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Abstract

We consider upward planar drawings of directed graphs in the plane (UP),
and on standing (SUP) and rolling cylinders (RUP). In the plane and on the
standing cylinder the edge curves are monotonically increasing in y-direction.
On the rolling cylinder they wind unidirectionally around the cylinder. There is
a strict hierarchy of classes of upward planar graphs: UP ⊂ SUP ⊂ RUP.

In this paper, we show that rolling and standing cylinders switch roles when
considering an upward planar graph and its dual. In particular, we prove that
a strongly connected graph is RUP if and only if its dual is a SUP dipole. A
dipole is an acyclic graph with a single source and a single sink. All RUP graphs
are characterized in terms of their duals using generalized dipoles. Moreover,
we obtain a characterization of the primals and duals of wSUP graphs which
are upward planar graphs on the standing cylinder and allow for horizontal edge
curves.

Keywords: planar graphs, dual graphs, graph drawing, upward planarity,
surfaces

1. Introduction

Directed graphs are used as a model for structural relations where the vertices
represent entities and the edges express dependencies. Such graphs are often
acyclic and are drawn as hierarchies using the framework introduced by Sugiyama
et al. [30]. This drawing style transforms the edge direction into a geometric
direction: all edges point upward. If only planar drawings are allowed, we obtain
upward planar graphs, UP for short. These graphs can be drawn (straight-line)

ISupported by the Deutsche Forschungsgemeinschaft (DFG), grant Br-835/15-2
IIA preliminary version appeared at WG 2012 [2]
∗Corresponding author
Email addresses: auerc@fim.uni-passau.de (Christopher Auer),

bachmaier@fim.uni-passau.de (Christian Bachmaier), brandenb@informatik.uni-passau.de
(Franz J. Brandenburg), gleissner@fim.uni-passau.de (Andreas Gleißner),
hanauer@fim.uni-passau.de (Kathrin Hanauer)

Preprint submitted to Theoretical Computer Science January 19, 2015



in the plane such that the edge curves are monotonically increasing in y-direction
and do not cross. Such drawings respect a unidirectional flow of information and
planarity.

Independently, Platt [29], Kelly [25], and Di Battista and Tamassia [12]
characterized the upward planar graphs as the subgraphs of planar st-graphs.
An st-graph is a directed acyclic graph with a single source s and a single sink
t and the edge (s, t). The recognition problem for UP is NP-hard in general
[19], and it is solvable in linear time if the graphs have a single source [24] or
in polynomial time if they are 3-connected [9], outer planar [11, 18, 28], and
series-parallel [11, 13].

Upward planarity on surfaces other than the plane generally deals with
drawings of graphs on a fixed surface in R3 such that the curves of the edges
are monotonically increasing in y-direction. Examples are the standing [10, 20,
26, 27, 32] and rolling cylinders [10], the sphere and the truncated sphere [15,
17, 21, 23], and the lying and standing tori [14, 16]. In full generality upward
planarity is defined on arbitrary two-dimensional manifolds endowed with a
vector field prescribing the direction of the edges [3, 22]. Then the standing
cylinder corresponds to the plane with a radial field where the direction is
away from the center, and the rolling cylinder corresponds to the plane with a
concentric field where the direction is circular. Alternatively, the plane and the
standing and rolling cylinders can be represented by the fundamental polygon,
where the plane is identified with I × I, and I is the open interval from −1 to
+1. We obtain I◦ by identifying the boundaries of I. The standing (rolling)
cylinder is then defined by I◦ × I (I × I◦), i. e., by identifying the left and right
(upper and lower) boundaries of the fundamental polygon. It is well known that
every undirected planar graph has a planar drawing on any surface of genus 0,
such as the plane, the sphere, and the cylinder. This does no longer hold for
upward planar drawings of directed graphs.

The extension of upward planarity to the sphere was addressed by Ri-
val and his co-authors for straight-line drawings of partial orders [17, 22, 23].
Thomassen [32] considered such drawings on the standing cylinder. We call a
graph SUP graph if it has a planar upward drawing on the standing cylinder.
This is equivalent to upward planarity on the sphere where all edge curves
are increasing from the south pole s to the north pole t. The equivalence was
formally established in [3]. SUP graphs closely resemble UP graphs and were
characterized as spanning subgraphs of planar dipoles [20, 21, 26, 32]. A dipole
is a directed acyclic graph with a single source s and a single sink t which in
contrast to an st-graph does not have to contain the edge (s, t).

If there is an st-edge, then edges cannot wind around the cylinder and
the sphere, which enforces that a SUP graph with an st-edge is UP. Clearly,
UP ⊂ SUP, where the graph from Fig. 1 shows the strictness of the inclusion
[12, 25]. The recognition of SUP graphs is NP-hard [23] and is solvable in linear
time for 3-connected graphs with a single source [15]. Graphs in SUP−UP need
edges that wind around the cylinder, but no single edge has to make a complete
winding [10]. SUP graphs play an important role in radial drawings [5].

Upward planar drawings on the rolling cylinder substantially differ from
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(a) An UP graph (with-
out the dashed edge).

(b) Its SUP drawing. (c) Fundamental polygon repre-
sentation.

Figure 1: An example of an SUP graph that is not UP.

those in the plane and on the standing cylinder. In particular, they allow for
cycles winding around the cylinder. In the fundamental polygon upward means
in y-direction. Such drawings arise from recurrent hierarchies [6, 30] by the
restriction to planarity. An example is shown in Figs. 2(a) and 2(b). Let RUP
denote the set of graphs with an upward plane drawing on the rolling cylinder.
Visibility representations and RUP drawings of planar graphs were studied
by Tamassia and Tollis [31]. However, there is no characterization of RUP
graphs alike that of UP and SUP graphs. Again, the recognition problem
for RUP graphs is NP-hard [10], and there is a linear-time algorithm to test
whether a directed graph without sources and sinks is RUP [1, 4].

(a) Rolling cylinder. (b) Fundamental poly-
gon.

(c) Cyclic representation.

Figure 2: Different representations of a RUP graph.

The relaxation of monotone to non-decreasing edge curves has no effect for
UP and RUP graphs, since horizontal edge segments can be avoided by a
lifting [10]. However, non-decreasing curves allow for horizontal cycles around
the standing cylinder or the sphere. Such drawings are called weakly standing
upward planar and the respective class of graphs is wSUP [3, 10].

There are strict hierarchies UP ⊂ SUP ⊂ RUP and SUP ⊂ wSUP,
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whereas wSUP and RUP are incomparable [3, 10].
This paper contains advances on the study of upward planar drawings on the

standing and the rolling cylinders, and provides new characterizations for RUP,
SUP and wSUP graphs in terms of their directed duals. One of the key results
towards our characterization has a physical interpretation: Ampère’s law from

electromagnetism states that an electric current
−→
I flowing through a conductor

generates a magnetic field
−→
B winding around the conductor (see Fig. 3(a)).

In Fig. 3(b), the conductor is a planar dipole with connectors s and t in an
upward planar drawing on the standing cylinder, i. e., SUP. The magnetic field
corresponds to the dual winding around the cylinder, and is RUP and strongly
connected.

+
−−→

I
−→
B

(a) Ampère’s law: Electric
current flowing through a con-
ductor generates a magnetic
field that winds around the
conductor.

+
−

s

t

(b) Ampère’s law for dual graphs:
The primal graph is a dipole with
“connectors” s and t, which induces
a strongly connected RUP graph
as its dual.

Figure 3: Ampère’s law.

In particular, our results are the following:

• A graph is RUP if and only if it has a supergraph whose dual has specific
properties (Theorem 4.1). This characterization complements those already
known for UP and SUP graphs as spanning subgraphs of st-graphs and
dipoles, respectively.

• A graph is a strongly connected RUP if and only if its dual is a dipole
(Theorem 4.2). This result resembles the popular Ampère’s law from
electromagnetism, as depicted in Fig. 3.

• A graph is wSUP if and only if it is has supergraphs with different
properties (Theorems 5.1 and 5.2); in particular, it is shown that wSUP
graphs always have a supergraph whose dual is RUP.
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After some preliminaries in Section 2 we introduce tools in Section 3 to
characterize SUP and RUP graphs in Section 4 and wSUP in Section 5. We
conclude with a discussion of our findings in Section 6.

2. Preliminaries

We consider connected, planar, directed (multi-)graphs G = (V,E) with
non-empty sets of vertices V and edges E, where multiple edges and self-loops
are allowed. A (directed) path p in G from a vertex u to a vertex v is denoted
by p = u v. A path p is simple if it contains no vertex twice. A cycle C is a
path starting and ending at the same vertex, and C is called simple if only the
start and end vertex coincide.

A drawing Γ of a graph G maps each vertex v ∈ V to a position Γv in the
plane and each edge e = (u, v) to an edge curve Γe which is a non-self-intersecting
Jordan arc between the endpoints. The inner part consists of all points of Γe
except the endpoints. Γ is planar if all vertex positions are distinct, no vertex lies
on the inner part of an edge curve, and no two edge curves share points except for
common endpoints. G is planar if it admits a planar drawing. A planar drawing
Γ partitions the plane into topologically connected regions, called faces, and it
determines a planar rotation system consisting of a cyclic ordering of the edges
incident to each vertex. The boundary of each face f is given by an undirected
cycle C of vertices and edges, such that two successive edges are a successor
(predecessor) at their common endpoint according to the rotation system. C
is a clockwise traversal of f , and the edges and vertices of C are incident to f .
An embedding of a graph is an equivalence class of planar drawings, where two
drawings are equivalent if they have the same rotation system. An embedding
of a graph is described by the set of faces or by the rotation system.

An embedding of a (primal) graph G defines a unique (directed) dual graph
G∗ = (F,E∗), whose vertex set is the set of faces F and there is a one-to-one
correspondence between the edges of G and G∗. If the counterclockwise traversal
of a face f passes an edge e in its direction, we say that f is to the left of e.
Otherwise, f is to the right of e. The dual edge e∗ crosses its primal edge e ∈ E
from the face to the left of e to the face to the right of e, which is left to right in
the direction of e. Note that G∗ may be a multi-graph with self-loops. We call a
vertex or an edge of an (embedded primal) graph G rightmost if it is incident to
a sink of the dual G∗. A cycle in G is rightmost if it is the boundary of a sink in
G∗. Leftmost is defined accordingly using a source of G∗.

An embedding of a primal graph G implies an embedding of its dual G∗. An
embedding of a graph is an X embedding with X ∈ {RUP,SUP, wSUP,UP}
if it is obtained from an X drawing. Note that a planar graph may have an
exponential number of embeddings, some of which are X embeddings and others
are not.

Assumption 1. Any X graph with X ∈ {RUP,SUP, wSUP,UP} is always
given with an X embedding.
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This assumption is meaningful, as otherwise it distorts the dual graph which
would come from an illegal embedding, see Fig. 4.

(a) A RUP graph
G which is not
RUP-embedded.

(b) The dual of G’s em-
bedding in Fig. 4(a).

(c) A RUP embedding of
G and its dual.

Figure 4: The duals of non-RUP-embedded RUP graphs are never dipoles.

Duality is an involution for undirected planar graphs, such that G = G∗∗.
For directed graphs, the dual of the dual is the converse of the primal, where
all edge directions are reversed. This transforms upward to downward, but it
preserves the above classes of upward planar graphs.

Note that there is the convention to reverse the direction of the dual of the
st-edge in an st-graph such that is crosses from right to left [12, 25], which is
necessary for the fact that the dual of a planar st-graph is an st-graph. This
convention induces a left and a right outer face and preserves the acyclicity of
G∗.

Sources and sinks play a particular role in acyclic graphs. An acyclic graph
is a dipole if it has exactly one source and one sink. A graph is closed if it has no
sources and sinks. Figs. 6(a) and 6(b) show a RUP drawing of a closed graph
and its dual.

A dicut of a graph G is a partition of the set of vertices into non-empty
subsets X and V \X such that there is no edge from V \X to X. We refer to
the edges EX = {(x, y) ∈ E | x ∈ X and y ∈ V \X} as dicut set. Dicuts and
strong connectivity are complementary and the latter is dual to acyclicity [7].

Proposition 2.1. A graph G is strongly connected if and only if G has no dicut.

Proposition 2.2. A graph G is acyclic (strongly connected, respectively) if and
only if its dual G∗ is strongly connected (acyclic, respectively).

3. Compound Graphs and Pathways

Our characterization of SUP and RUP graphs is based on tools such as
strongly connected components, compounds, transits, dipoles, and pathways.

The component graph G = (V,E) of a graph G is an acyclic multigraph and
is obtained by contracting each (strongly connected) component to a vertex and
keeping all edges between the components. It inherits the embedding from G. A
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component is called compound if it contains at least one edge, which may be a
self-loop. Otherwise, it is a trivial component.

The terminals T ⊆ V are the trivial components, which are a sink or a source
in both G and G. The compound graph G = (VC ∪T,E) has the compounds and
terminals as its vertices and transits as its edges. A transit τ = (u, v) represents
the collection of paths u v between two compounds or terminals u, v in the
component graph G that intermediately visit only trivial components. All these
paths are subsumed to a single edge τ in G. We identify each transit with the
collection of paths it represents. Note that the compound graph is a simple
acyclic graph.

For an illustration see Fig. 5, where compounds are shaded, terminals are
white diamonds, and transits are displayed as sinuous lines. For instance, there
is a transit from γ3 to t as there is the path p = (γ3, v2, t) in the component
graph (Fig. 5(b)) that traverses the trivial component v2. The transit from γ2 to
γ3 in Fig. 5(c) corresponds to the induced dipole consisting of the compounds γ2
and γ3 and the trivial components v1, v3, and v4.

γ1

γ2
γ3

s1

v1 v2

t

s2
v3 v4

(a) A planar graph G. The compounds are
enclosed by shaded regions.

s1

γ1

γ2

v1

γ3

v2

t

s2v3 v4

(b) The component graph G, where the com-
pounds are displayed as rectangles and the
terminals as diamonds.

γ1

γ2 γ3
s1

t

s2

(c) The compound graph G, where
the transits are displayed as sinu-
ous lines.

Figure 5: A graph, its component graph, and its compound graph.

Based on these definitions, we can define the key notion for our characteriza-
tion.

Definition 3.1. A graph is a pathway if it has a single source s and a single
sink t and its compound graph is a path from s to t.

Note that a pathway is a graph with a linear structure, where the compounds
and transits are totally ordered. An acyclic pathway is a dipole and its compound
graph is an edge. The graph underlying Fig. 5(c) is not a pathway, and it becomes
one after removing compound γ1 and terminal s2. The following characterization
of pathways will be particularly useful.

7



Lemma 3.1. Let G = (V,E) be a graph with at least one source s and at least
one sink t. G is a pathway if and only if the following conditions hold:

(i) For every vertex v ∈ V , there are paths s v and v  t.

(ii) Every path s t contains at least one vertex of each compound.

Proof. “⇒”: Follows from the definition of a pathway.
“⇐”: Let s be a source and t be a sink of G. Since s v and v  t for every

v ∈ V , s is the single source and t the single sink of G. Let p be a path from s
to t in G. Then p contains at least one vertex from each compound. Whenever
p leaves a compound γ it does so by an edge e = (u, v) that belongs to a transit.
In particular, p can never return to γ as otherwise v would also belong to γ.
Hence, p corresponds to a Hamiltonian path p = s t in G. Together with the
fact that G is acyclic this implies that G is a path from s to t.

4. RUP Graphs and their Duals

UP and SUP graphs have been characterized as spanning subgraphs of
st-graphs and dipoles, respectively. We complement these results by a dual char-
acterization of RUP graphs in Theorems 4.1 and 4.2, which consider subgraphs
of closed graphs and strongly connected graphs, respectively, and which both use
Lemma 4.1. Lemma 4.2 completes the proof of Theorem 4.1 by the construction
of a RUP drawing.

Theorem 4.1. A graph is RUP if and only if it is a spanning subgraph of a
closed planar graph whose dual is a pathway.

For an illustration, consider the RUP drawing of graph G in Fig. 6(a), where
compounds are drawn on a shaded background. The component graph G of
G is displayed in Fig. 6(c) along with its compound graph G below. Consider
compound γ2 and its dual displayed in Fig. 7(a), and transit τ2 and its dual
in Fig. 7(b). As γ2 is strongly connected, its dual is acyclic. In other words,
compounds and transits switch roles from primal to dual. The path-like structure
of compound graph G is reflected in the compound graph of the dual G∗, which
we denote by G∗ (cf. 6(d)). Furthermore, all cycles in the RUP drawing have
the same orientation and wind around the cylinder. Therefore, all transits of G∗

point into the same direction. Finally, G contains neither sources nor sinks and,
thereby, there is a leftmost and a rightmost cycle at the left and right borders of
G’s RUP drawing. In the dual, the leftmost cycle encloses a source s and the
rightmost cycle a sink t. In fact, s is the single source and t the single sink of
G∗. These observations indicate that the compound graph of G∗ is a path s t
and G∗ is a pathway.

Lemma 4.1. The dual of a closed RUP graph is a pathway.

Proof. Consider a closed graph G with a RUP embedding. Then its dual
G∗ = (F,E∗) has at least one source and at least one sink. Let f ∈ F be the
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γ1 γ2 γ3 γ4τ1 τ2 τ3

(a) RUP-embedded graph G.

γ τ

s t

γ∗1 γ∗2 γ∗3 γ∗4τ∗1 τ∗2 τ∗3

(b) Dual G∗ of graph G.

γ1 γ2 γ3 γ4τ1 τ2 τ3

(c) The component graph G and the com-
pound graph G of G.

s t

γ∗1 γ∗2 γ∗3 γ∗4τ∗1 τ∗2 τ∗3

(d) The component graph G∗ and the compound

graph G∗ of the dual G∗ with s, t ∈ T.

Figure 6: A RUP-embedded graph with its dual and their component and compound graphs.

s t

(a) The dual of compound γ2 of
G is a transit of G∗.

γ

(b) The dual of transit τ2 of G
is a compound of G∗.

Figure 7: Transits and compounds switch roles from primal to dual.
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leftmost face of G, which corresponds to the region between the left boundary of
the cylinder and edge curves of G’s drawing. As G is closed, it contains at least
one cycle that winds exactly once around the cylinder [10], and separates the
left and right boundaries of the cylinder. Hence, the part of f ’s boundary that
belongs to G’s drawing winds exactly once around the cylinder. Let v be any
vertex incident to f . As G is closed and RUP-embedded, v has one incoming
and one outgoing edge that are both incident to f . Hence, f ’s boundary is a
cycle and f is a source in G∗. By an analogous reasoning, there is also a sink in
G∗ that is the rightmost face.

Let s be a source and t be a sink in G∗. We use Lemma 3.1 to show that G∗

is a pathway. Let Fs be the set of faces reachable from s with Fs = {f ∈ F |
s  f in G∗}. If Fs ( F , then F is partitioned into Fs and F s = F \ Fs and
(F s, Fs) is a dicut of G∗. Let E∗s be the corresponding dicut set. The primal
edges of E∗s , denoted by Es, form a cycle Ĉ in G. Let Cl be the leftmost cycle
in G that encloses source s. Fig. 8(a) illustrates the situation, where the shaded
area covers the faces Fs. Then Ĉ winds around the cylinder in the opposite
direction of Cl, which contradicts our assumption of a RUP embedding. Hence,
every face f of G∗ is reachable from s. Accordingly, there is a path from every
face to sink t. Therefore, s is the single source and t the single sink of G∗.

s

Fs F s

Cl Ĉ

(a) Two cycles with oppo-
site orientations.

C ′

C∗

s t

R
Gl

F r
F l

Gr
R′

(b) s and t are within region R.

Figure 8: Situation obtained in the proof of Lemma 4.1.

It remains to show that every p∗ = s  t in G∗ contains a face of each
compound in G∗. First, if G is strongly connected, then G∗ is acyclic and
contains no compounds at all, and we are done. If G∗ contains at least one
compound γ∗ with a cycle C∗, then p∗ contains at least one face of C∗ and,
therefore, a face of γ∗. For contradiction, suppose that p∗ contains no face of C∗.
Consider a planar drawing of G∗ that respects the embedding. In this drawing
C∗ encloses a region R. If s and t are at opposite sides of C∗, then p∗ must
cross an edge of C∗ to connect s and t by Jordan’s curve theorem, contradicting
planarity. Hence, s and t are either both inside or outside R. First, we assume
the former and depict the situation in Fig. 8(b). In the primal graph G, C∗

defines a dicut (V l, V r) with V r = V \V l. Let Gr = (V r, Er) be the subgraph of
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G induced by V r. Depending on the orientation of C∗, Gr lies either completely
outside or inside of R. Suppose that Gr lies outside; the inside case is analogous.
Each vertex of Gr has at least one outgoing edge as G is closed and there is
no edge that points from a vertex in V r to a vertex in V l. In other words,
Gr contains no sink and, hence, it contains a cycle C ′, where C ′ encloses a
region R′ such that R ( R′ (as in Fig. 8(b)) or R′ ( R. Since both s and t
lie within R, cycle C ′ defines a dicut (F l, F r) in G∗, where either s, t ∈ F l or
s, t ∈ F r depending on the orientation of C ′ and on whether R ( R′ or R′ ( R.
If s, t ∈ F l, there is no path from any face in F r to t, and if s, t ∈ F r there is no
path from s to any face in F l (see Fig. 8(b)); a contradiction to (i) in Lemma 3.1.
The case where both s and t are outside of R is analogous. Then p∗ contains a
vertex from C and, thus, a vertex from γ∗ which implies (ii) in Lemma 3.1.

Fig. 3 illustrates the relationship between Ampère’s law from physics and
Ampère’s law for dual graphs which states that SUP and RUP switch roles
from primal to dual. This relationship is expressed by the following theorem.

Theorem 4.2 (Ampère’s Law for Duals). A graph is strongly connected an
RUP if and only if its dual is a dipole.

Proof. A strongly connected graph G is closed such that its dual is acyclic by
Proposition 2.2 and a dipole if G is RUP by Lemma 4.1.

For the converse direction, we inductively construct a RUP drawing of G
on the fundamental polygon of the rolling cylinder such that the embedding of
G is preserved. As G’s dual G∗ is a dipole, we obtain a topological ordering
f1, . . . , fk (k ≤ 1) of the faces, where f1 is the single source and fk is the single
sink of G∗. Let Gi (1 ≤ i ≤ k) be the embedded subgraph of G induced by the
faces f1, . . . , fi, i. e., Gi contains exactly those edges and vertices bounding the
faces f1, . . . , fi.

The idea is to add edges to Gi such that fi+1 is enclosed as a new face
and fi+1 lies to the left of all newly added edges. To assure a planar drawing,
the x-coordinates of the newly added vertices are strictly greater than the x-
coordinates of all vertices in Gi. Let x1, . . . , xk with xi ∈ I for 1 ≤ i ≤ k be a
sequence of strictly increasing x-coordinates, i. e., −1 < xi < xi+1 < 1 for all
1 ≤ i < k. As induction invariant, for each Gi we obtain a RUP drawing Γi,
which respects the embedding of Gi and lies within [x1, xi]× I◦. Additionally,
the dual G∗i of each Gi is a planar dipole. Especially, the right boundary of
Γi is a directed cycle and all faces f1, . . . , fi are to the left of this cycle. The
construction of the drawing must assure that the next face can always be added
without causing a crossing.

For the base case, consider G1. Since f1 is a source in G∗, G1 consists of
a single cycle C with d+(f1) many edges, where d+(f1) is the outdegree of
f1. All vertices of C get the x-coordinate x1 and the y-coordinates are chosen
according to the cyclic order as defined by C, where the total order induced
by the y-coordinates of the vertices implies the cyclic order as defined by C.
See Fig. 9(a) for an illustration. The drawing of G1 guarantees the induction

11



invariants. Especially, G∗1 is a dipole with source f1 and a single sink to the right
of C.

f1

(a) Base case.

v−p+1

v−1

fi+1

Gi

e−p

e−2
e−1

e+q

e+2

e+1

(b) Induction step.

Gi+1

(c) After the induction step.

Figure 9: Inductive construction of a RUP drawing from its dual.

For 1 < i < k − 1 the situation is depicted in Fig. 9(b). In the embedding
of G∗i+1, all incoming edges are consecutive in the rotation system of fi+1 and
so are all outgoing edges, i. e., the rotation system of fi+1 is bimodal [8, 31].
This follows from the fact that G∗ is SUP-embedded as an embedded planar
dipole [21]. Denote by e−1 , . . . , e

−
p (dashed) and e+1 , . . . , e

+
q (dotted) the primal

edges of all incoming and outgoing edges of fi+1, respectively, where the sequence
of duals of e+1 , . . . , e

+
q , e
−
p , e
−
p−1 . . . , e

−
1 in order is the rotation system of fi+1.

Note that fi+1 has at least one incoming edge as otherwise it would be a source
different from f1. Analogously, fi+1 has at least one outgoing edge. Due to
the topological ordering of the faces, all faces with an outgoing edge to fi+1

are in the drawing of Gi. Additionally, all edges e−j are part of the rightmost
cycle Cr of Gi. For contradiction assume that is not the case. Then, there is
an edge e−j (1 ≤ j ≤ p) where the endpoints of its dual are both to the left

of Cr. However, then either e−j cannot be an edge bounding fi+1 or Γi does
not respect the embedding of Gi; a contradiction to the induction hypothesis.
Moreover, since Γi respects the rotation system of fi+1, the edges e−1 , . . . , e

−
p

form a path p− = (v−1 , . . . , v
−
p+1) in Gi, which is part of Cr. As an illustration,

path p− is dashed in Fig. 9(b). Let a ∈ I◦ and b ∈ I◦ be the y-coordinates
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of v−1 and v−p+1, respectively. Note that v−p+1 must lie “above” v−1 as p− must
be drawn upward. W. l. o. g., we assume that a < b, otherwise we rotate the
drawing around the cylinder. Accordingly, the edges e+1 , . . . , e

+
q correspond to

a path p+ = (v+1 , . . . , v
+
q+1) in Gi+1. Note that v+1 = v−1 and v+q+1 = v−p+1 since

p+ and p− together bound face fi+1. We assign to each vertex v+2 , . . . , v
+
q the

x-coordinate xi+1. For every vertex v+j we choose as y-coordinate a value y+j
such that for all 1 ≤ j < q the inequality a < y+j < y+j+1 < b holds. Now, the

edges of p+ can be drawn upward as polylines with a single bend at the first
and the last edge of the path; see Figs. 9(b) and 9(c). For the position of the
bend in edges e+1 and e+q , we choose as y-coordinate some value in the intervals

(a, y+2 ) and (y+q , b), respectively, such that the straight lines from v−1 and v−p+1 to
the bends cause no crossing with any edge from p−. In consequence, both edges
consist of two segments of which one is vertical and the other almost horizontal.
For the x-coordinate of the bends, we choose xi+1. If p+ consists of a single edge,
this edge has two bends. The resulting drawing Γi+1 of Gi+1 is a RUP drawing
respecting the embedding of G and it lies within [x1, xi+1]× I◦. In Γi+1 there is
a newly formed cycle C ′r containing p+ on the right border of the drawing such
that all faces f1, . . . , fi+1 lie to the left of C ′r, see Fig. 9(c). Thus, the dual G∗i+1

is again a planar dipole.
In the drawing of Gk−1, face fk is already existent as it is the single face

to the right of the rightmost cycle in Gk−1. Hence, Gk−1 = Gk = G is RUP-
embedded.

Since a planar dipole is SUP [21], Theorem 4.2 implies:

Corollary 4.1. The dual of a strongly connected RUP graph is SUP.

There is a duality for SUP and RUP graphs and also for graph properties
such as acyclicity and strong connectivity and compounds and transits. The
latter is illustrated in Figs. 6 and 7. In the dual G∗ of G, compounds and transits
of G switch roles. For this, consider compound γ2 in Fig. 6(a). Compound γ2
in Fig. 6(a) is RUP-embedded and its dual, depicted in Fig. 7(a), is a SUP-
embedded transit. Similarly, the dual of transit τ2 in Fig. 6(a) is the compound
shown in Fig. 7(b). The following corollary subsumes these observations.

Corollary 4.2. Let G be a closed RUP graph and let G = (VC ,E) be its
compound graph. Then, the dual of each compound in VC is a SUP-embedded
transit and the dual of each transit in E is a RUP-embedded compound.

Proof. Since the compound of a RUP-embedded graph is also RUP-embedded
it is a SUP-embedded transit by Corollary 4.1. A transit of a graph is a dipole.
Since G is (RUP-)embedded, the transit is also SUP-embedded [21]. Thereby,
its dual is a RUP-embedded compound (Theorem 4.2).

Note that several transits may induce cycles in opposite direction in their
dual. The orientation of cycles in the dual is determined by the direction of
the primal. For instance, the dual of τ1 in Fig. 6(b) winds around the cylinder
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in upward direction as τ1 points from γ2 to γ1, whereas the dual of τ3 winds
around the cylinder downwards as τ3 points from γ3 to γ4. In particular, the
dual of a RUP graph is not necessarily RUP [10], as Fig. 10(a) shows.

(a) A RUP graph
G whose dual is not
RUP (but wSUP).

(b) wSUP drawing of
the dual of G.

Figure 10: The dual of a RUP graph is not necessarily RUP.

Corollary 4.3. There are RUP graphs whose duals are not RUP.

Let G∗ be the compound graph of the dual G∗ of a closed RUP-embedded
graph G. We denote the dual of a compound γ of G by γ∗, where γ∗ is a transit
of G∗. Likewise, we denote the dual of a transit τ of G by τ∗, where τ∗ is a
compound of G∗. By Lemma 4.1, the dual of a closed RUP-embedded graph is
a pathway. We now prove the converse.

The basic idea is as follows: Consider the example in Fig. 6(a) and the

compound graph G∗ of its dual G∗ in Fig. 6(d). Since G∗ is a pathway, G∗ is
a path p = (s, γ∗1 , τ

∗
1 , γ
∗
2 , τ
∗
2 , γ
∗
3 , τ
∗
3 , γ
∗
4 , t), where γ∗i is the dual of compound γi,

and τ∗i is the dual of transit τi. Each element on p corresponds to a subgraph in
the primal G and in its component graph, i. e., for each τ∗i there is a transit τi in
G and for each γ∗j there is a compound γj in G. We construct a RUP drawing
of G by subsequently attaching the elements of p to each other. We start with
transit γ∗1 , which is a dipole, and obtain a RUP drawing of its primal γ1 which
respects the given embedding by Theorem 4.2. Then, we proceed with τ∗1 , a
compound in G∗, for which we obtain a SUP drawing of its primal τ1 which
also respects the given embedding. However, note that this SUP drawing is
upward only on the standing cylinder. In particular, rotating the SUP drawing
by 90 degrees to obtain a drawing on the rolling cylinder does not necessarily
produce a RUP drawing. Fortunately, we can transform the SUP drawing of
τ1, while preserving its embedding, such that it is also upward on the rolling
cylinder. The so obtained drawing of τ1 is then attached to the rightmost cycle
of γ1. Then, the RUP drawing of γ2 is attached to the right side of τ1, and
so forth until we reach t. Since all transits γ∗j point into the same direction in

G∗, all cycles of the compounds in G have the same orientation in the obtained
drawing and they all wind around the cylinder in the same direction.

Lemma 4.2. A closed graph is RUP if its dual is a pathway.

14



Proof. Let G = (V,E) be an embedded closed graph whose dual G∗ = (F,E∗)
is a pathway. If G consists of a single compound, then it is strongly connected,
G∗ is a dipole, and the embedding of G is a RUP embedding according to
Theorem 4.2.

Suppose that G contains at least two compounds. Let s ∈ F and t ∈ F be
the source and the sink of G∗, respectively. Then each cycle C in G separates
s and t, i. e., s lies to the left and t to the right of C or vice versa. C defines
a dicut (F l, F r) in G∗. Since G∗ is a pathway, there is a path from s to any
face f ∈ F and from f to t. Hence, s ∈ F l and t ∈ F r, and s is to the left
and t to the right of C. Let C1 and C2 be two cycles in different compounds of
G. We show that C1 and C2 have the same orientation. As C1 and C2 belong
to different compounds, they are vertex- and edge-disjoint. In the dual, C1

and C2 define two dicuts (F l1, F
r
1 ) and (F l2, F

r
2 ), respectively, with s ∈ F l1, F l2

and t ∈ F r1 , F r2 . If C1 and C2 have opposite orientations, we obtain the same
situation as in the proof of Lemma 4.1 and as displayed in Fig. 8(a), where t is
situated within region F s. In particular, there would be no path from s to t in
G∗ which contradicts Lemma 3.1.

By the reasoning in the previous paragraph, we can conclude that there is a
total order γ1, γ2, . . . , γk of the compounds VC of G with the following properties:
The region to the left of any cycle in compound γi (1 < i < k) contains all
vertices of compounds γ1, . . . , γi−1, and the region to the right of any cycle in
compound γi contains all vertices of compounds γi+1, . . . , γk. Compound γ1 is
the leftmost compound in the sense that no compound is to its left side and all
other compounds are to its right side. In the same sense, γk is the rightmost
compound.

In the following, consider a drawing of G in the plane which respects the
given embedding. Fig. 11 shows the structure of such a drawing. The compounds
are displayed as shaded rings and the arrows on the rings’ borders indicate the
direction of the compounds’ cycles. Face s is situated in the middle and lies to
the left of all compounds γ1, . . . , γk. Face t is the outer face to the right of all
compounds. Let γi and γj be two compounds of G with 1 ≤ i < j ≤ k such that
j − i > 1, i. e., in the ordering of the compounds, there is at least one compound
between γi and γj . We now show that there is no transit between γi and γj ,
i. e., neither (γi, γj) ∈ E nor (γj , γi) ∈ E. Assume for contradiction that there
is transit τ̂ = (γi, γj) ∈ E. The opposite direction is analogous. Then there
is a path p from a vertex in γi to a vertex in γj which internally visits only
trivial components. Further, there is at least one compound γ` between γi and
γj (i < ` < j). In other words, τ̂ must “overleap” γ`. Compound γ` contains
at least one cycle that encloses a region R such that γi is completely contained
within R in the drawing. As p internally only visits trivial components, p cannot
have a vertex in common with γ`. Moreover, p starts within region R and must
reach a vertex of γj which is situated completely outside of R. This inevitably
leads to a crossing which contradicts planarity. For instance, in Fig. 11, the
transit τ̂ points from γ1 to γ3 and γ2 is situated between them, which leads to a
crossing.

Since (by assumption) G is connected, there is a transit between adjacent
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compounds γi and γi+1, i. e., for all i with 1 ≤ i < k, either (γi, γi+1) ∈ E or
(γi+1, γi) ∈ E. In the following, let γ1, τ1, γ2, . . . , τk−1, γk be the sequence of
compounds and transits in G such that τi is the transit connecting compounds γi
and γi+1. Analogously, let γ∗1 , τ

∗
1 , γ
∗
2 , . . . , τ

∗
k−1, γ

∗
k be the sequence of compounds

and transits in G∗ in order of the path from the source to the sink in G∗.
By Theorem 4.2, each compound in G has a RUP embedding. Further, each

transit of G is a planar dipole whose embedding is SUP. A SUP embedding
is also a RUP embedding, which was proved in [3] and in [10] using different
techniques. Hence, the embedding of each transit of G is also RUP. We conclude
our proof by showing that the RUP embeddings of the individual compounds
and transits can be merged into a single consistent RUP embedding of the
whole graph G. For this, we construct a RUP drawing of G by subsequently
processing the elements in the order γ1, τ1, γ2, τ2, . . . , γk. For an example, see
Fig. 12.

γ1τ1γ2τ2γ3τ3

τ̂

γk s

t

Figure 11: A transit which “overleaps” a compound causes a crossing.

We start with transit γ∗1 of G∗, which is a dipole, and obtain a RUP em-
bedding of γ1 by Theorem 4.2 (see Fig. 12(b)). Let Γγ1 be a RUP drawing of
γ1 according to its RUP embedding. Denote by Cr1 the rightmost cycle of γ1.
We proceed with τ∗1 , a compound in G∗. The primal τ1 is a transit and, thus, a
dipole and its embedding is SUP. Denote by Γτ1 the SUP drawing of τ1. First
assume that τ1 points from γ1 to γ2. As shown in [3, 10], we shear Γτ1 such
that it becomes RUP where its source is on the left and its sink on the right
side. We place the resulting drawing to the right of Γγ1 (see Fig. 12(d)). Recall
that τ1 is not a subgraph of G but of its component graph: τ1 is a dipole, where
source sτ1 and sink tτ1 correspond to γ1 and γ2, respectively. All other vertices
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(a) A closed RUP graph. The subgraphs within the shaded
regions are the two compounds γ1 and γ2. Transit τ1 points
from γ1 to γ2.
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(b) RUP embed-
ding of γ1.

sτ1

34

56

7

tτ1

(c) SUP embedding of τ1.
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(d) Γτ1 has been sheared to become a RUP drawing
and placed to the right of Γγ1 .
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4

5

6

7

tτ1

(e) Intermediate result Γ′ after the drawings of γ1 and
τ1 have been merged.

Figure 12: Situations obtained in the proof of Lemma 4.2.
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of τ1 are trivial components and directly correspond to vertices of G. The edges
incident to sτ1 in τ1 correspond to edges in G which are incident to vertices in
γ1, more precisely vertices of Cr1 . Source sτ1 is expanded to Cr1 and its incident
edges must be drawn upward planar. We apply a compression and rotation
technique similar to the one in [10]. Therefore, we remove sτ1 and all points of
its incident edge curves from Γτ1 within an axis-aligned rectangular region R
around sτ1 that is chosen as follows (see Fig. 12(d)): R contains no points of Γτ1
besides those of sτ1 and its incident edges, and its dimensions are such that all
intersection points of R’s boundary with Γτ1 are at the top side of the rectangle.
Note that such a rectangle exists as Γτ1 is upward in y-direction. This results in
edge curves starting in cutting points rather than in sτ1 , where all cutting points
have the same y-coordinate. We rotate Γτ1 around the rolling cylinder such that
the y-coordinate of the cutting points is greater than the y-coordinates of any of
the vertices in γ1. Let e = (u, v) be the edge in G corresponding to the edge in τ1
whose edge curve has the cutting point with the smallest x-coordinate. Vertex u
is part of Cr1 and v is a vertex in τ1. Next we rotate the drawing of γ1 such that
u is the topmost vertex, but has a smaller y-coordinate than the cutting points.
Since both the embedding of Cr1 implied by Γγ1 and the embedding of τ1 implied
by Γτ1 obey the initial planar embedding of G, the order of the cutting points
from right to left corresponds to the order of the vertices in Cr1 from bottom
to top. Hence, we can connect the vertices of Cr1 with edge curves increasing
monotonically in y-direction to the respective cutting points without introducing
crossings.

The resulting drawing Γ′ (Fig. 12(e)) forms the basis for the next step, where
as in Theorem 4.2 we obtain a RUP drawing Γγ2 of compound γ2 and place
it to the right of Γ′. In a similar way, we remove tτ1 from the drawing and
reconnect the resulting cutting points to the respective vertices in the leftmost
cycle of γ2. If, contrary to our aforementioned assumption, a transit is directed
from right to left, we proceed similarly except that we switch the roles of sτ1
and tτ1 and rotate the cutting points around tτ1 to the bottom rather than the
top. Analogously, we proceed with τ2, γ3, τ3, γ4, . . . until we have processed all
components, resulting in a RUP drawing of G.

Embedded UP and SUP graphs can be augmented by new edges, such that
only a single source and a single sink remains. An internal source (sink) is
attached by an incoming edge from a vertex in the face below. Accordingly,
RUP graphs can be augmented to closed graphs, i. e., all sources and sinks are
eliminated while preserving RUP.

Lemma 4.3. A RUP graph is a spanning subgraph of a closed RUP graph.

Proof. We iteratively add edges until all vertices have both incoming and outgoing
edges. Let t be a sink of G. Shoot a ray from the position of t in upward direction
and determine where it first meets some point p of the drawing. If p belongs to a
vertex v, we add the edge (t, v) on the ray. Note that v = t if no other vertex or
edge has a point with the x-coordinate of p such that the ray winds exactly once
around the cylinder. If p belongs to an edge e = (u, v) follow the edge curve Γe
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to its endpoint v, and insert the edge (t, v) in the RUP drawing, such that it
first follows the ray, then Γe at a small distance, and finally meets v. Incoming
edges to the sources of G are treated similarly.

The proof of Theorem 4.1 is now complete. The only-if direction follows from
Lemmas 4.1 and 4.3 and the if direction is a consequence of Lemma 4.2 and the
fact that every subgraph of a RUP graph is a RUP graph.

5. wSUP Graphs and their Duals

In this section, we extend SUP to wSUP graphs and allow horizontal edge
curves. Examples of wSUP-embedded graphs are shown in Figs. 10(b) and 13(a).
We derive a characterization of wSUP graphs by means of compound and dual
graphs.

Obviously, a wSUP graph has a cycle if and only if the edge curves form
a horizontal band around the standing cylinder. Hence, two such cycles never
interfere, but they may have opposite directions, as Figs. 10(b) and 13(a) show.

Proposition 5.1. All cycles in a wSUP graph are disjoint.

Corollary 5.1. Each compound in a wSUP graph is a simple cycle.

To characterize wSUP graphs, we proceed as before for RUP graphs in
Section 4 and first expand a wSUP graph to a pathway. Note that the supergraph
is not spanning since a new source (sink) must be added if there is a horizontal
cycle at the lower (upper) end. For our proof, we extend techniques for SUP
graphs from [21].

Theorem 5.1. A graph is wSUP if and only if it is a subgraph of a planar
pathway whose compounds are simple cycles.

Proof. “⇒”: If a graph G is acyclic, it is SUP [10] and thus a subgraph of
a planar dipole H, whose pathway consists of a single edge (s, t) and has no
compounds. Otherwise, G is composed of pairwise disjoint cycles C1, . . . , Ck,
which are the non-trivial components of the component graph G, and of acyclic
subgraphs S0, . . . , Sk+1. S0 is below C1 and some of its edges end at vertices
of C1. If S0 is empty, we extend it by adding a new source s below C1. Then,
s is attached it to any vertex of C1 by an edge, which can be drawn upward.
Otherwise, we choose any source s of S0 which is visible from the lower border
of the cylinder. Then, we eliminate all other sources of S0 as described in [21],
which is the technique used in the proof of Lemma 4.3. The graph consisting of
S0, the vertices of C1, and the edges between vertices from S0 and C1 is SUP.
Accordingly, we proceed for Sk+1 above Ck and may add a new sink t if Sk+1

is empty. For each subgraph Si between two cycles Ci and Ci+1 we eliminate
all sources and sinks by shooting rays and adding an upward drawn edge, as
explained in the proof of Lemma 4.3. Without the edges from the cycles Si is
acyclic, and in the compound graph it becomes a transit. Let H be the resulting
graph, which is wSUP. H is a pathway since its compound graph is a path from
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γ1

γ2

γ3

(a) A wSUP-embedded
graph.

γ1

γ2

γ3

(b) Component and compound graph
of the graph from Fig. 13(a).

s

t

(c) The source s and the
dashed edges have been
introduced to obtain a
wSUP graph with ex-
actly one source and one
sink.

s

t

s

γ1

γ2

γ3

t

(d) The component and com-
pound graph, where the latter
is a path from s to t and, hence,
the whole graph is a pathway.

s

t

(e) The dual of the graph
in Fig. 13(c) with its com-
pound graph. The dual
is a RUP-embedded closed
graph, where the transits con-
sist of edges only.

Figure 13: A wSUP graph and its augmentation to a wSUP pathway. Fig. 13(e) shows the
dual of the augmented graph.
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s to t and there are transits τi from s to C1, from Ck to t and from Ci to Ci+1

for each subgraph si with 1 ≤ i < k, and the compounds are disjoint simple
cycles.

“⇐”: Let H = (s, τ1, γ1, . . . , γk−1, τk, t) for k ≥ 0 be a planar pathway with
simple cycles γi as compounds. Then its component graph H is a dipole and
thus SUP. Let ΓH be a SUP drawing of H, which is expanded to a wSUP
drawing of G, such that all vertices of a cycle Ci have the same y-coordinate in
ΓH , the edges between two vertices of Ci are drawn horizontally, and the edges
that attach vertices of Ci to other vertices not of Ci are drawn upward planar.
Then H is drawn wSUP, and G is wSUP, since wSUP is closed unter taking
subgraphs.

Corollary 5.2. A wSUP graph has a supergraph whose dual is RUP.

The converse is not true since the disjoint cycles specialize the transits in the
dual G∗ to a “bundle” of parallel edges. This also implies that all faces belong
to compounds of G∗.

Theorem 5.2. A graph is wSUP if and only if it is the subgraph of a graph
whose dual is a RUP graph with no trivial component.

Proof. Augment a wSUP graph G to a pathway H as shown in Theorem 5.1,
which is a RUP graph by Theorem 4.1. If H is acyclic, then the dual H∗ is
strongly connected and, hence, H∗ has no trivial components. Otherwise, let γ
be a compound of H. γ is a simple cycle and, hence, its dual is a dipole with a
single source and a single sink, and one or more edges in between. Corollary 4.2
and the proof of Lemma 4.2 assert that the dual of γ is a transit of H∗. Hence,
each face in H∗ belongs to a compound since the transits consist of edges only
and H∗ contains no trivial components.

Conversely, suppose that G is a subgraph of an embedded graph H, whose
dual H∗ is RUP-embedded and has no trivial components. By Theorem 4.1,
H is a pathway. Further, each face in H∗ belongs to a compound and, thereby,
none of the transits of H∗ contains a face besides its source and sink. Hence,
the primal of each transit of H∗ is a simple cycle in H. Since all cycles in H are
simple, G is wSUP by Theorem 5.1.

6. Conclusion

In this paper, we have characterized upward planar graphs in the plane and
on the standing and rolling cylinders in terms of their duals. There is a duality
between strong connectivity and acyclicity, compounds and transits, and sink
and source and closed graphs. In principal, the rolling and the standing cylinder
switch roles when going from the primal to the dual. UP is closed under taking
duals, if the direction of the dual st-edge is reversed. Otherwise, its dual has
cycles and is RUP.

An asterisk is commonly used to denote a dual, such that G∗ is the dual of a
(planar, embedded) graph G. We would like to extend this notation to classes of
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graphs such that X∗ = {G∗ | G ∈ X} for a class of graphs X. Then X = X∗

holds for the (undirected) planar graphs X. However, for upward planar graphs
this notation only holds under strong restrictions. By UP = UP∗ we would like
to express that the dual of an upward planar graph is upward planar. However,
this holds only for st-graphs and with the convention that the dual of the st-edge
is reversed. A shortcut for Theorem 4.2 is RUP∗ = SUP and SUP∗ = RUP,
which holds only for strongly connected RUP graphs and SUP dipoles.

Deciding whether a digraph is upward planar is NP-hard in the plane and
on standing and rolling cylinders [10, 19, 23]. However, if one gets hold of an
embedding, upward planarity becomes linear-time solvable. In particular, for
strongly connected graphs, we have devised a linear-time algorithm in [4] that
computes a RUP embedding or rejects if the graph is not RUP. This algorithm
was extended to work for closed graphs in [1].
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