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Abstract. We present almost linear area bounds for drawing complete
trees on the octagonal grid. For 7-ary trees we establish an upper and
lower bound of Θ(n1.129) and for ternary trees the bounds of O(n1.048)
and Θ(n), where the latter needs edge bends. We explore the unit edge
length and area complexity of drawing unordered trees on k-grids with
k ∈ {4, 6, 8} and generalize the N P-hardness results of the orthogonal
and hexagonal grid to the octagonal grid.

1 Introduction

Trees are a fundamental data structure in computer science to represent hierar-
chies. Amongst others they are used as family trees in social networks or inher-
itance structures in UML-diagrams. Their visualization is an important field in
graph drawing [7,9,13,14,21]. Often trees are unordered, e. g., flow charts. Then
it is not necessary that a drawing reflects a given child order. For readable and
comprehensible drawings in traditional hierarchical style the following aesthetics
are established [17,20,22]: y-coordinates of the vertices correspond to their depth,
centered parents over their children, minimal distance between vertices, integral
coordinates, maintaining the order, planarity, and identically drawn isomorphic
subtrees up to reflection. These criteria exclude recursive winding techniques
as they were studied by Chan et al. [7]. Marriott and Stuckey [19] have shown
that for unordered binary trees, it is NP-hard to determine a hierarchical draw-
ing with minimal width. The same was shown by Supowit and Reingold [22]
for order-preserving drawings. The common drawing algorithm for binary trees
was introduced by Reingold and Tilford [20] and generalized to d-ary trees by
Walker [3, 6, 24], which all satisfy the above aesthetic criteria.

The hierarchical drawing methods enforce placing the vertices at grid points.
All these approaches allow drawing trees of high degree, such that the angles
between incident edges may be very small. Restricting the degree of trees allows
to draw along a finite set of directions, e. g., four directions on the orthogonal
grid. This grid was widely investigated in literature [2,7,8,11,13,14,21,23]. The 6-
and the 8-grid with additional axes are used to draw trees with higher degree [1,5,
16]. A motivation for such grids are discrete representations of radial drawings [9].
In our companion paper [5] we showed that it is NP-hard to determine the
existence of an order-preserving tree drawing within a given area on the k-grid
with k ∈ {4, 6, 8}. Now we translate the NP-hardness to the unordered case.
Bhatt and Cosmadakis [2] showed that it is NP-hard to determine if a tree of
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degree up to four has an unit edge length drawing on the orthogonal grid. This
result can also be proved by the logic engine approach [10]. For binary trees
this was shown by Gregori [15]. NP-hardness results for minimum area were
presented in [4, 18]. We presented an equivalent result for the 6-grid for trees
with degree up to six [1]. In the plane only two grid axes are linear independent.
This shall cause some problems which do not occur on the 4-grid for compacting
drawings on higher order grids containing more than 2 axes. Furthermore, the
degree of difficulty increases with the number of available directions.

The remainder is organized as follows. After some definitions in Sect. 2 we
present a tight area bound for drawing complete 7-ary trees in Sect. 3. Afterwards
we show an almost linear upper area bound for straight-line drawings and a linear
bound for drawings with bends of ternary trees on the 8-grid in Sect. 4. Finally,
we show that it is NP-hard to decide whether or not there is a unit edge length
drawing for arbitrary trees with degree 8 and whether or not there is a drawing
within a given area in Sect. 5.

2 Preliminaries

The orthogonal or 4-grid is the infinite planar undirected graph G = (V,E)
whose vertices V have integral coordinates and whose edges E link vertex pairs
with vertical or horizontal unit distance. We extend the 4-grid with its four
directions to the hexagonal or 6-grid [1, 5, 16] with six directions by adding an
edge {u, v} for each u ∈ V on coordinates (x, y) and v ∈ V on (x+1, y−1). The
octagonal or 8-grid is a 6-grid with additional edges {u, v} between each u ∈ V
on (x, y) and v ∈ V on (x+1, y+1). We call these grids k-grids with k ∈ {4, 6, 8}.
The distance between vertices u, v ∈ V with coordinates (ux, uy) and (vx, vy) on
a k-grid is defined by the maximum metric d(u, v) = max(|ux−vx|, |uy−vy|). A
path (v1, . . . , vn) is a sequence of vertices with edges (vi, vi+1) and i ∈ {1, . . . , n−
1}. A path is straight if the edges have the same direction. Let T = (V,E) be a
(rooted) unordered tree. If each vertex v ∈ V has an outdegree of at most d, we
call T a d-ary tree. An embedding Γ (T ) of a (k − 1)-ary tree T = (V,E) on a
k-grid is a mapping Γ which specifies distinct integer coordinates Γ (v) = (x, y)
for each vertex v ∈ V . Γ maps an edge e ∈ E onto a (straight) path of grid
edges Γ (e) between its endpoints. The length of an edge e ∈ E is the distance
between its incident vertices and the length of a path is the sum of its edge
lengths. We use the terms drawing and embedding synonymously. The area on
a k-grid is the size of the smallest surrounding rectangle and the aspect ratio
is the quotient of its height and its width. The following definitions of drawing
styles are in accordance to [5], where we replace “O” for ordered by “U” for
unordered. An Uk-drawing is a drawing of an unordered (k − 1)-ary tree on a
k-grid. A tree drawing is locally uniform if for each vertex its outgoing edges
have identical length. We call a locally uniform Uk-drawing ULk-drawing. In a
pattern drawing of a (k − 1)-ary tree on the k-grid, the outgoing edges of each
vertex are axially symmetric with respect to the incoming edge. All patterns
are categorized by their outdegree. For the various k-grids they are shown in
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(a) k = 4 (b) k = 8

(c) k = 6 (asymmetric) (d) k = 6 (symmetric)

Fig. 1. Patterns on the k-grids

Fig. 1. An Uk-drawing using patterns is called UPk-drawing. Combining these
properties we obtain locally uniform pattern drawings, called ULPk-drawings.
Here the children of a vertex are positioned symmetrically, which corresponds
to placing the parent centered over its children.

3 Complete 7-ary Trees

In this section we investigate drawing complete 7-ary trees on the 8-grid. Similar
to the results of [1], we establish an upper and lower bound for the area for
complete trees.

Theorem 1. The upper and the lower bound for the area of drawings of complete
7-ary trees with n vertices on the 8-grid is Θ(nlog7 9).

Proof. We construct the drawing of the tree recursively. In the initial case the
tree has height h = 0. In the construction step h→ h+1 the side length (in grid
points) of the planar drawing grows by a factor of three, see Fig. 2. Thus, the
area is in O(9h). Since h = log7 n, the area is O(9log7 n) which is about O(n1.129).

Let Γ (T (h)) be an Uk-drawing of a complete 7-ary tree of height h with
root r on the 8-grid. W. l. o. g. we assume that r is placed at the origin. We
proof by induction on h that at least seven of the four corner extreme points
(± 3h−1

2 ,± 3h−1
2 ) and four center extreme points (± 3h−1

2 , 0) and (0,± 3h−1
2 ) are

occupied by a vertex or an edge of T (h). Note that one of the corner extreme
points may be used for the incoming edge of the root of T (h). Clearly, the
statement holds for the induction bases h = 0 and h = 1. Let T1, . . . , T7 be the
seven (complete) subtrees of r with height h − 1 and roots r1, . . . , r7. W. l. o. g.
let the outgoing edges of r (r, r1), . . . , (r, r7) point to any of the eight possible
edge directions except north-west. This allows us to assume that the numbering
to the Tis is in counter-clockwise direction starting with west.

Assume for contradiction that the grid point p = ( 3h−1
2 , 0) is not occupied

by Γ (T (h)). Hence, the subtree T5 with incoming edge (r, r5) pointing to the
east does not occupy p. By induction the side lengths of the drawing of T5 are at
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Fig. 2. Complete 7-ary tree

Fig. 3. Complete 3-ary tree with bends
Fig. 4. Drawing scheme for Theorem 2 on
the 8-grid (grid lines omitted)

least 3h−1 − 1. Then one corner extreme point of T5 overlaps the diagonal axis
from r to north-east. Therefore, it is not possible to use this diagonal direction
for T6. The same can be shown for T1, T3, and T7 by symmetrical arguments.

It remains to show that the corner extreme points are occupied. Assume for
contradiction that the grid point q = ( 3h−1

2 ,− 3h−1
2 ) is not occupied by Γ (T (h)).

Hence, the subtree T4 with incoming edge (r, r4) pointing to the south-east does
not occupy q. As a consequence its extreme points are placed at least one unit to
the north and/or to the west. W. l. o. g. we assume that it is displaced one unit to
the north (both other directions symmetrically). As the side lengths of T4 and T5
are at least 3h−1−1 and T4 and T5 do not overlap, T5 overlaps the diagonal axis
from r to north-east. Therefore, it is not possible to use this diagonal direction
for T6. The same can be shown for T2 and T6 by symmetrical arguments. ut

Corollary 1. There is a linear time algorithm to draw a complete 7-ary rooted
tree with n vertices on the 8-grid in O(n1.129) area and with aspect ratio 1.

4 Complete Ternary Trees

Each complete ternary tree can be drawn on the 4-grid withinO(n1.262) area [11].
For strictly upward drawings on the 6-grid there is a tight bound of Θ(n1.262) [1].
We present an almost linear upper bound for complete ternary trees on the 8-grid
using all 8 directions.

Theorem 2. There is a linear time algorithm to draw a complete ternary tree
with n vertices on the 8-grid in O(n1.048) area and with aspect ratio 1.

Proof. We construct the tree T (h) with height h recursively. Figure 4 shows one
recursion step for i→ i+ 4 with i ≤ h. Initially for i = h mod 4 ∈ {0, . . . , 3} we
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draw the tree T (i) in a square with the root at the corner within constant area.
In a recursion step i → i + 4 there are 81 complete trees with height i which
we draw within a square with side length S(i). Let c = 8 be the number of
additionally inserted columns (rows) which are used for wiring, i. e., connecting
the subtrees with their parents. Then the side length is S(i+ 4) = 10 ·S(i) + c ≤
10di/4e+ (c ·

∑di/4e
i=0 10i) < 10di/4e+ c · 10di/4e+1. Thus, S(h) ∈ O(10h/4) and the

area of T (h) is in O(100h/4). The height of a complete ternary tree is h = log3 n.
Therefore, the needed area is in O(100(log3 n)/4) = O(n(log3 100)/4) ⊂ O(n1.048).

ut

Theorem 3. There is a linear time algorithm to draw a complete ternary tree
with at most one bend per edge on the 8-grid and the 6-grid within Θ(n)-area.
The drawing is strictly upward, has constant aspect ratio, and less than n

9 bends.

Proof (Sketch). The proof is done similar to the proof of Theorem 3 in [8] where
either subtrees of even height are placed vertically and subtrees with odd height
are placed horizontally, or vice versa, see Fig. 3. ut

5 N P-hardness Results

In this section we present NP-hardness results for planar unordered tree draw-
ings on k-grids. There is always an ULPk-drawing Γ (T ) of a (k − 1)-ary tree T
on the k-grid. A possible construction is similar to the construction of the com-
plete (k − 1)-ary tree, see Sect. 3. We set the lengths of the outgoing edges of a
vertex u to 3height(T )−depth(u)−1 and then proceed top-down. For each vertex u
we draw its j < k outgoing edges in an arbitrary order with these lengths and
with arbitrary directions. First, similar to [1,2] we shall restrict ourselves to the
problem of drawing with unit edge length and afterwards we consider the area
complexity of these drawings without the unit edge length constraint.

5.1 Unit Edge Length
We consider the complexity of constructing Uk-, UPk-, ULk- and ULPk-drawings
with unit edge lengths. First we show an NP-hardness result for Uk-drawings,
where we extend the results of the 4-grid [2,10,15] and the 6-grid [1] to trees of
degree 8 on the 8-grid. This result should be adaptable, such that it holds also
for binary trees on the 8-grid similar to [15]. We reduce NOT-ALL-EQUAL-3-
SAT (NAE3SAT ) [12] by constructing a tree of degree eight for a given Boolean
expression E in 3-CNF with n variables and c clauses in polynomial time.

For a simple description, we use a free undirected tree in the following con-
structions. We define a full tree consisting of a vertex q with eight neighbours
r1, . . . , r8, see Fig. 5. In turn, these have incident edges (r1, s1), . . . , (r8, s8). The
four vertices s1, . . . , s4 in {s1, . . . , s8} additionally have seven adjacent vertices,
called corner leaves. Each of the remaining four vertices s5, . . . , s8 has one addi-
tional neighbor, called center leaf. In Fig. 5 the leaves t5, . . . , t8 are center leaves
and all remaining leaves are corner leaves. We identify the position of a full tree
by the coordinates of vertex q.
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q

r1
s1

r5

s5

t5

t6

t7

t8

Fig. 5. Full tree

s s′

s′′

Fig. 6. Encode tree and striker (s, s′, s′′)

Lemma 1. Full trees have exactly one drawing with unit edge length on the
8-grid up to translation and labeling of the vertices.

Proof. As mentioned above let s1, . . . , s4 be the neighbors of the corner leaves
and let the remaining s5, . . . , s8 be the neighbors of the center leaves. Assume
for contradiction that the edge (q, ri) with i ∈ {1, . . . , 4} is drawn horizontally
with length 1. As required, the seven other incident edges of q are also drawn
with length 1. Then there remain three possible edge directions for (ri, si). One
is horizontal and two are diagonal. If (ri, si) is drawn horizontal, then the seven
adjacent leaves of si cannot be placed satisfying unit edge length without an
overlap. The same is true if (ri, si) is drawn diagonally with unit edge length.
Thus, (q, ri) cannot be drawn horizontal. The same arguments hold for a vertical
(q, ri). Thus, (q, ri) must be diagonal.

There remain five possible directions for the edge (ri, si). Assume for con-
tradiction, (ri, si) has a different slope as (q, ri). Then the seven neighbors of
si overlap with the neighbors of q. Therefore, the square containing si and its
neighbors must be drawn at a corner of the whole 7 × 7 square of grid points.
No vertex can be placed outside of the 7 × 7 square, as otherwise there is an
edge longer than 1. Finally, for the paths from q to the center leaves only the
horizontal and vertical directions remain. ut

Let an encode tree be a full tree omitting two center leaves, see Fig. 6 (without
s′ and s′′). Later we shall extend certain encode trees by strikers which are paths
of length two, added at one of the two new leaves (former parents of omitted
center leaves), e. g., (s, s′, s′′) in Fig. 6. We call the two new leaves striker leaves.
Consider a drawing of an encode tree with a given position of s. Then the position
of s′ is predetermined. For s′′ three possible grid points remain outside the 7×7
square, which satisfy unit edge length.

We connect two full and encode trees inserting either an edge between center
leaves, called center connection, or an edge between corner leaves, called corner
connection. Note that in the remainder these two connection types are the only
connections used between these two tree types. When it is obvious, we coarsen
our view and use the notions vertex, leaf and path identifying full and encode
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trees as (meta-)vertices. Let u and v be center connected full trees. Due to
Lemma 1, there are four relative positions for them in a drawing, i. e., u is left
of, right of, above or below v. Let v have an absolute grid position and u a relative
position to v. For u there are three possible grid positions satisfying edge length
1. For example, if u is left of v, their y-coordinates may differ by at most 1.

For a Boolean expression E in 3-CNF with c clauses and n variables we
construct a tree of degree 8 S(n, c + 1), see Fig. 7. Initially, we introduce
the basic tree S(n, 1) containing the basic spine of center connected full trees
(u0, v1, . . . , vn, w0). Add two center connected encode trees xi1 and xi1 as addi-
tional neighbors to each of the full trees vi with i ∈ {1, . . . , n}. Append three
additional center connected full trees u1, u

′
1, u
′′
1 (w1, w

′
1, w

′′
1 ) and two corner con-

nected full trees a11 and d11 (b11 and c11) to the full tree u0 (w0). We denote a
corner connected full tree α11 with α ∈ {a, b, c, d}.

In the inductive step j → j+1 we expand S(n, j) to S(n, j+1) by appending
the full trees uj+1, u

′
j+1, u

′′
j+1, wj+1, w

′
j+1, w

′′
j+1 to uj , u

′
j , u
′′
j , wj , w

′
j , w

′′
j via cen-

ter connections. Again with center connections we add the encode trees xi,j+1
and xi,j+1 to xij and xij , respectively. For each k ∈ {1, . . . , j} and α ∈ {a, b, c, d}
we add the full tree αj+1,k (αk,j+1) to the leaf αjk (αkj) using a center connec-
tion. Finally, the new full trees αj+1,j+1 are corner connected to αjj .

We apply one additional construction step to the so far obtained tree S(n, c)
to frame it. This is done similarly to the inductive step from the previous
paragraph, but using full trees instead of encode trees. We obtain the tree
S(n, c + 1). As we will see later, this ensures that the free positions of each
encode tree are restricted to the same y-coordinate. In S(n, c + 1) we call the
path (xi,c+1, . . . , xi,c+1) with i ∈ {1, . . . , n} the i-th column Ci.

Lemma 2. Let S(n, c + 1) be drawn with unit edge length on the 8-grid and
let its basic spine be (v0 = u0, v1, . . . , vn, w0 = vn+1). Then all vertices vi with
i ∈ {0, . . . , n} share the same relative position to their successor vi+1, which is
either left of, right of, above, or below.

Proof. Considering the basic spine, the vertex u0 has four center connected
neighbors u1, u

′
1, u
′′
1 , v1. W. l. o. g. v1 is placed to the right of u0 and u1, u

′
1, u
′′
1

may be positioned left of, above, and below u0, see Fig. 7. Assume for contra-
diction that the center connected neighbour v2 is placed below (above) v1. Each
of the two full trees v1 and v2 has four center connected neighbors. This leads
to a contradiction because there is no space left to place the fourth neighbor of
v2 considering edge length 1. Hence, v2 must be placed to the right of v1. The
same can be shown by an inductive argument for the remaining full trees of the
basic spine. As a consequence all these full trees are placed side by side and
the y-coordinates differ between neighbours at most by 1. The center connected
neighbours w1, w

′
1, w

′′
1 of w0 are placed symmetrically to the respective neighbors

of u0, see Fig. 7 for an example. ut

The basic spine is horizontally embedded if all neighbors are positioned in
a planar way relatively left and right of each other, else it is vertically embed-
ded. Let Γ (S(n, c + 1)) be a drawing of S(n, c + 1) with a horizontally em-
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b11
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u1u4

u′
1

u′
4

u′′
1

u′′
4

Fig. 7. T (E) of E = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x3 ∨ x4) (n = 4 and c = 3)
and assignment x1 = T, x2 = x3 = x4 = F

bedded basic spine. Then the basic spine separates Γ (S(n, c + 1)) into two
halfs, the top half and the bottom half. Due to the freedom to permute in-
cident edges, either the path (xi1, . . . , xi,c+1) is drawn in the top half and
(xi1, . . . , xi,c+1) in the bottom half of each column Ci, or vice versa. We call
the paths (u0, . . . , uc+1), (u0, . . . , u

′
c+1), (u0, . . . , u

′′
c+1) the u-spines of S(n, c+1).

Analogously we define w-spines.

Lemma 3. Let S(n, c+1) be drawn with unit edge length and let the basic spine
be embedded horizontally on the 8-grid. Then all other edges have determined
slopes (directions).

Proof. Let Γ (S(n, 1)) be a drawing of the basic tree S(n, 1) where w. l. o. g. the
basic spine (u0, v1, . . . , vn, w0) is horizontally embedded and u0 is placed left of
v1. Let u′ be placed left of u0, u′ above u0, and u′′ below u0 (symmetrically for
w). Each vi with i ∈ {1, . . . , n} has two center connected encode trees xi1 and
xi1, which must be drawn above and below, respectively (or vice versa). So far
all center connected full and encode trees have relative positions. Due to unit
edge length the horizontal grid distance between the corner connected full trees
α11 with α ∈ {a, b, c, d} above (below) the basic spine is at most 7(n + 2) + 1,
which corresponds to 7(n + 2) free grid points. As each full tree horizontally
covers 7 grid points, the horizontal row of n encode trees cover in sum 7(n+ 2)
points. The positions of these encode trees and of the corner connected full trees
are fix. Analogously, the positions of the full trees vertically between the corner
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connected trees α11 are fix. Hence, all edges of the basic tree S(n, 1) despite the
center connections of the basic spine have a fix slope. The same argumentation
can be applied in the induction step j → j + 1. ut

W. l. o. g. let the basic spine always be horizontally embedded to the right in
the remainder. Then in each column Ci with i ∈ {1, . . . , n} the center connection
edges of the path (xi,c+1, . . . , xi,c+1) are drawn vertically. Each surrounding 7×7
square of an encode tree covers exactly two grid points which are not occupied
by the encode tree and which have identical y-coordinates. We use these free
grid points to encode the remaining information of the Boolean expression E
into the tree S(n, c+ 1).

Consider the i-th variable xi and the j-th clause with i ∈ {1, . . . , n} and j ∈
{1, . . . , c}. If xi does not appear in clause j, we append the striker (sij , s

′
ij , s

′′
ij)

to the encode tree xij and the striker (sij , s
′
ij , s

′′
ij) to xij . If xi occurs not negated

in clause j, we add the striker (sij , s
′
ij , s

′′
ij) to the encode tree xij . Finally, if the

variable xi occurs negated in clause j, we add the striker (sij , s
′
ij , s

′′
ij) to xij . In

the following, T (E) identifies this extension of S(n, c+ 1). Note that in the unit
length drawing Γ (T (E)) all edges despite edges connecting the basic spine and
the rear striker edges (s′ij , s′′ij) or (s′ij , s′′ij) have determined slopes.

In Γ (T (E)) consider the encode tree zij with zij ∈ {xij , xij} and its striker
S = (s, s′, s′′). As there is the freedom of vertically mirroring zij , S can be drawn
either on its left or on its right side. According to Lemma 2, the y-coordinates
of the columns Ci and Ci−1 or Ci+1 with i ∈ {2, . . . , n− 1} differ at most by 1.
However, if there is a free grid point at the right side of zi−1,j resp. the left side
of zi+1,j , the vertex s′′ can be embedded on it. For an example see the encode
tree x22 in Fig. 7 with its striker S embedded to the right side. Note that a
striker starting from an encode tree of C1 (Cn) can only be embedded to the
right side (left side).

Lemma 4. Let E be a Boolean expression in 3-CNF with c clauses and n vari-
ables. E is satisfiable with at least one true and one false literal per clause if and
only if there is a drawing Γ (T (E)) with unit edge length on the 8-grid.

Proof. “⇒”: Let τ(E) be a satisfying assignment for the Boolean expression E
with n variables and c clauses. Compute the tree T (E) as described above. To
obtain a planar drawing Γ (T (E)) with unit edge length we have to determine,
whether a path (xi1, . . . , xi,c+1) will be embedded in the top half and its com-
panion path (xi1, . . . , xi,c+1) in the bottom half, or vice versa. If the variable xi

with i ∈ {1, . . . , n} is true, then embed the corresponding path (xi1, . . . , xi,c+1)
of column Ci in the top half, and in the bottom half otherwise. This is always
possible as τ(E) ensures that each clause has at least one true and at least one
false literal. This fits exactly to the fact that in j-th row in the top (bottom)
half of the drawing for the j-th clause at most two strikers can be embedded in
a planar way as each encode tree can be vertically flipped. All other n− 3 holes
are occupied by strikers for variables not existing in clause j.

“⇐”: Let Γ (T (E)) be a drawing with unit edge length of T (E). According
to Lemma 3 all edges have a determined slope despite the edges connecting the
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basic spine and the rear striker edges. Without strikers there are n − 1 holes,
i. e., two adjacent free grid points, in the j-th row with j ∈ {1, . . . , c} between
neighbored encode trees in the top half and n−1 holes in the bottom half. In each
row j (top and bottom half) we added n−3 strikers for the non existing variables
in clause j. Therefore, in the top (bottom) half at most two more strikers can
be placed in the j-th row. For negated and not negated literals in a clause we
added in total three strikers. It is not possible to place all three strikers in the
top (bottom) half. In a planar drawing with unit edge length there must be two
strikers in the top half and the other in the bottom half, or vice versa.

A literal yk with k ∈ {1, . . . , n} is either the variable xk or its negation xk. Let
yk be in clause j. If yk is not negated, then the literal is true if the correspond-
ing striker (skj , s

′
kj , s

′′
kj) is embedded in the top half of the drawing Γ (T (E)).

Otherwise, if yk is negated, then the literal is false if the striker (skj , s
′
kj , s

′′
kj) is

embedded in the top half. Hence, we obtain a satisfying assignment τ ′(E) with
respect to NAE3SAT with at least one literal true and at least one literal false
in each clause. ut

Theorem 4. Let T be a tree of degree k with k ∈ {4, 6, 8}. Deciding whether or
not there exists an Uk-drawing Γ (T ) with unit edge length is NP-hard.

Proof. For the 8-grid the correctness follows from Lemma 4. Bhatt and Cos-
madakis [2] showed the NP-hardness on the 4-grid. For the 6-grid see [1].

Now we restrict Uk-drawings using the aesthetics local uniformity and pat-
terns and obtain ULk-, UPk- and ULPk-drawings. Note that these are only
defined for rooted trees. However, treating unit edge length in ULk- and ULPk-
drawings is tedious since local uniformity is trivially given then. Nevertheless,
Theorem 4 also holds for ULk-drawings and Corollary 2 for ULPk-drawings.

Corollary 2. Let T be a (k − 1)-ary tree. Deciding whether or not there exists
an UPk-drawing Γ (T ) with with unit edge length and k ∈ {4, 6, 8} is NP-hard.

Proof. If using uniform slopes for the edges connecting the basic path, the con-
struction in the proof Lemma 4 generates an UPk-drawing of T (E). ut

5.2 Area

Now we are interested in the area occupied by U8-, UL8-, UP8- and ULP8-
drawings.

Proposition 1. Let T be a tree with degree 8 and A > 1. Determining whether
or not there exists an U8-drawing Γ (T ) within area A is NP-hard.

Proof (Sketch). Again we reduce from NAE3SAT. Let E be a Boolean expression
with c clauses and n variables and let tree T (E) of degree 8 be constructed as
described in Sect. 5.1 with some additional edges. Let j ∈ {1, . . . , c}. For each
encode tree x1j and x1j in the first column C1 we add new vertices b1j and b1j

connected by the edges (s1j , b1j) and (s1j , b1j) to the striker leaf s1j and s1j ,
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respectively. To the last column Cn we add the edges (snj , bnj) and (snj , bnj) in
the same way. Let A = W ·H withW = 7(2(c+1)+n+2) andH = 7(2(c+1)+1).
E is satisfiable with at least one true and one false literal per clause if and only
if there is an U8-drawing of T (E) within area A.

“⇒”: We argue similar to the if-part in the proof of Lemma 4. We draw
the basic spine (u0, v1, . . . , vn, w0) horizontally on identical y-coordinates. We
align the edges added to the striker leaves to the left in the first column C1 and
to the right in the last column Cn. Using the assignment τ(E) the strikers are
aligned as described in Lemma 4. Then Γ (T (E)) has total height H. Its total
width corresponds to the sum of the lengths of a u-spine, the basic spine, and a
w-spine which is W .

“⇐”: Let Γ (T (E)) be a drawing of T (E) within area A. The number of
available grid points of area A = W · H with W = 7(2(c + 1) + n + 2) and
H = 7(2(c + 1) + 1). The number of vertices in T (E) is smaller by 2c than the
number of available grid points in A. Therefore, for each clause j there are only
two grid points left blank. This shall tighten the drawing in a row in the top or
in the bottom half and therefore, the whole drawing, such that we can determine
the assignment τ(E) analogously to the proof of Lemma 4. ut

Corollary 3. Let T be a 7-ary tree and A > 1. Determining whether or not
there exists an UP8, UL8 or ULP8-drawing Γ (T ) within area A is NP-hard.

Proof. First, consider ULP8-drawings. Let Γ (T (E)) be a locally uniform pattern
drawing within area A = H ·W , which is identical to the drawing in the proof of
Proposition 1. Therefore, the remaining arguments can be applied analogously.
The result also holds for UL8- and UP8-drawings because they are already ULP8-
drawings. ut

The same statements for the k-grid with k ∈ {4, 6} shall be proven similarly.

6 Conclusion

We have shown the NP-hardness for several problems of drawing trees on k-
grids with unit edge length or on minimal area for Uk- and ULk-drawings with
k ∈ {4, 6, 8} and UPk- and ULPk-drawings with k ∈ {4, 8}. For complete 7-ary
trees on the 8-grid we presented a tight area bound of Θ(nlog7 9) which is about
Θ(n1.129) and for complete ternary trees we gave an almost linear upper bound
of O(n1.048) for the needed area.

Future work is to investigate the needed area for arbitrary trees on the k-
grid with or without allowing edge bends. We conjecture, that ternary trees can
be drawn upwards on the 8-grid using far less than n

3 bends in O(n logn) area
and in O(n log logn) area without a common direction in analogy to recursive
winding [7].
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