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Abstract

A graph is NIC-planar if it admits a drawing in the plane with at most one cross-
ing per edge and such that two pairs of crossing edges share at most one common
end vertex. NIC-planarity generalizes IC-planarity, which allows a vertex to be
incident to at most one crossing edge, and specializes 1-planarity, which only
requires at most one crossing per edge.

We characterize embeddings of maximal NIC-planar graphs in terms of gen-
eralized planar dual graphs. The characterization is used to derive tight bounds
on the density of maximal NIC-planar graphs which ranges between 3.2(n − 2)
and 3.6(n−2). Further, we prove that optimal NIC-planar graphs with 3.6(n−2)
edges have a unique embedding and can be recognized in linear time, whereas
the general recognition problem of NIC-planar graphs is NP-complete. In ad-
dition, we show that there are NIC-planar graphs that do not admit right angle
crossing drawings, which distinguishes NIC-planar from IC-planar graphs.

Keywords: NIC-planarity, density, recognition, 1-planarity, right-angle
crossings (RAC)

1. Introduction

Beyond-planar graphs, a family of graph classes defined as extensions of pla-
nar graphs with different restrictions on crossings, have received recent interest
[32]. 1-planar graphs constitute an important class of this family. A graph is
1-planar if it can be drawn in the plane with at most one crossing per edge.
These graphs were introduced by Ringel [34] in the context of coloring a pla-
nar graph and its dual simultaneously and have been studied intensively since
then. Ringel observed that a pair of crossing edges can be augmented by planar
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Table 1: The density of maximal graphs. An asterisk marks our results.

1-planar NIC-planar IC-planar outer 1-planar
upper bound 4n− 8 [10, 11] 18

5 (n− 2) [38], (*) 13
4 n− 6 [30] 5

2n− 2 [5]
b example 4n− 8 [10, 11] 18

5 (n− 2) [21], (*) 13
4 n− 6 [39] 5

2n− 2 [5]
lower bound 20

9 n−
10
3 [9] 16

5 (n− 2) (*) 3n− 5 [7] 11
5 n−

18
5 [5]

b example 45
17n−

84
17 [16] 16

5 (n− 2) (*) 3n− 5 [7] 11
5 n−

18
5 [5]

edges to form K4. Bodendiek et al. [10, 11] proved that 1-planar graphs with
n vertices have at most 4n − 8 edges, which is a tight bound for n = 8 and all
n ≥ 10. These facts have also been discovered in other works. 1-planar graphs
with 4n − 8 edges are called optimal [11, 35]. They have a special structure
and consist of a triconnected planar quadrangulation with a pair of crossing
edges in each face. A graph G is maximal 1-planar if no further edge can be
added to G without violating 1-planarity. Brandenburg et al. [16] found sparse
maximal 1-planar graphs with less than 2.65n edges, which implies that there
are maximal 1-planar graphs that are not optimal and that are even sparser
than maximal planar graphs. The best known lower bound on the density of
maximal 1-planar graphs is 2.22n [9] and neither the upper nor the lower bound
are known to be tight.

There are some important subclasses of 1-planar graphs. A graph is IC-
planar (independent crossing planar) [3, 15, 30, 39] if it has a 1-planar em-
bedding so that each vertex is incident to at most one crossing edge. IC-planar
graphs were introduced by Albertson [3] who studied the coloring problem. Král
and Stacho [30] solved the coloring problem and proved that K5 is the largest
complete graph that is IC-planar. IC-planar graphs have an upper bound of
3.25n − 6 on the number of edges, which is known as a tight bound as there
are optimal IC-planar graphs with 13k − 6 edges for all n = 4k and k ≥ 2 [39].
For other values of n with n ≥ 8 the maximum number of edges is b3.25n− 6c.
On the other hand, there are sparse maximal IC-planar graphs with only 3n− 5
edges for all n ≥ 5 [7]. In NIC-planar graphs (near-independent crossing planar)
[38], two pairs of crossing edges share at most one vertex. Equivalently, if every
pair of crossing edges is augmented by planar edges to K4, an edge may be
part of at most one K4 that is embedded with a crossing. Note that a graph
is NIC-planar if every biconnected component is NIC-planar. NIC-planar graphs
were introduced by Zhang [38], who proved a density of at most 3.6(n− 2) and
showed that K6 is not NIC-planar. Czap and Šugarek [21] give an example of an
optimal NIC-planar graph with 27 vertices and 90 edges which proves that the
upper bound is tight. Outer 1-planar graphs are another subclass of 1-planar
graphs. They must admit a 1-planar embedding such that all vertices are in the
outer face [5, 28]. Results on the density of maximal graphs are summarized in
Table 1.

There is a notable interrelationship between 1-planar and RAC graphs which
are graphs that can be drawn straight-line with right angle crossings [23, 26].
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Didimo et al. [23] showed that RAC graphs have at most 4n − 10 edges and
proved that there are optimal RAC graphs with 4n− 10 edges for all n = 3k+5
and k ≥ 3. For other values of n it is unknown whether there are optimal
RAC graphs. Eades and Liotta [26] established that optimal RAC graphs (they
called them maximally dense) admit a special structure and proved that optimal
RAC graphs are 1-planar. However, not all RAC-graphs are 1-planar and vice
versa [26], i. e., the classes of RAC-graphs and 1-planar graphs are incomparable.
Recently, Brandenburg et al. [15] showed that every IC-planar graph admits a
RAC drawing, which implies that every IC-planar graph is a RAC graph. They
posed the problem whether NIC-planar graphs are RAC graphs, which we refute.
Hence, with respect to RAC drawings, NIC-planar graphs behave like 1-planar
graphs and differ from IC-planar graphs.

Recognizing 1-planar graphs is NP-complete in general [27, 29], and re-
mains NP-complete even for graphs of bounded bandwidth, pathwidth, or
treewidth [8], if an edge is added to a planar graph [17], and if the input graph is
triconnected and given with a rotation system [6]. Likewise, testing IC-planarity
is NP-complete [15]. On the other hand, there are polynomial-time recogni-
tion algorithms for 1-planar graphs that are maximized in some sense, such as
triangulated [19], maximal [12], and optimal graphs [14].

In this paper we study NIC-planar graphs. After some basic definitions
in Sect. 2, we characterize embeddings of maximal NIC-planar graphs in terms
of generalized planar dual graphs in Sect. 3, and derive tight upper and lower
bounds on the density of maximal 1-planar graphs in Sect. 4 for infinitely many
values of n. A linear-time recognition algorithm for optimal NIC-planar graphs
is established in Sect. 5. In Sect. 6 we show that NIC-planar graphs are incompa-
rable with RAC graphs, and we consider the recognition problem for NIC-planar
graphs. We conclude in Sect. 8 with some open problems.

2. Preliminaries

We consider simple, undirected graphs G = (V,E) with n vertices and m
edges and assume that the graphs are biconnected. The subgraph induced by a
subset U ⊆ V of vertices is denoted by G[U ].

A drawing D(G) is a mapping of G into the plane such that the vertices are
mapped to distinct points and each edge is mapped to a Jordan arc connecting
the points of the end vertices. Two edges cross if their Jordan arcs intersect in
a point different from their end points. Crossings subdivide an edge into two
or more uncrossed edge segments. An edge without crossings is called planar
and consists only of a trivial edge segment. Edge segments of crossed edges are
said to be non-trivial. For a crossed edge {u, v}, we denote the extremal edge
segment that is incident to u (v) by {u, v} ({u, v}). A drawing is planar if every
edge is planar, and 1-planar if there is at most one crossing per edge.

A drawing of a graph partitions the plane into empty regions called faces. A
face is defined by the cyclic sequence of edge segments that forms its boundary,
which is described by vertices and crossing points, e. g., face fab in Fig. 1a. Two
faces f and g are said to be adjacent, denoted as f | g, if their boundaries
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share a common edge segment. A vertex v is incident to a face f if there is
an edge {u, v} such that f is either bounded by the trivial edge segment {u, v}
or the non-trivial edge segment {u, v}. A face is called a (trivial) triangle, if
its boundary consists of exactly three (trivial) edge segments. The set of all
faces describes the embedding E(G). The embedding resulting from a planar
(1-planar) drawing is called planar (1-planar). A 1-planar embedding coincides
with the embedding of the planarization of G which is obtained by treating
each crossing point as a vertex and the edge segments as edges. A 1-planar
embedding is triangulated if every face is a triangle [19]. A planar reduction
ĜE ⊆ G is a planar subgraph of G obtained by removing exactly one edge of
each pair of edges that cross in E(G). The planar skeleton G̃E ⊆ G is the planar
subgraph of G with respect to E(G) that is obtained by removing all pairs of
crossing edges.

We consider NIC-planar graphs and embeddings that are maximized in some
sense. A NIC-planar embedding E(G) is maximal (planar-maximal) NIC-planar
if no further (planar) edge can be added to E(G) without violating NIC-planarity
or simplicity. A NIC-planar graph G is maximal if the graph G + e obtained
from G by the addition of an edge e is no longer NIC-planar. A graph is called
a sparsest (densest) NIC-planar graph if it is maximal NIC-planar with the
minimum (maximum) number of edges among all maximal NIC-planar graphs
of the same size. A NIC-planar graph G is called optimal if G has exactly the
upper bound of 3.6(n−2) edges. There are analogous definitions for other graph
classes.

The concepts planar-maximal embedding and maximal and optimal graphs
coincide for planar graphs, where the maximum number of edges is always 3n−6.
However, they are different for 1-planar, NIC-planar, and IC-planar graphs. The
complete graph on five vertices without one edge, K5 − e, is planar and has
a planar embedding which is planar-maximal. Nevertheless, K5 − e can be
embedded with a pair of crossing edges and e can be added as a planar edge. A
graph is maximal if every embedding is maximal. All the same, an embedding
E(G) of a graph G may be maximal 1-planar (NIC-planar, IC-planar) without
G being maximal. As mentioned before, there are sparse 1-planar graphs with
less than 2.65n edges, whereas optimal 1-planar graphs have 4n− 8 edges [37].
Due to integrality, optimal NIC-planar graphs exist only for n = 5k + 2 and
optimal IC-planar graphs only for n = 4k. Zhang and Liu [39] present optimal
IC-planar graphs with 4k vertices and 13k−6 edges for every k ≥ 2 vertices and
Czap and Šugarek [21] gave an example of an optimal NIC-planar graph of size
27. We show that there are optimal NIC-planar graphs for all n = 5k + 2 with
k ≥ 2 and not for n = 7. The distinction between densest and optimal graphs
is important, since optimal graphs often have a special structure, as we shall
show for NIC-planar graphs.

The complete graph on four vertices K4 plays a crucial role in 1-planar (IC-
and NIC-planar) graphs. It has exactly the two 1-planar embeddings depicted
in Fig. 1 [31]. If K4 is a subgraph of another graph G, further vertices and edges
of G may be inside the shown faces. Let E(G) be a NIC-planar embedding of
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Figure 1: The two embeddings of a K4 induced by the vertices {a, b, c, d} (up to isomorphism):
A kite (a) and a tetrahedron, which can be simple (b) or non-simple (c).

a graph G = (V,E) and let U = {a, b, c, d} ⊆ V such that G[U ] is K4. Denote
by E(G[U ]) the embedding of G[U ] induced by E(G). G[U ] is embedded as a
kite in E(G) (see also Fig. 1a) if, w. l. o. g., {a, c} and {b, d} cross each other
and there are faces fab, fbc, fcd, fda in E(G) such that fab is bounded exactly
by {a, b}, {a, c}, and {b, d}, and analogously for fbc, fcd, fda. Hence, there is
no other vertex in the interior of a kite. G[U ] is embedded as a tetrahedron in
E(G) if all edges are planar with respect to E(G[U ]) but not necessarily in E(G).
The tetrahedron embedding of G[U ] in E(G) is called simple, if, w. l. o. g., d has
vertex degree three and fabd, fbcd, and fcad are faces in E(G). Then d is called
the center of the tetrahedron. Fig. 1b shows a simple tetrahedron embedding
of G[U ], whereas the tetrahedron embedding in Fig. 1c is non-simple due to the
missing faces fabd as well as fbcd.

3. The Generalized Dual of Maximal NIC-planar Graphs

In this section, we study the structure of NIC-planar embeddings of maximal
NIC-planar graphs. We use the results for tight upper and lower bounds of
the density of NIC-planar graphs in Sect. 4 and for a linear-time recognition
algorithm for optimal NIC-planar graphs in Sect. 5. The upper bound on the
density was proved in [38] using a different technique and there is a construction
for the tightness of the bound in [21] in steps of 15 vertices.

Let E(G) be a NIC-planar embedding of a maximal NIC-planar graph G.
The first property we observe is that the subgraph of G induced by the end
vertices of a pair of crossing edges induces K4 with a kite embedding. It has
been discovered by Ringel [34] and in many other works that a pair of crossing
edges admits such a 1-planar embedding. This fact is used for a normal form of
embeddings of triconnected 1-planar graphs [2] in the sense that it can always
be established. With respect to maximal NIC-planarity, every embedding obeys
to this normal form.

Lemma 1. Let {a, c}, {b, d} be two edges crossing each other in a NIC-planar
embedding of a maximal NIC-planar graph G = (V,E).
Then, {a, b}, {b, c}, {c, d}, {a, d} ∈ E and the induced K4 is embedded as a kite.

Proof. Let E(G) be a NIC-planar embedding of G. Consider a pair of vertices
e ∈ {{a, b}, {b, c}, {c, d}, {d, a}}. As G is maximal, e ∈ E, otherwise it could be
added without violating NIC-planarity. Thus G[{a, b, c, d}] is K4.
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Figure 2: Proof of Lemma 2.

W. l. o. g., let e = {a, b} (the other cases are similar). Due to the crossing
of {a, c} and {b, d}, the vertices a and b cannot be incident to another pair of
crossing edges. Hence, e must be planar in E(G). Let f denote the face of E(G)
that is incident to both a and b and bounded by the edge segments {a, c} and
{b, d}. Suppose that f is not bounded by {a, b}. Furthermore, e and the edge
segments {a, c} and {b, d} form a closed path p that partitions the set of faces
of E(G). Let g and h denote the faces bounded by {a, b} in E(G). The fact
that a and b cannot be incident to another pair of crossing edges implies that
there is a vertex x 6= a, b incident to g as well as a vertex y 6= a, b incident to h.
As p places g and h in different partitions and contains neither x nor y, x 6= y.
Moreover, p consists of one planar edge and two edge segments and thus cannot
be crossed. Subsequently, x and y are not adjacent.

Construct a new embedding E ′(G) from E(G) by re-routing {a, b} such that
it subdivides f . Then, g and h conflate into one face gh in E ′(G). As x and y are
both incident to gh in E ′(G), the edge {x, y} can be added to G and embedded
planarly such that it subdivides gh. The resulting embedding is NIC-planar,
thus contradicting the maximality of G.

Lemma 1 implies that every face bounded by at least one non-trivial edge
segment is part of a kite and hence a non-trivial triangle. In fact, every embed-
ding of a maximal NIC-planar graph is triangulated.

Lemma 2. Every face of a NIC-planar embedding E(G) of a maximal NIC-planar
graph G with n ≥ 5 is a triangle.

Proof. Let E(G) be a NIC-planar embedding of G = (V,E) and let f be a face of
E(G). Recall from Sect. 2 that a triangle is either trivial if its boundary consists
only of trivial edge segments, i. e., planar edges, or non-trivial otherwise.

By Lemma 1, every face whose boundary contains non-trivial edge segments
is part of a kite. Hence, if f is bounded by at least one non-trivial edge segment,
it is a non-trivial triangle.

Otherwise, assume that f is bounded only by planar edges and suppose that
f is not a triangle. Let a, b, c, d ∈ V be distinct vertices incident to f such that
f ’s boundary contains the edges {a, b}, {b, c}, {c, d}. Suppose that G does not
contain edge {a, c}. Then {a, c} could be added to G and embedded planarly
such that it subdivides f . The resulting embedding would be NIC-planar, a
contradiction to the maximality of G. Thus, {a, c} ∈ E, but it is not part
of the boundary of f . By the same reasoning, if {b, d} 6∈ E then it could be
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added. Hence, {a, c}, {b, d} ∈ E. As neither of both edges subdivides f , {a, c}
and {b, d} must cross each other in E(G) and thus, by Lemma 1, E(G) contains
a corresponding kite of the K4 induced by a, b, c, d. In particular, {a, d} ∈ E
(cf. Fig. 2a). Note that {a, d} does not necessarily bound f . Nevertheless, this
kite can be transformed into a tetrahedron by re-routing one of {a, c} or {b, d}
such that it subdivides f .

W. l. o. g., consider the embedding E ′(G) obtained from E(G) by re-routing
{a, c}. Denote by f ′ and f ′′ the faces resulting from the division of f and let f ′ be
the face bounded by {a, b}, {b, c}, {a, c}. In E ′(G), the edges {a, c}, {c, d}, {a, d}
form a closed planar path p and thus split the set of faces into two partitions
P ′ and P ′′, such that P ′ contains exactly the two triangles emerging from the
conflation of the former kite faces as well as the face f ′ (cf. Fig. 2b). Note
that only the vertices a, b, c, d are incident to faces in P ′. If n ≥ 5, there
must be a fifth vertex, which is subsequently incident only to faces contained
in P ′′. In particular, this vertex must be incident to at least two faces in P ′′

due to biconnectivity. This implies that P ′′ cannot consist only of face f ′′, and
consequently, f ′′ cannot be bounded by the edge {a, d}. Recall that f ′′ results
from the subdivision of face f in E(G) and that f ’s boundary consists only of
planar edges. Hence, there is a vertex e incident to f ′′ such that f ′′ is bounded
by {d, e} and e is distinct from a, b, c, d. Observe that p contains c, but not e,
and, by construction, f ′′ is the only face c is incident to in P ′′. As p is planar
and the boundary of f ′′ contains {a, c}, {c, d}, and {d, e}, c and e cannot be
adjacent in G. However, {c, e} can be added to G and embedded planarly such
that it subdivides f ′′, which yields a NIC-planar embedding, a contradiction to
the maximality of G.

Observe that the lemma neither holds for maximal 1-planar graphs nor for
plane-maximal 1-planar graphs, as both admit hermits, i. e., vertices of degree
two [16]. Moreover, the restriction to graphs with n ≥ 5 is indispensable, as K4

can be embedded as a kite, which has a quadrangular (outer) face. Forthcoming,
we assume that all graphs have size n ≥ 5.

Next, consider the planar versions of an embedding E(G) of a maximal NIC-
planar graph G.

Corollary 1. Let G be a maximal NIC-planar graph with n ≥ 5.
• If ĜE ⊆ G is a planar reduction of G with respect to any NIC-planar
embedding E(G), then ĜE is maximal planar.

• G is triconnected.

• The planar skeleton G̃E ⊆ G with respect to every NIC-planar embedding
E(G) is triconnected.

Proof. ĜE is planar and triangulated by Lemma 2. Thus, it is triconnected and
so is G as its supergraph. Then, also the planar skeleton G̃E is triconnected as
shown by Alam et al. [2].
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(a) (b)

Figure 3: An embedding of a graph (a) and the corresponding generalized dual (b).

These results enable us to define the generalized dual graph of a maximal
NIC-planar graph. As in the case of planar graphs, the dual is defined with
respect to a specific embedding E(G). Figure 3 provides a small example.

Definition 1. The generalized dual graph G∗ = (V ∗, E∗) of a maximal NIC-
planar graph G with respect to NIC-planar embedding E(G) contains three types
of nodes: For every set of faces forming a kite in E(G), V ∗ contains a -node.
For every set of faces forming a simple tetrahedron in E(G), V ∗ contains a -
node. All other faces of E(G) are represented by a -node each. Let q ∈ V ∗ and
denote by P(q) the set of faces of E(G) represented by q. As in conventional
duals of planar graphs, there is an edge {q, r} ∈ E∗ for every pair of adjacent
faces f |g of E(G) such that f ∈ P(q) and g ∈ P(r) and q 6= r.

In the following, we analyze the structure of G∗. For clarification, we call
the elements of V vertices and the elements of V ∗ nodes. Note that -nodes
have degree four and - and -nodes have degree three. Furthermore, this
definition in general allows for multi-edges, but not loops.

Lemma 3. The generalized dual graph G∗ of a maximal NIC-planar graph G
with respect to a NIC-planar embedding E(G) is a simple 3-connected planar
graph.

Proof. Let G′ ⊆ G be the graph obtained from G by removing all vertices of
degree three in G. Recall that every face in E(G) is a triangle by Lemma 2.
Let E ′(G′) denote the NIC-planar embedding of G′ inherited from E(G) and
observe that E ′(G′) emerges from E(G) by removing the center vertex of each
simple tetrahedron and thereby replacing every set of faces forming a simple
tetrahedron embedding by a trivial triangle. Next, consider the planar skeleton
G̃′E′ of G′ with respect to E ′(G′), which is obtained by removing all pairs of
crossing edges in kites. Then the generalized dual graph G∗ of G with respect
to E(G) is the planar dual of G̃′E′ . As G̃′E′ is simple and triconnected by
Corollary 1, so is its dual graph.

We say that a - or -node q ∈ V ∗ is marked if q is adjacent to a -node
in G∗. Otherwise, q is unmarked. Two adjacent -nodes q, r ∈ V ∗ are said to
be tetrahedral if the union of their vertices induce K4 in G. Observe that this
induced K4 is necessarily embedded as a non-simple tetrahedron. Let u, v, w
and u, v, x denote the vertices incident to the faces represented by q and r,
respectively. Then, {w, x} ∈ E if and only if q, r are tetrahedral. In this case,
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Figure 4: Proof of Lemma 4:
Case ii: A -node q in G∗ that is adjacent to an unmarked -node r (a) and the correspond-
ing situation in E(G), where f ∈ P(q) and P(r) = {g} (b).
Case (iii): A -node q in G∗ that is adjacent to a -node r as well as two further -nodes
(c), the corresponding situation in E(G), where f ∈ P(q) and P(r) = {g} (d), and the reem-
bedding, which then allows for the insertion of an additional edge (e).
Case (iv): The situation in E(G) in case of two adjacent, unmarked -nodes q, r in G∗ with
P(q) = {f} and P(r) = {g} (f). The shaded region contains further vertices and edges of the
graph.

we call {w, x} the tetrahedral edge. In Fig. 4f, e. g., the -nodes representing the
faces f and g in G∗ are tetrahedral and {w, x} is the corresponding tetrahedral
edge.

The definition of a NIC-planar embedding implies a number of restrictions
on the adjacencies among nodes in G∗, which are subsumed in the following
lemma.

Lemma 4. Let G∗ be the generalized dual of a maximal NIC-planar graph G
where n ≥ 5 with respect to a NIC-planar embedding E(G).

(i) No two -nodes are adjacent.

(ii) A -node is only adjacent to -nodes and marked -nodes.

(iii) Every -node is marked.

(iv) If two unmarked -nodes are adjacent, then they are tetrahedral.

(v) If a -node is adjacent to two -nodes, then one of them is marked.

Proof. Consider a node q of G∗ that is adjacent to another node r via an edge
e. Let {u, v} be the corresponding primal edge of e and denote by f ∈ P(q) and
g ∈ P(r) the faces bounded by {u, v}. Note that {u, v} is planar in E(G).

(i) Assume that q and r are -nodes. Then, u and v would be incident to
two pairs of crossing edges, thus contradicting the NIC-planarity of E(G).

(ii) Next, assume that q is a -node. Let w, x 6= u, v denote the two other
vertices of the K4 represented by q, such that w is the vertex of degree three in
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the center of the tetrahedron.
Suppose that r is also a -node. As f and g are trivial triangles, u and v are
not incident to a common pair of crossing edges by Lemma 1. Let y denote
the third vertex incident to g, which is the center of the tetrahedron embedding
represented by r. Then, w and y are not adjacent to each other, and no pair
of vertices from u, v, w, y is incident to a common pair of crossing edges. In
consequence, inserting an edge {w, y} and embedding it such that it crosses
{u, v} does not violate NIC-planarity and thus contradicts the maximality of G.
Subsequently, r cannot be a -node.
Suppose that r is a -node (cf. Fig. 4a and 4b). By Lemma 1, u and v cannot
be adjacent to a common pair of crossing edges, as both f and g are trivial
triangles. Let y 6= u, v be the third vertex incident to g. If x = y, then G∗

would consist of exactly one -node and one -node, i. e., G is K4 and E(G) is
its planar embedding. As n ≥ 5, x 6= y. Being the tetrahedron’s center vertex,
w is adjacent only to u, v, and x and all edges incident to w are planar. Suppose
that r is unmarked. Then, by Lemma 1, neither u, y nor v, y are adjacent to a
common pair of crossing edges. Subsequently, the edge {w, y} can be added to
G and embedded such that it crosses {u, v} without violating NIC-planarity, a
contradiction to G being maximal. Hence, if a -node is adjacent to a -node,
the latter must be marked.
(iii) Suppose that q is a -node as in (ii) and only adjacent to (marked) -
nodes (cf. Fig. 4c and 4d). Then, in particular, r is a -node. Denote the third
vertex incident to g by y. As {u, v}, {v, x}, and {u, x} are planar and each of
them bounds two trivial triangles, none of their end vertices can be incident
to a common pair of crossing edges by Lemma 1. The same holds for u,w
as well as v, w and x,w, since w is incident only planar edges. Subsequently,
the embedding E ′(G) obtained from E(G) by reembedding w such that {w, x}
crosses {u, v} yields a NIC-planar embedding of G (cf. Fig. 4e). Furthermore,
E ′(G) contains a face that is bounded by four trivial edge segments {u,w},
{v, w}, {v, y}, and {u, y}. Thus, there also is a NIC-planar embedding for the
graph obtained from G by adding an edge {w, y}, a contradiction to G being
maximal. Note that as n ≥ 5, x 6= y, hence, {w, y} is not contained in G. In
consequence, the -node q cannot be adjacent to -nodes only and thus must
itself be marked.

(iv) Consider now the case that q is a -node and let w denote the third
vertex incident to f . Furthermore, assume that r is another -node and both
are unmarked (cf. Fig. 4f). Denote the third vertex incident to g by x. In
consequence of Lemma 1, no pair of u, v, w is incident to a common pair of
crossing edges, and likewise for u, v, x. Suppose that {w, x} 6∈ E. Then, by
Lemma 1, w and x cannot be incident to a common pair of crossing edges. Hence,
{w, x} can be added to G and embedded such that it crosses {u, v} without
violating NIC-planarity, a contradiction to the maximality of G. Subsequently,
{w, x} ∈ E. This in turn implies that G[u, v, w, x] is K4, hence, q and r are
tetrahedral.

(v) Finally, consider the case that q and r are -nodes and that q is adjacent
to a second -node s representing a face h, which is also depicted in Fig. 4f.
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W. l. o. g., let {v, w} be the edge bounding both f and h and denote by x′ 6= v, w
the third vertex incident to h. Suppose that q, r, and s are unmarked. As we
have argued in the proof of (iv), {w, x} ∈ E. For q and s, this analogously
implies that {u, x′} ∈ E. As {w, x}, {x, v}, and {v, w} form a closed path and
both {w, x} and {x, v} are planar, {u, x′} must cross {w, x}. By Lemma 1,
G[u,w, x, x′] is K4 and {u,w} hence bounds a non-trivial triangle. Thus, q,
r, and s are marked, a contradiction. Consequently, q, r, and s cannot be all
unmarked.

With respect to a fixed embedding, also the converse of Lemma 4 holds:

Lemma 5. Let G∗ be a triconnected planar graph with vertices of degree three
that are labeled by and and of vertices of degree four that are labeled by

so that the requirements of Lemma 4 hold. Let G be a 1-planar graph whose
generalized dual graph is G∗. Then, G is simple and triconnected and has a
maximal NIC-planar embedding.

Proof. A simple triconnected planar graph H has a simple triconnected dual
H∗ and H is isomorphic to the dual of H∗. Both graphs have a unique planar
embedding.

Let G1 be the planar dual of G∗. Then G1 is simple and triconnected and
has a unique planar embedding. First, add a pair of crossing edges in each
quadrilateral face of G1. This is the expansion of each -node. It preserves
simplicity since otherwise G1 were not triconnected. The so obtained graph
G2 is 1-planar. Next, expand each -node by inserting a center vertex in the
respective triangle and call the resulting graph G3. This preserves simplicity
and triconnectivity. The embedding E(G3) is inherited from the embedding of
G1 and is triangulated and 1-planar. It is also NIC-planar, since two kites are
not adjacent by requirement (i) of Lemma 4. It remains to show that E(G3)
is maximal NIC-planar. Towards a contradiction, suppose an edge {u, v} could
be added to E(G3). Then u and v are in a face f of E(G1) or in two adjacent
faces f1, f2 with a common edge {a, b} where the faces may be expanded by
a center. Face f must be a quadrilateral, which, however, is expanded to a
kite so that {u, v} already exists in G3. If u is the center of a -node, then
the given requirements from Lemma 4 exclude a new edge, since the other face
is marked and the new edge would introduce two adjacent kites. If u and v
are the vertices on opposite sides of two triangles with a common edge {a, b},
then {u, v} is excluded by the requirements. G is isomorphic to G3, since G∗ is
obtained from each as a generalized dual.

Let q ∈ V ∗ be a -node in G∗ and r, s ∈ V ∗ two -nodes such that r, s are
tetrahedral and the corresponding tetrahedral edge is one of the crossing edges
of the kite represented by q. A kite flip between q, r, and s is a reembedding
of the tetrahedral edge such that it crosses the edge on the common boundary
of the faces represented by r and s. In the generalized dual G∗

′
with respect to

this new embedding E ′(G), q is hence replaced by a pair of adjacent, tetrahedral
-nodes and r and s are replaced by a -node. More formally, if q is adjacent to
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Figure 5: Example of a kite flip between a -node q and two -nodes r and s, where r and
s are additionally adjacent to q. The adjacencies in the generalized dual graph are shown
before (a) and after (c) the flip, the corresponding embeddings are depicted in (b) and (d).

nodes qa, qb, qc, qd, r is adjacent to s, ra, and rb, and s is additionally adjacent to
sa, and sb, then G∗

′
has the same set of vertices and edges as G∗ except for q, r,

and s and their incident edges. Instead, G∗
′
contains two adjacent, tetrahedral

-nodes q′ and q′′ and a -node trs such that, w. l. o. g., q′ is adjacent to qa and
qb, q′′ is adjacent to qc and qd, and trs is adjacent to ra, rb, sa, and sb in G∗

′
.

Fig. 5 provides an example, where the -node is even adjacent to the -nodes
it is flipped with, which is, however, not a prerequisite.

In general, the embedding resulting from a kite flip in a (maximal) NIC-
planar embedding is not necessarily also maximal or even NIC-planar.

Lemma 6. Let G∗ be the generalized dual of a maximal NIC-planar graph G =
(V,E) where n ≥ 5 with respect to a NIC-planar embedding E(G). For every
pair of adjacent -nodes in G∗ that are either unmarked or adjacent to a single,
common -node there is a maximal NIC-planar embedding E ′(G) of G such that
in the corresponding generalized dual, these two -nodes are kite flipped with a
-node.

Proof. Consider a pair of -nodes q and r in G∗ that are adjacent to each other
via an edge e. Let {u, v} be the corresponding primal edge of e and denote by
f and g the trivial triangles they represent, i. e., P(q) = {f} and P(r) = {g}.
Note that f and g are both bounded by {u, v} and let w and x, w 6= x, denote
the third vertex incident to f and g, respectively.

Assume first that q and r are unmarked, as obtained, e. g., in case of an
embedding as in Fig. 6a. By Lemma 4, q and r are tetrahedral. Hence, {w, x} ∈
E and is the corresponding tetrahedral edge. Suppose that w and x are not
incident to a common pair of crossing edges. By Lemma 1 and Lemma 2, {w, x}
thus bounds two trivial triangles. Then, however, reembedding {w, x} such that
it crosses {u, v} yields a NIC-planar embedding with a face whose boundary
consists of four trivial edge segments, a contradiction to either Lemma 2 or the
maximality of G. Hence, w and x must be incident to a common pair of crossing
edges, i. e., G contains a K4 induced by w, x and two further vertices y, z. Let
E ′(G) be the NIC-planar embedding obtained from E(G) by reembedding {w, x}
such that it crosses {u, v} (Fig. 6b). As G is maximal, so must be E ′(G). The
reembeddability of {w, x} together with Lemma 1 implies that {w, x} is crossed
in both E(G) and E ′(G). Consequently, the generalized dual G∗

′
with respect to

E ′(G) is obtained from G∗ by replacing q and r with a -node and by replacing
the -node representing the kite G[{w, x, y, z}] with two -nodes, i. e., G∗

′
is
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Figure 6: Proof of Lemma 6: If the -nodes representing f and g are unmarked (a), the
embedding obtained by a kite flip (b) is NIC-planar. The shaded region necessarily contains
further vertices and edges. Likewise, if the -nodes representing f and g are adjacent to a
single, common -node (c), the embedding obtained by a kite flip (d) is NIC-planar.

obtained by a kite flip between this -node and q and r. Note that y, z 6= u, v,
otherwise, q and r were adjacent to the -node representing the embedding of
G[{w, x, y, z}] and therefore marked.

Otherwise, assume that q and r are adjacent to a common -node s in
G∗. Then, the faces represented by s are incident to both w and x as well
as either u or v. W. l. o. g., assume the former and let y denote the fourth
vertex of the K4 represented by s, i. e., s represents the embedding of the K4

G[u,w, x, y]. Figure 6c shows an embedding that corresponds to this situation
in G∗. Subsequently, G contains the edge {w, x}, which implies that q and r
are tetrahedral. As neither q nor r is adjacent to a further -node in G∗ by the
requirements of the lemma, {v, x} and {v, w} do not bound a non-trivial triangle
face. Hence, neither u, v nor v, x nor v, w are adjacent to a common pair of
crossing edges by Lemma 1. Furthermore, u,w and u, x are adjacent only to the
pair of crossing edges {u, y} and {w, x}. Let E ′(G) be the NIC-planar embedding
obtained from E(G) by reembedding {w, x} such that it crosses {u, v}, i. e., by
applying a kite flip to s, q and r (Fig. 6d). As {u, y} and {w, x} do not cross
in E ′(G), u,w and u, x are now again only adjacent to one common pair of
crossing edges each, which is in both cases {u, v} and {w, x}. Thus, E ′(G) is a
NIC-planar embedding of G, and, as G is maximal, so is E ′(G).

The requirements of Lemma 4 characterize a NIC-planar embedding E(G) of
a maximal NIC-planar graph G. They guarantee that E(G) is maximal, but the
graph G may still have another, non-maximal NIC-planar embedding, as Fig. 7
shows. Note that the second embedding emerges from a kite flip between the
-node representing the kite embedding of the K4 induced by a, b, and both

red vertices and the two adjacent -nodes representing the trivial triangle faces
that e, one red vertex and either b or the second red vertex are incident to.

Conjecture 1. If G is a graph with a maximal NIC-planar embedding E(G) that
complies with Lemma 4 and every sequence of kite flips of a pair of adjacent -
nodes that are either unmarked or adjacent to a single, common -node yields
in turn a maximal NIC-planar embedding, then G is maximal NIC-planar.

Even though the generalized dual has a unique planar embedding, the pre-
vious results already demonstrated that this does not equally apply to maximal
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Figure 7: The embedding in (a) is maximal NIC-planar, however, re-embedding the K5 sub-
graph with the vertices a, b, e admits the addition of the edge {b, d} in the outer face, which
yields the maximal NIC-planar graph in (b).

Figure 8: Three embeddings ofK5 with a fixed outer face. Each kite includes the edge between
the inner vertices and one of the outer edges.

NIC-planar graphs in general. To obtain a generalized dual, an embedding is
needed, which in particular also determines the pairs of crossing edges. In fact,
even a maximal NIC-planar graph may admit many embeddings. To begin with,
consider the complete graph K5. It has one 1-planar embedding up to isomor-
phism [31] and admits three 1-planar and even IC-planar embeddings if the
outer face is fixed, see Fig. 8, which each use one outer edge in a kite. Next,
we want to study common 1-planar embeddings of two K5 graphs. In general,
two subgraphs H and H ′ are said to be k-sharing if they have at least k com-
mon vertices. They share a crossing in an embedding E(G) of their common
supergraph G if there are edges e of H and e′ of H ′ that cross in E(G).

Lemma 7. If two K5 subgraphs π and π′ of G share a crossing in a 1-planar
embedding E(G), then they are 3-sharing and this bound is tight.

Proof. Let π = G[v1, v2, v3, v4, v5] and π′ = G[u1, u2, u3, u4, u5] and consider
the embeddings E(π) and E(π′) inherited from E(G). Both E(π) and E(π′) are

v4 v3

v1 v2

v5

u3

u4
u5

v4 v3

v1 v2

v5

u1

u2

v4 v3

v1 v2

v5

u2u1

u4
u5

v4 v3

v1 v2

v5

u2

u4

(a) (b) (c) (d)

Figure 9: Two K5s π and π′ with a common edge that is crossed by another edge of π (a),
an edge of π′ crosses a planar kite edge of π (b), an edge of π′ crosses a planar non-kite edge
of π (c), and two 3-sharing K5 subgraphs with a common 1-planar embedding (d). Black
vertices and solid edges are those of π, colored vertices and dashed edges (also) belong to π′.
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unique up to isomorphism, as depicted in Fig. 8. W. l. o. g., assume that {v1, v3}
crosses {v2, v4} in E(π), i. e., κ = G[v1, v2, v3, v4] is embedded as a kite.

Suppose that one of {v1, v3} and {v2, v4} is also an edge of π′ (see Fig. 9a).
This in particular includes the cases that the shared crossing involves one of
{v1, v3} or {v2, v4} and that the edge of π′ that crosses an edge of π is part
of π. W. l. o. g., assume that u1 = v1 and u2 = v3. If π and π′ are at most
2-sharing, there must be three further vertices u3, u4, u5 of π′ that are not part
of π. Note that u3, u4, u5 form a K3 τ . As neither of {v1, v3} and {v2, v4} may
be crossed a second time and {v1, v2}, {v2, v3}, {v3, v4}, {v4, v1} may be crossed
at most once, none of τ ’s vertices can be incident to a face of κ. Hence, they
must be incident to one or more faces that are also incident to v5, i. e., one of
the trivial triangle faces of E(π). Due to 1-planarity and v5 having vertex degree
four, τ ’s vertices must all reside in the same face. Then, however, either one of
τ ’s is crossed twice by edges incident to v5 or vice versa, a contradiction to the
1-planarity of E(G).

Suppose that a planar edge of E(κ), w. l. o. g., {v1, v2}, is crossed by an edge
{u1, u2} of π′, where, again w. l. o. g., u1 is the vertex in one of the non-trivial
triangle faces of κ (see Fig. 9b). Then, besides u2, u1 can be adjacent to at most
v1 and v2, but not to any fifth vertex of π′, irrespective of whether this vertex
is also in π or not.

Finally, suppose that one of the edges incident to v5, w. l. o. g., {v1, v5} is
crossed by an edge {u1, u2} of π′. This situation is depicted in Fig. 9c. Note
that the case where {u1, u2} is also an edge of π has already been considered
above. Hence, we can assume w. l. o. g., that u1 is not a vertex of π. If π and π′
are at most 2-sharing, there must be again at least two further vertices u4 and
u5 that are adjacent to each other as well as to u1 and u2. In particular, every
triple of u1, u2, u4, and u5 forms a K3. By the above argument, if the vertices
of such a K3 are incident to a trivial triangle face of E(π), they must all reside in
the same face. As {u1, u2} crosses {v1, v5}, this does not apply to the two K3s
containing both u1 and u2, a contradiction. Note that our argumentation does
not exclude the possibility that u2 = v4 or that v1 and/or v5 are also vertices
of π′. However, if π′ contains v4, v1, and v5, then π and π′ are 3-sharing.

Fig. 9d shows that if π and π′ are 3-sharing, they may share a crossing in
E(G), which testifies that this bound is tight.

Note that the converse of Lemma 7 is not true. Any trivial triangle of an
embedded K5 can contain two additional vertices such that these plus the three
triangle vertices form a second K5. We will now use this result to prove an
exponential number of embeddings.

Lemma 8. There are maximal NIC-planar graphs with an exponential number
of NIC-planar embeddings.

Proof. We construct graphs Gk in two stages. First, consider the nested triangle
graph Tk [22, 25] with vertices ui, vi, wi at the i-th layer for i = 1, . . . , k in
counter-clockwise order. There are layer edges {ui, vi}, {vi, wi}, {wi, ui} for i =
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Figure 10: The layer i of Gk.

1, . . . , k and intra-layer edges {ui, ui−1}, {vi, vi−1}, {wi, wi−1} and {ui, wi−1},
{vi, ui−1}, {wi, vi−1} for 1 ≤ i < k, which triangulate Tk by planar edges.

For every triangle t with vertices u, v, w we insert two vertices a and b and
add edges {u, a}, {u, b}, {v, a}, {v, b}, {w, a}, {w, b} such that these five vertices
together induce K5. Fig. 10 shows one layer of Gk.

As every pair of K5s in Gk is 2-sharing and every edge is part of at least one
K5, the edges shared by two K5s are edges of Tk and embedded planar in E(Gk)
by Lemma 7. Since Gk[Tk] is triconnected it has a unique planar embedding.
Every triangle t of E(Tk) includes two vertices such that there is a K5. No
further edge can be added without violating maximal NIC-planarity. Hence, Gk
is maximal NIC-planar.

For each layer, there are at least two NIC-planar embeddings, one with the
edges {ui, ui−1}, {vi, vi−1}, {wi, wi−1} in kites and one with the edges {ui, wi−1},
{vi, ui−1}, {wi, vi−1}. In either case, the layer edges are not part of a kite so
that the embeddings in the layers are independent. We thereby obtain at least
2k−1 NIC-planar embeddings. In order to distinguish identical embeddings up
to a rotational symmetry, we fix the embedding of the K4 in the first two layers
so that at least 2k−3 different embeddings remain for graphs of size 15k−12.

Planar embeddings have been generalized to maps [18] so that there is an
adjacency between faces if their boundaries intersect. Also the intersection in
a point suffices for an adjacency. There is a k-point p if k faces meet at p. A
hole-free mapM defines a hole-free graph G so that the faces ofM correspond
to the vertices of G and there is an edge if and only if the respective regions are
adjacent. (There is a hole if a region is not associated with a vertex). Obviously,
a k-point induces Kk as a subgraph of G. If no more than k regions meet at a
point, thenM is a k-map and G is a hole-free k-map graph. Chen et al. [18, 19]
observed that a graph is triangulated 1-planar if and only if it is a 3-connected
hole-free 4-map graph. For a triangulation it suffices that at least one embedding
is triangulated. For NIC-planar graphs, this implies a characterization with an
independent set.
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Corollary 2. A graph G is triangulated NIC-planar if and only if G is the graph
of a hole-free 4-mapM such that the 4-points ofM are an independent set.

Proof. Consider an embedding E(G) of a triangulated NIC-planar graph G and
remove all pairs of crossing edges. Then, the planar dual of the obtained graph
is a mapM such that every 4-point corresponds one-to-one to a kite in E(G).
The statement follows from the observation that two 4-points are adjacent in
M if and only if two kites in E(G) share an edge.

4. Density

For the analysis of densest and sparsest maximal NIC-planar graphs, we use
the discharging method that was successfully applied for the proof of the 4-color
theorem [4] and improving upper bounds on the density of quasi-planar graphs
[1]. In this technique one assigns “charges” to the vertices and faces of a planar
graph and computes the total charge after assigning all charges and after a
redistribution (discharging phase).

We assign charges as follows: Consider the -nodes and their neighborhood
in G∗. Let E(G) be an arbitrary NIC-planar embedding of a maximal NIC-planar
graph G. Define the level L(q) of a node q of G∗ as its minimum distance to
a -node. Thus, every -node has level 0, and every - or -node that is
adjacent to a -node has level 1. A node with level x is also called an Lx-node.
Lemma 4 immediately implies:

Corollary 3. Let G∗ be the generalized dual with respect to a NIC-planar em-
bedding E(G) of a maximal NIC-planar graph G with n ≥ 5. Then, the level of a
node is at most 2, every -node has level 1 and can be adjacent only to L0- and
L1-nodes, and every L2- -node is adjacent to at most one other L2- -node.

Consider a -node q. Call the set of all nodes whose level equals their
distance to q the sphere S(q) of q. Note that the spheres of two -nodes
need not be disjoint (see, e. g., node t1 in Fig. 11) and recall that a -node
has four adjacencies. If we only consider a single adjacency and divide the -
and -nodes of a sphere equally among all spheres they belong to, we obtain
pairwise disjoint quarter spheres. These quarter spheres are the elements of
discharging. In consequence, we obtain fractions of nodes, e. g., 2 - or 3 -nodes.
Fig. 11 depicts a clipping of the generalized dual of a graph. It shows three
-nodes, whose spheres are indicated by the respective shaded regions. For the

left, center, and right sphere, the patterns highlight one, three, and two quarter
spheres, respectively. As no two -nodes can be adjacent, a quarter sphere can
never be empty, but contains at least a fraction of a - or -node. We denote
the quarter sphere of q with respect to its neighbor r by SQ(q, r).

Lemma 9. Every quarter sphere of a -node q in the generalized dual of a
maximal NIC-planar graph with respect to a NIC-planar embedding consists of at
least either a 3 - or a 3 -node. It can at most be attributed either two -nodes,
or a -, a 4 -, and a 4 -node, or a 2 - and a 2 -node.
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Figure 11: Clipping of a generalized dual graph, showing parts of the spheres (shaded) and
quarter spheres (fill patterns) of three -nodes. The numbers correspond to the nodes’ levels.

Proof. Observe that by definition, S(q) cannot contain another -node besides
q and thus, neither can its quarter spheres. Consider a quarter sphere SQ(q, r)
of a -node q that is adjacent to a node r. Then, r is a -node or a -node.

We assume first that r is a -node. Let s 6= q and t 6= q denote the two
other neighbors of r besides q. By Corollary 3, L(s) ≤ 1 and L(t) ≤ 1. Thus, no
part of them can be contained in SQ(q, r), as their distance via r to a -node
would be 2. In consequence of Lemma 4, neither s nor t is a -node. If both
are -nodes, r is shared among three spheres, if only one of them is a -node,
it is shared among two spheres, and if both are -nodes, it belongs entirely to
SQ(q, r). Hence, Sr(q) contains at least a 3 -node.

For the upper bound, we assume that r is contained entirely in SQ(q, r).
Then, s and t must be -nodes, which are in turn adjacent to at least one
-node each. We split SQ(q, r) once more into two semi-quarter spheres that

each contain one half of r and, depending on their belonging to SQ(q, r), the
(fractions of) s and t, respectively. As G∗ is simple and a node’s maximum
level is 2, the semi-quarter spheres are disjoint. W. l. o. g., consider s and let s′
be a -node adjacent to s. Then, one of the semi-quarter spheres of SQ(s′, s)
consists of exactly one 2 -node. Hence, for every semi-quarter sphere containing
a 2 -node, there is at most one other semi-quarter sphere containing a 2 -node.
We can therefore attribute to each of both semi-quarter spheres a 4 -node and
a 4 -node.

Assume now that r is a -node. Then, due to Corollary 3, SQ(q, r) cannot
contain a -node at all. As above, SQ(q, r) must contain r with a proportion
of at least 1

3 . This lower bound is reached if r is adjacent to three -nodes and
hence shared among three quarter spheres.

We obtain a maximal quarter sphere if r is entirely part of SQ(q, r). The case
that r is adjacent to a -node is already covered in the above argument from
the viewpoint of the -node. Thus, we only address the case where a -node is
adjacent to r. Consider again the semi-quarter spheres. By Corollary 3, r may
be adjacent to a L2- -node s. As a L2- -node can be adjacent to at most one
other L2- -node, s must be adjacent to another L1-node besides r, i. e., s must
be shared between at least two quarter spheres. Subsequently, the semi-quarter
sphere consists of at most two 2 -nodes.

As indicated above and depicted in Fig. 11, it is possible for a L1- -node
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to be adjacent to both a L2- -node and a -node. Hence, we obtain the three
stated combinations.

The generalized dual graph introduced in the previous section enables us to
estimate the density of maximal NIC-planar graphs.

Lemma 10. Let G be a maximal NIC-planar graph. If G is optimal, then
every quarter sphere with respect to any NIC-planar embedding of G consists of
a 3 -node and G has four planar edges for every pair of crossing edges. If G
is sparsest maximal, then every quarter sphere can at most be attributed either
two -nodes, or a -, a 4 -, and a 4 -node, or a 2 - and a 2 -node. For every
pair of crossing edges, G has 14 planar edges.

Proof. Let E(G) be a NIC-planar embedding of a maximal NIC-planar graph
G and denote by G∗ the corresponding generalized dual graph. Consider the
quarter spheres of the -nodes in G∗. As every sphere contains exactly one
-node and otherwise only nodes representing planar edges, we obtain a lower

bound on the density of G if the quarter spheres’ sizes are maximized and an
upper bound if they are minimized. Recall that every edge segment separates
two faces. Thus, we assign to every face only one half of the edges on its
boundary. A -node represents one face which is a trivial triangle. Thus, every
-node corresponds to 3

2 planar edges. A -node represents three faces each
of which is a trivial triangle and therefore corresponds to 9

2 planar edges. The
set of faces represented by a -node consists of four non-trivial triangles, which
yields a pair of crossing edges and 4

2 planar edges.
Due to Lemma 9, a quarter sphere contains at least 1

3 of a -node or 1
3 of a

-node, which corresponds to 3
2 and 1

2 planar edges, respectively. The smaller
the ratio of planar edges per crossing edge the larger the density of G. Thus, we
obtain a minimum of 4 · 12 +2 = 4 planar edges and one pair of crossing edges for
an entire sphere, including the edges represented by the -node. On the other
hand, a quarter sphere can be attributed at most either two -nodes or a -
node, a 4 -node, and a 4 -node, or a 2 -node and a 2 -node—which corresponds
to 3 planar edges in all three cases. For the entire sphere, this yields a total of
4 · 3 + 2 = 14 planar edges and one pair of crossing edges.

In case of optimal NIC-planar graphs, Lemma 10 implies:

Corollary 4. The generalized dual graph of every NIC-planar embedding of
an optimal NIC-planar graph is bipartite with vertex set V ∗ ∪· V ∗ such that V ∗
contains only -nodes and V ∗ contains only -nodes.

With respect to NIC-planar embeddings of optimal NIC-planar graphs, this
unambiguity immediately yields:

Corollary 5. The NIC-planar embedding of an optimal NIC-planar graph is
unique up to isomorphism.

Note that every optimal 1-planar graph has one, two, or eight 1-planar em-
beddings [36], which are again unique up to isomorphism.

19



p

q(a)

p

q
(b) (c)

Figure 12: Construction of sparsest maximal (a) and optimal (b,c) NIC-planar graphs.

Lemma 10 suffices to prove upper and lower bounds on the density of max-
imal NIC-planar graphs. Whereas the upper bound of 18/5(n − 2) edges was
already proven by Zhang [38] and shown to be tight by Czap and Šugerek [21],
the lower bound has never been assessed before.

Theorem 1. Every maximal NIC-planar graph on n vertices with n ≥ 5 has at
least 16

5 (n− 2) and at most 18
5 (n− 2) edges. Both bounds are tight for infinitely

many values of n.

Proof. Let G be a maximal NIC-planar graph with n ≥ 5 vertices and m edges.
Let E(G) be a NIC-planar embedding of G and G∗ be the corresponding gen-
eralized dual graph. Consider the planar subgraph Ĝ ⊆ G that is obtained by
removing exactly one of each pair of crossing edges. Then, Ĝ has n vertices and
m̂ ≤ m edges. As m̂ is a triangulated planar graph, m̂ = 3n− 6.

By Lemma 10, there are at least 4 and at most 14 planar edges per pair of
crossing edges. Furthermore, Ĝ contains all planar edges as well as one edge
from each pair of crossing edges. Hence, m and m̂ differ by at most m̂

5 and at
least m̂

15 . Thus, m̂ + m̂
15 ≤ m ≤ m̂ + m̂

5 , which yields with m̂ = 3n − 6 that
16
5 n−

32
5 ≤ m ≤

18
5 n−

36
5 .

Fig. 12 shows how to construct a family of maximal NIC-planar graphs that
meet the lower (Fig. 12a) and upper (Fig. 12b,c) bound exactly. In both cases,
the blue subgraph can be copied arbitrarily often and attached either circularly
(Fig. 12a,b) or to the outside (Fig. 12c). To obtain a sparsest maximal graph
with n = 7, we take the red subgraph plus the leftmost black vertex in Fig. 12a
and identify p and q.

Corollary 6. For every k ≥ 1 there is a sparsest maximal NIC-planar graph
with n = 5k + 2 and m = 16k. There is an optimal NIC-planar graph with
n = 5k + 2 and m = 18k if and only if k ≥ 2.

Proof. The constructions given in Fig. 12 show how to obtain sparsest and dens-
est graphs with n = 5k+2. However, there is no optimal NIC-planar graph with
7 vertices and 18 edges: Such a graph must have 18 − (3 · 7 − 6) = 3 pairs of
crossing edges. Consequently, any NIC-planar embedding must have three kites,
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(a)

(b)

(c) (d)

Figure 13: Construction of densest graphs with n vertices such that n = 5k + 2 + 1 (a),
n = 5k + 2 + 3 (b), n = 5k + 2 + 2 and n = 5k + 2 + 4 (c,d).

which is impossible, as two kites in a NIC-planar embedding can share at most
one vertex and need seven vertices.

Theorem 2. For every i ∈ {1, . . . , 4} and infinitely many k ≥ 2 there is a
densest NIC-planar graph with n = 5k + 2 + i and m = b 185 (n− 2)c.

Proof. For i = 1, a densest NIC-planar graph G1 with m = b 185 (n − 2)c =
b 185 (5k + 1)c = 18k + 3 edges can be obtained from any optimal NIC-planar
graph G0 by selecting any trivial triangle in any NIC-planar embedding of G0

and inserting a vertex v along with three edges, each of which connects v to
one of the three vertices of the triangle as depicted in Fig. 13a. In terms of the
generalized dual, this corresponds to replacing one -node by a -node.

For i = 2, a densest NIC-planar graph G2 with m = b 185 (5k + 2)c = 18k + 7
edges can be constructed as depicted in Fig. 13c and Fig. 13d: First, we start
with the graph shown in Fig. 13d, which consists of four black and twelve red
vertices and five black and 44 red edges. We, however, do not add the black edge
connecting two red vertices. Instead, we attach eight blue vertices and 28 blue
edges as shown in Fig. 13c. This yields a graph with 24 = 5 · 4 + 2 + 2 vertices
(i. e., k = 4) and 77 edges. The construction can be finished by adding the two
black crossing edges that connect blue vertices as shown again in Fig. 13c. G2

thus has 24 vertices and 79 = 18 · 4 + 7 edges. To obtain larger graphs, attach
the twelve red vertices and 44 red edges shown in Fig. 13d and once more the
blue subgraph of Fig. 13c. Repeat these two steps arbitrarily often before finally
adding the two black crossing edges. For each repetition r, this yields another
12+8 = 20 vertices and 44+28 = 72 edges. Hence, each such graph has 24+20r
vertices (i. e., k = 4 + 4r) and 79 + 72r = 18 · (4 + 4r) + 7 edges.

For i = 3, a densest NIC-planar graph G3 with m = b 185 (5k+3)c = 18k+10
edges can again be obtained from any optimal NIC-planar graph G0 by select-
ing any trivial triangle in any NIC-planar embedding of G0 and inserting the
subgraph depicted in Fig. 13b. More precisely, we add three vertices and ten
edges such that the -node in the corresponding generalized dual is replaced
by a -node and four -nodes.

Finally, for i = 4, a densest NIC-planar graph G4 with m = b 185 (5k + 4)c =
18k + 14 edges can be constructed similarly to the case for i = 2. We start
again with the graph depicted in Fig. 13d, which has four black and twelve
red vertices as well as five black and 44 red edges. Here, the construction can
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already be finished by adding the black edge connecting two red vertices, which
yields a graph with 4 + 12 = 16 = 5 · 2 + 2 + 4 vertices (i. e., k = 2) and
5 + 44 + 1 = 50 = 18 · 2 + 14 edges. For a larger graph, we add again the blue
subgraph with eight vertices and 28 edges as depicted in Fig. 13c as well as once
more the red subgraph with twelve vertices and 44 edges arbitrarily often prior
to connecting the two red vertices by the black edge. For each repetition r, this
yields another 8 + 12 = 20 vertices and 28 + 44 = 72 edges. Hence, each such
graph has 16 + 20r vertices (i. e., k = 2 + 4r) and 50 + 72r = 18 · (2 + 4r) + 14
edges.

Note that by Corollary 6, optimal graphs, which provide the basis for the
construction in case of i = 1 and i = 3, only exist for k ≥ 2 and that the graphs
constructed for i = 2 and i = 4 have k ≥ 4 and k ≥ 2, respectively.

From Corollary 6 and the proof of Theorem 2 we obtain:

Corollary 7. There are densest NIC-planar graphs for all n = 5k + 2 + i with
i ∈ {0, 1, 3} and all k ≥ 2.

Concerning IC-planar graphs, there are optimal ones with 13
4 n− 6 edges for

all n = 4k and k ≥ 2 [39]. A densest IC-planar graph of size n ≥ 8 is obtained
from an optimal one of size 4k with k = bn4 c by the replacement of i -nodes by
-nodes, for i = 1, 2, 3. Each -node adds one vertex and three edges. There

are sparsest IC-planar graphs with 3n− 5 edges for all n ≥ 5, and this bound is
tight [7].

5. Recognizing Optimal NIC-Planar Graphs in Linear Time

The study of maximal NIC-planar graphs in Sect. 3 also provides a key to
a linear-time recognition algorithm for optimal NIC-planar graphs. Therefore,
we establish a few more properties of optimal NIC-planar graphs and their em-
beddings E(G). An edge e is called k-fold K4-covered in G if e is part of k K4

subgraphs. We start with the following observation:

Lemma 11. Let E(G) be a NIC-planar embedding of an optimal NIC-planar
graph G. Every edge e ∈ E is at least 1-fold K4-covered and there is exactly one
K4 in G that contains e and is embedded as a kite in E(G).

Proof. Corollary 4 implies that every edge e ∈ E is at least once K4-covered.
Moreover, if e is contained in at least two different K4 inducing subgraphs that
are both embedded as a kite, then e’s end vertices are incident to two common
pairs of crossing edges, a contradiction to NIC-planarity.

In Sect. 2 we already noted that in any NIC-planar embedding, every sub-
graph that induces K4 must be embedded either as a kite or as a tetrahedron,
which may in turn be simple or not. Recall that in case of a non-simple tetrahe-
dron embedding, K4’s edges may not cross each other, but they may be crossed
by edges that do not belong to this subgraph. The following lemma limits the
possibilities of how the K4 subgraphs and their embeddings can interact.
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Figure 14: Proof of Lemma 12.

Lemma 12. Let E(G) be a NIC-planar embedding of a maximal NIC-planar
graph G and let {a, c} and {b, d} be two edges that cross each other in E(G).
Then one of {a, c} and {b, d} is 1-fold K4-covered.

Proof. Let κ = G[a, b, c, d]. By Lemma 1, κ is K4. Suppose for the sake of
contradiction that there are subgraphs κ′ 6= κ and κ′′ 6= κ of G that both induce
K4 and such that κ′ contains {a, c} and κ′′ contains {b, d}. Note that κ′ 6= κ′′,
otherwise both had vertex set {a, b, c, d} and hence, κ = κ′ = κ′′. Furthermore,
both κ′ and κ′′ must be embedded as tetrahedrons, otherwise, a, c and b, d were
incident to two pairs of crossing edges. Denote by x 6= y ∈ V \ {a, b, c, d} two
further vertices of G such that κ′ contains x and κ′′ contains y.

Consider the closed path (a, b, c, d) of planar edges, which partitions the set of
faces of E(G) into P ′ and P ′′. Due to Lemma 2, one of these partitions, w. l. o. g.
P ′, contains only the non-trivial triangles that form the kite embedding of κ.
Hence, all faces incident to x and y must reside within P ′′ and the edges or edge
segments of {a, x}, {c, x}, {b, y}, and {d, y} only bound faces contained in P ′′.
Consequently, the paths (a, x, c) and (b, y, d) must cross each other in P ′′.

Recall that a, b, c, and d are already pairwisely incident to a pair of crossing
edges, namely {a, c} and {b, d}. Fig. 14 shows two of the four possible pairs of
additional crossing edges. Suppose that {a, x} crosses {b, y}. Then, a and c are
incident to another pair of crossing edges, a contradiction to the NIC-planarity of
E(G). Likewise, if {c, x} crosses {b, y}, or {a, x} crosses {d, y}, or {c, x} crosses
{d, y}, then b and c, or a and d, or c and d, respectively, are incident to two
common pairs of crossing edges, thereby again contradicting the NIC-planarity
of E(G).

Subsequently, κ′ and κ′′ cannot both exist.

The combination of Lemma 11 and Lemma 12 yields a characterization of
those K4 inducing subgraphs that are embedded as kite:

Corollary 8. Let κ be a subgraph inducing K4 in an optimal NIC-planar graph
G and let E(G) be a NIC-planar embedding of G. Then, κ is embedded as a kite
in E(G) if and only if κ has a 1-fold K4-covered edge.

Proof. Let {a, b, c, d} denote the vertex set of κ. By Lemma 11, every edge of κ
is at least once covered by a K4 which is embedded as a kite.

If κ is embedded as a kite, then one of its crossing edges is 1-fold K4-covered
by Lemma 12, and if κ is embedded as a tetrahedron, then each of its edges is
at least 2-fold K4-covered.
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Algorithm 1 A recognition algorithm for optimal NIC-planar graphs.

Input: graph G = (V,E) with n = |V | ≥ 5 and m = |E|
Output: NIC-planar embedding E(G) if G is optimal NIC-planar, else ⊥
1: procedure TestOptimalNIC(G)
2: if m 6= 18

5 (n− 2) then return ⊥ . G is not optimal.
3: K ← set of K4s in G or ⊥ in case of timeout
4: if K = ⊥ then return ⊥
5: K× ← ∅
6: create an empty bucket B[e] = ∅ for each edge e ∈ G
7: for all κ ∈ K do
8: add κ to every bucket B[e] for every edge e of κ
9: for all e ∈ E do

10: if B[e] = {κ} then
11: K× ← K× ∪ {κ} . κ must be embedded as kite by Corollary 8.
12: for all e ∈ E do
13: if |B[e] ∩ K×| 6= 1 then return ⊥ . Lemma 11 is violated.
14: G′ ← G
15: for all κ ∈ K× do
16: remove all edges of κ in G′
17: add a dummy vertex zκ along with edges to all vertices of κ in G′

18: if G′ is not planar then return ⊥
19: E(G′)← planar embedding of G′
20: E(G)← NIC-planar embedding of G obtained from E(G′)
21: return E(G)

Now we are ready to proof the main result of this section.

Theorem 3. There is a linear-time algorithm that decides whether a graph is
optimal NIC-planar and, if positive, returns a NIC-planar embedding.

Proof. Consider the algorithm given in Algorithm 1, which takes a graph G
as input and either returns a NIC-planar embedding E(G) if G is optimal NIC-
planar and otherwise returns ⊥.

Let G = (V,E). First, if the number of edgesm of G does not meet the upper
bound of 18

5 (n− 2), G cannot be optimal NIC-planar. The algorithm therefore
returns ⊥ in line 2 if this check fails. For the remainder of the algorithm, we
can assume that m ∈ O(n).

Next, we identify those K4 inducing subgraphs of G that must be embedded
as a kite. To this end, enumerate all subgraphs of G that induce K4 and keep
them as set K. This can be accomplished in linear time by running the algorithm
of Chiba and Nishizeki [20] for at most 256n essential steps. A step is essential
if it marks a vertex or an edge. The inessential steps, like unmark and print,
take linear time in the number of essential steps. If G is maximal NIC-planar,
then G has arboricity four [33] and the algorithm completes the computation
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of the K4 listing within 256n essential steps. Otherwise, if the algorithm by
Chiba and Nishizeki exceeds the bound on the running time, G does not have
arboricity four and is hence not NIC-planar. Then our algorithm returns ⊥ in
line 4. Chen et al.[19] have shown that triangulated 1-planar graphs of size n
have at most 27n K4 subgraphs. The subset K× of K that will later contain
those with kite embeddings is set to ∅. Initialize an empty bucket B[e] for every
edge e ∈ E. We now employ a variant of bucket sort on K and place a copy of
every element κ ∈ K in all six buckets that represent an edge of κ. As the size
of K is linear in the size of G, this takes O(n) time.

Afterwards, we loop over the edges of G and apply Corollary 8: If an edge
is contained in exactly one κ ∈ K, then κ must be embedded as a kite and is
therefore added to K× in line 11. This can be accomplished in time O(m) =
O(n). Having identified the K4 inducing subgraphs that must be embedded
with a crossing, we can check whether every edge is contained in exactly one
kite as required by Lemma 11 again in O(n) time.

The last step in the algorithm consists in identifying the pairs of crossing
edges and, if possible, obtaining a NIC-planar embedding of G. For this purpose,
we construct a graph G′ from G as follows: For every κ ∈ K× with vertex set
{a, b, c, d}, remove all edges connecting a, b, c, and d. Then, add a new dummy
vertex zκ along with edges {a, zκ}, {b, zκ}, {c, zκ}, {d, zκ}. Thus, κ is replaced
by a star with center zκ. This construction requires again O(n) time.

Observe that G′ is a subgraph of every planarization of G with respect to
any NIC-planar embedding of G. Hence, if G′ is not planar, then G cannot be
optimal NIC-planar, so the algorithm returns ⊥ in line 18. Otherwise, we obtain
a planar embedding E(G′) of G. This can be done in time O(n).

Next, construct an embedding E(G) of G from E(G′) by replacing every
dummy vertex zκ and its incident edges by the edges of κ. The edges incident
to zκ are taken as non-trivial edge segments and the remaining edges are routed
close to these edges. This corresponds to replacing the four trivial triangles
incident to zκ in E(G′) one-to-one by four non-trivial triangles forming the kite
embedding of κ and takes againO(n) time. E(G) now is a NIC-planar embedding
of G such that exactly the elements of K× are embedded with a crossing. As
the number of edges in G meets the upper bound of 3.6(n − 2) exactly, G is
optimal NIC-planar and the algorithm returns E(G) as a witness. The overall
running time is in O(n).

6. Drawing NIC-Planar Graphs

Every NIC-planar graph is a subgraph of a maximal NIC-planar graph and
every NIC-planar embedding with n ≥ 5 has a trivial triangle which we use as
outer face. By Corollary 1 maximal NIC-planar graphs are triconnected. Hence,
the linear-time algorithm of Alam et al. [2] for 1-planar graphs can be used.

Corollary 9. Every NIC-planar graph has a NIC-planar straight-line drawing
on an integer grid of O(n2) size.
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Figure 15: (a): The graph G. The supergraph G+ extends G by seven 2-paths for each fat
edge. G corresponds to the red and black part of Fig. 12c. (b): Seven 2-paths augment an
edge to a fat edge. (c): A forced fan crossing.

A graph G has geometric thickness k if G if admits a straight-line drawing
in the plane such that there is a k-coloring of the edges and edges with the same
color do not cross [24].

Corollary 10. Every NIC-planar graph has geometric thickness two.

However, NIC-planar graphs do not necessarily admit straight-line drawings
with right angle crossings. In consequence, the classes of NIC-planar graphs and
RAC graphs are incomparable, since RAC graphs may be too dense [23].

Theorem 4. There are infinitely many NIC-planar graphs that are not RAC
graphs, and conversely.

For the harder part, we construct a NIC-planar graph that is not RAC. In-
finitely many graphs are obtained by multiple copies. Let G+ = (V +, E+) be
obtained from graph G = (V,E) in Fig. 15a by augmenting every planarly drawn
edge between two vertices u and v with seven vertex-disjoint 2-paths, as shown
in Fig. 15b. Every edge of G that is augmented is called a fat edge. If u and v
are connected by a fat edge, then v is a fat neighbor of u. We show that graph
G+ does not admit a RAC drawing.

Observe that G consists of six K4 and eight K3 subgraphs such that a K4

is attached to each side of a K3. As shown in Fig. 15a, G is NIC-planar and
likewise is G+, since the 2-paths of each fat edge can be embedded planarly. We
obtain the induced RAC drawing D(G) of G from a RAC drawing D(G+) of G+

by removing the 2-paths of each fat edge.
Graph G is 4-connected and G and G+ remain biconnected if all pairs of

crossing edges are removed and additionally either a single K3 or a single K4.
After the removal, each vertex of G and G+ still has two fat neighbors and the
remaining graph is connected using only fat edges. The following properties are
immediate (see Fig. 15c):

Lemma 13 ([23]). A RAC drawing does not admit a fan-crossing, i. e., no edge
may cross two edges with a common end vertex.

Lemma 14. If an edge is crossed by k 2-paths pi = (u,wi, v) for i = 1, . . . , k
connecting two vertices u and v in a RAC drawing, then k ≤ 2.
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Lemma 15. If there is a triangle τ in a RAC drawing and a fat edge {u, v} so
that u, v are not vertices of τ , then u and v are either both inside or both outside
τ .

Proof. Every vertex wi of a 2-path (u,wi, v) has degree 2 and thus cannot be a
vertex of τ . If, w. l. o. g., u is inside and v is outside of τ , at least one edge of τ
is crossed by at least three 2-paths, which contradicts Lemma 14.

Lemma 16. Let D(G+) be a RAC drawing of G+. Then every K4 is drawn
with a pair of crossing edges.

Proof. Suppose that G+[{u, v, w, x}] is a K4 which is not drawn with a pair of
crossing edges. Then it is drawn as a tetrahedron [31]. W. l. o. g., let x be inside
the triangle fuvw. Then, fuvw is partitioned into three triangles fuvx, fuwx, and
fvwx.

Vertex x has a fat neighbor y 6∈ {v, w, x}. By Lemma 15, y must be inside
fuvw. W. l. o. g., let y be in fuvx. By the same reasoning, the fat neighbors of y
not in {u, v, x} must be in the same triangle as y, which due to the connectivity
of G+ and G on fat edges even without the K3 G

+[{u, v, x}] implies that all
vertices of G must be in fuvx. However, w is outside fuvx, a contradiction.

Lemma 17. No edge e ∈ E can cross a fat edge f ∈ E in any RAC drawing
D(G+) of G+.

Proof. Suppose edge e = {u, v} ∈ E crosses the fat edge f = {x, y} ∈ E in
D(G+). As a fat edge, f shares an edge with a K3 τ = G+[{x, y, z}], where
z ∈ V + \ V is a vertex of a 2-path associated with f . Edge e cannot cross both
{x, y} and {x, z} or both {x, y} and {y, z} due to forbidden fan-crossings by
Lemma 13. Thus, w. l. o. g., u is inside the triangle fxyz and v outside. As there
is a path p between u and v which consists only of fat edges and is vertex disjoint
with τ , there is an edge of p crossing an edge of triangle fxyz, a contradiction
to Lemma 15.

Lemma 18. Let D(G+) be a RAC drawing of G+ and let D(G) be the induced
drawing. Then every K4 is drawn as a kite with planar fat edges in D(G).

Proof. By Lemma 16, every K4 κ is drawn with a right angle crossing. Let
D(κ) be the induced drawing of κ. Due to Lemma 13, no other edge of G can
cross two (or more) edges of κ. Furthermore, no other vertex of G can be inside
D(κ) by the same argument as in the proof of Lemma 16: The pair of crossing
edges partitions D(κ) into four triangles. If a vertex is in such a triangle, then all
vertices of G must be in the same triangle, since they are connected by fat edges.
However, the remaining two vertices of κ cannot be in the triangle. Hence, D(κ)
is empty and every K4 subgraph of G+ is drawn as kite. By Lemma 17, the
crossing edges of the kites cannot be fat.

As a consequence, in the induced drawing D(G) every K3 in G which is no
subgraph of a K4 is drawn as a trivial triangle and every K4 in G is drawn as
kite, i. e., with no further vertex inside. Finally, consider the outer face:
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Figure 16: Gadget replacing every edge {u, v} in the NP-reduction.

Lemma 19. Let D(G+) be a RAC drawing of G+ and let D(G) be the induced
drawing. Then the outer face of D(G) is a trivial triangle.

Proof. If the outer face of D(G) is not a trivial triangle, it must be one of the
four triangles of aK4’s kite drawing. Let c denote the crossing point of the kite’s
edges e and f . Then, the interior angle at c must be less than π, which implies
a bend at c for both e and f , a contradiction to D(G) being straight-line.

So far, we conclude that the induced embedding E(G) must be as depicted
in Fig. 15a if there is a RAC drawing of G+. However, this embedding is not
realizable with right angle crossings.

Lemma 20. Graph G+ does not admit a RAC drawing.

Proof. Assume that G+ has a RAC drawing D(G+). By Lemma 19, the outer
face of the induced drawing D(G) is a trivial triangle τ . Every fat edge of G is a
planar edge of a K4 in D(G), or more specifically of a kite (Lemma 18). Hence,
every edge bounding τ is shared with a kite κi for i = 1, 2, 3, which is located
inside τ . Let ci denote the point in the plane where the two edges of κi cross
each other and let τi be the non-trivial triangle of the kite embedding of κi that
is bounded by one of the edges of τ . Then, the interior angle of τi at ci must be
π
2 and subsequently, the two remaining interior angles of τi sum up to π− π

2 = π
2 .

Observe that the kites’ faces are pairwisely disjoint by Lemma 18. Hence, the
sum of τ ’s interior angles must be strictly greater than 3π

2 , a contradiction to τ
being a triangle.

7. Recognition

The recognition problem for 1-planar and IC-planar graphs is NP-complete,
even if the graphs are 3-connected and are given with a rotation system [6,
15, 27]. However, triangulated, maximal, and optimal 1-planar graphs can be
recognized in time O(n3) [19], O(n5) [12], and O(n) [14], respectively.

Our NP-hardness result solves an open problem by Zhang [38] and can be
obtained from known NP-hardness proofs [15, 27], e. g., by a reduction from
1-planarity as in [15], which replaces every edge {u, v} of a graph G = (V,E) by
the gadget in Fig. 16. Then, in every IC-planar and even NIC-planar embedding
E(G′) of the resulting graph G′, every crossed edge must be an edge {auv, avu}
for some {u, v} ∈ E and E(G′) exists if and only if the induced embedding of G
is 1-planar. As testing 1-planarity is NP-complete, we obtain:

Corollary 11. It is NP-complete to test whether a graph is NIC-planar.
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Recently, Brandenburg [13] has used the relationship between 1-planar graphs
and hole-free 4-map graphs as in Corollary 2 and the cubic-time recognition al-
gorithm for (hole-free) 4-map graphs of Chen et al. [19] to develop a cubic-time
recognition algorithm for triangulated NIC-planar (IC-planar) graphs from which
he obtained an O(n5) time algorithm for maximal and a cubic-time algorithm
for densest NIC-planar (IC-planar) graphs.

8. Conclusion

For a natural subclass of 1-planar graphs, we presented diverging, yet tight
upper and lower bounds for maximal graphs. Paralleling the result that there
are maximal 1-planar graphs that are sparser than maximal planar graphs, we
showed that there are maximal NIC-planar graphs that are sparser than maximal
IC-planar graphs. Our tool is a generalized dual graph and a condensation
of K4 subgraphs. Whereas IC-planar graphs are a subset of RAC graphs, we
showed that NIC-planar graphs and RAC graphs are incomparable. The proof
of Theorem 4 shows, to the best of our knowledge for the first time, that there
are non-RAC, 1-planar graphs with a density less than the upper bound for RAC
graphs of 4n−10. Finally, we showed that the recognition of NIC-planar graphs
is NP-hard in general, whereas optimal NIC-planar graphs can be recognized in
linear time.

Future work are similar characterizations for IC-planar graphs in terms of
generalized duals and the linear-time recognition of optimal IC-planar graphs.
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