of Kuratowski subgraphs. As already mentioned in the conclusion of [20, p. 211]
the detection of MNLP-patterns can also be used to verify the results of a level
planarity test. Because such a test is a non-trivial algorithm and thus it is not
unlikely that an implementation is faulty, it is desirable not only to prove pla-
narity with an embedding or drawing but also to show non-planarity on the basis
of MNLP-patterns.

Another interesting topic for research is the generalisation to non-monotonic
edges. How can a graph be tested and embedded efficiently for non-monotone
variations of (radial) level planarity?

References

[1] C. Bachmaier and M. Raitner. Improved symmetric lists. Submitted for publica-
tion, August 2003.

[2] K. S. Booth and G. S. Lueker. Testing for the consecutive ones property, interval
graphs, and graph planarity using PQ-tree algorithms. Journal of Computer and
System Sciences, 13:335-379, 1976.

[3] M. Chandramouli and A. A. Diwan. Upward numbering testing for triconnected
graphs. In Proc. Graph Drawing, GD 1995, volume 1027 of LNCS, pages 140-151.
Springer, 1996.

[4] N. Chiba, T. Nishizeki, S. Abe, and T. Ozawa. A linear algorithm for embedding
planar graphs using PQ-trees. Journal of Computer and System Sciences, 30:54—
76, 1985.

34

[5]
(6]
[7]
[8]
[9]

[10]
[11]

[12]

[13]

[14]
[15]
[16]
[17]

18]

[19]
[20]

21]

[22]

23]

[24]

H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar graph on a grid.
Combinatorica, 10:41-51, 1990.

G. Di Battista, P. Eades, R. Tamassia, and 1. G. Tollis. Graph drawing: Algorithms
for the Visualization of Graphs. Prentice Hall, 1999.

G. Di Battista and E. Nardelli. Hierarchies and planarity theory. IEEE Transac-
tions on Systems, Man, and Cybernetics, 18(6):1035-1046, 1988.

G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on
Computing, 25(5):956-997, 1996.

V. Dujmovié¢, M. Fellows, M. Hallett, M. Kitching, G. Liotta, C. McCartin,
N. Nishimura, P. Ragde, F. Rosamond, M. Suderman, S. Whitesides, and D. R.
Wood. On the parameterized complexity of layered graph drawing. In F. Meyer
auf der Heide, editor, Proc. European Symposium on Algorithms, ESA 2001, vol-
ume 2161 of LNCS, pages 488-499. Springer, 2001.

S. Even. Algorithms, chapter 7, pages 148-191. Computer Science Press, 1979.
GTL. Graph Template Library. http://www.infosun.fmi.uni-passau.de/GTL/.
University of Passau.

P. Healy and A. Kuusik. Characterisation of level non-planar graphs by minimal
patterns. Technical Report UL-CSIS-98-4, Department of Computer Science and
Information Systems, University of Limerick, July 1998.

L. S. Heath and S. V. Pemmaraju. Recognizing leveled-planar dags in linear
time. In Proc. Graph Drawing, GD 1995, volume 1027 of LNCS, pages 300-311.
Springer, 1996.

L. S. Heath and S. V. Pemmaraju. Stack and queue layouts of directed acyclic
graphs: Part II. SIAM Journal on Computing, 28(5):1588-1626, 1999.

L. S. Heath and A. L. Rosenberg. Laying out graphs using queues. SIAM Journal
on Computing, 21(5):927-958, 1992.

M. Jiinger and S. Leipert. Level planar embedding in linear time. In Proc. Graph
Drawing, GD 1999, volume 1731 of LNCS, pages 72-81. Springer, 1999.

M. Jiinger and S. Leipert. Level planar embedding in linear time. Journal of
Graph Algorithms and Applications, 6(1):67-113, 2002.

M. Jiinger, S. Leipert, and P. Mutzel. Level planarity testing in linear time. In
Proc. Graph Drawing, GD 1998, volume 1547 of LNCS, pages 224-237. Springer,
1998.

A. Karaberg. Classification and detection of obstructions to planarity. Linear and
Multilinear Algebra, 26:15-38, 1990.

S. Leipert. Level Planarity Testing and Embedding in Linear Time. Dissertation,
Mathematisch-Naturwissenschaftliche Fakultdt der Universitit zu Koéln, 1998.

A. Lempel, S. Even, and I. Cederbaum. An algorithm for planarity testing of
graphs. In P. Rosenstiehl, editor, Theory of Graphs, International Symposium,
Rome, July 1966, pages 215-232. Gordon and Breach, 1967.

K. Mehlhorn and S. Naher. LEDA, A Platform for Combinatorial and Geometric
Computing, chapter 8.7. Cambridge University Press, 1999.

K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hier-
archical system structures. IEEE Transactions on Systems, Man, and Cybernetics,
11(2):109-125, 1981.

J. D. Ullman. Computational Aspects of VLSI, chapter 3.5, pages 111-114. Com-
puter Science Press, 1984.

