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Abstract. We consider directed planar graphs with an upward planar
drawing on the rolling and standing cylinders. These classes extend the
upward planar graphs in the plane. Here, we address the dual graphs. Our
main result is a combinatorial characterization of these sets of upward
planar graphs. It basically shows that the roles of the standing and the
rolling cylinders are interchanged for their duals.

1 Introduction

Directed graphs are used as a model for structural relations where the edges
express dependencies. Such graphs are often acyclic and are drawn as hierarchies
using the framework introduced by Sugiyama et al. [21]. This drawing style
transforms the edge direction into a geometric direction: all edges point upward.
If only plane drawings are allowed, one obtains upward planar graphs, for short
UP. These graphs can be drawn in the plane such that the edge curves are
monotonically increasing in y-direction and do not cross. Hence, UP graphs
respect the unidirectional flow of information as well as planarity.

There are some fundamental differences between upward planar and undi-
rected planar graphs. For instance, there are several linear time planarity tests
[17], whereas the recognition problem for UP is N'P-complete [13]. The differ-
ence between planarity and upward planarity becomes even more apparent when
different types of surfaces are studied: For instance, it is known that every graph
embeddable on the plane is also embeddable on any surface of genus 0, e.g.,
the sphere and the cylinder, and vice versa. However, there are graphs with an
upward embedding on the sphere with edge curves increasing from the south to
the north pole, which are not upward planar [16]. The situation becomes even
more challenging if upward embeddability is extended to other surfaces even if
these are of genus 0.

Upward planarity on surfaces other than the plane generally considers em-
beddings of graphs on a fixed surface in R3 such that the curves of the edges
are monotonically increasing in y-direction. Examples for such surfaces are the
standing [7,14, 19, 20,22] and the rolling cylinder [7], the sphere and the trun-
cated sphere [10,12,15,16], and the lying and standing tori [9,11]. We generalized
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upward planarity to arbitrary two-dimensional manifolds endowed with a vector
field which prescribes the direction of the edges [2]. We also studied upward pla-
narity on standing and rolling cylinders, where the former plays an important
role for radial drawings [3] and the latter in the context of recurrent hierar-
chies [4]. We showed that upward planar drawings on the rolling cylinder can
be simplified to polyline drawings, where each edge needs only finitely many
bends and at most one winding around the cylinder [7]. The same holds for the
standing cylinder, where all windings can be eliminated [7]. In accordance to [2],
we use the fundamental polygon to define the plane, the standing and the rolling
cylinders. The plane is identified with I x I, where I is the open interval from
—1 to +1, i.e., I x I is the (interior of the) square with side length two. The
rolling (standing) cylinder is obtained by identifying the bottom and top (left
and right) sides. By identifying the boundaries of I, we obtain I,. Then, the
standing and the rolling cylinder are defined by I, x I and I x I,, respectively.
Let RUP be the set of graphs which can be drawn on the rolling cylinder such
that the edge curves do not cross and are monotonically increasing in y-direction.
If the edge curves are permitted to be non-decreasing in y-direction, horizontal
lines are allowed. Since the top and bottom sides of the fundamental polygon
are identified, “upward” means that edge curves wind around the cylinder all in
the same direction. Specifically, RUP allows for cycles. Accordingly, let SUP
denote the class of graphs with a planar drawing on the standing cylinder and in-
creasing curves for the edges and let wSUP be the corresponding class of graphs
with non-decreasing curves. The novelty of wSUP graphs are cycles with hori-
zontal curves, whereas SUP graphs are acyclic, i.e., SUP C wSUP. In [2] we
established that a graph is in SUP if and only if it is upward planar on the
sphere. These spherical graphs were studied in [10,12,15,16]. Finally, let UP be
the class of upward planar graphs (in the plane) [8,18]. Note that for UP and
RUP graphs non-decreasing curves can be replaced by increasing ones and the
corresponding classes coincide [2].

Upward planar graphs in the plane and on the sphere or on the standing
cylinder were characterized by using acyclic dipoles. An acyclic dipole is a di-
rected acyclic graph with a single source s and a single sink ¢. More specifically,
a graph G is SUP /spherical if and only if it is a spanning subgraph of a planar
acyclic dipole [14,16,19]. The idea behind acyclic dipoles is that s corresponds
to the south and t to the north pole of the sphere. Moreover, a graph G is in
UP if and only if the dipole has in addition the (s,t) edge [8,18].

In contrast, there is no related characterization of RUP graphs. Acyclic
dipoles cannot be used since RUP graphs may have cycles winding around the
rolling cylinder. However, the idea behind dipoles can be applied indirectly to
RUP graphs, namely, to their duals. For this, we generalize acyclic dipoles to
dipoles which may also contain cycles.

Section 2 provides the necessary definitions. We develop our new characteri-
zation of RUP and SUP graphs in terms of their duals in Sect. 3. In Sect. 4 we
obtain related results for wSUP graphs. All formal proofs can be found in [1].



The Duals of Upward Planar Graphs on Cylinders 3

2 Preliminaries

The graphs in this work are connected, planar (unless stated otherwise), directed
multigraphs G = (V, E) with non-empty sets of vertices V' and edges E, where
pairs of vertices may be connected by multiple edges. G can be drawn in the
plane such that the vertices are mapped to distinct points and the edges to
non-intersecting Jordan curves. Then, G has a planar drawing. It implies an
embedding of G, which defines (cyclic) orderings of incident edges at the vertices.
In the following, we only deal with embedded graphs and all paths and cycles
are simple.

A face f of G is defined by a (underlying undirected) circle C' = (v1, €1, va,
€2y...,Vk—1,€k_1,Vk = v1) such that e; € E is the direct successor of ¢,_1 € F
according to the cyclic ordering at v;. The edges/vertices of C' are said to be the
boundary of f and C' is a clockwise traversal of f. Accordingly, the counterclock-
wise traversal of f is obtained by choosing the predecessor edge at each vertex in
the circle. The embedding defines a unique (directed) dual graph G* = (F, E*),
whose vertex set is the set of faces F of G [5]. Let f € F be a face of G and
e = (u,v) € E be part of its boundary. If the counterclockwise traversal of f
passes e in its direction, we say that f is to the left of e. If the same holds for
e and another face g in clockwise direction, then g is to the right of e. For each
edge e € E there is an edge in E* from the face to the left of e to the face
right of e. This definition establishes a bijection between E and E*. Whenever
necessary, we refer to G as the primal of G*. By vertex we mean an element of
V', whereas the vertices F' of G* are called faces.

Note that G* is connected and the dual of G* is isomorphic to the converse
G~! of G where all edges are reversed, since G is connected. Hence, an embed-
ding of G implies an embedding of G*, and vice versa. G and G~! share many
properties, see Proposition 1.

An embedding of a graph is an X embedding with X € {RUP,SUP,
wSUP, UP} if it is obtained from an X drawing. For every graph in class
X, we assume that a corresponding X embedding is given. Given an embedded
graph G, a face f is to the left of a face g if there is a path f ~» ¢ in G*.
Note that a face can simultaneously lie to the left and to the right of another
face, and “to the left” does not directly correspond to the geometric left-to-right
relation in a drawing. A cycle in a RUP embedding winds exactly once around
the cylinder [7]. We say that a face f € F lies left (right) of a cycle C if there
is another face g € F such that f is to the left (right) of g and each path f ~~ g
in the dual contains at least one edge of C. Each edge/face of f’s boundary is
then also said to lie to the left (right) of C.

Next we introduce graphs which represent the high-level structure of a given
graph and which inherit its embedding. Let the equivalence class [v] denote the
set of vertices of the strongly connected component containing the vertex v € V'
and let V be the set of strongly connected components of G. The component graph
G = (V,E) of G contains an edge ([v], [w]) € E for each original edge (v,w) € E
with [v] # [w]. G is an acyclic multigraph which inherits the embedding of G. A
component v € V is a compound, if it contains more than one vertex or consists
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of a single vertex with a loop. Its induced subgraph is denoted by G., C G. For
the sake of convenience, we identify G, with v and call both compound. The set
of all compounds is denoted by V. Each component [v] that is not a compound
consists of a single vertex v and is called trivial component. A trivial component
which is a source (sink) in G is called source (sink) terminal and the set of
all terminals is denoted by T C V. Based on the component graph, we define
the compound graph G = (Vo U T, E), whose vertices are the compounds and
terminals. Let u,v € Vo UT be two vertices of the compound graph. There is an
edge (u,v) € E if there is a path u ~ v in G which internally visits only trivial
components. Note that G is a simple graph. Each edge 7 € E corresponds to a
set of paths in G. Denote by G, the subgraph of G which is induced by the set
of paths belonging to edge 7. We call 7 and its induced graph G, transit. See
Fig. 1 for an example, where the fundamental polygon of the rolling cylinder is
represented by rectangles with identified bottom and top sides. Based on these
definitions, we are now able to define dipoles.

Definition 1. A graph is a dipole if it has exactly one source s and one sink t
and its compound graph is a path from s to t.

Note that similar to the definition of st-graphs [8,18], a dipole is not neces-
sarily planar.

Lemma 1. Let G = (V, E) be a graph with a source s and a sink t. Then, G
18 a dipole if and only if every path s ~ t contains at least one vertex of each
compound and for every vertex v € V there are paths s ~> v and v ~ t.

Proposition 1. A graph G is (i) acyclic, (i) strongly connected, (iii) upward
planar, or (iv) a dipole if and only if the same holds for its converse G~1.

Thus, in the subsequent statements on the relationship between a graph G
and its dual G*, the roles of G and G* are interchangeable.

Lemma 2. A graph G is acyclic if and only if its dual G* is strongly connected.

The proof is deduced from the one for polynomial solvability of the feedback arc
set problem on planar graphs as given in [5].

3 RUP and SUP Graphs and their Duals

We consider RUP graphs, i.e., upward planar graphs on the rolling cylinder,
and characterize them in terms of their duals. Our main result is:

Theorem 1. A graph G is a RUP graph if and only if G is a spanning subgraph
of a planar graph H without sources or sinks whose dual H* is a dipole.

The theorem is proved by a series of lemmata which are also of interest in their
own. For our first observation, consider the RUP drawing of graph G in Fig. 1(a),
where all vertices within a compound are drawn on a shaded background. The
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component graph G of G is displayed in Fig. 1(c) along with its compound
graph G below, where the compounds are shaded black. Note that G has the
structure of an (undirected) path. Due to Lemma 2, each transit, i. e., edge in G,
becomes a compound and each compound, i.e., vertex in G, becomes a transit
in the dual G* of G. Hence, the path-like structure of G must carry over to
the compound graph G* of G*. Moreover, since all cycles in the RUP drawing
have the same orientation, i.e., they all wind around the cylinder in the same
direction, the transits in G* point into the same direction. Also note that G
contains neither sources nor sinks, i.e., both the left and right border of the
drawing are directed cycles C; and C,., respectively. Hence, in the dual G* of G,
the face to the left of Cj is a source s and the face to the right of C,. is a sink ¢. All
these observations together indicate that the compound graph of G* is a path
s~ t, i.e., G* is a dipole. Indeed, this can be seen for the example in Fig. 1(e),
where the component graph of G* and its compound graph are depicted.

Lemma 3. The dual G* of a RUP graph G without sources and sinks is a
dipole.

For the following lemma, there is a physical interpretation: Consider an up-
ward drawing of a planar acyclic dipole on the standing cylinder and suppose
that an electric current flows from the bottom to the top of the cylinder in di-
rection of the edges. This current induces a magnetic field wrapping around the
standing cylinder. Intuitively, by Lemma 4, we can show that a dipole’s dual is
upward planar with respect to the induced magnetic field, i. e., its embedding is
a RUP embedding.

Lemma 4. The embedding of a strongly connected graph G is a RUP embedding
if and only if its dual G* is an acyclic dipole.

The only-if direction follows from Lemmata 2 and 3. For the if direction,
we give a sketch of the proof. Let G* = (F, E*) be the dual of G and consider
a topological ordering f1,..., fr of the faces F. We subsequently process the
faces according to their topological ordering and construct a drawing of G by
placing the edges and vertices of the faces in that order. We start with the only
source fi in G*, which corresponds to a directed cycle in G (Fig. 2(a)). In the
drawing with the boundaries of all faces fi,..., f;, we can show that one part
of the boundary of face f;11 consists of a directed path p = (u,...,v) along
the right border of the current drawing (solid black vertices in Fig. 2(b)). The
second part of the boundary, absent in the current drawing, is also a directed
path p’ = (u,...,v) with the same end points and direction as p (white vertices
in Fig. 2(b)). The drawing can be augmented by this path p’ while preserving
planarity and all edges are monotonically increasing in y-direction (Fig. 2(c)).

Since each SUP graph is a subgraph of a planar, acyclic dipole [16], Lemma 4
implies:

Corollary 1. The dual G* of a strongly connected RUP graph G is in SUP.
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(a) Base case (b) Induction step (c) After the in-
duction step

Fig. 2. Inductive construction of a RUP drawing from its dual

Consider again the component graph G and its compound graph G in Fig. 1(c)
of the RUP graph G in Fig. 1(a). In the dual G* of G, compounds and transits of
G swap their roles, i. e., compounds become transits and vice versa, cf. Fig. 1(e).
As a compound of G is a strongly connected RUP graph, its dual is an acyclic
dipole by Lemma 4. For instance, consider the second compound v in Fig. 1(a),
i.e., the vertices on the second shaded area labeled with ~. Its dual is indeed an
acyclic dipole as depicted in Fig. 1(b). For the transits, the same holds but with
swapped roles, i.e., the dual of a transit is a strongly connected RUP graph. As
an example, the dual of the second transit 7 in Fig. 1(a) is shown in Fig. 1(d) and
it is indeed a strongly connected RUP graph. The following lemma subsumes
these observations.

Lemma 5. Let G be a RUP graph without sources and sinks and G = (Vo E)
be its compound graph. Then,

(i) the dual of each compound v € V¢ is a planar, acyclic dipole and, thus, it
is in SUP.

(ii) each transit T € E is a planar, acyclic dipole and, thus, its dual is a strongly
connected RUP graph.

Both (i) and (ii) follow from Lemma 4. For (i) note that the graph induced
by a transit is an acyclic dipole.

By Lemma 3 we have seen that the dual of a RUP graph that contains
neither sources nor sinks is a dipole. Also the converse holds:

Lemma 6. A graph G without sources and sinks is a RUP graph if its dual G*
s a dipole.

Consider again the example RUP graph in Fig. 1(a) and the compound graph
G* of its dual G*. Since G* is a dipole, G* is apath p = (s, 75,75, 75, V4, - - -, T4, 1)
consisting of compounds v}, transits 77, and two terminals s and ¢. Note that
each element on p corresponds to a subgraph in the primal G, i.e., for each
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7; there is a transit 7; in G and for each 7 there is a compound v; in G.
In the proof of Lemma 6, we construct a RUP drawing of G by subsequently
processing the elements of p. We start with transit 77, whose induced subgraph
in G* is an acyclic dipole, and obtain a RUP drawing of 7; which respects the
given embedding by Lemma 4. Then we proceed with +f, a compound in G*,
for which we obtain a SUP drawing of 71 which respects the given embedding
by Lemma 4. However, this SUP drawing is upward only with respect to the z-
direction, i. e., from left to right. We transform this drawing, while preserving its
embedding, such that it is also upward in y-direction. The so obtained drawing
of 71 is then attached to the right border of the drawing of ;. Then, the drawing
of 7, is attached to the right side of 7 and so forth until we reach t. Note that
since all transits 77 point into the same direction in G*, i. e., from s to ¢, all cycles
of the compounds in G have the same orientation in the obtained drawing, i.e.,
they all wind around the cylinder in the same direction.

Lemmata 3 and 6 both require that the graph at hand contains neither
sources nor sinks. At a first glance, this requirement seems to be a strong limi-
tation. However, in the following lemma we show that each RUP graph can be
augmented by edges such that all sources and sinks vanish while still preserving
RUP embeddability.

Lemma 7. A RUP graph G is a spanning subgraph of a RUP graph H without
sources and sinks.

The proof shows that each source (sink) can be connected to another vertex
while preserving the upward planar drawability. We follow the construction of
the proof of Theorem 1 in [16], which shows that every graph in SUP is a
spanning subgraph of a planar dipole. Alternatively, the proof can be obtained
using techniques from [7].

The proof of Theorem 1 is now complete. The only-if direction follows from
Lemmata 7 and 3 and the if direction is a consequence of Lemma 6 and the fact
that every subgraph of a RUP graph is a RUP graph.

4 wSUP Graphs and their Duals

We now turn to spherical graphs and upward planar embeddings on the stand-
ing cylinder. These graphs were characterized as spanning subgraphs of planar,
acyclic dipoles [14,16,19]. We already provided a new characterization for SUP
in terms of dual graphs in Lemma 4 in combination with Proposition 1. Now
we consider graphs which have a weakly upward planar drawing on the standing
cylinder. These graphs have not been characterized before.

For a start, consider an upward drawing of a wSUP graph. If there are
cycles, they must wind around the cylinder horizontally, which leads us to the
following observation.

Lemma 8. Let G be a graph in wSUP. Then, all cycles of G are (vertex)
disjoint.
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(a) Graph G € wSUP (b) The component (¢) The
graph G of G

"he  compound
graph G of G

Fig.3. A wSUP example

For the characterization of wSUP graphs, we use supergraphs which may
have an extra source or sink and extend techniques for SUP graphs from [16].

Lemma 9. A graph G is a wSUP graph if and only if it has a wSUP super-
graph H 2 G with one source and one sink.

Consider again an upward drawing of a wSUP graph G, e. g., the one depicted
in Fig. 3. The cycles subdivide the graph into sections as in Fig. 3(a), where the
intermediate section is shaded gray. In the component graph, cycles are merged
into non-trivial strongly connected components (Fig. 3(b)). The corresponding
compound graph has a structure as in Fig. 3(c). We proceed section-wise and
eliminate sources and sinks as in [16] except for one source in the lowermost
section and one sink in the uppermost one, where the lowermost section is not
limited by a cycle from below and the uppermost section by a cycle from above.
If any of these two sections is empty, a new source or sink is added to the section
and connected to the cycle above or below, respectively. This leaves us with a
wSUP graph with exactly one source and one sink. Conversely, any subgraph
of a wSUP graph is in wSUP.
We are now able to give a first characterization of wSUP graphs.

Theorem 2. A graph G is a wSUP graph if and only if it has a supergraph
H D G such that H is a planar dipole whose cycles are (vertex) disjoint.

The supergraph H of G can be constructed according to Lemma 9 and is a dipole.
By Lemma 8, H has only disjoint cycles. We can obtain a wSUP drawing for
a planar dipole H whose cycles are disjoint by partitioning the dipole into its
compounds and transits. Since transits are acyclic dipoles, the induced subgraph
can be drawn upward according to its SUP embedding. The compounds consist
of single cycles only, which we draw horizontally, i.e., such that each winds
around the cylinder once. So H has a wSUP drawing and the implied embedding
is a wSUP embedding. Since G is a subgraph of H, also G is in wSUP.
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Next, we turn to the duals of wSUP graphs. Recall from Lemma 4 in combi-
nation with Proposition 1 that a graph with one source and one sink is in SUP
if and only if its dual is a strongly connected RUP graph. Introducing vertex
disjoint cycles, the characterization via dual graphs now reads as follows.

Theorem 3. A graph G with exactly one source and sink is a wSUP graph if
and only if its dual G* is a RUP graph that has no trivial strongly connected
components.

We know from Theorem 1 and Proposition 1 that G* is in RUP since G is a
dipole. If G is acyclic, G* is strongly connected by Lemma 4 and Proposition 1.
Otherwise, G consists of compounds and transits. The duals of the transits are
strongly connected RUP components with at least one edge and, therefore, not
trivial. Now consider a compound in G. It consists of a single cycle C, which
implies that its dual consists of simple edges from the faces to the left of C to
the faces to its right, which themselves are also part of the strongly connected
RUP components. Hence, all vertices are contained in compounds and G* has
no trivial strongly connected components.

Conversely, a similar argument shows that only single, disjoint cycles can
occur in the primal graph of a RUP graph without any trivial strongly connected
components. Furthermore, by Lemma 3 and Proposition 1, G is a dipole and,
therefore, has only one source and one sink. By Theorem 2, G is in wSUP.

From Theorem 3 and Lemma 9 we directly obtain the following corollary,
which concludes our second characterization of wSUP graphs.

Corollary 2. Every wSUP graph G has a wSUP supergraph H whose dual
H* is a RUP graph without trivial strongly connected components.

5 Summary

We have shown that a directed graph has a planar upward drawing on the
rolling cylinder if and only if it is a spanning subgraph of a planar graph with-
out sources and sinks whose dual is a dipole. This result completes the known
characterizations of planar upward drawings in the plane [8,18] and on the
sphere [10, 12,15, 16]. Every SUP graph is a spanning subgraph of a planar,
acyclic dipole and every UP graph is a spanning subgraph of a planar, acyclic
dipole with an st-edge. Moreover, a graph has a weakly upward drawing on the
standing cylinder if and only if it is a subgraph of a planar dipole with disjoint
cycles.

Concerning dual graphs, the duals of the acyclic components of RUP graphs
are in RUP and the duals of the strongly connected components are in SUP.
In particular, the dual of a strongly connected RUP graph is in SUP. Every
wSUP graph has a planar supergraph whose dual is a RUP graph without
trivial strongly connected components.

Future work is to investigate whether the characterization by means of dual
graphs leads to new insights on the upward embeddability on other surfaces, e. g.,
the torus. Also, the duals of quasi-upward planar graphs [6] shall be considered.
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