
Optical Graph Recognition

Christopher Auer, Christian Bachmaier, Franz J. Brandenburg
Andreas Gleißner, and Josef Reislhuber

University of Passau, 94030 Passau, Germany,
{auerc|bachmaier|brandenb|gleissner|reislhuber}@fim.uni-passau.de

Abstract. Optical graph recognition (OGR) reverses graph drawing. A
drawing transforms the topological structure of a graph into a graphical
representation. Primarily, it maps vertices to points and displays them
by icons and it maps edges to Jordan curves connecting the endpoints.
OGR transforms the digital image of a drawn graph into its topolog-
ical structure. It consists of four phases, preprocessing, segmentation,
topology recognition, and postprocessing. OGR is based on established
digital image processing techniques. Its novelty is the topology recogni-
tion where the edges are recognized with emphasis on the attachment to
their vertices and on edge crossings.
Our prototypical implementation OGRup shows the effectiveness of the
approach and produces a GraphML file which can be used for further
algorithmic studies and graph drawing tools.

1 Introduction

Graph drawing addresses the problem of constructing visualizations of graphs,
networks and related structures. It adds geometric and graphic information, as-
signing coordinates to the vertices and routing the edges, and adding graphic
features such as icons, line styles and colors. The goal is a “nice” drawing, which
shall convey the underlying structural relations and make it easily understand-
able to a human user. “Nice” may be evaluated empirically and approximated
by formal terms, such as bends, crossings, angular resolution, and uniform dis-
tributions, e. g., see [10]. This is what the field of graph drawing is all about.

The reverse process has been disregarded so far. There is a need for it. We
often make drafts of a diagram using pencil and paper and then would like to
use a graph drawing tool for improvements of the drawing or a graph algorithm
for an analysis. Here optical graph recognition comes into play. One needs a tool
to convert the image of a drawn graph into the topological structure.

In this paper, we propose optical graph recognition (OGR) as a method to au-
tomatically extract the topological structure of a graph from its drawing. OGR is
an adaption of optical character recognition (OCR) [3], which extracts plain text
from images for automatic processing. Since there is a large variety, we restrict
ourselves to the most common drawing types. The vertices are represented by
geometric objects such as circles or rectangles, which are connected by (images
of) Jordan curves representing the edges. The drawing is given as a (digital)

2 C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, J. Reislhuber

image. An example of such a drawing if given in Fig. 2. OGR proceeds in four
phases: preprocessing, segmentation, topology recognition, and postprocessing.
The core of OGR is the topology recognition. This phase takes an image as input,
where all pixels are classified as either background, vertex, or edge pixels. In the
image, the regions of vertex pixels of two vertices are connected by a contiguous
region of edge pixels if the two vertices are connected by an edge. However, the
converse is not true. A contiguous region of edge pixels corresponds to several
edges if the edges cross, see Fig. 2 and the left side of Fig. 6. The problem of
crossing edges does not occur if the drawing is plane. In fact, an approach that
extracts the circuit from its plane drawing is given in [4, p. 476], which is similar
to our approach in the first two phases. However, crossings are unavoidable. The
topology recognition resolves crossings similar to the human eye. The eye follows
the edge curve to the crossing and then proceeds in the “most likely” direction,
which is the same direction in which the edge curve enters the crossing.

Due to this similarity, OGR’s recognition rate can be used as a measure
of the legibility of a drawing. OGR is error-prone if many edges cross at the
same point or if edges cross in small angles. Such drawings are hardly legible
for humans as well [15, 17]. Recently, Pach [19] has defined unambiguous bold
drawings, which leave no room for different interpretations of the topology of
the graph. For example, in unambiguous drawings areas of overlapping edges do
not hide vertices. In fact, OGR presumes a unambiguous bold drawing as input.

The problem of automatically recognizing objects has been studied exten-
sively in the field of digital image processing. Most prominently, optical charac-
ter recognition has significantly advanced in the last decades [3]. However, the
emphasis behind OCR is on recognizing the shape of a certain character and
not its topological structure as with OGR. In [7,18], the authors have proposed
methods to trace blood vessels and measure their size in X-ray images. Again,
these approaches are designed to evaluate the shape of the blood vessels and
ignore their topological structure.

Our paper is organized as follows. In Sect. 2, we give some preliminaries.
The four phases approach of OGR is presented in Sect. 3 with an emphasis on
the topology recognition phase in Sect. 3.3. An experimental evaluation is given
in Sect. 4, where we discuss features of graph drawings which improve OGR’s
probability of a correct recognition and features which reduce the probability.

2 Preliminaries

In this paper, we deal with undirected graphs G = (V,E). Directions of edges
can be recognized in a postprocessing phase of OGR. In the following, a drawing
of G maps vertices to graphical objects like discs, rectangles, or other shapes in
the plane. The edges are mapped to Jordan curves connecting its endpoints. For
convenience, we speak of vertices and edges when they are elements of a graph,
of its drawing, and in a digital image of the drawing. A port is the point of an
edge that meets the vertex. Every edge has exactly two ports. Note that this
is only true if no edge crosses a vertex, where it is also hard for a human to

Optical Graph Recognition 3

recognize the correct adjacency. Hence, we assume no edge-vertex-crossings in
the following. An (edge-edge-)crossing is a point where two or more edges cross.

A digital image is a set of pixels. Each pixel p has coordinates (x, y) in a two-
dimensional grid of a certain width and height, and a color which is taken from
a finite set C. In a binary image only two colors are allowed, i. e., C = {0, 1},
where a pixel with color 0 is a background pixel (black) and a pixel with color 1
is an object pixel (white). When a (color) image is converted into a binary image,
the result is called binarized image. The 4-neighborhood N4(x, y) of a pixel (x, y)
consists of (x − 1, y), (x + 1, y), (x, y − 1), and (x, y + 1). Two pixels p and q
of the same color are 4-adjacent if they are 4-neighbors. A 4-path from pixel
(v, w) to pixel (x, y) is a sequence of distinct pixels (x0, y0), (x1, y1), . . . , (xk, yk),
where (x0, y0) = (v, w), (xk, yk) = (x, y) and pixels (xi, yi) and (xi−1, yi−1) are
4-adjacent for 1 ≤ i ≤ k. A subset of pixels R is called 4-region if there is a
4-path between every pixel p ∈ R and q ∈ R such that R is maximal. The 8-
neighborhood N8(x, y) of (x, y) consists of its neighbors (x±1, y±1). 8-adjacency,
8-path, and 8-region are defined analogously.

We use morphological image processing to alter or analyze binary images. For
example, erosion converts each object pixel with at least one background pixel in
its 8-neighborhood into a background pixel, see Fig. 1. Similarly, dilatation con-
verts each background pixel with at least one object pixel in its 8-neighborhood
into an object pixel.

1 1 1

1

1

1 1

1 1

x

y

0

1

2

.

.

h

0 1 2 . . w
x

y

0

1

2

.

.

h

0 1 2 . . w

Fig. 1. Erosion: The reference pixel (center) of the pattern (above the arrow) is put on
every pixel of the image and if the pattern and the pixels underneath do not match,
the pixel underneath the center is turned into a background pixel.

3 Optical Graph Recognition

OGR is divided into the four phases: preprocessing, segmentation, topology
recognition, and postprocessing. The input of the first phase is a drawing of
a graph G as a digital image. From an information theoretic point of view, every
phase reduces the information contained in the digital image, until only the sets

4 C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, J. Reislhuber

of vertices and edges remain. A digital image with a size of several MB is reduced
to a GraphML file of only a few KB. Each of the following sections is devoted
to a phase, its purpose, suggestions for possible algorithms, and a description
of our prototypical OGR implementation OGRup. All phases but the topology
recognition use standard image processing techniques for which we only show
their effects. The reader is referred to standard literature on image processing
for details, e. g., [14]. A detailed description of each phase can be found in [20].
The particularity is the topology recognition phase, which is therefore described
in more detail as it involves non-standard techniques developed for the purpose
of OGR.

3.1 Preprocessing

The purpose of the preprocessing phase is to separate the pixels belonging to the
background from the pixels of the drawn graph, i. e., the image is binarized such
that every object pixel is part of the drawing and every background pixel is not.
Information that is unimportant to OGR, like the color of the vertices (edges)
and the background, is removed from the image. This can be achieved with any
binarization algorithm like global, adaptive or hysteresis thresholding [6, 7, 9, 13,
14]. The extent of information that is filtered depends both on the drawing of
the graph and the tasks of the subsequent phases of OGR. For example, if the
image contains vertex or edge labels, OCR [3] can be applied to identify them.
Then, the labels are removed from the image such that they later on are not
erroneously identified as part of the graph, and are passed to the postprocessing
phase to assign them to vertices and edges.

In OGRup, we use histogram based global thresholding for the binarization.
With this method, each pixel with a color (gray value) greater than a predefined
threshold is an object pixel and it is a background pixel otherwise. The threshold
color t can either be manually defined, or it is automatically estimated by using
the gray-level histogram [14, p. 599]. Fig. 2 shows the effect of binarization.

After binarization, we additionally apply the noise reduction method from
[14, p. 531] depending on the quality of the image. There are two types of noise.
Isolated object pixels (white) called salt and isolated background pixels (black)
called pepper. Both types of noise can be reduced by the opening and closing
operators. The opening operator first erodes k times and then dilates k times;
closing does the same in inverse order. Opening generally smoothens the border
of a region of object pixels and eliminates thin protrusions and, thus, salt [14,
p. 528]. Closing also smoothens the border of object pixel regions but, in contrast
to opening, removes pepper. Closing also fuses narrow breaks, eliminates small
holes, and fills gaps in the border of object pixel regions. This is important in
the context of OGR. For instance, if an edge curve is not contiguous or there is
a gap between the edge curve and one of its attached vertices due to bad image
quality, the edge cannot be recognized. Closing makes edges contiguous and fills
small gaps between edges and vertices.

Optical Graph Recognition 5

Fig. 2. A drawing of a graph with the result of the preprocessing phase.

3.2 Segmentation

The input of the segmentation phase is a binarized image resulting from the
preprocessing. In a nutshell, segmentation identifies the vertices in the binary
image. More precisely, for each object pixel it determines whether it belongs to
a vertex or to an edge. The output is a ternary image with three colors, for the
background, the vertex, and edge pixels. Note that, depending on the shape of
the vertices, different methods have to be applied.

In OGRup, we have implemented a generic approach inspired from [4, p. 476]
which assumes the following preconditions. The vertices are represented by filled
shapes, e. g., circles or rectangles, and the edges are represented by curves of a
width significantly smaller than the diameter of the vertices, see Fig. 3. Using
this assumption, we can use the opening operator which first erodes k times and
then dilatates k times. Erosion shrinks regions of objects pixels by turning pixels
at the border to background pixels. We choose k large enough such that all edge
curves vanish, see Fig. 3. By assumption, the remaining object pixel regions
belong to vertices. Since the regions occupied by the vertices have shrunk due
to the erosion, applying dilation k times inflates vertices to their prior size. By
comparing the object pixels after these operations with the binary image from
the input of this phase, the desired ternary image is obtained.

Fig. 3. A drawing of a graph with the result of the segmentation phase, input, after
erosion, and after dilatation.

The number k of erosions and dilatations can either be chosen manually
or automatically with the help of the distance image obtained by the Chamfer
algorithm [2] as implemented in OGRup. The distance image gives the minimum

6 C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, J. Reislhuber

distance to the next background pixel for each object pixel. Large local maxima
in the distance image can be found in the vertices’ centers (cf. [4, p. 477]);
we denote by kmax the smallest such maximum. In contrast, the local maxima
belonging to edges, are small in comparison to the maxima found in vertices;
we denote by kmin the largest such local maximum. Note that kmin � kmax

by assumption, which makes it possible to accurately determine kmin and kmax

automatically. If k is chosen such that kmin < k < kmax, then the k erosions
removes all edge curves but not the vertices.

If vertices are drawn as unfilled circles, the centers of the vertices can be
detected by the Hough transformation [5, 8, 12]. Afterwards, the vertices can be
filled and the approach described before can be used to detect the vertices. Other
vertex shapes, filled or unfilled, need different approaches. Here, we can give no
approach that works in any case but instead refer the reader to the rich set of
algorithms for object detection [4, 9, 14].

3.3 Topology Recognition

The input for topology recognition is the binarized image and the results from
the segmentation phase. Our approach can be divided into three subphases:
skeletonization, edge classification and edge traversal.

The basic idea of skeletonization is to discard redundant information while
retaining only the topological information of the graph, i.e., the regions of ob-
ject pixels that represent the graph are reduced in size until a further removal
of a single object pixel would destroy the connectivity of the regions [9, p. 151].
Skeletonization results in the skeleton of a binary image, e. g., see Fig. 4. The
skeleton, also known as the medial axis, is the locus of the centers of all cir-
cles that are tangent to the border of an object region at two or more disjoint
points [4, p. 474]. An example for the skeleton of a region of object pixels is
shown in Fig. 5. The most important property of a skeleton for OGR is that it
conserves the connectivity of the original binary image, i. e., the skeleton itself
is connected. For more information on skeletons consider [14, p. 543–545, 650–
653] or [9, p. 151–163]. Skeletonization can be achieved by the morphological
thinning operation from [14, p. 541], which basically turns object pixels at the
borders of object pixel regions into background pixels until a further thinning
would destroy the connectivity of the regions. A result of skeletonization by mor-
phological thinning is shown in Fig. 4. Note that for our approach the skeleton
needs to be a 4-region.

The edge classification subphase classifies the pixels of the skeleton of the
image based on the 4-neighborhood of every pixel and the pixels recognized
as vertex pixels in the segmentation phase. Let no(p) be the number of object
pixels in the 4-neighborhood of p. Then, there are the following four classes of
object pixels. Miscellaneous pixels PM with no ≤ 1 generally result from lines
in the skeleton that do not end at a vertex, e. g., due to noise in the image.
Miscellaneous pixels are ignored, as they are not necessary for the described
approach. Edge pixels PE are pixels with no = 2 that lie on the skeleton of an
edge. During the skeletonization phase each edge has been reduced to a line of

Optical Graph Recognition 7

Fig. 4. A binary image after morphological thinning.

Fig. 5. Skeleton of a region of object pixels.

single pixel thickness. Hence, every (inner) pixel that lies on the skeleton of an
edge has exactly 2 object pixels in its 4-neighborhood. Crossing pixels PC with
no > 2 lie on the crossing of two or more skeletons of edges. If two lines in the
skeleton cross, there is at least one pixel in the intersection that has more than
2 object pixels in its 4-neighborhood. Vertex pixels PV are part of the skeleton
of a vertex which already have been recognized in the segmentation phase. Port
pixels PP have a vertex pixel and an edge pixel in their 4-neighborhood, and
thus, are the points where an edge meets a vertex.

The classification of pixels allows us to identify edge sections in the image.
An edge section entirely consists of edge pixels up to both endpoints, which are
in PC or in PP . Every edge section is a 4-region. Based on the two endpoints,
we classify the sections in three categories as follows. In trivial sections both
endpoints are port pixels in PP , e. g., edge section “1” in Fig. 6. In port sections
one endpoint is a port pixel in PP and the other one is a crossing pixel in PC ,
e. g., edge sections “2”, “3”, “5”, and “6” in Fig. 6. Note that the simple strategy
of counting ports to determine the number of edges usually fails as more than one
edges may enter a vertex at the same port section. Finally, in crossing sections
both endpoints are crossing pixels in PC , e. g., section “4” in Fig. 6.

During our experiments with the edge classification we observed that if two
edges cross, the result was often a short intermediate crossing section like “4”
in Fig. 6. This is problematic for the subsequent edge traversal subphase. Our
solution is to first detect crossing sections like “4” in Fig. 6 and then to interpret
them as part of a crossing. However, the recognition of such small crossing sec-

8 C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, J. Reislhuber

2

5

3

6

4

1 B

D

A

C

v

Fig. 6. A binary image of a graph and the result of edge classification. An edge pixel is
marked with “A”, a vertex pixel with “B”, a port pixel with “C”, and a crossing pixel
with “D”. The edge sections are marked with numbers and v is a direction vector.

tions proved to be problematic and we have found no reliable way to distinguish
crossing sections resulting from one crossing and crossing sections lying between
two different crossings. Our simple approach is to interpret every crossing section
of a size smaller than a predefined parameter as part of a crossing. Note that for
Fig. 6 we did not apply this method for illustration purposes.

Trivial sections directly connect two vertices without interfering with any
other edges. For every trivial section we directly obtain an edge, e. g., section “1”
in Fig. 6. In contrast, port and crossing sections need a more elaborate treatment
as these sections are caused by crossings. In the edge traversal phase, we merge
port and crossing sections “adequately” to edges, e. g., in Fig. 6, sections “2”,
“4” and “6” are merged to one edge as well as “3”, “4” and “5”. We start
the traversal always at a port section and traverse it until we find a crossing
with another edge section. At this point we determine the adjacent edge section
which most probably belongs to the current section using direction vectors. The
direction vector of an edge section e = (p1, p2, . . . , pl) is a two dimensional vector
−−→pipj , with i 6= j, 1 ≤ i, j ≤ l, that describes the direction of e. pi is the tail and
pj the head of the vector. Let (xi, yi) be the coordinates of pi and (xj , yj) the
coordinates of pj . Then, −−→pipj = (xj − xi, yj − yi). |i− j|+ 1 is the magnitude of
−−→pipj . An example is illustrated in Fig. 6, where we start at port section “2”, reach
crossing “D” and then compare the directions of port section “3” and crossing
section “4” with the direction of “2”. In this case “4” is chosen as its direction
is most similar to the direction of “2”. It is important that the direction vectors
used are not the direction vectors of the whole edge sections, i. e., direction

Optical Graph Recognition 9

vector “v” is not
−−→
CD, but the direction vector of the immediate area around the

crossing. This is primarily necessary for graphs with non-straight edges. Here,
an edge can be an arbitrary Jordan curve before it crosses another edge, and
if the direction vector of the whole edge section to the crossing is used, then a
false edge section may be chosen for the subsequent section of an edge. In our
implementation we use direction vectors with an identical magnitude for all edge
sections.

During skeletonization it may happen that the directions of edge sections in
the vicinity of a crossing are distorted which can lead to false results. To avoid
this problem, we do not choose the head of the direction vector directly at the
crossing, but a few pixels away from the crossing when determining direction
vectors. For example in Fig. 6, the head of the direction vector of “4” is not
pixel “D”. In this example a distortion due to skeletonization does not occur.

Continuing with the example from Fig. 6, we may determine an edge consist-
ing of “2” followed by “4”. Then both sections “5” and “6” are suitable following
sections when only considering the direction vector of “4”. To resolve this, we
additionally take the direction vector of the preceding edge section, if existent,
into account as indicated by direction vector “v” in Fig. 6. Let ei be the edge
section for which the subsequent section must determined, −→pq the direction vec-
tor of ei, and e the current edge ei is part of. Then, if e has more than one
element, we take the predecessor ei−1 of ei in e, determine the direction vector
of ei−1 denoted by −→rs and compute the direction vector of ei as −→pq′ = −→pq+α∗−→rs
with 0 ≤ α ≤ 1. The reason for the α weighting is to reduce the influence of
−→rs on the final direction vector −→pq′. Without the relaxation the effect is simply
so large that it lead to unwanted results. Due to this modification, section “6”
is chosen as the succeeding section of “4” and as “6” is a port section, we have
recognized an edge of the graph consisting of “2”, “4” and “6”. In the same way,
the edge consisting of “3”, “4”, and “5” is recognized. With the edge consisting
of “1” we now have recognized the topology of the input with four vertices and
three edges.

3.4 Postprocessing

The postprocessing phase concludes OGR and includes procedures that use the
topological structure as input. Possible tasks are the assignment of coordinates
to the vertices obtained in the segmentation phase, the attachment of labels
recognized in the preprocessing phase, the recognition of edge directions, the
assignment of colors, and the transformation to file formats. In OGRup, the
postprocessing phase assigns coordinates to the vertices obtained in the segmen-
tation phase and traverses every recognized edge and assigns bends to every edge
so that they are drawn similar to the edge representations of the input image.

4 Experimental Results

As a rule of thumb, the easier a graph can be recognized by a human, the
better the graph can be recognized by OGR. Experiments with OGRup show

10 C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, J. Reislhuber

that graph recognition is error-prone if many edges cross in a local area and if
edges cross with small angles. This parallels recent empirical evaluations [15,17],
which report that right angle crossings are as good as no crossings and have led
to the introduction of RAC drawings [11].

As plane graphs have no crossings, they can be recognized very well by OGR.
Drawings of 1-planar graphs [21], where each edge can have at most one crossing,
preferably in a large angle, are also recognized well and the same holds for RAC-
drawings. As already stated in Sect. 1, a unique topology can only be recognized
if the input image supports it [19]. Otherwise, even a human has low chances
to guess the intention of the creator. Fig. 7 gives exemplary graphs that were
recognized by OGRup. The drawing in Fig. 7(c) was not correctly recognized
since too many edges cross at the same point. In Fig. 7(d) the small crossing
angles of the edges lead to false results. However, both drawings are also hard
to recognize for a human. As it is common to most digital image processing
approaches, the results of OGRup heavily depend on the careful adjustment of
the necessary parameters.

As a benchmark for OGRup, we used the Rome graphs1 (undirected graphs
with 10 to 100 nodes). Each of the 11,534 Rome graphs was drawn 10 times with
a spring embedder from Gravisto [1]. 107,543 drawings (93.24%) were recognized
correctly. In 50 drawings, large regions of many crossing edges were erroneously
recognized as vertices. In the remaining 7,747 drawings, the average number of
false positives was 1.24 (variance 0.51), i. e., non-existent edges of the original
graphs erroneously recognized by OGRup (cf. Fig. 7(d)). The average number of
false negatives was 0.14 (variance 0.97), i. e., edges not recognized by OGRup.
The maximum number of false positives and false negatives was 10 and 5, re-
spectively. 77.25% (75.96%) of all false positives (negatives) occurred in drawings
with more than 75 vertices. The reason for this are many edge crossings in small
areas and small crossing angles which frequently occur for larger graphs.

5 Summary and Perspectives

In Graph Drawing one is concerned with the construction of nice drawings.
The drawings shall be well readable and there are many aesthetic criteria for
the specification of “nice”. Aesthetic criteria and graph visualizations are typi-
cally evaluated by comparing their differences in effectiveness, measured by task
performance such as response time and accuracy. However, the approach has
limitations by the individual performance and preferences [16]. Here, OGR may
serve as an objective evaluator.

OGR is a framework to reverse the process of graph drawing. We have imple-
mented a prototype of the framework which shows the usefulness of the approach
and addresses problematic and error-prone tasks. Our tool OGRup is flexible
enough for extensions and exchanges of concrete implementations of the phases,
e. g., to introduce human interaction or to transfer it to a smartphone.

1 http://www.graphdrawing.org/data.html

Optical Graph Recognition 11

(a) Arbitrary Jordan curves as edges

(b) The Dyck graph

(c) Many crossings at the same point

(d) Small crossing angles

Fig. 7. Different drawings of graphs with the graph recognized by OGRup viewed in
Gravisto. The graphs in (a) and (b) are correctly recognized by OGRup, whereas the
graphs in (c) and (d) are not correctly recognized. Falsely recognized edges are shown
bold and red.

12 C. Auer, C. Bachmaier, F. J. Brandenburg, A. Gleißner, J. Reislhuber

References

1. Bachmaier, C., Brandenburg, F.J., Forster, M., Holleis, P., Raitner, M.: Gravisto:
Graph visualization toolkit. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 502–
503. Springer (2004), http://gravisto.fim.uni-passau.de/

2. Borgefors, G.: Distance transformations in digital images. Computer Vision,
Graphics and Image Processing 34(3), 344–371 (1986)

3. Bunke, H., Wang, P.S.: Handbook of Character Recognition and Document Image
Analysis. World Scientific (1997)

4. Castleman, K.R.: Digital Image Processing. Prentice-Hall (1996)
5. Cauchie, J., Fioletb, V., Villers, D.: Optimization of an Hough transform algorithm

for the search of a center. Pattern Recogn. 41, 567–574 (2008)
6. Chow, C.K., Kaneko, T.: Automatic boundary detection of the left ventricle from

cineangiograms. Comput. Biomed. Res. 5(4), 388–410 (1972)
7. Condurache, A.P., Aach, T.: Vessel segmentation in angiograms using hysteresis

thresholding. In: IAPR Conference on Machine Vision Applications 2005. pp. 269–
272 (2005)

8. Davies, E.R.: A modified Hough scheme for general circle location. Pattern Recogn.
Lett. 7(1), 37–43 (1988)

9. Davies, E.R.: Machine Vision: Theory, Algorithms, Practicalities. Academic Press,
2nd edn. (1997)

10. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall (1999)

11. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings.
Theor. Comput. Sci. 412(39), 5156–5166 (2011)

12. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves
in pictures. Commun. ACM 15(1), 11–15 (1972)

13. Estrada, R., Tomasi, C.: Manuscript bleed-through removal via hysteresis thresh-
olding. In: Proc. International Conference on Document Analysis and Recognition,
ICDAR 2009. IEEE (2009)

14. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice-Hall, 2nd edn.
(2002)

15. Huang, W., Eades, P., Hong, S.H.: Beyond time and error: A cognitive approach
to the evaluation of graph drawings. In: Proc. Beyond Time and Errors: Novel
Evaluation Methods for Information Visualization, BELIV 2008. pp. 3:1–3:8. ACM
(2008)

16. Huang, W., Eades, P., Hong, S.H.: Measuring effectiveness of graph visualizations:
A cognitive load perspective. Inform. Visual. 8(3), 139–152 (2009)

17. Huang, W., Hong, S.H., Eades, P.: Effects of crossing angles. In: Fujishiro, I., Li,
H., Ma, K.L. (eds.) Proc. IEEE Pacific Visualization Symposium, PacificVis 2008.
pp. 41–46. IEEE (2008)

18. Lauren, V., Pisinger, G.: Automated analysis of vessel diameters in MR images.
Visualization, Imaging, and Image Processing pp. 931–936 (2004)

19. Pach, J.: Every graph admits an unambiguous bold drawing. In: van Krefeld, M.,
Speckmann, B. (eds.) GD 2011. LNCS, vol. 7034, pp. 332–342. Springer (2012)

20. Reislhuber, J.: Graph Recognition. Master’s thesis, University of Pas-
sau (2011), http://www.infosun.fim.uni-passau.de/br/publications/

mt-reislhuber-2011.pdf

21. Ringel, G.: Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus dem Math-
ematischen Seminar der Universität Hamburg 292, 107–117 (1965)

