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Abstract A graph is outer 1-planar (o1p) if it can be drawn in the plane such that all vertices
are in the outer face and each edge is crossed at most once. o1p graphs generalize outerpla-
nar graphs, which can be recognized in linear time, and specialize 1-planar graphs, whose
recognition is NP-hard.

We explore o1p graphs. Our first main result is a linear-time algorithm that takes a graph
as input and returns a positive or a negative witness for o1p. If a graph G is o1p, then the
algorithm computes an embedding and can augment G to a maximal o1p graph. Otherwise,
G includes one of six minors, which is detected by the recognition algorithm.

Secondly, we establish structural properties of o1p graphs. o1p graphs are planar and are
subgraphs of planar graphs with a Hamiltonian cycle. They are neither closed under edge
contraction nor under subdivision. Several important graph parameters, such as treewidth,
colorability, stack number, and queue number, increase by one from outerplanar to o1p
graphs. Every o1p graph of size n has at most 5

2 n− 4 edges and there are maximal o1p
graphs with 11

5 n− 18
5 edges, and these bounds are tight.

Finally, every o1p graph has a straight-line grid drawing in O(n2) area with all vertices
in the outer face, a planar visibility representation in O(n logn) area, and a 3D straight-line
drawing in linear volume, and these drawings can be constructed in linear time.

Keywords planar and outerplanar graphs · 1-planarity · embeddings and drawings · graph
parameters · density

1 Introduction

Planar graphs have been intensively studied in graph theory and graph drawing. Outerplanar
graphs are an important subfamily of planar graphs. Here, all vertices are in the outer face
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and edges do not cross. This implies several structural properties. Every outerplanar graph
has at least two vertices of degree two, which is utilized in a linear-time recognition algo-
rithm [36]. The complete graph K4 and the complete bipartite graph K2,3 are not outerplanar;
in fact, they are the forbidden minors. The weak dual of a maximal outerplanar graph is a
binary tree and outerplanar graphs have at most 2n−3 edges. They are 3-colorable and have
treewidth at most two, stack number one [8] and queue number at most two [30], and these
bounds are tight. Every outerplanar graph admits a planar straight-line drawing within an
area of O(dn logn) [26] for graphs of degree d or O(n1.48) [17]. Additionally, there is a
visibility representation in O(n logn) area [9].

There were several approaches to generalize planarity to graphs that are “almost” planar
in some sense. Such attempts are important as many graphs are not planar, and it is desirable
to transfer properties beyond planarity. One generalization is 1-planarity, which was intro-
duced by Ringel [38] in an approach to color a planar graph and its dual. A graph is 1-planar
if it can be drawn in the plane such that each edge is crossed at most once. 1-planar graphs
have recently obtained much attention, see also [1, 12, 14, 15, 22, 23, 32, 34].

The combination of 1-planar and outerplanar leads to o1p graphs, which are graphs with
an embedding in the plane with all vertices in the outer face and at most one crossing per
edge. They were introduced by Eggleton [24], who called them outerplanar graphs with
edge crossing number one. He showed that edges of maximal o1p graphs do not cross in the
outer face and that each face is incident to at most one crossing, from which he concluded
that every o1p graph has an o1p drawing with straight-line edges and convex (inner) faces.
Thomassen [42] generalized Eggleton’s result and characterized the class of 1-planar graphs
which admit straight-line drawings by the exclusion of so-called B- and W-configurations in
embeddings. These configurations were rediscovered by Hong et al. [32], who also provide
a linear-time drawing algorithm that starts from a given embedding.

From the algorithmic perspective there is a big step from zero to some crossings. It
is well-known that planar graphs can be recognized in linear time, and there are linear-time
algorithms to construct an embedding, maximal augmentations, and drawings, e. g., straight-
line drawings and visibility representations in quadratic area. On the contrary, dealing with
crossings generally leads to NP-hard problems. It is NP-hard to recognize 1-planar graphs
[34], even if the graph is given with a rotation system, which determines the cyclic ordering
of the edges at each vertex [6]. 1-planarity remains NP-hard even for bounded treewidth
[7]. There is no efficient algorithm to compute the crossing number of a graph [31] or to
compute the number of crossings induced by the insertion of an edge into a planar graph
[14]. However, there is a linear-time recognition algorithm for maximal 1-planar graphs if
the rotation system is given [22].

In this paper we thoroughly investigate o1p graphs. One major result is a linear-time
recognition algorithm for o1p graphs. In the context of 1-planarity, it is the first efficient
algorithm that returns a positive or negative witness in terms of either an o1p embedding
or one of six minors. As such it resembles advanced planarity testing algorithms, which ei-
ther return a planar embedding or detect a minor [44]. In contrast, o1p graphs are neither
closed under edge contraction nor under subdivision. Hence, there is no characterization of
o1p graph by forbidding some minors as it is known for example for planar graphs. Our al-
gorithm1 works directly on SPQR-trees, analyzes the structure of its nodes, and determines
whether an edge is plane or crossed in every embedding, or whether this depends on the con-
crete embedding. Independently, Hong et al. [33] obtained a linear-time testing algorithm,
which returns an o1p embedding in the positive case.

1 A short version of the algorithm appeared in [5].
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If the graph is o1p, it can be augmented to a maximal o1p graph. To a large extent, this is
already done by our recognition algorithm. A graph is maximal for a class of graphs if adding
a new edge violates its defining property. Maximal graphs often provide deep insights into
graph properties. First, we derive that o1p graphs are planar. In fact, they are subgraphs of
planar graphs with a Hamiltonian cycle, which are the 2-stack graphs [8]. This is due to the
fact that o1p graphs have an underlying tree structure, which finds expression in a simplified
planar dual graph and results in treewidth at most three. The simplified dual of a maximal
o1p graph is a ternary tree, whose nodes correspond to K3s and K4s. From these trees we
obtain that every o1p graph of size n has at most 5

2 n− 4 edges and that there are sparse
maximal o1p graphs with 11

5 n− 18
5 edges. The upper bound is n

2 − 1 above the respective
value for outerplanar graphs. Both upper and lower bounds are tight. Hence, there is a fixed
interval for the density of maximal o1p graphs. This parallels results for maximal 1-planar
graphs [12], where it was shown that there are sparse maximal 1-planar graphs with only
45
17 n+O(1) edges and that every maximal 1-planar graph has at least 21

10 n+O(1) edges. The
upper bound of 4n−8 edges was proved independently by several authors [10, 25, 37].

Moreover, important graph parameters, such as treewidth, chromatic number (coloring),
stack number, and queue number increase by one from outerplanar to o1p and are 3, 4, 2,
and 3, respectively. For a particular graph, these numbers (except for the queue number) can
be computed efficiently for o1p, which contrasts with the situation for planar graphs, where
this is open for treewidth, whereas chromatic number [28], stack number [43], and queue
number [30] remain NP-hard.

Finally, we investigate drawings. Every o1p graph has a straight-line grid drawing in
quadratic area, since o1p graphs are planar. Dehkordi and Eades [15] proved that every
o1p drawing can be transformed into a right angle crossing drawing, but at the expense of
exponential area. Here, all edges are straight lines and edges cross at a right angle. We show
that o1p graphs have a straight-line grid drawing in O(n2) area, where all vertices are in the
outer face. Furthermore, they have a planar visibility representation in O(n logn) area and a
3D straight-line drawing in linear volume. These drawings can be computed in linear time
from an input graph.

2 Preliminaries

We consider simple, undirected graphs G = (V,E) with n vertices and m edges. Two vertices
are a separation pair if their removal disconnects the graph. A drawing of a graph is a
mapping of G into the plane such that the vertices are mapped to distinct points and each
edge is a Jordan arc between its endpoints. A drawing is planar if the (Jordan arcs of the)
edges do not cross and is 1-planar if each edge is crossed at most once. Accordingly, a graph
is planar (1-planar) if it has a planar (1-planar) drawing. Crossings of edges with the same
endpoint, i. e., incident edges, are excluded since their local order can be swapped at their
common vertex in order to avoid such crossings. Similarly, self-intersections of edges can
always be avoided and are excluded. A planar drawing of a graph partitions the plane into
faces. A face is specified by a cyclic sequence of edges that forms its boundary. The set of
all faces forms the embedding of the graph. In 1-planar drawings, every crossing divides an
edge into two edge segments. An uncrossed edge consists of one segment. Therefore, a face
of a 1-planar embedding is specified by a cyclic list of edge segments. Replacing every pair
of crossing edges by a new vertex of degree four yields the planarization of G with respect
to this embedding.
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Fig. 1: (a) Chain of two K4s. (b) After flipping the right K4 (vertices e, f ).

A graph G is outerplanar if it has a planar drawing with all vertices in one distinguished
face. This face is referred to as the outer face and corresponds to the unbounded, external
face in a drawing in the plane. G is maximal outerplanar if no further edge can be added
without violating outerplanarity. Then, the edges in the outer face form a Hamiltonian cycle.
A graph G is outer 1-planar, o1p for short, if it has a drawing with all vertices in the outer
face and such that each edge is crossed at most once. G is maximal o1p if the addition
of any edge violates outer 1-planarity, and plane-maximal o1p if no edge can be added
without inducing a crossing or violating outerplanarity. In an o1p embedding, an edge is
either crossing or plane (non-crossing). We say that it is inner, if none of its segments is part
of the boundary of the outer face. Analogously, an edge is outer, if it is entirely part of this
boundary. Observe that a crossed edge cannot be outer. If the embedding is maximal, then
no crossing is on the outer face [24, 40] and hence we can classify every edge as outer or
inner.

Maximal outerplanar graphs have a unique embedding up to inversion. This does no
longer hold for maximal o1p graphs. Consider a graph with 6 vertices and 11 edges con-
sisting of two K4s as depicted in Fig. 1(a). If the left K4 is fixed, the right can be flipped
(Fig. 1(b)), which also changes the pair of crossing edges. However, we show that there is a
maximal o1p embedding if and only if all o1p embeddings are maximal.

2.1 SPQR-trees

In order to gain more insight into the structure of an o1p graph G, we consider its SPQR-tree
T . SPQR-trees were introduced by Di Battista and Tamassia [19] and provide a description
of how a biconnected graph is composed of triconnected components, series and parallel
compositions. In the following, we give a short introduction into this data structure and refer
to [19] and [29] for a more details.

In the definition we adopt here, the SPQR-tree is unrooted. An example is provided in
Fig. 3, which shows a graph in Fig. 3(a) along with its SPQR-tree in Fig. 3(b). The SPQR-
tree is built upon separation pairs. To demonstrate this, consider the following splitting op-
eration: Let {u,v} be a separation pair of G and G1, . . . ,Gk be the connected components
obtained after the removal of u and v from G. Partition the set of connected components into
two and rejoin each partition such that we obtain two subgraphs G′ and G′′ of G which both
contain at least two edges. Finally, insert a new, so-called virtual edge {u,v} into G′ and into
G′′, even if this creates a multi-edge. In G′, the inserted edge {u,v} is meant to represent the
subgraph of G that corresponds to G′′ and vice versa for the inserted edge {u,v} in G′′. This
mutual relationship is expressed by linking the inserted edges {u,v} in G′ and G′′.

The reverse operation to splitting is a 2-clique-sum at the linked edges: Given two graphs
G′ and G′′ whose edges {u,v} are linked, the 2-clique-sum G′⊕G′′ is obtained by merging
the vertices u, respectively v, in G′ and G′′ and removing the linked edges {u,v}.

By applying the splitting operation recursively to G′ and G′′, we finally obtain compo-
nents that are either a cycle of length 3, consist of two vertices and three parallel edges, or
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are triconnected. We label the components that fall into the first category with S for series
composition, those in the second with P for parallel composition and the latter with R for
rigid. This decomposition of G depends on the order of splits and is not unique yet. It be-
comes unique by forming again the 2-clique-sum of two components that have linked edges
if both are labeled S or both are labeled P, and this yields the SPQR-tree T .

The SPQR-tree T consists of a node µ for each component, which is referred to as the
node’s skeleton skel(µ). Subsequently, each node represents either a series composition (S),
a parallel composition (P), or a triconnected component (R). By construction, every skeleton
is homeomorphic to a subgraph of G. If two components had a linked edge {u,v} and the
components are the skeletons of nodes µ and ν , then T contains an edge between µ and ν

and µ and ν are called adjacent in T . We also keep the term virtual edge for the respective
edges in skeletons. Let e denote the virtual edge {u,v} in skel(µ) and e′ denote the virtual
edge {u,v} in skel(ν). We say that ν is the refining node refn(e) of e and, symmetrically,
µ is the refining node refn(e′) of e′. The whole subgraph of G that is represented by a
virtual edge e is called the expansion graph2 expg(e) of e. As a result of the last step in
the construction of the SPQR-tree, neither two S- nor two P-nodes are adjacent in T , the
skeleton of every S-node is a cycle of length at least three, and the skeleton of every P-node
consists of exactly two vertices and at least three parallel edges.

In the definition given in [19], an SPQR-tree additionally has Q-nodes, which represent
one edge of G at a time. Consequently, there every skeleton of an S-, P-, or R-node has only
virtual edges. For simplification, we omit Q-nodes and have both virtual and non-virtual
edges in the skeletons of the nodes.

An interesting feature of SPQR-trees is their ability to represent all planar embeddings
of a planar graph via the embeddings of the skeletons [19, 35]. To this end, choose a planar
embedding of every skeleton of the SPQR-tree and re-build the graph along with a planar
embedding using 2-clique-sums. Let G′ and G′′ be two graphs with plane embeddings E ′

and E ′′, respectively, and let the edges e′ in G′ and e′′ in G′′ be linked. Build the 2-clique-sum
as described above and merge E ′ and E ′′ such that E ′′ with e′′ removed takes the position of
e′ in E ′ and vice versa to obtain a planar embedding for the combined graph. Consequently,
testing planarity of a graph can be reduced to testing planarity of the skeletons of the R-
nodes, which is known as testing the triconnected components.

3 Recognition

There are linear-time algorithms for the recognition of (maximal) outerplanar graphs that
use the fact that there are at least two vertices of degree two. A single K4 implies that this
property no longer holds for o1p graphs. In contrast, the recognition of 1-planar graphs is
NP-hard [34], even if the graphs are given with a rotation system [6].

3.1 Finding an o1p Embedding

Theorem 1 There is a linear-time algorithm to test whether a graph G is o1p and, if so,
returns an o1p embedding.

2 In the rooted version of SPQR-trees the expansion graph expg(e) corresponds to the pertinent graph of
refn(e).
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Fig. 2: (a) Proposition 2, (b) Proposition 3, (c) Corollary 2, (d) a “partial” crossing.

For the proof we first establish some necessary conditions for a graph G to have an o1p
embedding. At the same time, we implement a linear-time algorithm that checks these con-
ditions and, if positive, constructs an o1p embedding of G. In a second step, we show that
the conditions are sufficient.

We start with two observations regarding o1p embeddings. It is well-known that every
crossing induces a K4 in maximal 1-planar embeddings. This holds in an even tighter form
for o1p embeddings:

Proposition 1 ([15]) Let {a,b} and {c,d} be a pair of crossing edges in an o1p embedding
of a maximal o1p graph. Then the vertices a, b, c, and d form a K4 and the edges {a,b},
{b,c}, {c,d}, and {d,a} are plane.

Consider a plane, inner edge {u,v} in an o1p embedding of a graph G. Then {u,v} partitions
the embedding and the deletion of u and v disconnects G (cf. Fig. 2(a)).

Proposition 2 For every plane, inner edge {u,v}, the vertices u, v are a separation pair.

As an o1p embedding requires every vertex to lie in the outer face, it suffices to test each bi-
connected component separately and combine the individual embeddings at the cut vertices
afterwards. Consequently, we assume biconnectivity for the remainder of this section.

Let T be the SPQR-tree of an o1p graph G. As mentioned in Sect. 2.1, all planar em-
beddings of G can be obtained by considering all combinations of all planar embeddings of
the skeletons of T . We now want to achieve an analogon for o1p embeddings, i. e., instead
of considering the possible o1p embeddings of G all at once, we define o1p embeddings of
skeletons such that an o1p embedding for G can be obtained in a similar manner as in the
planar case. To decide whether a graph is o1p, it suffices to show that there exists a o1p
embedding and we need not show that all o1p embeddings of G can be represented by a
combination of o1p embeddings of the skeletons of T .

Mainly because of virtual edges in conjunction with crossings, we have to distinguish
strictly between o1p embeddings of graphs and skeletons. A virtual edge e is embedded
plane in a skeleton’s embedding if and only if no edge of expg(e) crosses an edge that is
not contained in expg(e). A virtual edge e crosses another virtual edge e′ in a skeleton’s
embedding if and only if at least one edge of expg(e) crosses an edge of expg(e′). Likewise,
a virtual edge e crosses a non-virtual edge e′ in a skeleton’s embedding if and only if an
edge of expg(e) crosses e′. One condition that we may adopt directly for o1p embeddings of
skeletons is that there must be a face (the outer face) such that all vertices lie on its boundary.

Lemma 1 The skeleton of every R-node is a K4.

Proof Recall that outerplanar graphs are subgraphs of series-parallel graphs. Hence, the
SPQR-tree of an outerplanar graph has no R-nodes. Let µ be an R-node in T . Then skel(µ)
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must be embedded such that at least two edges cross, e. g., edges {a,b} and {c,d}. By
Proposition 1, the vertices a, b, c, and d either already form a K4 or the missing edges can
be inserted.
There must be an embedding of skel(µ) such that all vertices are on the boundary of the
same face. Suppose skel(µ) has more than four vertices. Then at least one of {a,b}, {b,c},
{c,d}, and {d,a} is an inner edge. By Proposition 1, all of them are plane, and Proposition 2
therefore implies that skel(µ) has a separation pair. Hence, skel(µ) is not triconnected, a
contradiction. As every vertex in a triconnected graph is incident to at least three edges, the
skeleton is a K4. ut

Since a graph is planar if its triconnected components are planar, we obtain from Lemma 1:

Corollary 1 Every o1p graph is planar.

Let us take a closer look at o1p embeddings and the embedding of virtual edges. Here,
we have to take into consideration that the expansion graph of every virtual edge e has at
least one additional vertex besides the separation pair, so at least one segment of e must lie
on the boundary of the outer face if the 2-clique-sums are to result in an o1p embedding.
For an illustration consider the virtual edge {u,v} in Fig. 2(b), whose expansion graph is
a path of length three. The crossing edge {x,y} partitions {u,v} into two segments, hence,
expg({u,v}) must be embedded such that it replaces the edge segment of {u,v} that lies in
the outer face.

Proposition 3 Every virtual edge must be embedded such that at least one segment is part
of the boundary of the outer face.

Combining this result with Lemma 1 and observing that every vertex must lie in the outer
face (cf. Fig. 2(c)), we find:

Corollary 2 The skeleton of every R-node must be embedded with exactly one pair of non-
virtual, crossing edges and four plane edges.

In contrast to o1p embeddings of graphs, a virtual edge may cross other incident edges.
Consider again the graphs depicted in Fig. 2(b), e. g., and identify the vertices u and x in
each graph such that the graphs contain a vertex “ux”. Then, {ux,v} and {ux,y} are incident,
crossing edges in the figure on top, but not after the virtual edge has been replaced by its
expansion graph in the figure below. Assume for the time being that whenever an edge e′

crosses a virtual edge e = {u,v}, then e′ must cross all paths connecting u and v in expg(e).
For the following statement, note that the embedding of skeletons of S- and R-nodes,

i. e., cycles and triconnected components, respectively, is not necessarily unique (S-node) or
unique up to inversion (R-node) as in the planar case.

Lemma 2 Let e = {u,v} be a virtual edge in skel(µ) for a node µ in T . If refn(e) is a
P- or an R-node, then e must be embedded plane in skel(µ). If refn(e) is an S-node whose
skeleton is the cycle (u,c1,c2, . . . ,ck,v,u), then e may cross at most one other edge, which
must be virtual. In this case, e must be embedded such that the segment incident to u (v) lies
in the outer face if the edge {u,c1} ({ck,v}) is virtual.

Proof First, consider the case where refn(e) is a P- or an R-node. Then, expg(e) is bicon-
nected, so there are at least two vertex-disjoint paths from u to v in expg(e). Suppose e
crosses another edge e′ in skel(µ). If e′ is non-virtual, then e′ must cross both paths and
therefore has at least two crossings. Otherwise, if e′ is also virtual, there is at least one edge
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in expg(e′) that crosses both paths or there is a vertex in expg(e′) that is embedded such that
it lies between these paths and therefore not in the outer face. This also applies if e crosses
e′ more than once. Consequently, e must always be embedded plane in skel(µ).

Let now refn(e) be an S-node. As two S-nodes are never adjacent in T , µ is either a
P- or an R-node. By Corollary 2, however, e cannot be crossed as only plane edges may be
virtual in the skeleton of an R-node. In the former case, the skeleton consists of vertices u
and v and at least three parallel edges {u,v}, one of which is e. If e crosses two or more edges
of these parallel edges, we again have the situation that a virtual edge crosses at least two
vertex-disjoint paths, which cannot result in an o1p embedding of the graph, and likewise,
if e crosses one edge more than once. Suppose e crosses only one edge e′. Let skel(refn(e))
be the cycle (u,c1,c2, . . . ,ck,v,u). As the vertices of expg(e) must lie in the outer face, this
implies that when forming the 2-clique-sum of µ and refn(e), either {u,c1} or {ck,v} is
crossed. Suppose {u,c1} is virtual. As refn(e) is an S-node, {u,c1} can only be refined by
a P- or an R-node and therefore must be plane. Hence, the crossing must be at {ck,v}. The
same applies to {ck,v} with switched roles. Note that if e′ is non-virtual, the o1p embedding
of G has a pair of incident, crossing edges. ut

Let us consider the situation where an edge e′ crosses a virtual edge e = {u,v} only partially,
i. e., e′ crosses only some, but not all paths connecting u and v in expg(e). Let p,q be two
paths in expg(e) connecting u and v such that p is the first path crossed by e′ and q is not
crossed by e′. Note that p and q are not necessarily disjoint. Fig. 2(d) shows an example,
where u might be either the leftmost vertex or the one to the right of it. If e′ is virtual,
it cannot be refined by a P- or R-node, by the same argument as in the first part of the
proof of Lemma 2. Hence, e′ is either refined by an S-node or non-virtual. In both cases, e′

cannot cross p more than once without crossing a common section of p and q, so e′ ends
somewhere within expg(e) and is incident to either u or v. Let µ be the node of T whose
skeleton contains both e and e′. Corollary 2 also applies for partial crossings, so µ cannot
be an R-node. If µ is a P-node, u and v are the only vertices of skel(µ) and e′ = {u,v}.
Furthermore, there must be a third (virtual or non-virtual) edge {u,v} (drawn dotted in
Fig. 2(d)). Together with this edge or, if it is virtual, its expension graph, no o1p embedding
is possible. Consequently, µ must be an S-node and, as no two S-nodes are adjacent in T ,
e′ is non-virtual and refn(e) is either a P- or an R-node. This situation is indeed possible in
an o1p embedding of a graph, as the example in Fig. 2(d) shows (without the dotted edge).
Let ν = refn(e). Then, the edge {u,v} in skel(ν) which is linked to e must be embedded
with a crossing, because its expansion graph crosses other edges of skel(ν). By Corollary 2,
this implies that ν is a P-node and the crossing is represented adequately by a conventional,
i. e., complete, crossing of the edge that is refined by µ in skel(ν). In µ itself, we embed
e without crossing. Consequently, it suffices for the remainder of this section to deal with
“complete” crossings only.

As all edges in a P-node are parallel and every virtual edge may be crossed at most once,
we obtain at most two pairs of crossing virtual edges, which then also form the boundary of
the outer face. There may be a fifth, non-virtual edge that is completely inner. By summing
up Corollary 2 and Lemma 2, and observing that an S-node can only be adjacent to P- and
R-nodes in T , we obtain:

Corollary 3 Every virtual edge in the skeleton of an S-node must be embedded plane. The
skeleton of every R-node contains at most four virtual edges, which must be embedded plane,
and no vertex may be incident to more than two virtual edges. The skeleton of a P-node has
at most four virtual edges.
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Algorithm 1 Recognition of o1p
1: procedure TESTOUTER1PLANARITY(G)
2: if G is not planar then return ⊥ . Corollary 1
3: T ← SPQR-tree of G
4: for all R- and P-nodes µ ∈T do
5: if µ is an R-node then
6: if skel(µ) 6= K4 or contains a vertex incident to > 2 virtual edges then
7: return ⊥ . Lemma 1/ Corollary 3
8: else
9: for all neighbors ν of µ do

10: let e be the virtual edge in skel(µ) with refn(e) = ν and let e = {u,v}
11: if ν is an S- or an R-node then . if {u,v} is an edge of G, ν must be a P-node
12: insert a plane edge {u,v} . Proposition 1
13: else if µ is a P-node then . skeletons of P-nodes have exactly two vertices
14: if skel(µ) contains > 4 virtual edges then return ⊥ . Corollary 3
15: else if µ has only virtual edges then insert a plane edge . Lemma 3
16: compute the mapping C
17: PF ←{fixable P-nodes}
18: PN ←{P-nodes with crossings, but none fixable}
19: while PF ∪PN 6= /0 do
20: while PF 6= /0 do
21: remove next P-node π from PF with fixable S-nodes σ1, σ2
22: z←FIXCROSSINGATPNODE(G, T , π , σ1, σ2) . affected P-nodes
23: if z = ⊥ then return ⊥
24: for all π ′ ∈ z do
25: update C
26: if π ′ is fixable then move π ′ from PN to PF

27: if PN 6= /0 then . Lemma 4
28: choose any element π of PN with S-nodes σ1, σ2 conformant to C
29: z← FIXCROSSINGATPNODE(G, T , π , σ1, σ2)
30: for all π ′ ∈ z do
31: update C
32: if π ′ is fixable then move π ′ from PN to PF

33: for all S-/P-/R-nodes µ ∈T do fix the embedding
34: return 2-clique-sum of the skeleton embeddings

With these findings, we are ready for the o1p recognition algorithm (Algorithm 1). By Corol-
lary 1, o1p graphs are planar. The algorithm uses this as a prerequisite and computes the
SPQR-tree of the input graph. Both subroutines take O(n) time [29] and the number of
nodes in T for a planar graph is always in O(n). During the following steps, we augment G
by adding edges, which are plane in all o1p embeddings of G. The conditions for R-nodes
can be checked in time O(1) per R-node. Additionally, if an R-node is adjacent to another
R-node or an S-node, then one of the edges of K4 is missing. As an example, see the R-nodes
ρ1 and ρ2 in Fig. 3(b). By Proposition 1, however, the edge may be inserted and is always
plane. Observe that this introduces a new P-node π5 in Fig. 3(c). As an R-node may have at
most four neighbors and as the SPQR-tree can be updated in O(1) time, this modification
takes constant time, too.

The following lemma allows us to insert a non-virtual edge in every P-node if there is
none. In Fig. 3(b), this would apply, e. g., to π1.

Lemma 3 Let u, v be the vertices in the skeleton of a P-node without non-virtual edges.
Then the insertion of the edge {u,v} does not violate outer 1-planarity and {u,v} is plane
for every o1p embedding of G.
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Fig. 3: Input graph (a), its SPQR-tree (b), the SPQR-tree after the algorithm (c) (new edges and nodes col-
ored), and the found o1p embedding (d).

Proof Let π be a P-node whose skeleton has vertices u, v that are connected by virtual edges
only. According to the definition of SPQR-trees, every skeleton of a P-node has at least
three edges. Hence, π is adjacent to at least three other nodes. Subsequently, at least two
virtual edges must be refined by S-nodes and are embedded with a crossing. This results
in a crossing of two non-virtual edges in G that are, by Lemma 2, incident to u and v,
respectively. By Proposition 1, the edge {u,v} can always be inserted and is plane. ut

Again, Algorithm 1 can check these two conditions and augment the graph for a P-node in
time O(1), which results in a running time of O(n) for lines 4–15.

Consider a P-node π with vertices u, v. If skel(π) has at most two virtual edges, they
can be embedded without crossing and such that both lie completely in the outer face. Other
embeddings may be possible, but they result in unnecessary crossings. Suppose skel(π) has
at least three virtual edges. In consequence of Proposition 3, two of them must cross each
other. In Fig. 3(b), this holds for π1 and π2. We say that a P-node π claims a non-virtual edge
e, and express this by defining the mapping C (e) = π , if e is crossed in every embedding of
skel(π) that conforms with Lemma 2. Observe that C is uniquely defined, since G is o1p and
thus, no edge may be crossed more than once. We say that an embedding of the skeleton of a
P-node is admissible if the embedding of every edge conforms with Lemma 2 and does not
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Algorithm 2 Fix the embedding of a P-node with two crossing S-nodes
1: function FIXCROSSINGATPNODE(G, T , P-Node π , S-Node σ1, S-Node σ2)
2: let u, v be the separation pair of π

3: let (u,c1, . . . ,ck,v,u) be the cycle in skel(σ1)
4: let (u,d1, . . . ,dl ,v,u) be the cycle in skel(σ2)
5: if edge {ck,v} is virtual or edge {u,d1} is virtual then
6: if edge {u,c1} is virtual or edge {dl ,v} is virtual then return ⊥ . Lemma 2
7: else swap the roles of σ1, σ2

8: Pd ← /0 . possibly affected P-nodes
9: if k > 1 then

10: insert edge {u,ck} in G, update T
11: if {ck−1,ck} is virtual then add its associated P-node to Pd

12: else if {u,ck} is virtual then add its associated P-node to Pd

13: if l > 1 then
14: insert edge {v,d1} in G, update T
15: if {d1,d2} is virtual then add its associated P-node to Pd

16: else if {v,d1} is virtual then add its associated P-node to Pd

17: insert edge {ck,d1}, update T
18: if π has two (other) virtual edges then add π to Pd

19: return Pd

imply the crossing of non-virtual edges claimed by other P-nodes. In Fig. 3(b), e. g., skel(π1)
has two admissible embeddings and both imply crossing the edge { f ,m}, either by {d, i} or
by {h, i}. Hence, π1 claims { f ,m}. Computing C involves checking the embeddings of the
skeletons of all P-nodes. As every P-node has at most four virtual edges, there are at most(4

2

)
·2 = 12 embeddings. Hence, the total time needed for this step is in O(n).
If every admissible embedding of skel(π) yields the same set of edges that are crossed,

then π is called fixable. Let e, e′ be two virtual edges that are embedded crossing each
other. Observe that in this case, two S-nodes, namely refn(e) and refn(e′), are “crossing”.
By Proposition 1, the crossing can be augmented to a K4. The insertion of these additional
edges transforms each crossing S-node into an R-node that represents K4. In Fig. 3(b), this
occurs at π1, σ1, and σ2. If the skeleton of an S-node previously had exactly three vertices,
it is now completely contained in a K4. Otherwise, the number of its vertices is reduced by
exactly one, i. e., the vertex u or v, respectively. Note that completing a K4 may affect the
number of admissible embeddings, and, hence the fixability of other P-nodes if there was an
admissible embedding of their skeletons that implied crossing one of e or e′. Algorithm 2
checks whether or not the virtual edges may cross each other (lines 5–7) and fixes the em-
bedding of π (line 17). In order to ensure a linear running time of Algorithm 1, Algorithm 2
returns the set of affected P-nodes, i. e., the set of P-nodes whose number of admissible em-
beddings may have been reduced and, hence, which must be reconsidered in Algorithm 1.

The next lemma enables us to proceed, even if there is no fixable P-node.

Lemma 4 Let π be a non-fixable P-node. If T has no fixable P-nodes, then every admis-
sible embedding of skel(π) maintains at least one admissible embedding for every other
P-node.

Proof Consider the fixing procedure of an embedding for a P-node π and S-nodes σ ′ and
σ ′′. Let e′ and e′′ be the non-virtual edges that are crossed thereby. This affects the number
of admissible embeddings for the skeletons of at most two other P-nodes π ′ and π ′′ that are
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adjacent to σ ′ and σ ′′, respectively. Observe that π ′ 6= π ′′, as T is a tree, and that every
non-virtual edge is represented in the skeleton of exactly one node of T .

Consider π ′. W. l. o. g., let e′ be the non-virtual edge in skel(σ ′) that is crossed after the
fixing. Then the number of admissible embeddings of skel(π ′) is reduced by exactly those
that implied crossing e′, too. However, π ′ did not claim e′, so there is at least one other
admissible embedding of skel(π ′). The same argument holds for π ′′ and e′′. ut

Hence, by applying Lemma 4, we can step by step fix all embeddings of the skeletons of
P-nodes with at least three virtual edges. Thereafter, every P-node has exactly two virtual
edges and one non-virtual (cf. Fig. 3(c)). In Algorithm 1, this corresponds to lines 19–32.
FIXCROSSINGATPNODE takes O(1) time per call and there are embeddings of at most
O(n) P-nodes to fix. Hence, the time for this part is O(n). The algorithm concludes by
selecting an admissible embedding for all P- and R-nodes. All remaining S-nodes are em-
bedded as plane cycles. An embedding of G can be obtained via the 2-clique-sums of all
skeleton embeddings (cf. Fig. 3(d)). Consequently, Algorithm 1 has a running time of O(n).

It remains to show that all conditions presented so far are also sufficient for a graph
to be o1p. Every skeleton is, taken by itself, embedded o1p. Let {u,v} be a virtual edge
that links two nodes µ and ν and consider their 2-clique-sum skel(µ)⊕ skel(ν). After the
augmentation of Algorithm 1, every virtual edge is embedded such that it lies completely
on the boundary of the outer face. In the embeddings of µ , let oµ and iµ be the faces on
either side of {u,v} such that oµ is the outer face, and define oν and iν analogously in
the embedding of ν . As every skeleton is biconnected, oµ 6= iµ and oν 6= iν . For the o1p
embedding of skel(µ)⊕ skel(ν), combine both skeleton embeddings such that oµ and oν

are joined as well as iµ and iν . This may require to invert one of both skeleton embeddings,
i. e., for every face, the cyclic sequence of edges that forms its boundary is reversed. In the
resulting embedding, every vertex then still lies in the outer face and every edge is crossed
at most once. The outer 1-planarity of the whole embedding follows by induction. We can
summarize:

Lemma 5 A graph G is o1p if and only if it is a subgraph of a graph H with SPQR-tree T
such that R-nodes and S-nodes are adjacent to P-nodes only, every skeleton of an R-node is
a K4, and every skeleton of a P-node has exactly one non-virtual and two virtual edges.

This concludes the proof of Theorem 1. Additionally, if a graph is o1p, Algorithm 1 pro-
vides an o1p embedding. With little extra effort, we can augment G to maximality. Consider
the supergraph H constructed from G by Algorithm 1 and its SPQR-tree. It may have S-
nodes with four or more vertices. As all remaining S-nodes are embedded plane, we can
insert a plane edge between two non-adjacent vertices, which splits the S-node into two
smaller S-nodes with an intermediate P-node. This procedure can be repeated until all S-
nodes are triangles. Next, consider a P-node that is adjacent to exactly two S-nodes, e. g., π4
in Fig. 3(c). Then we can insert a crossing edge ({g, i} in the example) that augments the
subgraph to K4. As a result, the nodes π4, σ6, and σ7 are replaced by a new R-node. Observe
that this is the only part where the augmentation introduces a new crossing. We denote this
supergraph of H by H+. Its SPQR-tree consists of R-nodes, each of which corresponds to
K4 and of S-nodes each of which corresponds to a triangle. R- and S-nodes are only con-
nected via P-nodes, which in turn have exactly two virtual edges and one non-virtual edge.
Consider an embedding of H+. It has a tree-like structure that consists of K4s and triangles
(K3s) that share an edge if and only if their corresponding R- and S-nodes are connected via
a P-node. As no P-node is adjacent to two S-nodes, triangles can only share an edge with
K4s. Suppose H+ was not maximal. If we were able to insert an inner, plane edge, this would
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Fig. 4: (a) A plane-maximal ø1p embedding. (b) After flipping the vertices e and f the plane edge (d,e) can
be added.

correspond to inserting a P-node into the SPQR-tree of H+. However, no two P-nodes can
be adjacent. Inserting an inner, crossed edge is equal to augmenting two triangles to a K4,
which is impossible, too, as no P-node is adjacent to two S-nodes. Finally, consider adding
an edge to the outer face. As every crossing has been augmented to a K4, the boundary of the
outer face consists of a plane Hamiltonian cycle. Hence, every additional edge would sepa-
rate at least one vertex from the outer face. Consequently, we can easily extend Algorithm 1
such that it maximizes the input graph. Additionally, we obtain another characterization:

Lemma 6 A graph G is maximal o1p if and only if the conditions for H in Lemma 5 hold
and no P-node in its SPQR-tree is adjacent to more than one S-node and the skeleton of
every S-node is a cycle of length three.

The argument above also implies that every embedded maximal o1p graph is maximal for
all o1p embeddings. By contrast, this does neither hold for embedded maximal 1-planar
graphs [12], nor for embedded plane-maximal o1p graphs as shown in Fig. 4.

Corollary 4 A graph G is maximal o1p if it has a maximal o1p embedding.

Due to Lemma 6, the embedding of a maximal o1p graph is fixed if and only if the em-
bedding of the skeleton of every R-node is fixed. This, in turn, is the case if and only if it
contains at least two incident virtual edges.

Corollary 5 The embedding of a maximal o1p graph is unique up to inversion if and only
if the skeleton of every R-node of its SPQR-tree contains a vertex that is incident to exactly
two virtual edges.

A plane-maximal o1p graph is obtained if the step that augments a P-node with two adjacent
triangle S-nodes to a K4 is omitted. In the same way we can adjust Algorithm 1 to test (plane)
o1p maximality.

Corollary 6 There is a linear-time algorithm to test whether a graph is maximal (plane-
maximal) o1p and to augment an o1p graph to a maximal (plane-maximal) o1p graph.

3.2 Minors of non-o1p Graphs

From the recognition algorithm, we can immediately derive minors of non-o1p graphs: If
the algorithm returns ⊥, the graph at hand contains at least one of the o1p minors M as
depicted in Fig. 5.

However, the o1p minors cannot be used for a characterization of o1p, since o1p ist not
closed under edge contraction and subdivision, cf. Sect. 4.2. For instance, Fig. 6 shows an
o1p graph where contracting the dashed edge yields K2,5. Hence, the converse of Theorem 2
does not hold true.
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W5 K+
4 K2,5 P1 P2 P3

Fig. 5: The set M of minors of non-o1p graphs

Fig. 6: An o1p graph that contains K2,5 as a minor.

Theorem 2 If a graph is not o1p, it contains at least one graph in M as a minor. Further, M
is minimal and every graph in M is not o1p while removing or contracting an edge makes it
o1p.

Proof Observe that removing or contracting an edge of a graph in M yields an o1p graph
and none of them is the minor of another. We show that every member of M is not o1p and
that every non-o1p graph contains a graph in M as a minor.

As a general observation, note that the skeleton of a node in an SPQR-tree T of a
graph G is by itself a minor of G. Let {u,v} be a virtual edge of a node of T . Recall that we
omit Q-nodes and represent edges directly in the skeletons, i. e., an edge is either virtual and
refined by an S-, P-, or R-node or it is non-virtual. The expansion graph of {u,v} contains at
least one vertex w distinct from u and v, and a minor of the expansion graph is the path u,w,v
of length two. In our proof, we use this observation to replace any virtual edge by a path of
length two to obtain our minors of M. In a nutshell, this path captures the principle structure
behind the virtual edge {u,v} which makes it impossible to obtain an o1p embedding.

The proof is completed by a case differentiation on all lines of Algorithms 1 and 2,
where ⊥ is returned.

Line 2 in Algorithm 1 (W5) The algorithm returns ⊥ if G is not planar. In this case, G
contains K5 or K3,3 as a minor. W5 is a subgraph of K5 and thus also a minor. Further, as
every vertex of K3,3 has degree three, contracting one of its edges yields a graph with five
vertices, where one vertex has degree four and all others have degree three. Hence, we have
obtained W5, which is not o1p by Lemma 1.

Line 6 in Algorithm 1 (W5 and K+
4 ) We have an R-node ρ whose skeleton H = skel(ρ) is

triconnected and planar. ⊥ is returned if H contains more than four vertices (Case 1) or at
least one vertex which is incident to three or more virtual edges (Case 2).

Case 1: First, suppose H has exactly five vertices. We show that H must contain W5 as
a subgraph. As H is triconnected, every vertex in H is incident to at least three edges, i. e.,
H has at least eight edges. Therefore, H consists of one vertex x of degree at least four and
a set Y of four vertices of degree at least three. As there are only five vertices in total, x is
adjacent to all four vertices in Y and each vertex in Y is adjacent to at least two other, distinct
vertices in Y . Hence, H contains W5 as a subgraph.

In a variation of Tutte’s Wheel Theorem, Thomassen [41] showed that every tricon-
nected graph on at least five vertices contains an edge such that contracting this edge and
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Fig. 7: Different cases in the proof of Theorem 2

replacing multi-edges by single edges yields a triconnected graph. In consequence, every
triconnected graph on at least six vertices can be contracted to a triconnected graph on five
vertices, which in turn contains W5, i. e., W5 is a minor of all these graphs.

Case 2: In this case, H contains a vertex v which is incident to three or more virtual
edges (see Fig. 7(b)). We assume that H contains at most four vertices, otherwise Case 1
applies. As H is triconnected, H equals K4. In consequence, v is incident to exactly three
virtual edges. Replacing these virtual edges by paths of length two and all other virtual edges
by simple edges, we obtain K+

4 as a minor as depicted in Fig. 7(b). K+
4 is not o1p since its

SPQR-tree contains an R-node with a vertex incident to three virtual edges, which violates
o1p by Corollary 3.

Line 14 in Algorithm 1 (K2,5) In this case, we have a P-node with at least five virtual edges
(see Fig. 7(c)). By replacing five virtual edges by a path of length two and removing all other
edges, we obtain K2,5 as a minor. Again, K2,5 cannot be o1p since it contains the P-node with
five virtual edges from which it is derived (cf. Corollary 3).
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Line 6 in Algorithm 2 (P1, P2, and P3) In this case, we have a P-node π with vertices u and
v to which two virtual edges e1, e2 are incident. The edges e1 and e2 are refined by two S-
nodes σ1 and σ2, respectively. The skeleton skel(σ1) consists of the cycle (u,c1, . . . ,ck,v,u)
and the skeleton skel(σ2) of the cycle (u,d1, . . . ,dl ,v,u). ⊥ is returned if {ck,v} or {u,d1}
is virtual and if additionally {u,c1} or {dl ,v} is virtual, which results in four cases.

In the first case, {ck,v} and {u,c1} are virtual. This situation is depicted on the left
side of Fig. 7(d). Note that the case, where {u,d1} and {dl ,v} are virtual, is symmetric
and, hence, the following observations hold equally. In the skeleton of P-node π , there are
two virtual edges to the left separated by the non-virtual edge {u,v} from the right part
which is sketched by the shaded region. The virtual edges {ck,v} and {u,c1} are refined
by the nodes µ1 and µ2, respectively. Since σ1 is an S-node, each of µ1 and µ2 is either
a P- or an R-node. Hence, a minor of expg({ck,v}) is the triangle consisting of ck, v, and
w and, likewise, a minor of expg({u,c1}) is the triangle u, c1, and w′. Further, the edges
of path c1,c2, . . . ,ck−1,ck can be contracted until c1 and ck are identified and replaced by
vertex c̃. The virtual edge e2 is replaced by a path of length two. Altogether, we obtain the
graph as shown in the middle of Fig. 7(d). By Lemma 2, e1 must be embedded such that the
segment incident to v as well as the segment incident to v must lie in the outer face, which
implies that e1 must be embedded plane in skel(π). However, e2 may be crossed. Next, we
investigate the possibilities for the right part of π .

In order to force the situation on the left hand side, there are several possibilities for the
shaded region: As e1 may not be crossed, two additional virtual edges e3,e4 that correspond
to an S-node each would suffice: By Proposition 3, every virtual edge must lie with at least
one segment in the outer face and by Lemma 2, every virtual edge may be crossed at most
once. As e1 is plane and must lie in the outer face, not all three virtual edges e2,e3,e4 can
have a segment in the outer face, too. By replacing both e3 and e4 by paths of length two,
we thus obtain P1. P1 is not o1p since its SPQR-tree violates Lemma 2 and Proposition 3
as just described. Otherwise, the shaded region contains only one virtual edge e3 that must
be embedded plane. Then again by Lemma 2, e3 is either refined by an S-node that has
the same structure as S-node σ1 or it is refined by an R-node. In the latter case, we again
obtain P1 as a minor. In the former case, skel(π) contains two virtual edges e1 and e3 which
must both be embedded plane (cf. Lemma 2) and in the outer face (cf. Proposition 3), so e2
cannot be embedded such that at least one segment lies in the outer face, as Proposition 3
also requires. This yields P2, which is non-o1p by this reasoning. Note that if the region
contains more than two virtual edges, then K2,5 is a minor as discussed previously.

In the second case, {u,d1} and {u,c1} are virtual (see Fig. 7(e)). Again, the reasoning is
the same for the symmetric case where {dl ,v} and {ck,v} are virtual. Let e1, e2 be the two
virtual edges of π on the left side which are refined by the S-nodes σ1 and σ2, respectively.
The right hand side is again sketched as a shaded region. As before, we can replace the
virtual edges {u,d1} and {u,c1} by the triangles u, w, d1 and u, w′, c1, respectively. Further,
we contract the edges of remaining parts in the skeleton of the S-nodes until a single edge
is left. The resulting graph is shown in the middle of Fig. 7(e). In this case, the skeleton
of P-node π has no admissible embedding already for a single virtual edge on the right
hand side: Both e1 and e2 require that their segment incident to u lies in the outer face. If
there is a virtual edge e3 on the right hand side with the same requirement, then skel(π) has
no admissible embedding as no pair of these three virtual edges may cross each other (cf.
Lemma 2). Note that if there are up to two virtual edges on the right hand side that allow
a crossing such that their segment incident to u lies not in the outer face, skel(π) has an
admissible embedding. Edge e3 is either refined by an S- or by an R-node. In case of an
S-node, we obtain the same situation as with σ1 and σ2 and this yields P3. If e is refined
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by an R-node, then a minor of expg(e) is K4 with one edge removed (see bottom right of
Fig. 7(e)). However, by removing the dashed edge, we obtain P3. Hence, for both cases, the
minor is P3 and P3 is non-o1p by this reasoning. ut

4 Properties of Outer 1-Planar Graphs

We now establish several structural properties of o1p graphs, which show that they are closer
to outerplanar than to planar graphs.

4.1 Density

(Maximal) biconnected outerplanar graphs are characterized as planar graphs whose weak
duals are (binary) trees. In weak duals, the outer face is ignored. We extend the notion of the
dual tree to maximal o1p embeddings as follows.

Let G be a graph with a fixed maximal o1p embedding. The vertices incident to every
pair of crossing edges induce a K4 in G by Proposition 1. Let Ḡ be obtained from G by
removing each such pair of crossing edges. Then Ḡ is outerplanar and the inner faces are
triangles or quadrangles. The weak dual Ḡ∗ is a tree and we distinguish two types of nodes.
4-nodes correspond to triangles and �-nodes correspond to quadrangles, which arose from
erasing the pair of crossing edges from the K4s. Accordingly, these vertices have degree at
most 3 and 4, respectively. Two nodes are adjacent in Ḡ∗ if and only if the corresponding
faces in Ḡ (or, equivalently, cliques in G) have an edge in common. We refer to Ḡ∗ as the
dual tree of G in order to emphasize the structural similarity between outerplanar and o1p
graphs.

The dual tree can be obtained directly from the SPQR-tree T of G: By Lemma 6, the
skeleton of every R-node of T is a K4 and the skeleton of every S-node is a triangle, which
correspond one-to-one to �-nodes and 4-nodes, respectively. Furthermore, every P-node
has exactly two virtual edges. By “skipping” the P-nodes and connecting the �- and 4-
nodes directly, we obtain Ḡ∗. From Lemma 6 we conclude:

Corollary 7 The weak dual of a maximal o1p graph consists of4- and �-nodes such that
two4-nodes are not adjacent.

The dual tree has many nice properties. First, it allows us to analyze the density of
maximal o1p graphs and establish tight upper and lower bounds. More specifically, we can
express the number of vertices and edges of G by seeing G as a 2-clique-sum of its K3s and
K4s.

Lemma 7 The number of vertices of a maximal o1p graph G is n = N3 + 2N4 + 2 and the
number of edges is 2n+N4−3 where N3 and N4 are the numbers of4- and �-nodes in Ḡ∗.

Proof Let N = N3 +N4. When summing up the number of vertices and edges in each clique
one has to subtract two vertices and one edge counted twice as they are shared by the cliques
of adjacent nodes. This happens N−1 times as the tree Ḡ∗ has N−1 edges. Hence, the num-
ber of vertices and edges of G is 3N3+4N4−2(N−1) and 3N3+6N4−(N−1), respectively.

ut

From the dual tree and the bounds established in Lemma 7 we can easily derive upper and
lower bounds on the density of o1p graphs and construct graphs which show that the bounds
are tight. The upper bound was also proved by Didimo [20] using a different approach.
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Fig. 8: (a) Example of a sparsest maximal o1p graph as constructed in Theorem 4. The construction begins
with the thick, black K3. Construction step (ii) is applied twice, resulting in the addition of the solid blue and
then of the red dashed 5 vertices and 11 edges. (b) The same graph along with its dual tree.

Theorem 3 An o1p graph with n vertices has at most 5
2 n−4 edges, and for every even n≥ 2

there are o1p graphs with 5
2 n−4 edges.

Proof The densest maximal o1p graph G with at least four vertices has a dual tree solely
consisting of �-nodes, which by Lemma 7 results in graphs with 5

2 n− 4 edges. And for
every even n≥ 2 such graphs can be constructed, e. g., as a chain of K4s, see also Fig. 1(a).

Theorem 4 Every maximal o1p graph with n vertices has at least 11
5 n− 18

5 edges, and for
every k ≥ 0 and n = 5k+3 this bound is tight.

Proof A maximal o1p graph G is sparsest if the share of �-nodes is minimal. However,
two4-nodes cannot be adjacent in Ḡ∗ by Corollary 7. If two �-nodes are adjacent, one can
obtain a sparser graph which corresponds to inserting a 4-node in between. Similarly, if a
�-node is adjacent to less than four neighbors, G can be sparsified by attaching another4-
node. Thus, in the dual tree of the sparsest maximal o1p graphs, every �-node is adjacent
to exactly four 4-nodes and all leaves are 4-nodes. These graphs can be constructed by
(i) starting with a 4-node and repeatedly (ii) selecting any 4-node with less than three
neighbors and attaching a �-node adjacent to another three 4-nodes. Figure 8(a) shows a
maximal o1p graph where construction step (ii) has been applied twice. When construction
step (ii) is applied k times, the resulting graph G consists of 5k + 3 vertices and 11k + 3
edges. ut
These results contribute to investigations on the density of maximal graphs, including planar
graphs with exactly 3n−6 edges, outerplanar graphs with 2n−3 edges, and 1-planar graphs
with a range from 21

10 n−O(1) to 4n− 8 and known sparse maximal 1-planar graphs with
45
17 n+O(1) edges [12].

Corollary 8 If G is a maximal o1p graph of size n, then G has m edges with 11
5 n− 18

5 ≤
m≤ 5

2 n−4 and these upper and lower bounds are tight.

4.2 Edge Contraction

Recall that a graph H is a minor of a graph G if H is obtained from G by vertex and edge
deletions and edge contractions. Conversely, a subdivision splits an edge into two by placing
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Fig. 9: (a) {c,d} is inner in every o1p embedding. (b) o1p embedding with subdivision of {c,d} by f .
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Fig. 10: (a) {a,c} is crossed in every o1p embedding. (b) o1p embedding after contraction of {a,c}.

a vertex on it. It is well-known that the planar and the outerplanar graphs are closed under
taking minors, which means applying the respective operations. Also the subdivision of a
(non-) planar graph is (non-) planar, whereas subdivisions may destroy outerplanarity.

1-planar graphs are not closed under taking minors, since every graph is a subdivision
of a 1-planar graph. However, the subdivision of a 1-planar graph is 1-planar. Both edge
contractions and subdivisions may destroy outer 1-planarity.

Theorem 5 Let G be an embedded o1p graph. If H is obtained from a subgraph of G by
contractions of plane edges, then H is o1p. Also, H is o1p if it is obtained by subdivisions
of outer edges.

Proof The contraction of a plane edge {u,v} of an embedded o1p (1-planar) graph does not
induce more crossings per edge. This can be obtained immediately from the planarization
with special vertices for the crossing points. However, the edge contraction may introduce
crossing among incident edges, which can be untangled. Clearly, all vertices remain in the
outer face, as they do by subdividing an outer edge. Obviously, taking subgraphs preserves
o1p. ut

Sometimes, even crossed edges can be contracted and inner edges can be subdivided while
preserving o1p, as illustrated in Figs. 9 and 10. However, contracting the dashed edge of the
graph in Fig. 6 yields K2,5 as a minor and destroys o1p. What is legal? This can be decided
using our linear-time recognition algorithm for the resulting graph.

Corollary 9 There is a linear time algorithm to test whether or not an edge of an o1p graph
can be contracted (subdivided) such that the resulting graph is o1p.

4.3 Parameters

Next, we consider some classical graph parameters which increase by one from outerplanar
to o1p graphs. In order to obtain upper bounds on these parameters, we consider maxi-
mal o1p graphs where it suffices to assume biconnectivity. For each biconnected graph the
treewidth is two if and only if the SPQR tree has only S- and P-nodes, and it is three if it
contains an R-node by Lemma 1. Thus, we can directly compute the treewidth of o1p graphs
in linear time, which can also be obtained from Bodlaender’s theorem [11]. Since maximal
o1p graphs are chordal, the treewidth equals the clique size minus one [13].
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Corollary 10 Every o1p graph has treewidth at most three and this bound is tight. The
treewidth of an o1p graph and the tree-decomposition can be computed in linear time.

A stack (queue) layout of a graph consists of a total order of the vertices and a partition of the
edges into stacks (queues), such that no two edges in the same stack (queue) are intersecting
(nested) [8, 21]. Bernhart and Kainen [8] have characterized the outerplanar graphs as the
1-stack graphs, and the 2-stack graphs as the subgraphs of planar graphs with a Hamiltonian
cycle.

Theorem 6 Every o1p graph has a stack number of at most two, and this bound is tight.
The stack number of an o1p graph can be computed in linear time.

Proof First, we show that two stacks suffice. Augment the graph to be maximal o1p and
choose an o1p embedding. Fix the order of the vertices for the 2-stack-layout by starting
with an arbitrary vertex and then following the order of the vertices in the unbounded face.
Color the edges red and blue such that edges of the same color do not cross. Then the red
and the blue graphs for their own are embedded outerplanar, thus each has a 1-stack-layout
which adheres to the same prescribed order.

For the tightness of the bound recall that K4 is not outerplanar, thus actually requires
two stacks. For the computation consider each biconnected component separately and take
the maximum. The stack number is one if the graph is outerplanar. ut

Let us turn to the queue number. Every outerplanar graph has queue number two [30],
and every planar graph has a polylogarithmic queue number [18]. The fact that o1p graphs
have bounded queue number follows from a result of Dujmović et al. [21] on graphs with
bounded treewidth. In fact, the queue number increases to three for o1p graphs, and there
are o1p graphs with queue number two, which are not outerplanar, such as K4.

Theorem 7 Every o1p graph has a queue number of at most three, and this bound is tight.

Proof First, we show that three queues suffice. Consider an embedded maximal o1p graph
G. Run a breadth-first search (BFS), which starts from an arbitrary vertex r and visits the
vertices in accordance with the embedding. BFS assigns each vertex v a BFS number bfs(v),
which determines the order of the vertices in the 3-queue-layout.

The vertices are partitioned into levels according to their distance from r. Then we dis-
tinguish two types of edges. Inter-level edges span adjacent levels while intra-level edges
connect vertices of the same level. Color the inter-level edges blue and red such that cross-
ing edges receive different colors. The situation is exemplified in Fig. 11. The blue graph
on its own is embedded proper-leveled planar. That means, it can be processed in a single
queue [30] and the same holds for the red graph. It remains to show that the intra-level edges
can be processed in a third queue. Consider two adjacent vertices u and v on the same level.
Assume there is another vertex w on this level such that bfs(u) < bfs(w) < bfs(v). There
must be an inter-level edge e connecting w from some vertex on the previous level. Since
the BFS adhered to the o1p embedding, {u,v} and e cross. Hence, there can be at most one
such w and |bfs(v)−bfs(u)| ≤ 2. Thus, for any two intra-level edges {u,v} and {u′,v′} we
have ||bfs(v)−bfs(u)|− |bfs(v′)−bfs(u′)|| ≤ 1, i. e., the bandwidth of the BFS order is 1
and we are done [30].

The graph from Fig. 11 has queue number three. This was checked by exhaustive search
using a SAT solver. ut
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Fig. 11: Example for the proof of Theorem 7 that every o1p graph has a 3-queue-layout. The vertices are
labeled by their BFS number. Inter-level edges are drawn dashed red and solid blue. Intra-level edges are
drawn thick black. The depicted graph has no 2-queue-layout.

We do not know how to efficiently compute the queue number of an o1p graph. So the
complexity of this problem remains open, although the output is 1,2 or 3.

Another prominent graph parameter is the chromatic number, χ(G), which is the min-
imum number of colors for the vertices such that adjacent vertices have different colors.
χ(G) = 2 if and only if G is bipartite and this can be tested in linear time. The chromatic
number of a planar graph is at most four [2,3], but its computation is NP-hard [28]. Also o1p
graphs may need four colors for their K4s. However, for o1p graphs the chromatic number
can be computed in linear time since o1p graphs have bounded treewidth [4].

Corollary 11 Every o1p graph is 4-colorable and there is a linear time algorithm to com-
pute the chromatic number of an o1p graph.

5 Drawings

We consider three types of drawings, straight-line, visibility representations, and in 3D.
Eggleton [24] proved the existence of a straight-line and convex drawing for maximal o1p
graphs. He showed that edges must cross in the interior of a convex quadrangle. However,
he neither provided a bound on the area nor an efficient algorithm. Both are readily obtained
from the fact that o1p graphs are planar, and can thus be drawn straight-line in quadratic
area [27, 39]. Can we do better? Can we draw outerplanar?

For the subclass of outerplanar graphs Di Battista and Frati [17] showed that they can
be drawn straight-line in O(n1.48) area and Biedl [9] established a visibility representation
in O(n logn) area. Dehkordi and Eades [15] proved that every o1p drawing can be trans-
formed into a right angle crossing drawing with all vertices in the outer face and right angle
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crossings, preserving the embedding but at the expense of exponential area. For the larger
class of 1-planar graphs, there are straight-line drawings in exponential area if there are no
B- or W-configurations [32,42], and Alam et al. [1] showed that every 3-connected 1-planar
graph has a straight-line drawing on a grid of quadratic size (with the exception of a single
edge in the outer face).

A visibility representation draws the vertices as horizontal lines between grid points,
such that these lines do not overlap. Two such lines must see each other along a vertical line
if there is an edge between the displayed vertices. It is a well-known fact that every planar
graph has a visibility representation in O(n2) area, which can be computed in linear time,
see also [16]. Here, we use Biedl’s algorithm for compact visibility representations.

Theorem 8 Every o1p graph has a planar visibility representation in O(n logn) area, and
the representation can be computed in linear time.

Proof First, augment the given graph G to a (plane-) maximal o1p graph as described in
Sect. 3 and choose an o1p embedding. There is a K4 induced by the vertices of each pair
of crossing edges by Proposition 1. In accordance with Biedl’s algorithm [9] we call the
vertices s, t,x,y1 and let the edges {s,y1} and {t,x} cross. For each such K4 remove {s,y1}.
The remaining graph is maximal outerplanar and Biedl’s algorithm inductively computes
a visibility representation with the following property. For a triangle (s, t,x) with the edge
{s, t} in the outer face, the bars of s and t are on top and bottom, and the bar of x is just above
the bar of t. (Biedl uses an extended flat visibility representation which allows to place the
bars of x and t on a horizontal line). If the edge {t,x} is removed, the roles of s and t are
exchanged.

In each inductive step the edge {s, t} is in the outer face of the actual (sub-) graph H. H
is composed of three subgraphs Hsx, Hxy1 and Hty1 , which each consist of the respective edge
and the outer face, see Fig. 12. The visibility representations of the subgraphs Hsx, Hxy1 and
Hty1 are placed between the bars of s, x, and t such that those of Hxy1 and Hty1 are flipped
and the bar of y1 is just below the bar of s. The flip changes the embedding of the original
K4 and places y1 in the triangle (s, t,x). By construction, the bars of s and y1 are adjacent
and can see each other, such that a removed edge {s,y1} can be represented without any
expansion of the area. Biedl’s algorithm uses O(n logn) area, and runs in linear time. Also,
the (planar) maximal augmentation, the inductive removal of edges in K4s and the addition
of their visibility lines take linear time. For an illustration, see Fig. 13. ut

This visibility representation changes the embedding and does not display outerplanarity
and crossings. Drawings that respect these criteria can be obtained using the algorithm of
Alam et al. [1]:

Theorem 9 Every o1p graph has a straight-line grid drawing in O(n2) area such that all
vertices are in the outer face, and the drawing can be computed in linear time.

Proof First, augment the given o1p graph G to a maximal o1p graph as described in Sect. 3.
Then add a new vertex t in the outer face and connect t with all vertices. The so obtained
graph is 3-connected and 1-planar, and can be drawn by using the algorithm from [1]. This
algorithm uses a canonical ordering and the shift technique from [27]. Choose two adjacent
vertices of G as the two base vertices 1 and 2 and let t be the top vertex. Then the vertices
of G are placed as the contour below t from the leftmost vertex 1 to the rightmost vertex 2.
Finally, t and its incident edges and the edges added in the augmentation phase are omitted.
The correctness and the area bounds follow from [1] and all phases take linear time. For an
illustration, see Fig. 14. ut
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Fig. 12: Inductive step of Biedl’s algorithm [9], where the red dashed edge is removed but can be represented.
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Fig. 13: The “doublecross” graph and its visibility representation.
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Fig. 14: The “doublecross” graph as example for the embedding preserving drawing algorithm. The vertices
are labeled by a canonical ordering. Crossed edges (dashed red and blue) are temporarily removed.

From the bounded treewidth and [21] we obtain:

Corollary 12 Every o1p graph has a 3-dimensional straight-line drawing in linear volume.

6 Conclusion and Open Problems

We have designed a linear-time recognition algorithm for o1p that in the positive case returns
a witness in terms of an o1p embedding and in the negative case detects one of six minors.
Moreover, we have characterized o1p graphs by common properties and measures and have
compared the results to planar, 1-planar and outerplanar graphs. This shows that o1p graphs
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are far more manageable than their superclass of 1-planar graphs. However, some problems
are still open. For example, outerplanar graphs can be drawn in sub-quadratic area of size
O(n1.48) [17]. Can this bound be achieved for o1p graphs? Is it possible to compute the
queue number of an o1p graph efficiently?

Acknowledgements We thank the anonymous referees for their careful reading and useful comments and
suggestions.
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