A Note on IC-Planar Graphs

Christian Bachmaier, Franz J. Brandenburg, and Kathrin Hanauer

University of Passau, 94030 Passau, Germany
{bachmaier|brandenb|hanauer}@fim.uni-passau.de

Abstract. A graph is IC-planar if it admits a drawing in the plane with at most one crossing per edge and such that two pairs of crossing edges share no common end vertex. IC-planarity specializes both NIC-planarity, which allows a pair of crossing edges to share at most one vertex, and 1-planarity, where each edge may be crossed at most once. We show that there are infinitely maximal IC-planar graphs with n vertices and $3n - 5$ edges and thereby prove a tight lower bound on the density of this class of graphs.

1 Introduction

A graph G is maximal in a graph class \mathcal{G} if no edge can be added to G without violating the defining class. The density (sparsity) of \mathcal{G} is an upper (lower) bound on the number of edges of maximal graphs $G \in \mathcal{G}$ with n vertices. A maximal graph G is densest (sparsest) in \mathcal{G} if its number of edges meets the upper (lower) bound.

It is well-known that every maximal planar graph is triangulated and has $3n - 6$ edges. The densest and sparsest planar graphs coincide. This does not longer hold for 1-planar graphs, which are graphs that can be drawn with at most one crossing per edge. These graphs have recently received much interest [13]. 1-planar graphs with n vertices have at most $4n - 8$ edges, and this bound is tight for $n = 8$ and all $n \geq 10$ [5, 7]. However, there are sparse maximal 1-planar graphs with less than $2.65n$ edges [10]. The best known lower bound on the sparsity of 1-planar graphs is $2.22n$ [5] and neither the upper nor the lower bound are known to be tight.

There are some subclasses of 1-planar graphs with different bounds for the density and sparsity. A graph is IC-planar (independent crossing planar) [1, 8, 14, 15] if it admits a drawing with at most one crossing per edge so that each vertex is incident to at most one crossing edge, and NIC-planar (near independent crossing planar) if two pairs of crossing edges share at most one vertex [15]. IC-planar graphs have an upper bound of $3.25n - 6$ on the number of edges, which is known as a tight bound, since there are such graphs for all $n = 4k$ and $k \geq 2$ [15]. The lower bound has not been addressed yet. The upper and lower bounds on the density of NIC-planar graphs are $\frac{12}{5}(n - 2)$ [15] and $\frac{10}{5}(n - 2)$ [3, 11] and both bounds are known to be tight for infinitely many values of n. Outer 1-planar graphs are another subclass of 1-planar graphs. They must admit a
1-planar embedding such that all vertices are in the outer face [2,12]. Results on the density of maximal graphs are summarized in Table 1.

Here, we establish a lower bound of $3n - 5$ on the density of IC-planar graphs and show that it is tight for all $n \geq 5$.

2 Density

We first prove the existence of maximal IC-planar graphs that have n vertices and only $3n - 5$ edges:

Lemma 1. For every $n \geq 5$ there is a maximal IC-planar graph with n vertices and $3n - 5$ edges.

Proof. As K_5 has exactly $3n - 5 = 10$ edges and is IC-planar, the statement trivially follows for $n = 5$. Let us hence assume in the following that $n \geq 6$. We construct a graph G_n with n vertices and $3n - 5$ edges as follows: G_n consists of $n - 2$ vertices forming a circle $C = (v_0, v_1, \ldots, v_{n-3})$ as well as two pole vertices p and q. For every $0 \leq i < n - 2$, G_n has edges $\{v_i, p\}$ and $\{v_i, q\}$. Additionally, there is an edge $\{p, q\}$ connecting the poles. As an example, Fig. 1a depicts the graph G_8. Then, every vertex v_i, $0 \leq i < n - 2$, is incident to exactly two circle edges as well as to both p and q, and p and q are each incident to $n - 1$ edges. Hence, G_n has $\frac{1}{2}(4(n - 2) + 2(n - 1)) = 3n - 5$ edges. As every planar graph has at most $3n - 6$ edges, every embedding must contain at least one pair of crossing edges. Let $\mathcal{E}(G_n)$ be any IC-planar embedding of G_n. We will now show that $\{p, q\}$ must be crossed in $\mathcal{E}(G_n)$ and that $\mathcal{E}(G_n)$ is unique up to isomorphism.

Suppose that an edge $\{v_i, v_{i+1}\}$ crosses an edge $\{v_j, v_{j+1}\}$ in $\mathcal{E}(G_n)$ (see Fig. 1b). Due to IC-planarity, $\{v_i, p\}$, $\{v_{i+1}, p\}$, $\{v_j, q\}$, and $\{v_{j+1}, q\}$ must be planar. In consequence of the crossing, v_j and v_{j+1} lie on different sides of the closed path P consisting of $\{v_i, p\}$, $\{v_i, v_{i+1}\}$, and $\{v_{i+1}, p\}$. Hence, either $\{v_j, q\}$ or $\{v_{j+1}, q\}$ must cross an edge of P, a contradiction. Thus, every crossing in $\mathcal{E}(G_n)$ must involve at least one of p or q.

Suppose that an edge $\{v_i, p\}$ crosses an edge $\{v_j, v_{j+1}\}$ in $\mathcal{E}(G_n)$ (see Fig. 1c). By IC-planarity, $\{v_j, q\}$ and $\{v_{j+1}, q\}$ must be planar. As $n \geq 6$, there must be a vertex $v_{i'}$ adjacent to v_i. Furthermore, $\{v_{i'}, v_i\}$ and $\{v_{i'}, p\}$ must be planar due to IC-planarity. In consequence of the crossing, p and v_i however lie on different sides of the closed path P consisting of $\{v_j, q\}$, $\{v_j, v_{j+1}\}$, and $\{v_{j+1}, q\}$, so either

<table>
<thead>
<tr>
<th>upper bound</th>
<th>lower bound</th>
<th>example</th>
<th>example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$4n - 8$</td>
<td>$\frac{22}{17}n - \frac{44}{17}$</td>
<td>$\frac{18}{5}(n - 2)$</td>
<td>$\frac{16}{5}(n - 2)$</td>
</tr>
<tr>
<td>$\frac{14}{3}n - 6$</td>
<td>$\frac{14}{3}n - 6$</td>
<td>$\frac{5}{2}n - 2$</td>
<td>$\frac{5}{2}n - 2$</td>
</tr>
<tr>
<td>$\frac{5}{2}n - 2$</td>
<td>$\frac{5}{2}n - 2$</td>
<td>$\frac{5}{2}n - 2$</td>
<td>$\frac{5}{2}n - 2$</td>
</tr>
<tr>
<td>$\frac{2}{3}n - \frac{14}{5}$</td>
<td>$\frac{2}{3}n - \frac{14}{5}$</td>
<td>$\frac{2}{3}n - \frac{14}{5}$</td>
<td>$\frac{2}{3}n - \frac{14}{5}$</td>
</tr>
</tbody>
</table>

Table 1: The density of maximal graphs on n vertices.
A Note on IC-Planar Graphs

Fig. 1: Proof of Lemma 1: The graph G_n for $n = 8$ (a) along with sketches of the cases where an edge $\{v_i, v_{i+1}\}$ crosses an edge $\{v_j, v_{j+1}\}$ (b), $\{v_i, p\}$ crosses an edge $\{v_j, v_{j+1}\}$ (c), and $\{v_i, p\}$ crosses an edge $\{v_j, q\}$ (d), which all yield non-IC-planar embeddings of G_n.

(a)

(b)

(c)

(d)

{v_l, v_i} or {v_l, p} must cross an edge of P, a contradiction. Thus, every crossing in $\mathcal{E}(G_n)$ must involve both p and q.

Finally, suppose that an edge $\{v_i, p\}$ crosses an edge $\{v_j, q\}$ in $\mathcal{E}(G_n)$ (see Fig. 1d). As $n \geq 6$, there must be two further vertices $v_l \neq v_{l'}$ such that v_l is adjacent to v_i and $v_{l'}$ is adjacent to v_j. Furthermore, $\{v_l, v_{l'}\}, \{v_j, v_{j'}\}, \{v_l, p\}$, and $\{v_{l'}, q\}$ must be planar due to IC-planarity. In result of the crossing, v_j and q lie on different sides of the closed path P consisting of $\{v_i, p\}, \{v_i, v_{l'}\}$, and $\{v_{l'}, p\}$. Thus, one of $\{v_j, v_{j'}\}$ and $\{v_{j'}, q\}$ must cross P, a contradiction.

Consequently, every crossing in $\mathcal{E}(G_n)$ must contain $\{p, q\}$, which in turn can only cross an edge $\{v_i, v_{i+1}\}$ for some i with $0 \leq i < n - 3$ or $\{v_{n-3}, v_0\}$, as depicted, e.g., in Fig. 1a. As no edge can be added to G_n and $\mathcal{E}(G_n)$ such that IC-planarity is preserved, G_n is maximal.

Note that the embedding of the graphs G_n from the proof of Lemma 1 are unique up to isomorphism, because $\{p, q\}$ must cross an arbitrary edge $\{v_i, v_{i+1}\}$.

Concerning the upper bound, observe that every maximal IC-planar graph with $n \geq 5$ vertices also has at least $3n - 5$ edges, as there always is at least one pair of crossing edges, i.e., it cannot be planar.
Theorem 1. For all \(n \geq 5 \), maximal IC-planar graphs with \(n \) vertices have at least \(3n - 5 \) edges, and this bound tight.

References