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Abstract. A graph is upward planar if it can be drawn without edge
crossings such that all edges point upward. Upward planar graphs have
been studied on the plane, the standing and rolling cylinders. For all these
surfaces, the respective decision problem NP-hard in general. Efficient
algorithms exist if the graph contains a single source and a single sink,
but only for the plane and standing cylinder
Here we show that there is a linear-time algorithm to test whether a
strongly connected graph is upward planar on the rolling cylinder. For
our algorithm, we introduce dual and directed SPQR-trees as extensions
of SPQR-trees.

1 Introduction

A directed graph is upward planar (UP) if it has drawing without edge cross-
ings such that all edge curves monotonically increase in y-direction. Upward
planar graphs are of interesting in their own, but also arise in the context of the
Sugiyama framework [22], which is the common drawing method for directed
graphs. In the Sugiyama framework, the graphs are visualized as hierarchies,
where all edges point upward, and it works particularly well for acyclic graphs.
If the graph contains cycles, the Sugiyama algorithm is extended to recurrent
hierarchies [3], where rolling upward planar (RUP) graphs naturally arise in the
case of planarity.

The upward direction of the edges induces essential differences between pla-
nar and upward planar graphs. For instance, for planar graphs all surfaces of
genus 0 are equivalent, such as the plane, the sphere, and the standing and
rolling cylinders. The situation is different with upward planarity: There are di-
rected graphs that have no upward drawing in the plane but on the surface of
the standing cylinder on which edges may wind around the backside. In fact,
there is a strict hierarchy of graph classes upward planar in the plane, on the
(truncated) sphere [10, 11, 16, 17] or on the standing cylinder [6, 14, 19, 20, 23],
and the rolling cylinder [1, 6]. Moreover, there are several linear-time planarity
test algorithms, whereas upward planarity is NP-complete in general [12].

In [2], we provide an overview on different types of upward planarity and
investigate their relationships. There, we use the fundamental polygon represen-
tation: Let I = (−1, 1) be the open interval from −1 to 1. The fundamental
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Fig. 1: RUP compounds and the (directed) block cut tree

polygon of the plane is I × I, which is (the interior of) a square. By identifying
its left and right (top and bottom) sides, we get the standing (rolling) cylinder.
Fig. 1(a) top shows the fundamental polygon of the rolling cylinder, where the
arrows at the bottom and top indicate their identification. A graph is standing
upward planar (SUP) (rolling upward planar (RUP)) if it has a plane upward
drawing on the standing (rolling cylinder). In both cases, the edge curves may
wind around the cylinder and reappear at the identified sides of the fundamental
polygon. An example of a RUP graph is shown in Fig. 1(a) at the top. Note
that RUP graphs may contain cycles whereas SUP graphs are acyclic.

Acyclic dipoles are an important tool to study upward planar graphs on the
plane and on cylinders. An acyclic dipole has a single source s and a single sink t
and no cycles. A graph is SUP if and only if it can be augmented to an acyclic
dipole by adding edges such that planarity is preserved [14,17,19]. If additionally
the edge (s, t) can be added without destroying planarity, we obtain st-graphs,
which characterize UP [8,18]. In [1], we use acyclic dipoles to characterize RUP
graphs by means of their duals and investigate strongly connected graphs with
at least one edge, which we call compounds. A compound is RUP if and only if
its directed dual is an acyclic dipole (see bottom of Fig. 1(a)).

The SUP decision problem is NP-complete [16]. In contrast, an acyclic
dipole is SUP if and only if it is planar, which can be checked efficiently, and
there is an efficient algorithm for triconnected single-source graphs [10]. Hence,
the situations for SUP and UP are similar, as the latter is also efficiently solv-
able for single-source graphs [5]. The situation for RUP is alike: The general
decision problem is NP-complete [7] and in this paper we present an efficient
algorithm for compounds that utilizes the dipole structure of the compound’s
dual. We divide the problem into two parts. First, we derive a characterization of
RUP compounds by means of their block-cut trees which also yields a decision
algorithm (Sect. 3). In the second part (Sect. 4), we tackle the blocks, i. e., the
biconnected components, by using SPQR-trees to decide if a block is RUP. We
conclude in Sect. 5.
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2 Preliminaries

We consider connected, planar, directed graphs G = (V,E) with vertices V and
edges E. A plane drawing of G maps the vertices to distinct points and the
edges to non-intersecting Jordan curves in the plane. A plane drawing induces
an embedding and, equivalently, a rotation system which is the cyclic counter-
clockwise ordering of the edges at every vertex. An embedding is RUP if it is
obtained from a RUP drawing. An embedding of G specifies faces and defines
the (directed) dual graph G∗ = (F,E∗) [4]. The vertices of G∗ are the faces as
defined in the embedding. To avoid confusion, we call the elements of V vertices
and the elements F faces. There is a one-to-one correspondence between the
edges of the primal G and the edges of its dual G∗. For each edge e in G, there
is an edge e∗ between faces f and f ′ in G∗ if and only if e separates f and f ′.
If e is directed, edge e∗ is oriented such that it points from the face left of e to
the face right of e, when traversing the edge curve of e in its direction. Fig. 1(a)
top shows a directed graph with its dual at the bottom. A face f is enclosed
by edges at its boundary and by vertices which are incident to f . Note that G∗

is always connected and G∗ is acyclic if G is strongly connected. Whenever a
dual graph G∗ is given, then the primal is assumed to be embedded accordingly.
Moreover, G∗ can be computed from G’s embedding in linear time.

In [1], we use directed duals to characterize RUP graphs.

Proposition 1 ([1]). An embedded compound is RUP if and only if its dual is
an acyclic dipole.

Hence, we can efficiently decide whether an embeddig is RUP by testing if its
dual is an acyclic dipole.

Corollary 1. There is a linear-time algorithm to test whether the embedding of
a compound is RUP.

The embedding of a triconnected graph is unique up to flipping, i. e., inversion
of all cyclic orderings in the rotation system.

Corollary 2. There is a linear-time algorithm to test if a triconnected com-
pound is RUP.

Hence, deciding whether a compound is RUP can be done efficiently if the
embedding is fixed. If no embedding is given, we use block-cut and SPQR-trees
to find a RUP embedding. For a connected graph G = (V,E), a block B is
a subgraph induced by a set of edges such that no biconnected subgraph of G
properly contains B. Two distinct blocks Bi = (Vi, Ei) and Bj = (Vj , Ej) may
share a cut vertex c ∈ Vi∩Vj . The block-cut tree TB = (B, C, EB) is a tree, where
B = (B1, . . . , Bk) (k ≥ 1) are the blocks, C are the cut vertices and there is an
edge {Bi, c} ∈ EB if c is in block Bi. Observe that a connected graph is strongly
connected if and only if every block is strongly connected.

In the following, we call a directed path dipath and an undirected path simply
path, e. g., of the underlying undirected graph. A dipath (path) with coinciding
start and end is a cycle (circle). Any of these is called simple if it contains no
vertex/edge twice.
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3 Directed Block-Cut Trees of RUP-Compounds

First, we investigate the block-cut trees of RUP compounds and define the
directed block-cut tree which we us to find a RUP embedding of a compound. As
an example, consider the compoundG in Fig. 1(b) consisting of blocksB1, . . . , B8

connected by cut vertices c1, . . . , c4, which are displayed by ⊕. A block Bi of a
compound is strongly connected. Hence, its dual B∗i is an acyclic dipole with
source si and sink ti (see also Fig. 1(a)). Source si is a face enclosed by the
leftmost cycle Cl

i in the embedding of Bi and the vertices in Cl
i are incident to

si. Accordingly, ti corresponds to the rightmost cycle in Bi’s embedding. A block
contains at least one cycle that winds around the cylinder and, thus, divides it
into two halves. Hence, a cut vertex shared by two blocks must be incident to
the source or sink of the blocks’ duals. For instance in Fig. 1(b), cut vertex c1 is
located at the rightmost cycle of block B1 and at the leftmost cycle of B2.

Lemma 1. Let Bi and Bj be two blocks of a RUP-embedded compound sharing
cut vertex c. Then, c is either incident to both si and tj or to both sj and ti.

A RUP embedding of a block Bi is feasible if each of the block’s cut vertices
is incident to the source or sink in B∗i . Note that a cut vertex can be incident
to both the source and the sink, e. g., c1 in Fig. 1(b). By Lemma 1, a necessary
condition for an embedding to be RUP is that each block’s embedding is feasible.

Below the fundamental polygon in Fig. 1(b), the block-cut tree TB of com-
pound G is displayed. TB has a linear structure in the following sense: The cut
vertices and all blocks which contain two cut vertices, i. e., B4, B5, and B7, form
a path called spine. All other blocks contain only one cut vertex and “group”
around the cut vertices on the spine. In fact, after removing all blocks with de-
gree one from the directed block-cut tree only the spine remains and, hence, the
block-cut tree of a RUP compound is a caterpillar [15], i. e., a tree where the
removal of all leaves yields a path:

Lemma 2. The block-cut tree of a RUP graph is a caterpillar.

From Lemma 2, we immediately obtain that a block contains at most two cut
vertices. We now define the directed block-cut tree, which describes the embedding
of a compound with respect to its blocks and cut vertices. For the definition, we
assume that each block is feasibly RUP-embedded and that the block-cut tree
is a caterpillar. We obtain a total order c1, . . . , cl on the set of cut vertices by
traversing the spine of the caterpillar in either direction. The directed block-cut

tree
−→
TB = (B, C,

−→
EB) contains all vertices of the original block-cut tree (see the

bottom of Fig. 1(b)). Let Bi be a block which contains only cut vertex cj . If cj

is incident to the source of B∗i , we add edge (Bi, cj) to
−→
EB and if cj is incident

to the sink, we get edge (cj , Bi). Let Bi be a block on the spine containing cut

vertices cj and cj+1. There is an edge (cj , Bi) ∈
−→
EB if cj is incident to the source

of B∗i and (Bi, cj+1) ∈
−→
EB if cj+1 is incident to the sink.

In the RUP embedding of B4, c1 is located at the leftmost cycle whereas c2
is located at its rightmost cycle (see Fig. 1(a)). Hence, block B4 has an incoming
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edge from c1 and an outgoing edge to c2. Note that
−→
TB is technically not a tree

since it may contain antiparallel edge pairs whenever a cut vertex is incident
to the source and sink of a block’s dual. However, it still has a tree structure.
Observe that the in- and outdegree of a block is at most one. Moreover, all “in-
ner” cut vertices, i. e., c2 and c3, have the same in- and outdegree. Consider, for
instance, c3 in Fig. 1(b), which is attached to the right side of B5, to both sides
of B6, and to the left side of B7. Also, the indegree of c1 equals its outdegree
since B1 is closing off its left side. Similarly, all “inner” blocks have equal in- and
outdegree, i. e., blocks B2, . . . , B8. Hence, the directed block cut tree has an Eu-
lerian dipath B1, c1, B2, c1, B4, c1, B4, . . . , c4. This observation holds in general
and yields a characterization:

Lemma 3. A compound is RUP if and only if every block has a feasible RUP
embedding such that the directed block cut tree has an Eulerian dipath.

If the directed block-cut tree has an Eulerian dipath, then this dipath visits each
block exactly once and, hence, defines a total order on the blocks. The blocks
can then be attached in order to each other at their shared cut vertices to obtain
a RUP embedding for the whole compound.

Algorithm 1 returns a RUP embedding of a compound G or false if the
compound is not RUP. As planarity is a necessary condition for a graph
to be RUP, we assume that the compound is planar. The algorithm uses
the linear-time subroutine TestRUPBiconnected, which is the topic of Sect. 4.
TestRUPBiconnected(Bi, Vl, Vr) returns an embedding of block Bi such that all
vertices in Vl and Vr are incident to the source and sink of B∗i , respectively; if
no such embedding exists, it returns false. First, Algorithm 1 checks whether
G is biconnected. If this is the case, it directly calls TestRUPBiconnected. Oth-
erwise, it checks whether the block-cut tree TB is a caterpillar. The spine of the
caterpillar induces the total order c1, . . . , cl on the set of cut vertices. In the

remainder of the algorithm, the directed block-cut tree
−→
TB is derived by testing

the RUP embeddability of each block. Simultaneously, it stores the start and

the end of the Eulerian dipath of
−→
TB in epStart and epEnd, respectively, with

initial values epStart = c1 and epEnd = cl. If there is a block Bi containing c1
that has no embedding such that c1 is incident to both the source and sink of
B∗i , Bi must have an embedding such that c1 is incident to the sink of B∗i (e. g.,
B1 in Fig. 1(b)). Hence, Bi is the start of the Eulerian dipath and epStart is
set to Bi. Note that no second block with the same properties can exist if the

graph is RUP since otherwise
−→
TB has no Eulerian dipath. Likewise, the end

of the Eulerian dipath is obtained. Finally, Algorithm 1 traverses the Eulerian
dipath from epStart to epEnd, which induces a total order on the set of blocks,
and assembles a RUP embedding of G. Note that TestRUPBiconnected is called
at most twice for each block and that the block-cut tree can be calculated in
time O(|V | + |E|) = O(|V |). The embeddings of all blocks can be merged in
O(|V |). Also, all other steps have a running time linear in the size of either G
or the block-cut tree. Hence, the overall running time of Algorithm 1 is O(|V |).
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Algorithm 1: TestRUPCompound

Input: Planar compound G = (V,E)
Output: RUP embedding of G or false if G is not RUP

1 if G is biconnected then return TestRUPBiconnected(G, ∅, ∅)
2 TB = (B, C, EB) ← BlockCutTree(G)
3 if TB is no caterpillar then return false

4 Order cut vertices from c1 to cl according to the spine of TB
5
−→
TB = (B, C,

−→
EB) with

−→
EB = ∅

6 epStart ← c1; epEnd ← cl
7 foreach Bi = (Vi, Ei) ∈ B do
8 if Bi contains exactly one cut vertex cj then
9 if TestRUPBiconnected(Bi, {cj}, {cj}) 6= false then

10
−→
EB ←

−→
EB ∪ {(cj , Bi), (Bi, cj)}

11 else Bi must be either the beginning or the end of the Eulerian dipath
12 if cj = epStart ∧ TestRUPBiconnected(Bi, ∅, {cj}) 6= false then

13 epStart ← Bi;
−→
EB ←

−→
EB ∪ {(Bi, cj)}

14 else if cj = epEnd ∧ TestRUPBiconnected(Bi, {cj}, ∅) 6= false then

15 epEnd ← Bi;
−→
EB ←

−→
EB ∪ {(cj , Bi)}

16 else return false

17 else Bi contains two cut vertices cj , cj+1

18 if TestRUPBiconnected(Bi, {cj}, {cj+1}) 6= false then

19
−→
EB ←

−→
EB ∪ {(cj , Bi), (Bj , cj+1)}

20 else return false

21 Construct RUP embedding E from the RUP embeddings of the blocks in order

of the Eulerian dipath in
−→
TB from epStart to epEnd

22 return E

4 Testing Biconnected Graphs

In the following, we define directed SPQR-trees of the primal and dual of bi-
connected compounds to store all possible embeddings. The main idea of the
second phase of our algorithm is that if each nodes’ skeleton of the primal di-
rected SPQR-tree has an embedding whose dual is an acyclic dipole, then the
dual of the whole graph is an acyclic dipole and, hence, the primal graph is RUP.
For the RUP testing algorithm of biconnected graphs, we assume that the input
graph G = (V,E) contains no anti-parallel pairs of edges (u, v), (v, u) ∈ E, and
no self-loops (u, u) ∈ E. Note that both wrap around the cylinder in a RUP
embedding. All anti-parallel pairs of edges can be replaced by introducing a new
vertex w and substituting edge (u, v) by edges (u,w) and (w, v). All self-loops
are replaced alike. The so obtained graph is RUP if and only if the original
graph is RUP.

SPQR-trees were introduced by Di Battista and Tamassia [9] and provide a
description of how a graph is composed. Let Gu be an undirected biconnected
graph, e. g., the underlying undirected graph of G. In the definition we adopt
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here, the SPQR-tree T of Gu is unrooted. The nodes of T either represent
a series composition (S), a parallel composition (P), a single edge (Q), or a
triconnected component (R). Associated with each node µ of T is a graph that
is homeomorphic to a subgraph of Gu and called the skeleton skel(µ) of µ. In its
original definition, every edge e = {u, v} of a skeleton, except for one of a Q-node,
is a virtual edge, i. e., an edge that represents the subgraph of Gu which connects
u and v. This subgraph is also referred to as the expansion graph expg(e) of e.
For every virtual edge e in the skeleton of a node µ, there is another node ν that
refines the structure of expg(e). This link is represented by an edge between µ
and ν in T . Therefore, every leaf of T is a Q-node. For simplification, however,
we represent edges of the graph directly in the skeleton of an S- ,P-, or R-node,
so that we can neglect Q-nodes. If Gu is planar, its SPQR-tree stores all planar
embeddings of Gu. They can be obtained by two basic operations: swapping
two (virtual) edges in the skeleton of a P-node and flipping the triconnected
component represented by an R-node. The embedding of Gu can be obtained by
merging all skeletons at their associated virtual edges.

Let E be a planar embedding of Gu. Then, E implies an embedding of the
skeleton of each node of T . The dual skeleton skel(µ)∗ of a node µ is the dual
graph of skel(µ). The dual SPQR-tree T ∗ of Gu is a tree whose nodes’ skeletons
are the dual skeletons of T with types S∗, P ∗, and R∗, and T ∗ inherits the
topology of T . Note that the dual graph of the skeleton of a P-node yields a
circle of length at least 3, which corresponds to an S-node, and the dual of the
skeleton of an S-node is a P-node in turn. Also, the dual of a triconnected and
embedded graph is triconnected [21, Thm. 2.6.7] and, hence, the dual of an R-
node’s skeleton is triconnected as well. Consequently, for the node types of the
dual SPQR-tree holds S∗ = P , P ∗ = S, and R∗ = R. Moreover, merging all
skeletons of T ∗ at the associated virtual edges yields the dual graph G∗u of Gu.

Lemma 4. The dual SPQR-tree of a graph Gu with embedding E is the SPQR-
tree of the dual graph G∗u with S∗ = P , P ∗ = S, and R∗ = R.

In the next step, we extend SPQR-trees to directed graphs. Let G be a
directed, biconnected graph and T be the SPQR-tree of its underlying undirected
graph. For every skeleton skel(µ) of a node µ in T , we obtain the directed skeleton
−−→
skel(µ) by directing all non-virtual edges according to their direction in G. See
Figs. 2(b) and (c) for an example. In the following, we call an acyclic dipole with
source u and sink v a uv-graph. Each virtual edge e = {u, v} is treated as follows:
If its expansion graph expg(e) is either a uv-graph or a vu-graph, e is represented
as a directed edge (u, v) or (v, u), respectively. Otherwise, e remains undirected
and is mapped to a subset of the flags {�,JI,IJ}, depending on whether
expg(e) contains a source (JI) or a sink (IJ) other than u and v, or a cycle

(�). The directed SPQR-tree
−→
T is obtained from T by replacing each skeleton

by its directed counterpart. Likewise, we obtain the directed dual SPQR-tree
−→
T ∗

for a planar embedding E from T ∗, see Figs. 2(c) and (d).
Observe that with the flags, every skeleton in the directed SPQR-tree stores

information whether the graph contains cycles, sources, or sinks, and, to a certain
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Fig. 2: A compound with triconnected components and its dual together with
their SPQR-trees. Black lines are virtual edges. Dotted edges connect the nodes
of the SPQR-tree and indicate the associated virtual edges.

extent also how many. This implies transitivity for the flags �, JI, IJ: Let µ
be a node containing a virtual edge e that is refined by node ν and let e′ be the
virtual edge in ν that is refined by µ. If any virtual edge e′′ 6= e′ in ν carries
flag X ∈ {�,JI,IJ}, then e in µ also has flag X.

The planar embedding of a graph is uniquely defined by the planar embed-
dings of the skeletons in its SPQR-tree and it can be obtained by merging the
nodes at the associated virtual edges. Note that the direction or the flags of a
virtual edge are insignificant for the merge operations since the vertices that are
matched are always those that represent the same vertex in the graph.

Corollary 3. The directed dual SPQR-tree of a graph G with embedding E is
the directed SPQR-tree of the dual graph G∗ of G.

From now on, we only consider the biconnected and embedded compound G
with acyclic dual G∗. Note that for a strongly connected graph, all virtual edges
in the skeletons of its directed SPQR-tree are either directed or carry flag �,
whereas for acyclic graphs, a virtual edge may only have one or both of the flags
JI and IJ.

We introduce optional labels L and R for vertices of G and refine the flag �
on all virtual edges as follows: If the expansion graph of a virtual edge e with
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Fig. 3: Auxiliary skeleton

flag � contains a vertex with label L, then e’s flag is refined to �L. Analogously,
if expg(e) contains a vertex with label R, then e’s flag is refined to �R. In case
that expg(e) contains vertices with both labels, e carries both flags. We say that
a directed SPQR-tree is labeled, if every �-flag has been refined. Observe that
this implies at least one vertex with label L or R in G. A directed SPQR-tree of
an acyclic graph is trivially labeled.

Consider graph G∗, which is acyclic, and contains at least one source and one
sink. Every source and every sink in G∗ is a face which is bounded by a cycle
in G. We assign the label L to every vertex that is incident to a source, and the
label R to every vertex that is incident to a sink. Note that a vertex may have
both labels.

Lemma 5. There is a labeled directed SPQR-tree for G such that exactly the
vertices incident to a source in G∗ are labeled L and those incident to a sink are
labeled R.

Lemma 5 enables us to obtain the directed dual SPQR-tree
−→
T ∗ of G directly

from the directed SPQR-tree
−→
T that is labeled according to its embedding. If a

virtual edge in the skeleton of a node in
−→
T has flag �L or �R, we can assign to

its dual edge the flag JI or IJ, respectively. The dual of a virtual edge with
flag JI or IJ then is a virtual edge with flag �R or �L, respectively. Observe
that for directed graphs, the dual of a dual graph is the converse of the primal
graph, i. e., G with all edges reversed.

Let
−−→
skel(µ) be the skeleton of a node µ in a labeled directed SPQR-tree

−→
T

of a graph G. The auxiliary skeleton aux(
−−→
skel(µ)) is derived from

−−→
skel(µ) by

substituting each undirected virtual edge {u, v} according to its flags by a proxy
as depicted in Fig. 3. For instance, the proxy of a virtual edge with flag �L is an
anti-parallel pair of edges, such that it induces a source in the dual graph, which
is in turn the proxy of a virtual edge with flag JI. If G has a planar embedding,
the new edges inherit the position of {u, v} in the rotation systems at u and v.
Observe that all constructions preserve planarity.

By Proposition 1, G is RUP if and only if its dual G∗ is an acyclic dipole.

Consider the directed SPQR-tree
−→
T ∗ of G∗. Then, the skeleton of every node

represents the structure of G∗ either directly or via flags on its virtual edges.

Lemma 6. G∗ is an acyclic dipole if and only if every auxiliary skeleton of its
directed SPQR-tree is an acyclic dipole.
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Algorithm 2: TestRUPBiconnected

Input: Planar biconnected compound G = (V,E), Vl, Vr ⊆ V
Output: RUP embedding of G such that all v ∈ Vl (Vr) are incident to the

source (sink) of G∗; or false if no such RUP embedding exists
1 T ← ComputeSPQRTree(G) and keep edge directions according to G

2 Obtain
−→
T : Root the tree arbitrarily, direct all edges towards root, and let

µ1, . . . , µk be a topological sorting of T ’s nodes
3 foreach µ = µ1, . . . , µk do ignoring virtual edge associated with parent

4 if
−−→
skel(µ) contains virtual edge with flag � or a cycle then

5 Set flag � on virtual edge of parent associated with µ

6 else
−−→
skel (µ) is uv-graph

7 Direct virtual edge of parent associated with µ from u to v

8 Propagate completive information from root to children
9 if ∃ skeleton with > 2 �-flags then return false

10 foreach node µ and vertex v in
−−→
skel(µ) do if v ∈ Vl (v ∈ Vr) then

11 label v with L (R) in
−−→
skel(µ)

12
−−→
skel(µ) ← skeleton with maximum number of virtual edges with flag �

13 if
−−→
skel(µ) contains ≥ 1 virtual edges with flag � then

14 foreach f ∈ {�L,�R,�L &�R} do
15 Refine �-flag on one virtual edge to f
16 Refine �-flag on other virtual edge, if existent, to complement of f
17 Establish transitivity

18 if TestRUPLabeledSPQRTree(
−→
T ) 6= false then goto 22

19 return false

20 else no virtual edges with �-flag

21 if TestRUPLabeledSPQRTree(
−→
T ) = false then return false

22 Build and return the RUP embedding of G by merging all skeletons

Algorithm 2 takes as input a planar, biconnected compound G = (V,E)
with two sets Vl, Vr ⊆ V . It returns a RUP embedding of G such that all
vertices in Vl (Vr) are incident to the source (sink) of G∗ or false if no such
embedding exists. First, the SPQR-tree of G is computed which can be done

in linear time [13]. From lines 1–8 the directed SPQR-tree
−→
T is obtained, i. e.,

each virtual edges is either directed or the � flag is set. Note that for each
skeleton an algorithm is executed whose running time is linear in the number of
vertices in the skeleton. Since the number of edges represented in the skeletons
is in O(|V |) [9], we obtain a running time linear in the size of G. By Lemma 6,
the dual of every skeleton must be an acyclic dipole. Hence, the primal skeleton
can contain at most one virtual edge with �L- and one with �R-flag and, thus,
at most two �-edges (cf. line 9). Next, in the skeletons, the representatives of
the vertices in Vl and Vr are labeled accordingly. In lines 13–22, the algorithm
tries all transitive refinements of the �-flag. Note that if there is a skeleton
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with two cylic edges e1, e2, either e1 gets �L and e2 gets �R or vice versa. In
a skeleton with one �-edge, the three refinements �L,�R, and �L &�R are
possible. If all �-edges in one skeleton have been refined, the refinements of
all other �-edges are determined uniquely by transitivity. Thus, the algorithm
has to test at most three different refinements altogether. The obtained labeled
SPQR-tree is passed to TestRUPLabeledSPQRTree. This routine verifies that
each skeleton has an embedding such that its dual is an acyclic dipole and the
vertices with labels L and R are incident to the source and sink, respectively.
TestRUPLabeledSPQRTree proceeds for every node µ as follows: If µ is of type
R, its auxiliary skeleton is obtained. A planarity test yields the (up to flipping)
unique embedding of the auxiliary skeleton. If one dual is an acyclic dipole, then
so is the other. If in one of them the vertices with label L (R) are incident to the
source (sink), this embedding is retained. Otherwise, the test aborts and returns
false. If µ is a P-node, we define the rotation system at any of the two vertices
in the skeleton as follows: Denote by e+1 , . . . , e

+
m and by e−1 , . . . , e

−
n all outgoing

and incoming edges of the vertex in arbitrary order. The rotation system is then
e+1 , . . . , e

+
m, e�L

, e−1 , . . . , e
−
n , e�R

. Observe that if the �-edge carries both flags,
then either m = 0 or n = 0. Because of planarity, this rotation system also
defines the rotation system at the other vertex. If one or both of the �-edges are
missing, they are skipped. In all cases, the dual is an acyclic dipole. Note that
whenever an anti-parallel pair of edges is adjacent in the rotation system, this
always results in either a source or sink in the dual, and the duals of the proxies of
e�L

and e�R
are a source and a sink, respectively. From the perspective a P-node

provides on the whole graph, the split pair can be incident to both the source and
sink of the dual. Hence, no further tests are needed. If µ is an S-node, its skeleton
has a unique embedding and, hence, also its auxiliary skeleton. The algorithm
computes the dual and verifies that the vertices with L and R are incident to the
source and sink, respectively. If all checks succeed, TestRUPBiconnected returns
a RUP embedding of G. For every skeleton, the test can be performed in time
linear in the size of the skeleton. Finally, we obtain:

Theorem 1. There is a linear-time algorithm to decide whether a strongly con-
nected graph is RUP.

5 Conclusion

We presented a linear time algorithm to check whether a strongly connected
graph is drawable upward planar on a rolling cylinder. We were also able to
extend the RUP-test to graphs without sources and sinks, i. e., graphs consisting
of multiple compounds. The proof is left as future work.

References

1. Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A., Hanauer, K.: The duals
of upward planar graphs on cylinders. In: Golumbic, M.C., Stern, M., Levy, A.,
Morgenstern, G. (eds.) WG 2012. LNCS, vol. 7551, pp. 103–113. Springer (2012)



12 C. Auer, C. Bachmaier, F. J. Brandenburg, K. Hanauer

2. Auer, C., Bachmaier, C., Brandenburg, F.J., Gleißner, A.: Classification of planar
upward embedding. In: van Kreveld, M., Speckmann, B. (eds.) GD 2011. LNCS,
vol. 7034, pp. 415–426. Springer (2012)

3. Bachmaier, C., Brandenburg, F.J., Brunner, W., Fülöp, R.: Drawing recurrent
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