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Abstract. We consider directed planar graphs with an upward planar
drawing on the rolling and standing cylinders. These classes extend the
upward planar graphs in the plane. Here, we address the dual graphs. Our
main result is a combinatorial characterization of these sets of upward
planar graphs. It basically shows that the roles of the standing and the
rolling cylinders are interchanged for their duals.

1 Introduction

Directed graphs are used as a model for structural relations where the edges
express dependencies. Such graphs are often acyclic and are drawn as hierarchies
using the framework introduced by Sugiyama et al. [20]. This drawing style
transforms the edge direction into a geometric direction: all edges point upward.
If only plane drawings are allowed, one obtains upward planar graphs, for short
UP. These graphs can be drawn in the plane such that the edge curves are
monotonically increasing in y-direction and do not cross. Hence, UP graphs
respect the unidirectional flow of information as well as planarity.

There are some fundamental differences between upward planar and undi-
rected planar graphs. For instance, there are several linear time planarity tests
[16], whereas the recognition problem for UP is NP-complete [12]. The differ-
ence between planarity and upward planarity becomes even more apparent when
different types of surfaces are studied: For instance, it is known that every graph
embeddable on the plane is also embeddable on any surface of genus 0, e. g.,
the sphere and the cylinder, and vice versa. However, there are graphs with an
upward embedding on the sphere with edge curves increasing from the south to
the north pole, which are not upward planar [15]. The situation becomes even
more challenging if upward embeddability is extended to other surfaces even if
these are of genus 0.
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Upward planarity on surfaces other than the plane generally considers em-
beddings of graphs on a fixed surface in R3 such that the curves of the edges
are monotonically increasing in y-direction. Examples for such surfaces are the
standing [6, 13, 18, 19, 21] and the rolling cylinder [6], the sphere and the trun-
cated sphere [9,11,14,15], and the lying and standing tori [8,10]. We generalized
upward planarity to arbitrary two-dimensional manifolds endowed with a vector
field which prescribes the direction of the edges [1]. We also studied upward pla-
narity on standing and rolling cylinders, where the former plays an important
role for radial drawings [2] and the latter in the context of recurrent hierar-
chies [3]. We showed that upward planar drawings on the rolling cylinder can
be simplified to polyline drawings, where each edge needs only finitely many
bends and at most one winding around the cylinder [6]. The same holds for the
standing cylinder, where all windings can be eliminated [6]. In accordance to [1],
we use the fundamental polygon to define the plane, the standing and the rolling
cylinders. The plane is identified with I × I, where I is the open interval from
−1 to +1, i. e., I × I is the (interior of the) square with side length two. The
rolling (standing) cylinder is obtained by identifying the bottom and top (left
and right) sides. By identifying the boundaries of I, we obtain I◦. Then, the
standing and the rolling cylinder are defined by I◦ × I and I × I◦, respectively.
Let RUP be the set of graphs which can be drawn on the rolling cylinder such
that the edge curves do not cross and are monotonically increasing in y-direction.
If the edge curves are permitted to be non-decreasing in y-direction, horizontal
lines are allowed. Since the top and bottom sides of the fundamental polygon
are identified, “upward” means that edge curves wind around the cylinder all in
the same direction. Specifically, RUP allows for cycles. Accordingly, let SUP
denote the class of graphs with a planar drawing on the standing cylinder and in-
creasing curves for the edges and let wSUP be the corresponding class of graphs
with non-decreasing curves. The novelty of wSUP graphs are cycles with hori-
zontal curves, whereas SUP graphs are acyclic, i. e., SUP ( wSUP. In [1] we
established that a graph is in SUP if and only if it is upward planar on the
sphere. These spherical graphs were studied in [9, 11,14, 15]. Finally, let UP be
the class of upward planar graphs (in the plane) [7, 17]. Note that for UP and
RUP graphs non-decreasing curves can be replaced by increasing ones and the
corresponding classes coincide [1].

Upward planar graphs in the plane and on the sphere or on the standing
cylinder were characterized by using acyclic dipoles. An acyclic dipole is a di-
rected acyclic graph with a single source s and a single sink t. More specifically,
a graph G is SUP/spherical if and only if it is a spanning subgraph of a planar
acyclic dipole [13, 15, 18]. The idea behind acyclic dipoles is that s corresponds
to the south and t to the north pole of the sphere. Moreover, a graph G is in
UP if and only if the dipole has in addition the (s, t) edge [7, 17].

In contrast, there is no related characterization of RUP graphs. Acyclic
dipoles cannot be used since RUP graphs may have cycles winding around the
rolling cylinder. However, the idea behind dipoles can be applied indirectly to
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RUP graphs, namely, to their duals. For this, we generalize acyclic dipoles to
dipoles which may also contain cycles.

Section 2 provides the necessary definitions. We develop our new character-
ization of RUP and SUP graphs in terms of their duals in Sect. 3. In Sect. 4
we obtain related results for wSUP graphs.

2 Preliminaries

The graphs in this work are connected, planar (unless stated otherwise), directed
multigraphs G = (V,E) with non-empty sets of vertices V and edges E, where
pairs of vertices may be connected by multiple edges. G can be drawn in the
plane such that the vertices are mapped to distinct points and the edges to
non-intersecting Jordan curves. Then, G has a planar drawing. It implies an
embedding of G, which defines (cyclic) orderings of incident edges at the vertices.
In the following, we only deal with embedded graphs and all paths and cycles
are simple.

A face f of G is defined by a (underlying undirected) circle C = (v1, e1, v2,
e2, . . . , vk−1, ek−1, vk = v1) such that ei ∈ E is the direct successor of ei−1 ∈ E
according to the cyclic ordering at vi. The edges/vertices of C are said to be the
boundary of f and C is a clockwise traversal of f . Accordingly, the counterclock-
wise traversal of f is obtained by choosing the predecessor edge at each vertex in
the circle. The embedding defines a unique (directed) dual graph G∗ = (F,E∗),
whose vertex set is the set of faces F of G [4]. Let f ∈ F be a face of G and
e = (u, v) ∈ E be part of its boundary. If the counterclockwise traversal of f
passes e in its direction, we say that f is to the left of e. If the same holds for
e and another face g in clockwise direction, then g is to the right of e. For each
edge e ∈ E there is an edge in E∗ from the face to the left of e to the face
right of e. This definition establishes a bijection between E and E∗. Whenever
necessary, we refer to G as the primal of G∗. By vertex we mean an element of
V , whereas the vertices F of G∗ are called faces.

Note that G∗ is connected and the dual of G∗ is isomorphic to the converse
G−1 of G where all edges are reversed, since G is connected. Hence, an embed-
ding of G implies an embedding of G∗, and vice versa. G and G−1 share many
properties, see Proposition 1.

An embedding of a graph is an X embedding with X ∈ {RUP,SUP,
wSUP,UP} if it is obtained from an X drawing. For every graph in class
X, we assume that a corresponding X embedding is given. Given an embedded
graph G, a face f is to the left of a face g if there is a path f  g in G∗.
Note that a face can simultaneously lie to the left and to the right of another
face, and “to the left” does not directly correspond to the geometric left-to-right
relation in a drawing. A cycle in a RUP embedding winds exactly once around
the cylinder [6]. We say that a face f ∈ F lies left (right) of a cycle C if there
is another face g ∈ F such that f is to the left (right) of g and each path f  g
in the dual contains at least one edge of C. Each edge/face of f ’s boundary is
then also said to lie to the left (right) of C.
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Next we introduce graphs which represent the high-level structure of a given
graph and which inherit its embedding. Let the equivalence class [v] denote the
set of vertices of the strongly connected component containing the vertex v ∈ V
and let V be the set of strongly connected components ofG. The component graph
G = (V,E) of G contains an edge ([v], [w]) ∈ E for each original edge (v, w) ∈ E
with [v] 6= [w]. G is an acyclic multigraph which inherits the embedding of G. A
component γ ∈ V is a compound, if it contains more than one vertex or consists
of a single vertex with a loop. Its induced subgraph is denoted by Gγ ⊆ G. For
the sake of convenience, we identify Gγ with γ and call both compound. The set
of all compounds is denoted by VC . Each component [v] that is not a compound
consists of a single vertex v and is called trivial component. A trivial component
which is a source (sink) in G is called source (sink) terminal and the set of
all terminals is denoted by T ⊆ V. Based on the component graph, we define
the compound graph G = (VC ∪ T,E), whose vertices are the compounds and
terminals. Let u, v ∈ VC ∪T be two vertices of the compound graph. There is an
edge (u, v) ∈ E if there is a path u v in G which internally visits only trivial
components. Note that G is a simple graph. Each edge τ ∈ E corresponds to a
set of paths in G. Denote by Gτ the subgraph of G which is induced by the set
of paths belonging to edge τ . We call τ and its induced graph Gτ transit. See
Fig. 1 for an example, where the fundamental polygon of the rolling cylinder is
represented by rectangles with identified bottom and top sides. Based on these
definitions, we are now able to define dipoles.

Definition 1. A graph is a dipole if it has exactly one source s and one sink t
and its compound graph is a path from s to t.

Note that similar to the definition of st-graphs [7, 17], a dipole is not neces-
sarily planar.

Lemma 1. Let G = (V,E) be a graph with a source s and a sink t. Then, G
is a dipole if and only if every path s  t contains at least one vertex of each
compound and for every vertex v ∈ V there are paths s v and v  t.

Proof. “⇒”: Since G is a dipole, its compound graph G = (VC ∪T,E) is a path
p = (v1, v2, . . . , vk) with s = v1 and vk = t and (vi, vi+1) ∈ E for 1 ≤ i < k.
(u, v) is an edge in E if and only if there is a path u v in the component graph
G which internally visits only trivial components. Any path in s t which does
not visit all the compounds of G in exactly the order as given by p would imply
an edge (vi, vj) ∈ E with j 6= i + 1 and, hence, the compound graph would be
no path.

Note that there is at least one path p = s t in G. Since p contains at least
one vertex of each compound γ and γ is a set of strongly connected vertices,
there are also paths s  v and v  t for each vertex v in compound γ. Hence,
what is left to show is that there also paths s  v̂ and v̂  t for each trivial
component v̂ 6= s, t. Assume for contradiction that there is no path s  v̂. Let
V̂ ⊆ V be the set of vertices u ∈ V̂ for which there is a path u v̂. No vertex u
of a compound can be in V̂ since, otherwise, there would be a path s u and,
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γ τ

(a) Graph G ∈ RUP

s t

(b) The dual of
the second com-
pound γ of G

γ τ

(c) The component graph G and the compound
graph G of G

(d) The dual
of the second
transit τ of G

s t

s t

(e) The component graph G∗ and the compound
graph G∗ of the dual G∗ with s, t ∈ T

Fig. 1. A RUP example
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therefore, s  v̂ since u  v̂. Hence, the subgraph induced by V̂ is an acyclic
subgraph of G which does not contain s. Therefore, there must be a source ŝ ∈ V̂
with ŝ 6= s; a contradiction. By the same reasoning it can be shown that there
is a path from every vertex to the sink t.

“⇐”: Since s  v and v  t for every v ∈ V , there is a path s  t. Let
p = (v1, v2, . . . , vk) with s = v1 and vk = t and (vi, vi+1) ∈ E for 1 ≤ i < k be a
path in the compound graph G. Note that p is a Hamiltonian path since every
path visits each compound by assumption. Suppose now that the compound
graph G is not a path s  t. Since G is acyclic, there is a (transitive) edge
(vi, vj) ∈ E with 1 < i + 1 < j ≤ k. However, then there exists a path vi  vj
and, hence, also a path s  t which does not visit any vertex from compounds
vi+1, . . . , vj−1; a contradiction. ut

Proposition 1. A graph G is (i) acyclic, (ii) strongly connected, (iii) upward
planar, or (iv) a dipole if and only if the same holds for its converse G−1.

Thus, in the subsequent statements on the relationship between a graph G
and its dual G∗, the roles of G and G∗ are interchangeable.

Lemma 2. A graph G is acyclic if and only if its dual G∗ is strongly connected.

The proof is deduced from the one for polynomial solvability of the feedback arc
set problem on planar graphs as given in [4].

Proof. “⇒”: Consider an embedding of G = (V,E) and suppose that the dual
G∗ = (F,E∗) is not strongly connected. Then, G∗ has a dicut (X,F \X), i. e.,
a subset X ( F , such that there are no edges in G∗ with source in F \X and
target in X. Let L be the set of edges of (X,F \X), i. e., those that are directed
from X to F \X. Since G∗ is connected, this set is not empty. Let F ∗L be the set
of faces left and right of the edges in L. Consider any traversal of the boundary
C of a face f ∈ F ∗L starting with the edge l1 = (u, v) ∈ L with u ∈ X and
v ∈ F \ X. In order to close C, at least one edge l2 ∈ L is traversed against
its direction. Note that l1 and l2 may coincide. Recall that the vertices of G are
the faces of G∗. Hence, l1 and l2 imply an incoming edge to f and an outgoing
edge from f with their other endpoints in the opposite faces of l1 and l2. Due to
the definition of F ∗L, both opposite faces are in F ∗L. Consequently, the subgraph
induced by F ∗L has neither sources nor sinks and thus contains a cycle, which is
a contradiction.

“⇐”: Suppose that G has a cycle. Then, the cycle separates the inner and
the outer faces of G, which leads to a dicut in G∗ and, hence, G∗ cannot be
strongly connected; a contradiction. ut

We need some additional notation. For ε > 0 and an arbitrary metric d on a
surface S, the ε-environment of a point set P ⊆ S is the union of all open balls
with radius ε around points in P , i. e.,⋃

p∈P
{q ∈ S : d(p, q) < ε} . (1)
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For x, y ∈ R, let x mod y be the non-negative remainder x− ybxy c of dividing a
real x by y. By rotation around the rolling cylinder we mean the transformation

T : I × I◦ → I × I◦ : (x, y) 7→ (x, (y +∆+ 1) mod 2− 1) (2)

for some ∆ ∈ R, which also can be considered as a translation in y-direction by
∆. Note that rotating a RUP drawing does neither affect its upwardness nor its
implied embedding.

3 RUP and SUP Graphs and their Duals

We consider RUP graphs, i. e., upward planar graphs on the rolling cylinder,
and characterize them in terms of their duals. Our main result is:

Theorem 1. A graph G is a RUP graph if and only if G is a spanning subgraph
of a planar graph H without sources or sinks whose dual H∗ is a dipole.

The theorem is proved by a series of lemmata which are also of interest in their
own. For our first observation, consider the RUP drawing of graphG in Fig. 1(a),
where all vertices within a compound are drawn on a shaded background. The
component graph G of G is displayed in Fig. 1(c) along with its compound
graph G below, where the compounds are shaded black. Note that G has the
structure of an (undirected) path. Due to Lemma 2, each transit, i. e., edge in G,
becomes a compound and each compound, i. e., vertex in G, becomes a transit
in the dual G∗ of G. Hence, the path-like structure of G must carry over to
the compound graph G∗ of G∗. Moreover, since all cycles in the RUP drawing
have the same orientation, i. e., they all wind around the cylinder in the same
direction, the transits in G∗ point into the same direction. Also note that G
contains neither sources nor sinks, i. e., both the left and right border of the
drawing are directed cycles Cl and Cr, respectively. Hence, in the dual G∗ of G,
the face to the left of Cl is a source s and the face to the right of Cr is a sink t. All
these observations together indicate that the compound graph of G∗ is a path
s t, i. e., G∗ is a dipole. Indeed, this can be seen for the example in Fig. 1(e),
where the component graph of G∗ and its compound graph are depicted.

Lemma 3. The dual G∗ of a RUP graph G without sources and sinks is a
dipole.

Proof. First, we show that G∗ contains at least one source and one sink. Let Cl
be a leftmost cycle according to the embedding of G, i. e., there is no vertex to
the left of Cl which belongs to another cycle. Since G contains neither sources nor
sinks, it contains at least one directed cycle. Hence, Cl exists. We now show that
there is not only no cycle to the left of Cl but also no vertex at all. Otherwise,
assume for contradiction that there is a non-empty subgraph Gl ⊆ G induced
by the vertices lying to the left of Cl. Since Cl is the leftmost cycle, Gl does not
contain any cycle and, hence, it must either contain a source or a sink. This is a
contradiction to our assumption. Consequently, the face s bounded by Cl to the
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left is a source in G∗. By a similar reasoning, it can be shown that there exists
a sink t in G∗.

In the following, we use Lemma 1 to show that G∗ = (F,E∗) is a dipole. Let
s ∈ F be a source bounded by a leftmost cycle Cl as defined in the previous
paragraph. We show that there is path from s to every other face f ∈ F . Let
Fs be the set of faces reachable from s. Assume for contradiction that Fs ( F .
F is partitioned into Fs and X = F \ Fs. By the definition of Fs, any edge
connecting a vertex in Fs with a vertex in X must point from X to Fs. This set
of edges, denoted by E′ ( E∗, is not empty since G∗ is connected. On the rolling
cylinder, the edges E′ correspond to a cycle that winds around the cylinder in
the opposite orientation of Cl, which contradicts our assumption of a RUP
embedding. The situation is illustrated in Fig. 2, where the shaded area covers
the faces Fs. Analogously, it can be shown that there is a path from every face
to sink t.

s

Fs X

Cl C

Fig. 2. Two cycles winding around the cylinder with opposite orientations

Since every face is reachable from s, there is a path s t in G∗. It remains
to show that every path s  t contains a vertex of each compound in the
compound graph G∗ = (FC ∪{s, t},E), where FC is the set of compounds in G∗.
If G is strongly connected, then G∗ is acyclic and connected. Then, G∗ contains
no compounds at all and we are done. Hence, we assume that G∗ contains at
least one compound γ. Compound γ contains at least one cycle C that winds
exactly once around the cylinder. In the embedding of G∗ on the rolling cylinder,
C divides the cylinder into two regions, where one contains s and the other t.
Hence, each path s t must contain a vertex of C and, thus, a vertex of γ. ut

For the following lemma, there is a physical interpretation: Consider an up-
ward drawing of a planar acyclic dipole on the standing cylinder and suppose
that an electric current flows from the bottom to the top of the cylinder in di-
rection of the edges. This current induces a magnetic field wrapping around the
standing cylinder. Intuitively, by Lemma 4, we can show that a dipole’s dual is
upward planar with respect to the induced magnetic field, i. e., its embedding is
a RUP embedding.
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Lemma 4. The embedding of a strongly connected graph G is a RUP embedding
if and only if its dual G∗ is an acyclic dipole.

Proof. “⇒”: Follows directly from Lemmata 2 and 3.
“⇐”: Since G∗ is acyclic, G is strongly connected by Lemma 2 and Propo-

sition 1. To show that G is RUP embedded we inductively construct a RUP
drawing of G on the fundamental polygon of the rolling cylinder I×I◦ such that
all edge curves are upward and the embedding of G∗ is preserved.

Let f1, f2, . . . , fk ∈ F be the faces of G in a topological ordering of G∗, i. e.,
f1 is the single source and fk is the single sink of G∗. Let Gi (1 ≤ i ≤ k) be
the embedded subgraph of G induced by the faces f1, . . . , fi, i. e., Gi contains
exactly those edges and vertices bounding the faces f1, . . . , fi. Then, Gk = G.

The basic idea of the inductive proof is to add new edges to Gi such that fi+1

is enclosed and lies to the left of all newly added edges. To assure a plane drawing,
the x-coordinates of the newly added vertices are strictly greater than all x-
coordinates of all previously added vertices. In the following let x1, x2, . . . , xk ∈ I
be a sequence of strictly increasing x-coordinates, i. e., xi < xi+1 for all 1 ≤ i < k.

As induction invariant, the following conditions hold for the drawing Γi of
each Gi. Γi is a RUP drawing which respects the embedding of G and lies in
[x1, xi] × I◦. Additionally, the dual G∗i of each Gi is a planar, acyclic dipole.
Especially, the right border of Γi is a directed cycle Cr and all faces f1, . . . , fi
are on the left of Cr.

For i = 1, G1 consists of a single cycle with d+(f1) edges, since f1 is a
source in G∗ with out-degree d+(f1). All vertices of the cycle are assigned the x-
coordinate x1 and y-coordinates according to the cyclic order of the edges around
f1, see Fig. 3(a) for an example. The drawing of G1 guarantees the induction
invariants.

For i = k − 1, the faces f1, . . . , fk−1 lie to the left of cycle Cr, which is the
right border of Γk−1. Then, the right face of Cr is fk. Thus, Γk−1 is a drawing
of G and we are done.

Now assume that 1 < i < k−1. In the embedding of G∗ and, consequently, in
the embedding of G∗i+1, all incoming edges are consecutive in the cyclic order of
the edges around fi+1, and accordingly for the outgoing edges. This follows from
the fact that G∗ is an embedded planar acyclic dipole and, hence, its embedding
is quasi upward planar [5]. Denote by e−1 , . . . , e

−
p and e+1 , . . . , e

+
q the incoming

and outgoing edges of fi+1, respectively, ordered according to the embedding of
G∗. Note that fi+1 has at least one incoming edge as otherwise it would be a
source different from f1, which contradicts the assumption of G∗ being a dipole.
Analogously, fi+1 has at least one outgoing edge. Due to the topological ordering
of the faces, all faces that have an outgoing edge to fi+1 are already present in
the drawing of Gi. Additionally, all these edges e−j are part of the cycle Cr at
the right border of Γi (black solid vertices in Fig. 3(b)). Otherwise, there is
an edge e−j (1 ≤ j ≤ p) such that one of its end points lies to the left of Cr.

However, then either e−j cannot be an edge bounding fi+1 or Gi does not respect

the embedding of G. Moreover, the edges e−1 , . . . , e
−
p correspond to a directed

path p− = (v−1 , . . . , v
−
p+1) in Gi, which is part of Cr (see again Fig. 3(b)), since
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f1

(a) Base case

fi+1fi+1Gi

p p′

(b) Induction step

Gi+1

(c) After the in-
duction step

Fig. 3. Inductive construction of a RUP drawing from its dual

Γi respects the embedding of G∗i . Let a ∈ I◦ (b ∈ I◦) be the y-coordinate of
v−1 (v−p+1). Note that v−p+1 must lie “above” v−1 as p must be drawn upward.

W. l. o. g., we assume that a < b.1 Accordingly, the edges e+1 , . . . e
+
q correspond

to a path p+ = (v+1 , . . . , v
+
q+1) in Gi+1. Note that v+1 = v−1 and v+q+1 = v−p+1

since p+ and p− together bound face fi+1. Assign to each vertex v+2 , . . . , v
+
q

the x-coordinate xi+1. For every vertex v+j choose a y-coordinate y+j such that

a < y+j < b for all 2 ≤ j ≤ q and y+j < y+j+1 for 2 ≤ j < q. Now the edges of

p+ can be drawn upward as straight lines with a single bend at the first and the
last edge of the path, see Figs. 3(b) and (c). For the position of the bend in the
edges e+1 and e+q choose as y-coordinate some value in the intervals (a, y+2 ) and
(y+q , b), respectively, such that the straight lines from the end points on p− cause
no crossing with any other edge from p−. Note that this is always possible due to
the construction of the drawing. For the x-coordinate of the bends choose xi+1.
If p+ consists of a single edge, this edge has two bends. The resulting drawing
Γi+1 of Gi+1 is a RUP drawing respecting the embedding of G and it lies within
[x1, xi+1] × I◦. In Γi+1 there is a newly formed cycle C ′r containing p+ on the
right border of the drawing such that all faces f1, . . . , fi+1 lie to the left of C ′r,
see Fig. 3(c). Thus, the dual G∗i+1 is again a planar, acyclic dipole. ut

Since each SUP graph is a subgraph of a planar, acyclic dipole [15], Lemma 4
implies:

Corollary 1. The dual G∗ of a strongly connected RUP graph G is in SUP.

Consider again the component graph G and its compound graph G in Fig. 1(c)
of the RUP graph G in Fig. 1(a). In the dual G∗ of G, compounds and transits of
G swap their roles, i. e., compounds become transits and vice versa, cf. Fig. 1(e).
As a compound of G is a strongly connected RUP graph, its dual is an acyclic
dipole by Lemma 4. For instance, consider the second compound γ in Fig. 1(a),

1 If b > a, rotate the drawing around the cylinder until a < b.
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i. e., the vertices on the second shaded area labeled with γ. Its dual is indeed an
acyclic dipole as depicted in Fig. 1(b). For the transits, the same holds but with
swapped roles, i. e., the dual of a transit is a strongly connected RUP graph. As
an example, the dual of the second transit τ in Fig. 1(a) is shown in Fig. 1(d) and
it is indeed a strongly connected RUP graph. The following lemma subsumes
these observations.

Lemma 5. Let G be a RUP graph without sources and sinks and G = (VC ,E)
be its compound graph. Then,

(i) the dual of each compound γ ∈ VC is a planar, acyclic dipole and, thus, it
is in SUP.

(ii) each transit τ ∈ E is a planar, acyclic dipole and, thus, its dual is a strongly
connected RUP graph.

Proof. (i): The induced subgraph Gγ of a compound γ is strongly connected and
has a RUP embedding. According to Lemma 4, its dual G∗γ is a planar acyclic
dipole and, hence, its embedding is a SUP embedding.

(ii): The graph Gτ induced by a transit τ is subgraph of G induced by paths
from a source s to a sink t via trivial components only. Note that s may be
a compound or a trivial component and the same holds for t. Since all other
vertices of Gτ are trivial and G contains neither sources nor sinks, s is the only
source and t the only sink. Furthermore, Gτ is acyclic since it is a subgraph of
the component graph G. Hence, Gτ is an embedded, acyclic dipole. By Lemma 4
and Proposition 1 we can conclude that G∗τ is strongly connected and a RUP
graph. ut

By Lemma 3 we have seen that the dual of a RUP graph that contains
neither sources nor sinks is a dipole. Also the converse holds:

Lemma 6. A graph G without sources and sinks is a RUP graph if its dual G∗

is a dipole.

Consider again the example RUP graph in Fig. 1(a) and the compound graph
G∗ of its dualG∗. SinceG∗ is a dipole, G∗ is a path p = (s, τ∗1 , γ

∗
1 , τ
∗
2 , γ
∗
2 , . . . , τ

∗
4 , t)

consisting of compounds γ∗i , transits τ∗j , and two terminals s and t. Note that
each element on p corresponds to a subgraph in the primal G, i. e., for each
γ∗i there is a transit τi in G and for each τ∗j there is a compound γj in G.
In the proof of Lemma 6, we construct a RUP drawing of G by subsequently
processing the elements of p. We start with transit τ∗1 , whose induced subgraph
in G∗ is an acyclic dipole, and obtain a RUP drawing of γ1 which respects the
given embedding by Lemma 4. Then we proceed with γ∗1 , a compound in G∗,
for which we obtain a SUP drawing of τ1 which respects the given embedding
by Lemma 4. However, this SUP drawing is upward only with respect to the x-
direction, i. e., from left to right. We transform this drawing, while preserving its
embedding, such that it is also upward in y-direction. The so obtained drawing
of τ1 is then attached to the right border of the drawing of γ1. Then, the drawing
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of γ2 is attached to the right side of τ1 and so forth until we reach t. Note that
since all transits τ∗j point into the same direction in G∗, i. e., from s to t, all cycles
of the compounds in G have the same orientation in the obtained drawing, i. e.,
they all wind around the cylinder in the same direction.

Before we can prove Lemma 6, we need a supporting lemma.

Lemma 7. Let Γ be a SUP drawing of SUP graph G. Then, there is a RUP
drawing of G which implies the same embedding as Γ .

Proof. Consider a SUP drawing Γ of G = (V,E) on the standing cylinder.
If we negate the x-coordinate of each point in Γ and swap the axes of the
fundamental polygon, we yield a drawing of G on the rolling cylinder where
all edge curves are increasing monotonically in x-direction.2 We assume that
all curves are differentiable. Otherwise, (the finitely many [6]) critical points
must be excluded from the following reasoning. The idea is to shear the drawing
vertically such that the curves are increasing additionally in y-direction. Then,
we have a RUP drawing.

Edge curves are usually represented by continuous maps of the interval [0, 1]
to points of the surface. In the following, we take a different approach and use
real-valued partial functions as they allow for a simpler mathematical treatment.
Note that no curve has multiple points with the same x-coordinate. Thus, we
can represent each curve of an edge e by a differentiable and partial function fe
from I to R, whose domain is a closed interval, which we denote by dom(fe).
Then, let the drawing of e be the point set

{(x, y) ∈ dom(fe)× I◦ : y = fe(x) mod 2− 1} . (3)

At a first glance, this definition may seem odd, but mapping the image of fe via
(· mod 2) − 1 to y-coordinates on the rolling cylinder allows differentiable real-
valued functions to represent all curves increasing in x-direction, even if they
wind multiple times around the cylinder. See Fig. 4 for an example.

Let a define the least gradient of all functions representing an edge of G,
i. e.,3

a = min
e∈E

min
x∈dom(fe)

f ′e(x) . (4)

If f ′e > 0 for all functions fe representing an edge curve, the curves are increasing
monotonically in y-direction and we are done. Otherwise, assume for the rest of
the proof that there is at least one function fe with a non-positive gradient at
some point, i. e., a ≤ 0.

Now we are ready to define the shearing S by (for simplicity, we omit the
application of (· mod 2)− 1 to the y-coordinate)

S : I × I◦ → I × I◦ : (x, y) 7→ (x, y + (1− a) · x) . (5)

2 Swapping the coordinates alone would alter the embedding as it reverses the cyclic
order of incident edges. Negation cancels this effect.

3 If there are critical points, then choose a = mine∈E infx∈dom(fe) f
′
e(x).
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x

y

−1 0 1

−1

−2

−3

fe

(a) The function fe
representing edge e

e

(b) The edge curve of
e

Fig. 4. Edge curve represented by the partial function fe : I ×R : x 7→ −3(x+ 1
2
) with

dom(fe) = [−0.6, 0.6]

Denote by S[Γ ] the image of Γ under S. Observe that S preserves the embedding
of G, i. e., S[Γ ] is plane and implies the same embedding as Γ . It remains to
show that S[Γ ] is a RUP drawing. Let f represent an edge curve in Γ . Then the
function g representing the corresponding edge curve in the transformed drawing
S[Γ ] is

g : dom(f)→ R : x 7→ f(x) + (1− a) · x . (6)

We derive

∀
x∈dom(f)

g′(x) = f ′(x) + 1− a > 0 (7)

since f ′(x) ≥ a by the definition of a. ut

We are now able to prove Lemma 6.

Proof. If G consists of a single compound, then it is strongly connected as it
contains neither sources nor sinks. Thus, G∗ is an acyclic dipole, the embedding
of G is a RUP embedding according to Lemma 4, and we are done. In the
following we assume that G contains at least two compounds.

Let s ∈ F and t ∈ F be the source and the sink of G∗ = (F,E∗), respectively.
We show that each cycle C in G separates the faces s and t, i. e., s lies to the
left and t to the right of C or vice versa. Assume for contradiction that the left
side of C neither contains s nor t. Let f ∈ F be a face to the left of C. By the
definition of the dual graph and as C is a directed cycle and f lies to its left, we
can conclude that there is no path from any face to the right of C to f in G∗.
Especially, there is no path from s  f . However, by Lemma 1, there must be
a path s f ; a contradiction. Hence, both s and t must be to the left of C. By
a similar reasoning, there is no path f  t; again a contradiction.
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Let C and C ′ be two cycles in G belonging to different compounds. We show
that C and C ′ have the same orientation, i. e., either s is to the left or to the
right of both of them. As C and C ′ belong to different compounds, they are
(vertex) disjoint. As both C and C ′ separate s from t, they determine three
disjoint, non-empty regions in the embedding of G. One region containing face
s, one containing t, and a third region containing the faces F̂ ( F . If C and C ′

have opposite orientations, then we obtain the same situation as in the proof of
Lemma 3 and as displayed in Fig. 2, where t is situated within region X. Let
f ∈ F̂ . Then, either there is no path s f or no path f  t, which contradicts
the assumption that G∗ is a dipole (Lemma 1). Hence, C and C ′ have the same
orientation and, consequently, so have all cycles of G. From now on, we assume
w. l. o. g. that s is to the left and t is to the right of all cycles in G.

By the reasoning in the previous paragraph, we can also conclude that the
compounds of G properly nest, i. e., there is an ordering γ1, γ2, . . . , γk of the
compounds VC of G with the following properties. The region to the left of any
cycle in compound γi (1 < i < k) contains all vertices of compounds γ1, . . . , γi−1
and the region to the right of any cycle in compound γi contains all vertices of
compounds γi+1, . . . , γk. Compound γ1 is the leftmost compound in the sense
that no compound is to its left side and all other compounds are to its right side.
In the same sense, γk is the rightmost compound.

In the following, consider a drawing of G in the plane which respects the
given embedding. Fig. 5 shows the principle structure of such a drawing. The
compounds are displayed as rings which are shaded gray and the arrows at the
rings’ borders indicate the direction of the compounds’ cycles. Face s is situated
in the middle and lies left to all compounds γ1, . . . , γk. Face t is the outer face
to the right of all compounds. Let γi and γj be two compounds of G with
1 ≤ i < j ≤ k such that j − k > 1, i. e., in the ordering of the compounds,
there is at least one compound between γi and γj . We now show that there is no
transit between γi and γj , i. e., neither (γi, γj) ∈ E nor (γj , γi) ∈ E. Assume for
contradiction that a transit τ̂ = (γi, γj) ∈ E exists (for the converse edge, the
following reasoning proceeds analogously). Then, there is a path p from a vertex
in γi to a vertex in γj which visits internally only trivial components. However,
there is at least one compound γl between γi and γj (i < l < j). In the plane
drawing of G, this implies that p must visit at least one vertex of γl before it can
reach γj , which is a contradiction since p must be a path via trivial components
only. For instance, in Fig. 5, the path of transit τ̂ = (γ1, γ3) ∈ E must contain
at least one vertex of γ2 due to planarity.

Further, since G is connected, there must be a transit between directly adja-
cent compounds γi and γi+1, i. e., for all i with 1 ≤ i < k, either (γi, γi+1) ∈ E
or (γi+1, γi) ∈ E. In the following, let γ1, τ1, γ2, . . . , τk−1, γk be the sequence of
compounds and transits in G such that τi is the transit connecting compounds γi
and γi+1. Analogously, let τ∗1 , γ

∗
1 , τ
∗
2 , . . . , γ

∗
k−1, τ

∗
k be the sequence of compounds

and transits in G∗ in order of the path from the source to the sink in G∗.

By Lemma 4 we know that each compound in G has a RUP embedding.
Each transit is an acyclic, planar dipole by Lemma 4, which also has a RUP
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γ1τ1γ2τ2γ3τ3

τ̂

γk s

t

Fig. 5. Plane drawing of a graph G whose dual is a dipole



16 C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, K. Hanauer

embedding as shown by Lemma 7. We conclude the proof by showing that the
RUP embeddings of the individual compounds and transits can be merged into
a single consistent RUP embedding of the original graph G.

We construct a RUP drawing of G by subsequently processing the elements
in the order γ1, τ1, γ2, τ2, . . . , γk. For an example, see Fig. 6. As scaling a drawing
in x-direction does not impair its upwardness in y-direction [1], we do not have
to bother with the width of the rolling cylinder.

We start with transit τ∗1 , which is an acyclic dipole, and obtain a RUP
drawing Γγ1 of γ1, which respects the given embedding by Lemma 4, see Fig. 6(b).
Note that Gγ1 has a rightmost cycle C1 defined by its embedding. Then, we
proceed with γ∗1 , a compound in G∗, for which we obtain a SUP drawing Γτ1 of
Gτ1 which respects the given embedding by Lemma 4. First assume that τ1 is
directed from left to right, i. e., τ1 = (γ1, γ2). We shear Γτ1 as shown in Lemma 7
such that it becomes a RUP drawing and place it to the right of Γγ1 . However,
Gτ1 is not a subgraph of G but of its component graph. Gτ1 consists of a source s,
a sink t, and other vertices, which are neither a source nor a sink. For the latter
there is a one-to-one correspondence to the vertices of G, as they represent
trivial components of size 1. So we simply identify each component with the
single vertex it contains. Thus, we reinterpret the drawing of Gτ1 effectively as a
drawing of τ1. s is the compound γ1 and its incident edges correspond to edges
in the original graph, which are incident to vertices in γ1, more precisely to those
of C1. Therefore, we remove s and all points of its incident edge curves from Γτ1
within a rectangular ε-environment (for a suitably small ε under the maximum
metric). This results in edge curves starting in “cutting points” rather than in s
(Fig. 6(d)). We rotate Γτ1 around the rolling cylinder such that the y-coordinate
of the cutting points is greater than the y-coordinates of any of the vertices in
γ1. Let (u, v) be the edge in G corresponding to that edge in Gτ1 whose edge
curve has the leftmost cutting point. Recall that u ∈ C1 and v ∈ Gτ1 . Next
rotate the drawing of γ1 such that u is the topmost vertex, but has a smaller
y-coordinate than the cutting points. Since both the embedding of C1 implied by
Γγ1 and the embedding of Gτ1 implied by Γτ1 obey the initial planar embedding
of G, the order of the cutting points from right to left corresponds to the order
of the vertices in C1 from bottom to top. Hence, we can connect the vertices
of C1 with edge curves increasing monotonically in y-direction to the respective
cutting points without introducing crossings.

The resulting drawing Γ ′, see Fig. 6(e), forms the basis for the next step,
where we obtain (again as in Lemma 4) a RUP drawing Γγ2 of graph Gγ2
induced by the compound γ2, and place it to the right of Γ ′. In a similar way,
we remove t from the drawing and reconnect the resulting cutting points to the
respective vertices in the leftmost cycle of Gγ2 .

If, contrary to our aforementioned assumption, a transit is directed from right
to left, we proceed similarly except that we switch the roles of s and t and rotate
the cutting points around t to the bottom rather than the top.

Analogously, we proceed with τ2, γ3, τ3, γ4, . . . until we have processed all
components, resulting in a RUP drawing of G. ut
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(e) Intermediate result Γ ′ after the drawings of
γ1 and τ1 have been merged.

Fig. 6. Construction of a RUP drawing
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Lemmata 3 and 6 both require that the graph at hand contains neither
sources nor sinks. At a first glance, this requirement seems to be a strong limi-
tation. However, in the following lemma we show that each RUP graph can be
augmented by edges such that all sources and sinks vanish while still preserving
RUP embeddability.

Lemma 8. A RUP graph G is a spanning subgraph of a RUP graph H without
sources and sinks.

Proof. Consider an upward drawing of G on the rolling cylinder. We iteratively
add edges until all vertices have both ingoing and outgoing edges. Let t be a
sink of G. Shoot a ray from the position of t in upward direction and determine
where it first meets some point p of the drawing. If p belongs to a vertex v, we
can introduce a geodesic edge, i. e., a straight line on the fundamental polygon,
from t to v. Note that v = t if no other vertex or edge has a point with the
x-coordinate of p, such that the ray wraps exactly once around the cylinder.
If p belongs to an edge (u, v), proceed as follows. The drawing of (u, v) has
an ε-environment which contains no other point of the drawing except within
the ε-environment of u and v. Thus, we can route a new edge (t, v) in upward
direction and without introducing crossings, which goes first from t towards p
on the ray, then runs alongside (u, v) such that it finally meets v. Analogously,
we add incoming edges to the sources of G. ut

The proof of Theorem 1 is now complete. The only-if direction follows from
Lemmata 8 and 3 and the if direction is a consequence of Lemma 6 and the fact
that every subgraph of a RUP graph is a RUP graph.

4 wSUP Graphs and their Duals

We now turn to spherical graphs and upward planar embeddings on the stand-
ing cylinder. These graphs were characterized as spanning subgraphs of planar,
acyclic dipoles [13,15,18]. We already provided a new characterization for SUP
in terms of dual graphs in Lemma 4 in combination with Proposition 1. Now
we consider graphs which have a weakly upward planar drawing on the standing
cylinder. These graphs have not been characterized before.

For a start, consider an upward drawing of a wSUP graph. If there are
cycles, they must wind around the cylinder horizontally, which leads us to the
following observation.

Lemma 9. Let G be a graph in wSUP. Then, all cycles of G are (vertex)
disjoint.

Proof. Consider an arbitrary, weakly upward planar drawing of G on the stand-
ing cylinder. If G has cycles, then all cycles must wind around the cylinder
exactly once and at the same ordinate, i. e., horizontally. Suppose that G has
two non-disjoint cycles C1, C2. Then, C1 and C2 share a common vertex v. Let y1
and y2 be the ordinates of C1 and C2, respectively. As v is part of both, y1 = y2.
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Thus, C1 and C2 interfere and the drawing is not planar; a contradiction. Note
that vertex disjointness implies edge disjointness. ut

For the characterization of wSUP graphs, we use supergraphs which may
have an extra source or sink and extend techniques for SUP graphs from [15].

Lemma 10. A graph G is a wSUP graph if and only if it has a wSUP super-
graph H ⊇ G with one source and one sink.

Proof. “⇒”: Let G be a wSUP graph. Consider the component graph G of
G. According to Lemma 9, cycles in G are disjoint. Each such cycle becomes a
compound in G and there are no other compounds. The compounds subdivide
G into sections, i. e., the union of transits that have their source in the lower
compound or sink in the upper compound or both. As G is planar, no edge can
span multiple sections. A strongly connected component contains neither sources
nor sinks, hence, it suffices to focus on sections.

Let Gσ be an intermediate section, i. e., a section bounded by a lower com-
pound s and an upper compound t. As Gσ ∈ SUP, it has a planar, acyclic dipole
Hσ as supergraph. The construction of Hσ given in [15] allows for Hσ to have a
wSUP embedding which follows the embedding of Gσ and s is its single source
and t its single sink. If Gσ is extremal, i. e., it is the lowermost or the uppermost
section (or both) and not bounded by a compound on the lower or upper end,
then a source or sink, respectively, is chosen according to the construction given
in [15]. Thus, we obtain a planar, acyclic dipole for every section of G. Now
expand the compounds to horizontal cycles again by adjusting the embedding
accordingly. If, during the construction, incoming or outgoing edges were added
to a compound, add them to the vertices of the compound such that the cyclic
ordering in a re-contraction of the vertices remains the same. This does not in-
troduce any new cycles. In the end, every intermediate section is a wSUP graph
without sources and sinks and the two extremal sections are wSUP graphs with
exactly one source or sink, respectively. If there is no uppermost (lowermost)
extremal section, simply add a vertex and an edge from (to) one of the vertices
of the uppermost (lowermost) compound.

Let H be the graph constructed as described. Then, H is a wSUP graph
and a supergraph of G with exactly one source and sink. Note that due to the
elimination of sources and sinks within the sections, the component graph of H
only consists of strongly connected components and transits and, therefore, H
is a dipole.

“⇐”: Follows immediately, since any subgraph of a wSUP graph is in wSUP.
ut

We are now able to give a first characterization of wSUP graphs.

Theorem 2. A graph G is a wSUP graph if and only if it has a supergraph
H ⊇ G such that H is a planar dipole whose cycles are (vertex) disjoint.

Proof. “⇒”: Let G be a wSUP graph. Then, the supergraph H constructed
according to Lemma 10 has exactly one source s and one sink t. Additionally,
H is in wSUP and a dipole. By Lemma 9 all cycles of H are disjoint.
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(a) Graph G ∈ wSUP (b) The component
graph G of G

s1
s2

t

(c) The compound
graph G of G

Fig. 7. A wSUP example

“⇐”: Let H be a planar dipole whose cycles are disjoint. Consider the com-
ponent graph H of H. As H is a planar dipole with source s and sink t, the
compound graph of H is a path s t. Each transit τ is a planar, acyclic dipole
and, therefore, has a SUP embedding. We can construct a drawing of H on the
standing cylinder by assembling the compounds and transits of H on on top of
each other (with respect to the upward direction) according to their appearance
in a traversal of the compound graph from s to t. Every transit is drawn accord-
ing to its SUP embedding. Every compound of H consists of a single cycle only,
so it can be drawn horizontally, i. e., it winds around the cylinder exactly once
and at the same ordinate. This leads to a weakly upward planar drawing, so H
is a wSUP graph. Now G is in wSUP as it is a subgraph of the wSUP graph
H. ut

Next, we turn to the duals of wSUP graphs. Recall from Lemma 4 in combi-
nation with Proposition 1 that a graph with one source and one sink is in SUP
if and only if its dual is a strongly connected RUP graph. Introducing vertex
disjoint cycles, the characterization via dual graphs now reads as follows.

Theorem 3. A graph G with exactly one source and sink is a wSUP graph if
and only if its dual G∗ is a RUP graph that has no trivial strongly connected
components.

Proof. “⇒”: Let G be a wSUP graph with exactly one source and one sink.
Then, G is a dipole and Theorem 1 together with Proposition 1 implies that G∗

is in RUP.
If G is acyclic, then G∗ is strongly connected by Lemma 4 and Proposi-

tion 1. Hence, G∗ has no trivial strongly connected components. Otherwise, G
may contain only simple, edge disjoint (“horizontal”) cycles, which wind around
the cylinder at the same ordinate. Therefore, a cycle cannot “split”, i. e., in a
traversal of the cycle, the successor vertex is unambiguous. These cycles are the
compounds in the component graph G.
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Consider the dual graph G∗ of G. By Lemma 5, the dual of each transit of
G is in RUP and is strongly connected. According to the definition, a transit
contains at least one edge. Therefore, the dual of a transit is a compound. The
dual of every cycle C consists of simple edges from the faces to the left of C to
the faces to its right, which are also part of the transits’ duals. Since the cycles
are disjoint, no faces are enclosed by their edges. Thus, all vertices of G∗ are
part of a compound and G∗ has no trivial strongly connected components.

“⇐”: Let G∗ be a RUP embedded graph without any trivial strongly con-
nected components. If G∗ is strongly connected, then G is an acyclic dipole by
Lemma 4 and Proposition 1 and, thus, a SUP graph [15].

Otherwise, consider the component graph of G∗. According to Lemma 4 and
Proposition 1, the primal of each strongly connected component is an acyclic
dipole. SinceG∗ has no trivial strongly connected components, all transits consist
of paths of length 1. Hence, the primal of each transit is a simple, disjoint cycle
which winds around the cylinder exactly once and G does not contain any other
cycles. G∗ has neither sources nor sinks, since they would be trivial strongly
connected components. Thus, by Lemma 3 and Proposition 1, G is a planar
dipole with disjoint cycles only. Theorem 2 now implies that G is a wSUP
graph with only one source and one sink. ut

From Theorem 3 and Lemma 10 we directly obtain the following corollary,
which concludes our second characterization of wSUP graphs.

Corollary 2. Every wSUP graph G has a wSUP supergraph H whose dual
H∗ is a RUP graph without trivial strongly connected components.

5 Summary

We have shown that a directed graph has a planar upward drawing on the rolling
cylinder if and only if it is a spanning subgraph of a planar graph without sources
and sinks whose dual is a dipole. This result completes the known characteriza-
tions of planar upward drawings in the plane [7,17] and on the sphere [9,11,14,15].
Every SUP graph is a spanning subgraph of a planar, acyclic dipole and every
UP graph is a spanning subgraph of a planar, acyclic dipole with an st-edge.
Moreover, a graph has a weakly upward drawing on the standing cylinder if and
only if it is a subgraph of a planar dipole with disjoint cycles.

Concerning dual graphs, the duals of the acyclic components of RUP graphs
are in RUP and the duals of the strongly connected components are in SUP.
In particular, the dual of a strongly connected RUP graph is in SUP. Every
wSUP graph has a planar supergraph whose dual is a RUP graph without
trivial strongly connected components.

Future work is to investigate whether the characterization by means of dual
graphs leads to new insights on the upward embeddability on other surfaces, e. g.,
the torus. Also, the duals of quasi-upward planar graphs [5] shall be considered.
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