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Abstract. We present a simple linear time algorithm for drawing level
graphs with a given ordering of the vertices within each level. The al-
gorithm draws in a radial fashion without changing the vertex ordering,
and therefore without introducing new edge crossings. Edges are drawn
as sequences of spiral segments with at most two bends.

1 Introduction

In hierarchical graph layout, vertices are placed on parallel horizontal lines, and
edges are drawn as polylines, which may bend when they intersect a level line.
The standard drawing algorithm [9] consists of four phases: cycle removal (re-
verses appropriate edges to eliminate cycles), level assignment (assigns vertices
to levels and introduces dummy vertices to represent edge bends), crossing re-
duction (permutes vertices on the levels), and coordinate assignment (assigns
x-coordinates to vertices, y-coordinates are implicit through the levels).

We are especially interested in coordinate assignment. This phase is usually
constrained not to change the vertex orderings computed previously. Further, it
should support commonly accepted aesthetic criteria, like small area, good sepa-
ration of (dummy) vertices within a level, length and slope of edges, straightness
of long edges, and balancing of edges incident to the same vertex. The novelty
of this paper is to draw the level lines not as parallel horizontal lines, but as
concentric circles, see Fig. 1. The apparent advantage is that level graphs can be
drawn with fewer edge crossings. More level graphs can be drawn without any
crossing at all, i. e., planar. Radial level drawings are common, e. g., in the study
of social networks [2]. There vertices model actors and edges represent relations
between them. The importance (centrality) of an actor is expressed by closeness
to the concentric center, i. e., by a low level.

2 Preliminaries

A k-level graph G = (V,E, φ) with k ≤ |V | is a graph with a level assignment
φ : V → {1, 2, . . . , k} that partitions the vertex set into k pairwise disjoint subsets
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Fig. 1. Drawings of a level graph

V = V1

.
∪ · · ·

.
∪ Vk, Vi = φ−1(i), 1 ≤ i ≤ k, such that φ(u) 6= φ(v) for each edge

(u, v) ∈ E. Regardless whether G is directed or undirected, an edge incident to
u, v ∈ V is denoted by (u, v) if φ(u) < φ(v). An edge (u, v) is short if φ(v) −
φ(u) = 1, otherwise it is long and spans the levels φ(u)+1, . . . , φ(v)− 1. A level
graph without long edges is proper. Any level graph can be made proper by
subdividing each long edge (u, v) ∈ E by the introduction of new dummy vertices
vi ∈ Bi, i = φ(u) + 1, . . . , φ(v)− 1, φ(vi) = i. We draw dummy vertices as small
black circles, Fig. 2(a), or edge bends, Fig. 1. The edges of a proper level graph
are also called (edge) segments. If both end vertices of a segment are dummy
vertices, it is an inner segment. Let N = |V ∪ B| + |E| denote the size of the
proper level graph G = (V ∪B,E, φ) where V contains the original vertices and
B = B1

.
∪ . . .

.
∪ Bk contains the dummy vertices with |B| ≤ k|E| ≤ |V ||E|. For

drawing level graphs it is necessary to know where long edges should be routed,
i. e., between which two vertices on a spanned level. Thus we only consider proper
level graphs G = (V ∪B,E, φ) in the following.

An ordering of a level graph is a partial order ≺ of V ∪ B such that u ≺ v
or v ≺ u iff φ(u) = φ(v). Define the (not necessarily consecutive) positions of
the vertices as a function π : V ∪B → Z with u ≺ v ⇔ π(u) < π(v) for any two
vertices u, v ∈ Vi ∪ Bi on the same level i. In case that an ordering ≺ admits a
level drawing of a level graph without edge crossings, ≺ is also called level planar
embedding. We call an ordering of a level graph also level embedding.

3 Related Work

There are several algorithms for horizontal coordinate assignment using differ-
ent approaches for the optimization of various objective functions or iterative
improvement techniques, see [7] for an overview. Most interesting is the Bran-
des/Köpf algorithm [3], which generates at most two bends per edge and draws
every inner segment vertically if no two inner segments cross. Further it mini-
mizes the horizontal stretch of segments and also gives good results for the other
aesthetic criteria. The algorithm has O(N) running time and is fast in practice.
For level planar embeddings Eades et al. [5] presented an algorithm that does
not generate bends at all. However, it may need exponential area.



3.1 Horizontal Coordinate Assignment

Since the horizontal drawing algorithm of Brandes/Köpf [3] is the basis of our
algorithm, we give an extended overview. Its first two steps are carried out four
times and the third step combines the results.

Vertical Alignment The objective is to align each vertex with its left upper,
right upper, left lower, and right lower median neighbor. We only describe the
alignment to the left upper median, the other three passes are analogous. First,
all segments are removed that do not lead to an upper median neighbor, see
Fig. 2(b). Then two alignments are conflicting if their edge segments cross or
share a vertex. Type 2 conflicts, two crossing inner segments, are assumed to have
been avoided by the crossing reduction phase and not to occur, e. g., using the
barycenter method [7]. Type 1 conflicts, a non-inner segment crossing an inner
segment, are resolved in favor of the inner segment, i. e., the non-inner segment
is removed from the graph. Type 0 conflicts, two crossing non-inner segments,
are resolved greedily in a leftmost fashion, i. e., the right segment is removed
from the graph. At this point there are no crossings left, see Fig. 2(c).

Horizontal Compaction Each maximum set of aligned vertices, i. e., each
connected component, is combined into a block, see Fig. 2(d). Consider the block
graph obtained by introducing directed edges between each vertex and its suc-
cessor (if any) on its level, see Fig. 2(e). A “horizontal” longest path layering4

determines the x-coordinate of each block and thus of each contained vertex.
Thereby the given minimum vertex separation δ is preserved. The block graph
with expanded blocks is partitioned into classes, see Fig. 2(f). The first class is
defined as the set of vertices which are reachable from the top left vertex. Then
the class is removed from the block graph. This is repeated, until every vertex
is in a class. Within the classes the graph is already compact. Now the algo-
rithm places the classes as close as possible. In Fig. 2(f) this already happened.
Fig. 2(g) shows the complete left upper layout.

Balancing Now each vertex has four x-coordinates. The two left (right) aligned
assignments are shifted horizontally so that their minimum (maximum) coordi-
nate agrees with the minimum (maximum) coordinate of the smallest width
layout. The resulting coordinate is the average median5 of the four intermediate
coordinates. Fig. 2(h) shows the resulting drawing.

3.2 Radial Drawings

As we have already seen in Fig. 1, radial level lines help to reduce crossings. A
further property of radial level lines is that they get longer with ascending level
4 In a longest path layering vertices are assigned to levels: Each source of the graph

is assigned to level 1. After removing all outgoing edges from this vertices, all (new)
sources are assigned to level 2, and so on.

5 The average median is defined as the average of the possible median values.
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(h) Final balanced layout

Fig. 2. Stages of the Brandes/Köpf algorithm



number, which is especially useful if the sizes of the levels of the graph, i. e., the
number of vertices, grow with the level number. The radial level idea originates
from the ring diagrams of Reggiani and Marchetti [8] and from the radial tree
drawings of Eades [4], which are common for free trees. There is an algorithm
to compute a radial level planar embedding if one exists [1]. Thus, to maintain
planarity, we require the preservation of the vertex ordering of the embedding
in any case. However, our algorithm can draw arbitrary level embeddings.

4 Radial Coordinate Assignment

In radial level drawings we draw the edge segments as segments of a spiral, unless
they are radially aligned, in which case they are drawn as straight lines. This
results in strictly monotone curves from inner to outer levels and ensures that
segments do not cross inner level lines or unnecessarily each other.

For radial level embeddings it is not only necessary to know the vertex or-
dering, but also where the ordering starts and ends on each level. Therefore we
introduce a ray (the dashed arrow in Fig. 1) which tags this border between
the vertices. The ray is a straight halfline from the concentric center to infinity.
Since the embedding maintains the position π(v) for every vertex v ∈ V ∪ B,
the position of the ray is implicitly evident. We call all edges intersecting the
ray cut segments. For a radial level embedding it is not only important to know
whether an edge is a cut segment, it is also necessary to know the direction of
a cut segment, clockwise or counterclockwise from inner to outer level. Other-
wise the drawing is not unique, see Fig. 3(a). Further, for uniqueness it is also
important to know how many times a cut segment is wound around the concen-
tric center, i. e., how many times it crosses the ray. Since the crossing reduction
phase resp. the level planar embedding algorithm mentioned in Sect. 3.2 is aware
of all this information, we assume it to be given as a function offset : E → Z
with the embedding. Thereby | offset(e)| counts the crossings of e with the ray.
If offset(e) < 0 (offset(e) > 0), e is a clockwise (counter clockwise) cut seg-
ment, i. e., the sign of offset(e) reflects the mathematical direction of rotation,
see Fig. 3(b). If offset(e) = 0, e is not a cut segment and thus needs no direc-
tion information. Observe that a cut segment cannot cross the ray clockwise and
counter clockwise simultaneously.
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(a) (1, 3) drawn counter clock-
wise and clockwise (dotted)
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(b) offset
�
(1, 2)
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Fig. 3. Offsets of edges



In our opinion edge bends in radial level drawings tend to be even more dis-
turbing than in horizontal level drawings. Thus we base our algorithm on the
approach of Brandes/Köpf [3] which guarantees at most two bends per edge.
Further it prioritizes vertical alignment, which helps us to obtain radial align-
ment. The criterion of small area in horizontal coordinate assignment, i. e., to
obtain small width, turns to uniform distribution of the vertices on the radial
levels. As a consequence, a user parameter δ like in Sect. 3.1 is not needed.

4.1 Preprocessing

If an inner segment is a cut segment, a radial alignment of the corresponding
dummy vertices cannot be guaranteed, since each inner cut segment raises the
number of bends by two, see Fig. 4. We call this situation a type 3 conflict. A
simple solution is to demand the absence of inner cut segments in the input
embedding, similar to the type 2 conflicts. A different, more constructive and
always doable approach described in the following, is to eliminate the conflicts
by changing the position of the ray. This strategy changes the offset of some
edges and thus changes the embedding. But this does not affect a later drawing.

1

6

Fig. 4. Type 3 conflict

Before we continue with the description of the elimination algorithm, we
discuss an important property of radial level embeddings:

Lemma 1. Let E′
i = { (u, v) | u ∈ Bi−1, v ∈ Bi } ⊆ E be the set of all inner

segments between levels i − 1 and i with 2 < i < k. Then for any two edges
e1, e2 ∈ E′

i : | offset(e1)− offset(e2)| ≤ 1.

Proof. In the extreme case let e1, e2 ∈ E′
i for 2 < i < k be inner segments with

offset(e1) = max{offset(e) | e ∈ E′
i} and offset(e2) = min{offset(e) | e ∈ E′

i}.
Now assume offset(e1) > offset(e2)+1. As a consequence e1 and e2 cross. This is
a type 2 conflict and contradicts the absence of type 2 conflicts in the input. ut

In a first step to eliminate type 3 conflicts we consecutively unwind the levels
in ascending order from 3 to k−1 with Algorithm 1. Between levels 1 and 2 resp.
k− 1 and k there are no inner segments. Clearly, level i is unwound by rotating
the whole outer graph, i. e., all levels ≥ i are rotated by multiples of 360◦. Note
that UNWIND-LEVEL updates only offsets of edges between levels i− 1 and i.
The position of the ray, i. e., the ordering of the vertices, stays the same.



Algorithm 1: UNWIND-LEVEL
Input: Embedding of G = (V ∪B, E, φ) and level i with 2 < i < k
Output: Updated offsets of inner segments entering level i

m← min{offset(e) | e = (u, v) ∈ E, u ∈ Bi−1, v ∈ Bi}
foreach segment e = (u, v) ∈ E with v ∈ Vi ∪Bi do offset(e)← offset(e)−m

Lemma 2. After unwinding for each inner segment e ∈ E : offset(e) ∈ {0,+1}.

Proof. Lemma 1 implies for each inner segment e = (u, v) with φ(v) = i that
offset(e) ≤ 1. Additionally offset(e) cannot be negative since we have subtracted
the minimum over all inner segments entering level i. Since this argument holds
for every level 2 < i < k, the claim follows. ut

Lemma 3. After unwinding there are no two dummy vertices v, v′ ∈ Bi on the
same level i with offset

(
(u, v)

)
= 0, offset

(
(u′, v′)

)
= +1, and v ≺ v′ for any

u, u′ ∈ Bi−1.

Proof. This follows directly from the absence of type 2 conflicts. ut

Contrary to horizontal layouts we have another freedom in radial layouts
without changing the crossing number: rotation of a single level i. A clockwise
rotation, cf. Algorithm 2, is moving the vertex v with the minimum position on
the ordered level φ(v) = i over the ray by setting π(v) to a new maximum on i.
A counter clockwise rotation is symmetric. Rotations do not modify the “cyclic
order”, i. e., the neighborhood of every vertex on its radial level line is preserved.
However, the offsets of the segments incident to v must be changed. If rotating
clockwise, the offsets of incoming segments of v are reduced by 1 and the offsets
of outgoing segments are increased by 1. The offset updates for rotating counter
clockwise are symmetric. Please note that rotation of a single level i is different
to rotating levels within unwinding mentioned earlier. Here we do not rotate by
(multiples of) 360◦ in general and do not rotate all levels ≥ i simultaneously.

Algorithm 2: ROTATE-CLOCKWISE
Input: Embedding of G = (V ∪B, E, φ) and level i with 1 ≤ i ≤ k
Output: Updated offsets of segments entering or leaving level i

let v = argmin{π(v) | v ∈ Vi ∪Bi}
π(v)← max{π(v′) | v′ ∈ Vi ∪Bi}+ 1
foreach segment e = (u, v) ∈ E do offset(e)← offset(e)− 1
foreach segment e = (v, w) ∈ E do offset(e)← offset(e) + 1

Rotation allows us to eliminate the remaining crossings of inner segments
with the ray: Let B′

i ⊆ Bi be the set of dummy vertices incident to an incoming
inner segment e = (u, v) with offset(e) = +1. Let v = argmax{π(v) | v ∈ B′

i}.



We rotate level i clockwise until the ray enters the position after v, i. e., until
v is the last vertex on i and thus v = argmax{π(v) | v ∈ Vi ∪ Bi}. We use the
clockwise direction, because according to Lemma 3 we do not generate new type
3 conflicts this way. Finally, all inner segments have an offset of 0. The overall
running time is O(N).

4.2 Intermediate Horizontal Layout

In the next step we generate a horizontal layout of the radial level embedding
with the Brandes/Köpf algorithm. Therefore we ignore all cut segments. Since
the embedding is type 3 conflict free, all inner segments are aligned vertically.
The resulting layout will later be transformed into a concentric layout by concen-
trically connecting the ends of the horizontal level lines with their beginnings.
Therefore, we must take into account that circumferences of radial level lines
grow with ascending level numbers. Thus we use a minimum vertex separation
distance δi ← 1

i for each horizontal level i, which is in each case indirect pro-
portional to i. In this way we achieve a uniform minimum arc length between
two neighbor vertices on every radial level line with the radial transformation
described in the next section , since we use the level numbers 1, 2, . . . , k as radii.

4.3 Radial Layout

At this stage every vertex v ∈ V has Cartesian coordinates
(
x(v), y(v) = φ(v)

)
∈

R×R. For the transformation into a radial drawing we interpret these coordinates
as polar coordinates and transform them with (1) into Cartesian coordinates(
xr(v), yr(v)

)
∈ R× R. The position of the ray denotes 0◦.(

xr(v), yr(v)
)
←

(
y(v) · cos

(
2π
z · x(v)

)
, y(v) · sin

(
2π
z · x(v)

))
(1)

The factor 2π
z normalizes the length of the horizontal level lines to the

circumferences of the radial level lines. We set z ← max
{

max{x(v′) | v′ ∈
Vi ∪ Bi} − min{x(v′) | v′ ∈ Vi ∪ Bi} + δi | 1 ≤ i ≤ k

}
, i. e., z is the largest

horizontal distance between two vertices on the same level i plus δi. The addend
δi is necessary to maintain the minimum distance between the first and the last
vertex, since they become neighbors on the radial level line. Let iz be the level
which defines z. The normalization automatically realizes the necessary overlap
between the left and the right contour of the layout when drawn radially, see
Fig. 5. Level iz is the widest level and thus iz defines the maximum overlap.

After drawing the vertices, we draw the edges as segments of a spiral. Each
point p of a straight line segment e = (u, v) is defined by (2) for 0 ≤ t ≤ 1.(

x(p), y(p)
)

= (1− t)
(
x(u), y(u)

)
+ t

(
x(v), y(v)

)
(2)

The coordinates of p can be transformed with (1). But e can be a cut segment,
which winds multiple times clockwise or counter clockwise around the center.
Therefore we rather use (3) which simulates this behavior horizontally. Imagine
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Fig. 5. Overlap of the left and right contour

| offset(e)|+1 copies of the layout placed in a row. If offset(e) ≥ 0, then imagine e
drawn as straight line from u in the leftmost layout to v in the rightmost layout.
Otherwise, draw e from u in the rightmost layout to v in the leftmost one. Any
two neighboring layouts of the row are separated by δiz .(

x(p), y(p)
)

= (1− t)
(
x(u), y(u)

)
+ t

(
x(v) + offset(e) · z, y(v)

)
(3)

For all edges with offset 0 there is only one possible direction without crossing
the ray, i. e., there is only one copy in the row. Equation (3) inserted in (1) for
drawing a spiral segment between u and v results in the following equation:

(
xr(p), yr(p)

)
←

(
(1− t)y(u) + t · y(v)

)
·(

cos
(

2π
z ·

(
(1− t)x(u) + t · (x(v) + offset(e) · z)

))
,

sin
(

2π
z ·

(
(1− t)x(u) + t · (x(v) + offset(e) · z)

))) (4)

If t = 0.5, then p lies on a concentric circle with radius φ(u)+φ(v)
2 , because

the radius of the spiral segment grows proportional to the concentric distance
between p and φ(u). To get smooth edges, the number of needed supporting
points s : E → N for drawing edges e = (u, v) with an approximating polyline or
spline depends on the edge length and a quality factor q ≥ 1.

s(e) ∼ φ(v) ·
(∣∣ 2π

z · x(v)− 2π
z · x(u) + offset(e) · 2π

∣∣) · q
∼ φ(v) ·

(∣∣x(v)−x(u)
z + offset(e)

∣∣) · q (5)

In the special case of |V1| = 1 it is more aesthetical to place v ∈ V1 into the
concentric center, cf. Fig. 1. Thus we renumber the levels by φ′(w)← φ(w)− 1
for all w ∈ V ∪B − {v}, set xr(v)← yr(v)← 0, layout G′ = (V ∪B − {v}, E −
{ (v, w) | w ∈ V }, φ′), and draw each edge (v, w) as straight line. In order to get
a harmonic picture in the case |V1| > 1, Eades [4] suggests to set the diameter of
the first level to the radial distance between the radial level lines. To achieve this
with our algorithm, we use 0.5, 1.5, 2.5, . . . , k−1.5, k−0.5 as level numbers/radii.

Usually we draw on a canvas which has dimensions a× b and has the origin
in the upper left corner. Thus for each vertex or supporting point p we do the



following: With the translation
(
xr(p), yr(p)

)
←

(
xr(p) + a

2 , yr(p) + b
2

)
we move

the origin to the center. In order to use the entire drawing space, we scale the
layout by

(
x(p), y(p)

)
←

(
x(p), y(p)

)
· min{a,b}

2k .
Since the elimination of type 3 conflicts generates no new crossings and (1)

and (4) are bĳective we do not change the crossing number given by the embed-
ding. A radial level planar embedding is drawn planar. If we adopt the common
assumption that drawing a line (here an edge as a spiral segment with its sup-
porting points) needs O(1) time, then we obtain an O(N) running time.

5 Conclusion

We have presented a new linear time algorithm for drawing level graphs in a
radial fashion. To check its performance and to visually confirm the good quality
of the resulting drawings we realized a prototype as a plug-in for the Gravisto
project [6] in Java. The coordinates of a graph with N = 50, 000 can be computed
in less than 50 seconds on a 1.8 GHz PC with 768 MB RAM using Java2 1.4.

Further investigations are required for radial crossing reduction algorithms
that avoid type 3 conflicts already at this stage, since our elimination approach
may create many crossings of non inner segments with the ray. The crossing
reduction should also minimize the absolute values of the edge offsets, since this
reduces crossings in general. It may be reasonable to reduce the angles spanned
by the edges at the expense of a slightly increasing crossing number.
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